
J. Math. Anal. Appl. 436 (2016) 521–555
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Four small limit cycles around a Hopf singular point in 

3-dimensional competitive Lotka–Volterra systems

Pei Yu a,b,∗, Maoan Han a, Dongmei Xiao c

a Department of Mathematics, Shanghai Normal University, Shanghai, 200234, PR China
b Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
c Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2015
Available online 11 December 2015
Submitted by J. Shi

Keywords:
3-d competitive Lotka–Volterra 
system
Stability
Hopf bifurcation
Limit cycle
Heteroclinic cycle

The 3-dimensional competitive Lotka–Volterra (LV) systems have been studied for 
more than two decades, and particular attention has been focused on bifurcation 
of limit cycles. For such a system, Zeeman (1993) identified 33 stable equivalence 
classes on a carrying simplex, among which only classes 26–31 may have limit 
cycles. It has been shown that all these 6 classes may possess two limit cycles, and 
the existence of three limit cycles was claimed in some of these classes. Recently, 
Gyllenberg and Yan (2009) studied the existence of four limit cycles, three of them 
are small-amplitude limit cycles due to Hopf bifurcation and one additional limit 
cycle, enclosing all the three small-amplitude limit cycles, is due to the existence of 
a heteroclinic cycle, and proposed a new conjecture including: (i) There exists a 3-d 
competitive LV system with at least 5 limit cycles. (ii) In the case of a heteroclinic 
cycle on the boundary of the carrying simplex of a 3-d competitive LV system, 
the vanishing of the first four focus values (the vanishing of the zero-order focus 
value means that there is a pair of purely imaginary eigenvalues at the positive 
equilibrium) does not imply that the heteroclinic cycle is neutrally stable, and hence 
it does not imply that the positive equilibrium is a center. (iii) In the case of a 
heteroclinic cycle on the boundary of the carrying simplex of a 3-d competitive LV 
system, the vanishing of the first three focus values and that the heteroclinic cycle is 
neutrally stable do not imply the vanishing of the third-order focus value, and hence 
they do not imply that the positive equilibrium is a center. In this paper, we will 
present two examples belonging to class 27 and another two examples belonging to 
class 26, which exhibit at least four small-amplitude limit cycles in the vicinity of the 
positive equilibrium due to Hopf bifurcations, and prove that the items (ii) and (iii) 
in the conjecture are true. Moreover, showing the existence of four small-amplitude 
limit cycles is a necessary step towards proving item (i) of the conjecture.
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1. Introduction

Limit cycle is an important phenomenon in dynamical systems, which can occur in almost all fields 
of science and engineering such as physics, mechanics, electronics, ecology, economy, biology, finance etc. 
Analysis of limit cycles plays an important role in the study of nonlinear systems since bifurcation of limit 
cycles can cause complex dynamics in such systems. In recent years, bifurcation of limit cycles has been 
investigated in many biological systems (e.g. see [2,15]). One well-known example is the 3-dimensional 
Lotka–Volterra (LV) system. It is known that 2-dimensional LV systems cannot have limit cycles [1]. While 
for general 3-dimensional LV systems, complicated dynamical behavior such as period doubling route to 
chaos has been found (e.g., see [6]). On the other hand, for 3-dimensional competitive LV systems, described 
by

żi = zi

(
ri −

3∑
j=1

aijzj

)
, i = 1, 2, 3, ri > 0, aij > 0, (1.1)

the dynamical possibilities are more restricted. Here, ri and aij are constant parameters. In general, the 
system can have one positive equilibrium and seven boundary equilibria. Hirsch [14] first showed that all 
non-trivial orbits of system (1.1) approach an invariant two-dimensional manifold, called “carrying simplex”, 
leading to a Poincaré–Bendixson theorem to be held for system (1.1). Thus, the long-term behavior of system 
(1.1) is determined by the dynamics on this simplex. Later, Zeeman [28] identified 33 stable equivalence 
classes in system (1.1), and showed that in 27 of these classes, all the compact limit sets are fixed points, 
so the dynamical behavior for these cases have been fully described. Further, Hopf bifurcation theory was 
applied to show that the remaining 6 classes (26–31) can possess isolated periodic orbits or limit cycles, 
and only one class (class 27) may have heteroclinic cycle. Since then, the open question of how many limit 
cycles can surround the positive equilibrium has attracted many researchers to investigate. Some results 
were obtained and a couple of conjectures were posed on the maximal number of limit cycles.

Twenty years ago, Hofbauer and So [16] showed two limit cycles for class 27, one of which is generated 
by a Hopf bifurcation and the other is guaranteed by the Poincaré–Bendixson theorem due to the existence 
of a heteroclinic cycle. They proposed a conjecture as described below.

Conjecture 1.1. (See [16].) For system (1.1), in the case of heteroclinic cycle on the boundary of the carrying 
simplex, the following conditions are equivalent to having a center:

(a) There is a pair of purely imaginary eigenvalues at the positive equilibrium.
(b) The first focus value vanishes.
(c) The heteroclinic cycle is neutrally stable.

And further, condition (c) might be replaced by the condition,
(c’) The second focus value vanishes.

Thus, according to this conjecture, the maximal number of the limit cycles that system (1.1) can have 
might be two.

Later, Xiao and Li [24] proved that the number of limit cycles bifurcating in system (1.1) is finite if the 
system does not have heteroclinic cycles. Moreover, in this paper, an example is also given to show the 
existence of two limit cycles for class 27. Similar to the example given in [16] these two limit cycles contain 
one limit cycle due to a Hopf bifurcation and the other due to the existence of a heteroclinic cycle. Further, 
two limit cycles were found in [19] for classes 26, 28, 29, and in [9] for classes 30, 31. In 2003, Lu and Luo 
claimed that they obtained three limit cycles for class 27 [20]. Three years later, three limit cycles were also 
found for class 29 [11]. Recently, Gyllenberg and Yan constructed examples for class 27 and claimed that 
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they obtained four limit cycles, three of which are due to a Hopf bifurcation and one due to the existence 
of a heteroclinic cycle [10]. The existence of three and four limit cycles disproved Conjecture 1.1. In [10] the 
authors proposed a new conjecture as follows.

Conjecture 1.2. (See [10].)

(i) System (1.1) can have at least five limit cycles.
(ii) For system (1.1), in the case of heteroclinic cycle existing on the boundary of the carrying simplex, the 

conditions (a), (b), (c’), and (d) the third focus value vanishes, do not imply (c). In particular, the 
conditions (a), (b), (c’) and (d) do not imply that the positive equilibrium is a center.

(iii) For system (1.1), in the case of heteroclinic cycle existing on the boundary of the carrying simplex, the 
conditions (a), (b), (c), and (c’) do not imply (d). In particular, the conditions (a), (b), (c) and (c’) 
do not imply that the positive equilibrium is a center.

In this paper, we will consider bifurcation of limit cycles around the positive equilibrium of system (1.1), 
and show that there exist at least four small-amplitude limit cycles near this equilibrium due to a Hopf 
bifurcation for classes 27 and 26. Although the examples we constructed for class 27 have heteroclinic 
cycles, we cannot claim one more limit cycle. However, based on the results of four small-amplitude limit 
cycles obtained for class 27, we can prove that the items (ii) and (iii) in Conjecture 1.2 are true. Moreover, 
proving the existence of four small-amplitude limit cycles is a necessary step towards proving item (i) of 
Conjecture 1.2.

The rest of the paper is organized as follows. In the next section, we discuss the methods for computing 
the limit cycles, and then provide a review on the existing literature in Section 3. In Section 4, we prove 
our main result by constructing two examples for class 27 and another two examples for class 26, each of 
which exhibits at least four small-amplitude limit cycles in the vicinity of the positive equilibrium. We also 
prove that the items (ii) and (iii) in Conjecture 1.2 are true. Finally, conclusions are drawn in Section 5.

2. Methodology

There are many approaches developed for computing the focus values of planar vector fields, such as 
Poincaré Takens method [8], the perturbation method [25], the singular point value method [18], etc. How-
ever, for higher dimensional dynamical systems, besides the normal form computation, there is only one 
exception which is applicable for 3-dimensional systems by using the method of Lyapunov constants ap-
proach [9–11,16,19,20]. In the following, we briefly describe the two methods for computing focus values.

2.1. Computation of normal forms for n-dimensional systems

In this subsection, we briefly introduce the method of normal forms for computing the focus values of 
general n-dimensional dynamical systems, which is applicable not only for Hopf bifurcation, but also for 
other singularities. The general normal form theory can be found in [4,5,7,8,17] and computations using 
computer algebra systems can be found in [13,21,22,25,27].

Consider the following general n-dimensional differential system:

ż = A z + f(z), z ∈ Rn, f : Rn → Rn, (2.1)

where A z and f(z) represent the linear and nonlinear terms of the system, respectively. We suppose that 
z = 0 is a fixed point (or an equilibrium) of the system, implying that f(0) = Df(0) = 0. (Otherwise, 
a simple shift can make the fixed point be at the origin.) It is assumed that f(z) is analytic and can be 
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expanded into Taylor series in z. In general, matrix A may contain the eigenvalues with negative, positive 
and zero real parts, and thus system (2.1) may consist of stable, unstable and center manifolds. However, 
in real applications, we may assume that the unstable manifold is empty since a real system with unstable 
manifold is usually unstable and the first task will be stabilizing the system. Therefore, we assume that 
system (2.1) only contain stable and center manifolds.

In normal form computation, the first step is usually to introduce a linear transformation into (2.1) such 
that its linear part becomes the Jordan canonical form. (For linear systems, the Jordan canonical form is 

the normal form.) Without loss of generality, suppose under the linear transformation z = T
( x
y

)
, system 

(2.1) becomes

ẋ = J1 x + f1(x,y), x ∈ Rk, f1 : Rn → Rk,

ẏ = J2 y + f2(x,y), y ∈ Rn−k, f2 : Rn → Rn−k,
(2.2)

where J1 = diag(λ1, λ2, · · · , λk), and J2 = diag(λk+1, λk+2, · · · , λn), with Re(λj) = 0, j = 1, 2, · · · , k and 
Re(λj) < 0, j = k + 1, · · · , n.

The second step is to apply center manifold theory [3] to system (2.2) so that y can be expressed on the 
center manifold as y = H(x), satisfying H(0) = DH(0) = 0. Therefore, the first equation of (2.2) becomes

ẋ = J1 x + f1(x,H(x)) = J1 x + f2
1 (x) + f2

1 (x) + · · · + fs
1 (x) + · · · , (2.3)

where f j
1 ∈ Mj , j = 2, 3, . . . , Mj defining a linear space of vector fields whose elements are homogeneous 

polynomials of degree j. Equation (2.3) describes the dynamics on the center manifold of system (2.2), and 
H(x) can be found from the following equation:

DH(x)
[
J1 x + f1(x, H(x))

]
− J2 H(x) − f2(x, H(x)) = 0, (2.4)

with the boundary conditions H(0) = DH(0) = 0.
Next, using normal form theory [5,7,8,17] we introduce the near-identity transformation:

x = u + Q(u) = u + q2(u) + q3(u) + · · · + qs(u) + · · · , (2.5)

where qj ∈ Mj , j = 2, 3, . . . into (2.3) to obtain the normal form,

u̇ = J1u + C(u) = J1u + c2(u) + c3(u) + · · · + cs(u) + · · · , (2.6)

where cj ∈ Mj , j = 2, 3, . . . . The basic idea of normal form theory is to use the transformation qj to simplify 
cj “as simple as possible”, order by order for j = 2, 3, . . . . Thus, assuming the normal form reduction up to 
order s − 1 has been preformed, we apply the transformation x = u + qs(u) for the s-order process, and 
differentiating it gives

ẋ = [I + Dqs(u)] u̇. (2.7)

Now, we introduce the following map, called homological operator,

L: Mj → Mj , with L(ξ) = [ξ,L] = DLξ −DξL, ∀ ξ ∈ Mj , (2.8)

where [•, •] is called Lie bracket operation, with L = J1x, and define the subspace induced by the map as 
L(Mj). Thus Mj = L(Mj) + Gj , where Gj is the complement for L(Mj) in Mj .
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Then, it follows from (2.7) that

u̇ = [ I + Dqs(u) ]−1
f1 [u + qs(u) ]

=
[
I −Dqs(u) + O(‖u‖2(s−1))

][
J1 (u + qs(u)) +

s∑
k=2

f1 (u + qs(u)) + O(‖u‖s+1)
]

= J1u + c2(u) + · · · + cs−1(u) + fs
1 (u) + Lqs(u) + O(‖u‖s+1). (2.9)

Here it should be noted that cj = f j
1 for j = 2, 3, . . . , s − 1 since it is assumed that the normal form 

reduction has been carried out up to order s − 1, and Lqs(u) = DLqs(u) −Dqs(u) L. Hence, to simplify 
the s-order term, ∀ fs

1 ∈ Ms, we need to find suitable qs ∈ Ms such that fs
1 (u) + Lqs(u) = cs(u) becomes 

as simple as possible, where Lqs(u) ∈ L(Ms) and cs(u) ∈ Gs. Therefore, once the basis of L(Ms) is found, 
one can determine the basis of the complementary space Gs and thus the “form” of the normal form. It is 
well known that the normal form is not unique since the basis of Gj is not unique.

Many methodologies and efficient algorithms with the aid of computer algebra systems have been devel-
oped for computing normal forms associated with different singularities (e.g., see [7,13,27]). Recently, an 
explicit recursive formula is given for computing the normal form together with center manifold for general 
n-dimensional differential systems associated with semisimple singularities. To achieve this, rewrite (2.5)
and (2.6) as

x = u + Q(u) = u +
∑
m≥2

∑
m(k)

qm(k)u
m1
1 um2

2 · · ·umk

k ≡ q(u), (2.10)

and

u̇ = J1u + C(u) = J1u +
∑
m≥2

∑
m(k)

cm(k)u
m1
1 um2

2 · · ·umk

k , (2.11)

respectively, where m(k) represents a vector (m1, m2, · · · , mk) of k nonnegative integers, satisfying ∑k
j=1 mj = m, and the index m(k) in the summation denotes that the summation goes over all the sets for 

m ≥ 2. Then, the center manifold can be expressed in the new variable u as

y = H(q(u)) =
∑
m≥2

∑
m(k)

hm(k)u
m1
1 um2

2 · · ·umk

k ≡ h(u). (2.12)

Combining the center manifold and normal form computations yields the following compact equation,

Du h̃(u)J1u− J h̃(u) = F (u) −Du h̃(u) − C̃(u), (2.13)

where

h̃(u) =
(
Q(u)
h(u)

)
, J =

[
J1 0
0 J2

]
, F (u) =

(
f1(u,h(u))
f2(u,h(u))

)
, C̃(u) =

(
C(u)

0

)
.

Finally, comparing the coefficients on both sides of (2.13) we obtain the recursive formulas for computing 
the coefficients of h̃(u) and C(u). We omit the detailed formulas and algorithms, as well as the Maple 
programs here, which can be found in [22].

Writing the normal form associated with Hopf bifurcation in polar coordinates we obtain

ṙ = r
(
v0 + r1 r

2 + r2 r
4 + · · · + rk r

2k + · · ·
)
,

θ̇ = ωc + τ0 + τ1 r
2 + τ2 r

4 + · · · + τk r
2k + · · · , (2.14)
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where r and θ represent the amplitude and phase of motion, respectively. vk (k = 0, 1, 2, · · · ) is called the 
kth-order focus value. v0 and τ0 are obtained from linear analysis. The first equation of (2.14) can be used 
for studying bifurcation of limit cycles and their stability, while the second equation can be applied to find 
the frequency of bifurcating periodic motion. Moreover, the coefficients τj can be used to determine the 
order (or critical periods) of a center (i.e., when vj = 0, j ≥ 0).

The Maple programs developed in [21,22,25] for computing the normal form of Hopf bifurcation have 
been cross verified for many mathematical and practical systems. They produce the normal forms which 
are either identical or different by only a positive constant.

2.2. Computation of Lyapunov constants for 3-dimensional systems

In this subsection, we introduce the Lyapunov constant method for computing the focus values of 
3-dimensional systems associated with Hopf bifurcation, which has been used in [9–11,16,19,20]. This method 
does not need to transform the linear part of the system to the Jordan canonical form. Consider system 
(2.1) with n = 3. Let A = (aij) and Tr(A) = a11 + a22 + a33. Then, suppose at the critical point, defined by

det(A) = (a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32)Tr(A) ≡ ω2
cTr(A), (2.15)

A contains a negative eigenvalue, d = Tr(A) < 0, and a purely imaginary pair, ±iωc, with ω2
c =

det(A)/Tr(A) > 0, implying that det(A) < 0. Now, introducing the affine transformation z = I + T−1x

into (2.1) yields

ẋ = J x + f(x), (2.16)

where the same notation f used in (2.1) is still used for simplicity, and

J =

⎡
⎢⎣ J11 J12 0
J21 −J11 0
0 0 d

⎤
⎥⎦ , satisfying J11 > 0, −(J2

11 + J12J21) = ω2
c . (2.17)

Here, the linear transformation T = T2T1 with

T1 =

⎡
⎢⎣ b21 b22 b23

b31 b32 b33
B11 B21 B31

⎤
⎥⎦ , where

⎡
⎢⎣ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤
⎥⎦ = B = A− d I3×3,

and

B11 =
[
b22 b32
b23 b33

]
, B21 = −

[
b12 b32
b13 b33

]
, B31 =

[
b12 b22
b13 b23

]
.

Then,

T1AT−1
1 =

⎡
⎢⎣ J11 J12 J13
J21 −J11 J23
0 0 d

⎤
⎥⎦ =

[
C1 C2
0 d

]
,

which in turn yields T2 in the form of
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T2 =
[
I2×2 (C1 − d I2×2)−1C2

0 1

]
.

It should be noted that now the origin, x = 0, of system (2.16) is an equilibrium, corresponding to the 
positive equilibrium of the original system (1.1).

Next, we apply center manifold theory and let

x3 = h(x1, x2) =
∑
m≥2

m∑
j=0

h(m−j)jx
m−j
1 xj

2 . (2.18)

Then differentiating the above equation with respect to time and using equation (2.16) to balance the 
coefficients of like-powers in the resulting equations for solving hkj . Having obtained x3, the first two 
equations become

ẋ1 = J11 x1 + J12 x2 +
∞∑

m=2
f1m(x1, x2),

ẋ2 = J21 x1 − J11 x2 +
∞∑

m=2
f2m(x1, x2), (2.19)

where f1m and f2m are homogeneous polynomials of degree m in x1 and x2.
To compute the Lyapunov constants, we take a Lyapunov function,

F (x1, x2) = −J21 x
2
1 + 2 J11 x1x2 + J12 x

2
2 +

∑
m≥3

Fm(x1, x2), (2.20)

where Fm(x1, x2) =
∑m

j=0 akx
m−k
1 xk

2 , satisfying

dF

dt

∣∣∣∣
(2.19)

= LV1x
4
2 + LV2x

6
2 + · · ·LVnx

2n+2
2 + · · · , (2.21)

where LVn denotes the nth-order Lyapunov constant, which is equivalent to the nth-order focus value in 
the sense of that

v1 = v2 = · · · = vn = 0 ⇐⇒ LV1 = LV2 = · · · = LVn = 0.

Now, differentiating (2.20) with respect to time and then using (2.19) and (2.21) we obtain the equations:

−
[
(J11x1 + J12x2)

∂Fn

∂x1
+ (J21x1 − J11x2)

∂Fn

∂x2

= −2
[
(J21x1 − J11x2)f1(n−1) − (J11x1 + J12x2)f2(n−1)

]
+

n−1∑
k=3

[
f1(n−k−1)

∂Fk

∂x1
+ f2(n−k−1)

∂Fk

∂x2

]
, for n = odd, (2.22)

and

LVn
2 −1 x

n
2 −

[
(J11x1 + J12x2)

∂Fn

∂x1
+ (J21x1 + J11x2)

∂Fn

∂x2

= −2
[
(J21x1 − J11x2)f1(n−1) − (J11x1 + J12x2)f2(n−1)

]
+

n−1∑[
f1(n−k−1)

∂Fk

∂x1
+ f2(n−k−1)

∂Fk

∂x2

]
, for n = even. (2.23)
k=3
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Denoting the right-hand sides of the above two equations by 
∑n

k=0 bkx
n−k
1 xk

2 , we then balance the coefficients 
of the like powers in (2.22) and (2.23) to obtain the recursive formulas, with a−1 = an+1 = 0, as follows:

(n− 2k) J11 ak + (k + 1) J21 ak+1 + (n− k + 1) J12 ak−1 = −bk,

for k = 0, 1, . . . , n− 1, and for k = n when n = odd;

LVn
2 −1 = −nJ11 an + J12 an−1 + bn, for k = n when n = even. (2.24)

More details can be found in [19]. With the above explicit formulas, we have coded a Maple program for 
computing the Lyapunov constants LVn, n = 1, 2, · · · .

Remark 2.1.

1. The linear transformation used for system (2.1) does not change the signs of the focus values, vk. It 
may change the absolute values of the focus values, but does not change the number of limit cycles.

2. It is usually to consider the second method being simpler than the first one since it does not need the 
Jordan canonical form. However, from the view point of computation, it has been noted that the second 
method is not simpler than the first one. In other words, computation complexity for these two methods 
is more or less the same, but the second method needs a separate transformation for the center manifold 
while the first method unifies the transformation into the one procedure. In fact, once the matrix J is 
obtained in (2.16) by using the second method, one can apply one more simple linear transformation:

T ∗ =

⎡
⎢⎣ 1 0 0

J11
J12

ωc

J12
0

0 0 1

⎤
⎥⎦

into (2.16) and then apply the first method to directly obtain the focus values, without applying the 
formula (2.18).

3. When applying the second method, the linear transformation used for system (2.1) is important since 
it may change the signs of the Lyapunov constants. The correct transformed linear part must be in the 
form given by (2.17). If the matrix J uses the following form,

J =

⎡
⎢⎣−J11 J12 0

J21 J11 0
0 0 d

⎤
⎥⎦ (J11 > 0), (2.25)

then all the signs of the Lyapunov constants would be reversed. This can cause problem when a hete-
roclinic cycle exists in system (1.1) and one wants to use the Poincaré–Bendixson theory to determine 
bifurcation of a limit cycle.

Once we obtain the focus values or the Lyapunov constants for a given system, we want to use these 
quantities to determine bifurcation of limit cycles. The basic idea of finding k small-amplitude limit cycles 
in system (2.1) associated with a Hopf bifurcation around the origin is as follows: First, find the conditions 
such that v0 = v1 = · · · = vk−1 = 0 (note that v0 = 0 is automatically satisfied at the critical point), but 
vk 
= 0, and then perform appropriate small perturbations to prove the existence of k limit cycles. This 
indicates that the procedure for finding multiple limit cycles involves two steps: Computing the focus values 
(i.e., computing the normal form) or the Lyapunov constants, and solving multivariate coupled nonlinear 
polynomial equations: v0 = v1 = · · · = vk−1 = 0. In the following lemma, we give sufficient conditions for 
the existence of k small-amplitude limit cycles. (The proofs can be found in [26].)
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Lemma 2.1. Suppose that the focus values depend on k parameters, expressed as

vj = vj(ε1, ε2, . . . , εk), j = 0, 1, . . . , k, (2.26)

satisfying

vj(ε1c, · · · , εkc) = 0, j = 0, 1, . . . , k − 1, vk(ε1c, · · · , εkc) 
= 0,

and det
[
∂(v0, v1, ..., vk−1)
∂(ε1, ε2, ..., εk) (ε1c, · · · , εkc)

]

= 0. (2.27)

Then, for any given ε0 > 0, there exist ε1, ε2, . . . , εk and δ > 0 with |εj − εjc| < ε0, j = 1, 2, . . . , k such 
that the equation ṙ = 0 has exactly k real positive roots r (i.e., system (1.1) has exactly k limit cycles) in a 
δ-ball with the center at the origin.

3. Literature review

In this section, we will give a review on the existing literature related to the problem we discuss in 
this paper. In particular, we shall discuss the systems considered in [9–11,16,19,20,24]. We have applied the 
algorithms and Maple programs developed in [21,22,25], and that for the second method presented above, as 
well as one algorithm with Maple program for 3-dimensional systems associated with Hopf bifurcation [23]. 
We used these five different programs to verify each other for each case. Note that the second method is 
used to compute the Lyapunov constants in all the articles [9–11,16,19,20].

It is noted that proving the existence of the two limit cycles in the classes 30 and 31 [9] applies Hopf 
bifurcation theory and the Poincaré–Bendixson theorem. However, due to the sign problem in the compu-
tation of the Lyapunov constants, the application of the Poincaré–Bendixson theorem in [9] is invalid and 
thus the conclusion does not hold. But for these two cases, we can still use the same examples to show that 
two small-amplitude limit cycles can exist merely from Hopf bifurcations, and so the general conclusion on 
the existence of two limit cycles in classes 30 and 31 are still true. For three limit cycles, we will show that 
the conclusion on the first example given in [20] for class 27 is not valid since a sign problem is identified. 
The proof for the second example of three limit cycles given in [11] for class 29 also applies both Hopf 
bifurcation theory and the Poincaré–Bendixson theorem. But for this case one cannot prove the existence 
of three small-amplitude limit cycles. Moreover, we will show that the first example presented in [10] for 
the existence of four limit cycles in class 27 also has a sign problem and thus the conclusion does not hold 
for this example. However, we will prove that the second example in [10], which was not used to prove the 
existence of four limit cycles, actually can have four limit cycles, and thus the general conclusion is still 
valid.

Now consider system (1.1). Without loss of generality, we may assume that the positive equilibrium, E, 
be located at (x1, x2, x3) = (1, 1, 1), implying that

ri =
3∑

j=1
aij , i = 1, 2, 3. (3.1)

Further, introducing zi = 1 + xi into (1.1) we shift the positive equilibrium E(1, 1, 1) to the origin, together 
with the condition (3.1), to obtain the system,

ẋi = (1 + xi)
3∑(

− aij
)
xj , i = 1, 2, 3, (3.2)
j=1
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Fig. 1. The six classes in Zeeman’s classification which can have limit cycles.

which has a fixed point at x = 0, and a linear part −A x. Noticing aij > 0, we know that under condition 
(2.15), this system has eigenvalues, d = Tr(−A) < 0 and ± i ωc with ω2

c = det(−A)/Tr(−A) > 0 and hence 
det(A) > 0. Note that the nonlinear terms of this system only contain quadratic terms.

For system (1.1), there are six cases in Zeeman’s classification [28] which can exhibit limit cycles, as 
shown in Fig. 1, among them only case 27 can have heteroclinic cycle. To determine the existence of the 
heteroclinic cycle and its stability, we define

λij = rj −
ajiri
aii

, with Rij = sign(λij), (3.3)

and

P = λ12λ23λ31 + λ21λ13λ32. (3.4)

Then we have the following result.

Lemma 3.1. If R12 = R23 = R31, R21 = R13 = R32, and RijRji < 0, then the system has a heteroclinic 
cycle, which is an attractor (a repellor) if P < 0 (> 0).

In the following we will give a brief review for each of the articles [9–11,16,19,20,24] and point out some 
errors in some papers.

3.1. The first example giving two limit cycles in class 27 [16]

The first system considered by Hofbauer and So [16] is with the matrix

A =

⎡
⎢⎣ 2 5 1

2
1
2 1 μ

1 1
2 1

⎤
⎥⎦ (μ > 0).

A linear analysis yields the zero-order focus value as v0 = 288
1657 (μ − 71

48 ). Thus, at the critical point, defined 
by μc = 71

48 , we obtain the eigenvalues: d = −4 and ± i ωc with ωc = (2 − 1
2μc)1/2 = 11

4
√

6 . The positive 

equilibrium E(1, 1, 1) is stable (unstable) for μ < 71
48 (> 71

48 ). Then, under the condition μ = 71
48 , the first focus 

value obtained by using the first method with the Maple programs in [22,25] is v1 = 220 473
58 574 950 , while with the 

Maple programs in [21,23] is v′1 = 440 946
29 287 475 , and the first Lyapunov constant obtained by using the second 

method with the normalized system (2.16) having J given in the form of (2.17) is LV1 = 690 227 472 . All 
630 881 498 975



P. Yu et al. / J. Math. Anal. Appl. 436 (2016) 521–555 531
v1, v′1 and LV1 are positive, though not equal, as expected. Note that if we use the form of J given in (2.25)
we will get a negative LV1 = − 1 849 621 488

1 698 527 112 625 , which is certainly not correct. Also note that v′1/v1 = 4
due to a constant multiplier, while v1/LV1 = 64 623

18 784 due to the different linear transformations used in the 
two methods. This indicates that the Hopf bifurcation is subcritical, and thus when μ < 71

48 and near this 
critical point, the positive equilibrium E(1, 1, 1) is stable and there exists an unstable limit cycle enclosing 
the equilibrium.

To find whether one more limit cycle can exist or not, we need to determine under what conditions a 
heteroclinic cycle can exist in this system. To achieve this, we calculate the quantities defined in (3.3) to 
obtain

λ12 = −3
8 + μ, λ23 = 7

4 − μ

2 , λ31 = 25
4 , λ21 = −5μ, λ13 = −5

4 , λ32 = 3
2(1 − μ).

It is easy to see that for 1 < μ < 7
2 , λijλji < 0, and R12 = R23 = R31 = 1, R21 = R13 = R32 = −1. 

Hence, for 1 < μ < 7
2 , a heteroclinic cycle exists. Further, a simple calculation using formula (3.4) results in 

P = 25
128 (32μ −7)(3 −2μ), implying that P > 0 when 1 < μ < 3

2 , for which the heteroclinic cycle is unstable. 
So by applying Poincaré–Bendixson theorem, we conclude that there exists at least one stable limit cycle 
between the unstable limit cycle and the unstable heteroclinic cycle.

Summarizing above results show that for μ < 71
48 and near this point, there exist at least two limit 

cycles: one is due to Hopf bifurcation and the other due to the existence of a heteroclinic cycle. It is 
interesting to note that the two limit cycles can be also obtained just from the Hopf bifurcation, since 
v1 = 220 473

58 574 950 ≈ 0.003764, and the second focus value v2 = − 53 186 380 685 062 360 594 081
5 305 663 551 017 822 846 700 000 ≈ −0.010024. 

If we further change μ from μ = 71
48 to μ = 71

48 − 0.001, yielding v0 ≈ −0.000174, then we obtain the 
approximations for the amplitudes of the two limit cycles from the truncated equation: v0+v1 r

2 +v2 r
4 = 0

as r1 ≈ 0.232207 and r2 ≈ 0.567059. It should be noted that here rj’s represent the average values of the 
amplitudes of the limit cycles, different from the quantity x1 shown in Fig. 1(a) in [16].

In the following examples taken from the review articles, we will mainly apply the focus values obtained 
using the Maple program in [25], for which we have used all other four approaches and Maple programs to 
verify.

3.2. Another example giving two limit cycles in class 27 [24]

The example given in [24] has the matrix A given by

A =

⎡
⎢⎣ 1 1 1

1 1 2
13
5 + ε1

8
5 + ε2 3

⎤
⎥⎦ (|ε1| � 1, |ε2| � 1).

Note that for this system when ε1 = ε2 = 0, on the center manifold, all the focus values evaluated at the 
positive equilibrium vanish, and thus we may apply the approach and Maple programs developed in [12]
to perturb the 2-dimensional differential system on the center manifold. However, we here still apply the 
methods described in this paper to the original 3-dimensional differential system to obtain the focus values. 
First, it is easy to show that the zero-order focus value is equal to v0 = 5

84 (2ε1 +3ε2), which defines a critical 
line,

L1 : 2 ε1 + 3 ε2 = 0, (3.5)

in the ε1–ε2 parameter plane, as shown in Fig. 2. On the critical line L1, we have ε1 = −3
2 ε2. Then, 

the eigenvalues of the linearized system evaluated at the positive equilibrium are −5 and ± i 
√

1/5 − ε2/2. 
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Fig. 2. Distribution of limit cycles for the example given in [24].

Further, with a linear transformation and application of the Maple program we obtain the first focus value, 
given by

v1 = − 6875
303 408 ε2,

which is negative (positive) in the upper-half (lower-half) parameter plane.
Similarly, using the formulas in (3.3) and (3.4) we obtain

λ12 = 1, λ23 = 4
5 + ε1 − 3ε2, λ31 = 5

3 − 1
3(ε1 + ε2), λ21 = −1,

λ13 = −3
5 − 2ε1 + ε2, λ32 = −4

5 − 2
3 (ε1 + ε2), P = −5

3 (1 + ε1 − ε2)(ε1 + ε2).

It is obvious that for |ε1| � 1, |ε2| � 1, λijλji < 0 and R12 = R23 = R31 = 1, R21 = R13 = R32 = −1, 
which implies the existence of a heteroclinic cycle. Moreover, this heteroclinic cycle is stable (unstable) for 
ε1 + ε2 > 0 (< 0). This defines another critical line,

L2 : ε1 + ε2 = 0. (3.6)

Note that v1 = 0, i.e., ε2 = 0 also defines a critical line,

L3 : ε2 = 0. (3.7)

The three critical lines Lk, k = 1, 2, 3, divides the ε1–ε2 parameter plane into six regions, as shown in Fig. 2. 
We obtain the results as follows: There are at least two limit cycles bifurcating in regions II and IV since 
v0v1 < 0 and v1P > 0, but they have opposite stability in the two regions. The smaller limit cycle is due to 
Hopf bifurcation while the larger one due to the existence of heteroclinic cycle. In regions Ia and IIIa there 
exists at least one limit cycle due to Hopf bifurcation since v0v1 < 0 but v1P < 0, though the heteroclinic 
cycle exists. We cannot determine the number of limit cycles bifurcating in regions Ib and IIIb because 
v0v1 > 0 and v1P < 0, which may need a global bifurcation analysis. We conjecture that there exists at 
least one limit cycle in regions Ib and IIIb. The details are shown in Fig. 2.

3.3. More examples giving two limit cycles in classes 26–29 [19]

In [19], the authors present the detailed calculation of the Lyapunov constants and consider four classes 
26–29, each of them can exhibit two limit cycles. In addition, one non-competitive case is shown to have 
two limit cycles. For all the five cases, the correct J in the form of (2.17) is used. All these limit cycles are 
small-amplitude limit cycles due to Hopf bifurcations. We used all the five methods to verify these results.
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The system used in this paper is given in the form

ẋi = xi

3∑
j=1

aij(xj − 1), i = 1, 2, 3, with aij < 0. (3.8)

Note that system (3.8) is exactly the same as system (1.1) if the condition (3.1) is considered, since here 
aij < 0. The matrices A for the four competitive cases are given respectively by [19]

A =

⎡
⎢⎣ −2 −5 λ

− 1
10 −1 μ

−1 −13 −5

⎤
⎥⎦ ,

⎡
⎢⎣ −2 −5 λ

−13
10 −2 μ

−1 −13 −5

⎤
⎥⎦ ,

⎡
⎢⎣−1

5 −1 μ

−2 −5 λ

−1 −13 −5

⎤
⎥⎦ ,

⎡
⎢⎣ −2 −5 λ

−1
5 −1 μ

−1 −13 −5

⎤
⎥⎦ .

In our formulas and programs, we take −A for computation since we use system (1.1). All the results of two 
limit cycles for the above four cases and a non-competitive case are correct. In the following, we only give 
the results for the second case (Class 27) as a comparison of the first two methods. For the first method, 
we only show the result using the Maple program given in [25]. Using the second method, we obtain

LV1 = 239(2147λ+5300)(47 853 681 073λ3+394 605 348 396λ2+603 987 570 800λ+909 087 240 000)
9 219 218(2147λ−14 140)(2147λ−72 460)2 ,

which seems different from that given in [19], LV∗
1 = f(λ) = f1(λ)

f2(λ) (see page 59 in [19]). But a careful 
checking on the f1 and f2 given in [19] shows that they can actually be factorized to yield

LV∗
1 = 239(2147λ+5300)(47 853 681 073λ3+394 605 348 396λ2+603 987 570 800λ+909 087 240 000)

18 438 436(2147λ−14 140)(2147λ−72 460)2 ,

showing that the result given in [19] for Class 27 is correct. Note that the denominator cannot equal zero since 
λ < 0, and the factor on the numerator, 2147λ +5300, is negative since ωc = [−(2147λ +5300)/960]1/2 > 0.

The focus value v1, on the other hand, obtained using the Maple program [25] is

v1 = 47 853 681 073λ3+394 605 348 396λ2+603 987 570 800λ+909 087 240 000
68 704(2147λ−14 140)(2147λ−72 460) ,

which is certainly equivalent to LV1 in the sense of having the same sign and giving the same roots for v1 = 0
and LV1 = 0. In fact, the cubic polynomial on the numerator has one negative root, λ = −6.800956 · · · , 
which is located in the interval given in [19],

[
− 501 822 010 581 998 678 817

73 786 976 294 838 206 464 , −1 003 644 021 163 997 357 633
147 573 952 589 676 412 928

]
.

At this critical point, we have LV1 = v1 = 0, and LV2 ≈ −0.453257 × 10−7, v2 ≈ −0.540033 × 10−4, as well 
as ωc ≈ 3.112752. This clearly indicates that the second focus value (or Lyapunov constant) is negative, 
agreeing with what shown in [19].

Further, using the formulas (3.3) and (3.4) yields R12 = R23 = R31 = −1, R21 = R13 = R32 = 1, 
and P ≈ 0.764793, implying that this example belongs to Class 27 and the heteroclinic cycle is unstable. 
However, we cannot apply Poincaré–Bendixson theorem here since v2P < 0. Hence, there are at least two 
small-amplitude limit cycles around the positive equilibrium due to Hopf bifurcation.

3.4. Two limit cycles in classes 30 and 31

In 2009, Gyllenberg and Yan [9] tried to find two limit cycles in the remaining two classes 30 and 31. 
Note that they used system (1.1) (with aij > 0) in the introduction for general discussion, but used system 
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(3.8) (with aij < 0) in their two examples. We will show that their first Lyapunov constants do not have 
correct signs and thus their conclusion on the second limit cycles by using the Poincaré–Bendixson theorem 
is not valid.

The two matrices in their two examples are given as follows:

A =

⎡
⎢⎣

−2 −20 051
10 000 λ

−399
200 −2 μ

− 211 399
123 421 530 − 21 152 242 153

12 342 153 000 000 − 1
30

⎤
⎥⎦ and A =

⎡
⎢⎣

−3 − 31
10 λ

−29
10 −3 μ

− 2201
100 000 − 1001

100 000 − 1
500

⎤
⎥⎦ ,

for classes 31 and 30, respectively, where λ < 0, μ < 0. Note that in our calculations we again take −A

for consistence. It has been noted that these two systems are different from all the cases discussed above. 
In above cases, at the critical values of the parameters for which the first focus value (Lyapunov constant) 
vanishes, the critical frequency ωc is still positive, as usually required to yield a fine focus at the critical point. 
Thus, for those cases, one does not need to worry about the sign change of ω2

c when small perturbation 
is applied to obtain two limit cycles. While for the two cases considered in [9] the critical frequency ωc

becomes imaginary (i.e., ω2
c < 0, implying that the equilibrium point is not an elementary center at the 

critical point, but a saddle). Hence, the authors carefully choose perturbations near the critical point such 
that the frequency becomes positive and v0 v1 < 0 simultaneously, leading to one small-amplitude limit 
cycle due to Hopf bifurcation. To prove the existence of the second limit cycle, the authors first identified 
the class that the system belongs to and then applied Poincaré–Bendixson theorem. We will show that 
Poincaré–Bendixson theorem is not applicable for the two examples, but fortunately we can obtain two 
small-amplitude limit cycles due to Hopf bifurcation. This way, we need to find the second focus value.

First, we consider the second example. At the critical point, defined as μ = −6 601 200+2 952 450λ
3 052 501 , the 

eigenvalues of the linearized system, evaluated at the positive equilibrium, are −3001
500 and ± i ωc, where 

ωc = (1 941 971λ+2 154 020
6 105 002 000 )1/2. After using a linear transformation to make its linear part in Jordan canonical 

form, we apply the Maple program [25] to the resulting system to obtain v1 = v1n
v1d

, where

v1n = −(31 981 184 327 405 191 475 060 680 500 000λ3

+ 73 199 457 380 504 291 265 748 720 095 500λ2

− 29 578 679 415 951 235 492 386 007 815 992 041λ

− 33 115 498 750 883 661 600 551 100 029 064 000),

v1d = 62 143 072(970 985 500λ + 27 491 904 068 501)(242 746 375λ + 27 491 096 311 001),

where v1d > 0 since ωc > 0 implying that 1 941 971λ + 2 154 020 > 0. This first focus value seems different 
from the Lyapunov constant LV∗

1 = f1(λ)
f2(λ) , given in [9]. But actually, the f1 and f2 given in [9] can be further 

factorized as

f1 = 123 018 750 000
3 771 251 364 841 (1 941 971λ + 2 154 020)

× (31 981 184 327 405 191 475 060 680 500 000λ3

+ 73 199 457 380 504 291 265 748 720 095 500λ2

− 29 578 679 415 951 235 492 386 007 815 992 041λ

− 33 115 498 750 883 661 600 551 100 029 064 000),

f2 = (970 985 500λ + 27 491 904 068 501)(242 746 375λ + 27 491 096 311 001)2.

It is obvious that the first focus value v1 and the first Lyapunov constant LV∗
1 have opposite signs though 

they produce the same roots. This sign difference is due to that the matrix J used in [9] (see Example 2 on 
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page 351) is in the form (2.25) rather than the correct form (2.17). This causes a problem in proving the 
existence of the second limit cycle by applying Poincaré–Bendixson theorem.

Letting v1n = 0 results in three real roots for λ, two of them are negative: −1.117990 · · · and 
−31.024361 · · · . But, unfortunately, for these two values, ω2

c becomes negative, −0.279869 · · · and 
−0.009515 · · · . Thus, we have to choose a perturbation on λ such that ω2

c > 0 and simultaneously v0 v1 < 0, 
leading to bifurcation of a small-amplitude limit cycle. To achieve this, note that the value of λ yielding 
ωc = 0 is −1.109192 · · · , which is close to λ = −1.117990 · · · . Therefore, we can take this value of λ as the 
critical value and choose a proper perturbation. In fact, in [9] the authors chose λ = −16 503

15 005 = 1.099833 · · · , 
at which ωc =

√
2 498 291 310 645 351 187/916 055 550 100 > 0. For this value of λ, we find

λ12 = 106 989 382 327
2 748 166 650 300 , λ23 = − 64 377 534 852 829

27 481 666 503 000 000 , λ31 = −13 066 103
3 001 000 ,

λ21 = − 88 570 870 619
2 748 166 650 300 , λ13 = − 2 691 397

900 300 000 , λ32 = −166 495 296 811
36 642 222 004 ,

and so R23 = R31 = R21 = R13 = R32 = −R12 = 1, indicating that this is class 30 (see Fig. 1), which 
agrees with that shown in [9]. Since their calculation gives LV∗

1 ≈ −0.153495 × 10−4 < 0, indicating that 
the small-amplitude limit cycle is stable, they can apply Poincaré–Bendixson theorem to get a second limit 
cycle (see class 30 in Fig. 1). But we know that LV1 for this example should be positive, indicating that 
the small-amplitude limit cycle is unstable and thus Poincaré–Bendixson theorem is not applicable here, as 
shown in Fig. 1 (see class 30).

However, fortunately we can show that for this example two small-amplitude limit cycles can be obtained 
from Hopf bifurcation. To achieve this, we use our Maple program [25] to obtain that for λ = −16 503

15 005 ,

v1 ≈ 0.011453, v2 ≈ −0.156462.

Further, we can perturb μ from its critical value as μ = −6 601 200+2 952 450λ
3 052 501 + ε, where ε = 0.01 to get v0 ≈

−0.00000847. Thus, the roots of the truncated equation, v0 + v1 r
2 + v2 r

4 = 0, generate the approximation 
of the amplitudes of two small-amplitude limit cycles as r1 ≈ 0.027340 and r2 ≈ 0.269170.

Next, we consider the first example for which we have the eigenvalues −121
30 and ± i ωc, where

ωc =
(27 020 304 349 285 775 602 730+694 460 191 889 319 911 809λ

210 796 993 837 474 793 660 000 000
)1/2

at the critical point μ = −198 861 623 716 180
2 561 915 176 033 − 51 109 911 857 141

51 238 303 520 660λ. Similarly, we obtain the first focus value, 
given by v1 = v1n

v1d
, where

v1n = −12 342 153

× (2 896 744 181 458 462 236 920 535 979 772 285 792 936 317 677 325 983 615 057 706 053 800 000λ3

+ 333 913 695 853 530 775 330 889 316 047 452 150 648 929 877 598 119 093 293 136 874 198 455 580λ2

+ 13 524 585 317 482 810 284 763 966 304 816 040 419 150 059 997 463 121 264 098 249 898 635 179 933λ

+ 191 344 855 663 934 493 200 078 251 392 330 684 681 438 514 510 807 640 824 449 995 451 239 188 400),

v1d = 288 895 439 825 957 083 312 544

× (593 533 857 667 331 900 532 351 890 + 480 780 132 846 452 246 637λ)

× (30 863 031 050 483 828 111 741 024 570 + 6 250 141 727 003 879 206 281λ).

The first Lyapunov constant given in [9] is LV∗
1 = f1(λ)

f2(λ) , where f1 and f2 are lengthy expressions and can 
be actually further factorized as
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f1 = 3 892 754 254 614 721 494 929 872 834 500 000

× (27 020 304 349 285 775 602 730 + 694 460 191 889 319 911 809λ)

× (2 896 744 181 458 462 236 920 535 979 772 285 792 936 317 677 325 983 615 057 706 053 800 000λ3

+ 333 913 695 853 530 775 330 889 316 047 452 150 648 929 877 598 119 093 293 136 874 198 455 580λ2

+ 13 524 585 317 482 810 284 763 966 304 816 040 419 150 059 997 463 121 264 098 249 898 635 179 933λ

+ 191 344 855 663 934 493 200 078 251 392 330 684 681 438 514 510 807 640 824 449 995 451 239 188 400),

f2 = 6 269 574 455 546 363 434 471 082 455 513 577 989 482 253

× (593 533 857 667 331 900 532 351 890 + 480 780 132 846 452 246 637λ)

× (30 863 031 050 483 828 111 741 024 570 + 6 250 141 727 003 879 206 281λ).

Noticing that the first factor in f1 is positive due to ωc > 0. Again, we see that v1 and LV∗
1 have opposite 

signs though they give the same unique real root: λ = −38.909278 · · · . This indicates that LV∗
1 has a wrong 

sign even it seems they used the correct J in the form of (2.17) (see Example 1 in [9] on page 349). At 
this unique root, ω2

c ≈ −0.303929 × 10−8 < 0. Hence, the authors of [9] slightly change this value to 
λ = − 41 086 603

1 056 995 = −38.871142 · · · . Then, at this value of λ, we can show that R12 = R23 = R31 = R13 =
R32 = −R21 = 1, implying that this example belongs to class 31 (see Fig. 1), which agrees with that shown 
in [9]. Therefore, based on their calculation with LV∗

1 ≈ 0.000754 > 0, they concluded that a second limit 
cycle exists by applying Poincaré–Bendixson theorem. Since their LV∗

1 has a wrong sign, this claim is invalid.
However, we can show that two small-amplitude limit cycles exist for this example. In fact, for λ =

−41 086 603
1 056 995 , we obtain

v1 ≈ −0.061921, v2 ≈ 177.129645.

Note that since v2 is not small, we have to restrict the limit cycles to be very small and thus higher 
order terms in the normal form can be neglected. Next, we perturb μ from its critical value to μ =
−198 861 623 716 180

2 561 915 176 033 − 51 109 911 857 141
51 238 303 520 660λ − ε, where ε = −0.0001 to obtain v0 ≈ 0.212664 × 10−7. Then, solving 

the truncated equation, v0 + v1r
2 + v2r

4 = 0, yields two positive roots: r1 ≈ 0.000586 and r2 ≈ 0.018687, 
giving the approximations for the amplitudes of bifurcating small-amplitude limit cycles.

Summarizing the results in this subsection we have the following result.

Theorem 3.1. The 3-dimensional LV competitive system (1.1) has at least two small-amplitude limit cycles 
in classes 30 and 31.

3.5. First attempt for finding three limit cycles in class 27 [20]

One year later, the same authors of [19] tried to give an example in [20] to show three limit cycles. They 
also used system (3.8) in their analysis. But unfortunately, due to an error in their calculation for computing 
the Lyapunov constants, their claim does not hold. In [19] they described the procedure to compute the 
Lyapunov constants using the correct formulas (2.16) and (2.19). But in [20] they used the wrong formula 
(2.25) in calculating the Lyapunov constants, which results in an opposite sign. Moreover, there should have 
two solutions. However, even with the additional solution, one cannot conclude the existence of three limit 
cycles. The matrix A in (3.8) is given by

A =

⎡
⎢⎣
−1 −2 λ

−3
5 −3 μ

−2 −11 −5

⎤
⎥⎦ (λ < 0, μ < 0), (3.9)
10
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which, at the critical point μ = −3(3120+211λ)
640 , has eigenvalues, −9 and ± i ωc, where ωc = 1

80 (5837λ +
36 560)1/2. After a linear transformation, they obtained the system (2.16) with J in the form of

J =

⎡
⎢⎣
−505

211 −20 943
1688 − 633

640λ 0
5837
6330

505
211 0

0 0 −9

⎤
⎥⎦ , (3.10)

which is in the wrong form of (2.25). As a matter of fact, using the correct form of J :

J =

⎡
⎢⎣

505
211

20 943
1688 + 633

640λ 0
−5837

6330 −505
211 0

0 0 −9

⎤
⎥⎦ , (3.11)

we obtain

LV1 = −600(44 521λ+558 480)(194 341 522 781λ3+4 397 246 049 014λ2+28 169 289 409 536λ+43 772 534 807 040)
1 231 607(5837λ+166 160)(5837λ+554 960)2 ,

and the focus value obtained using the Maple program [25] is

v1 = −15(194 341 522 781λ3+4 397 246 049 014λ2+28 169 289 409 536λ+43 772 534 807 040)
23 348(5837λ+166 160)(5837λ+554 960) ,

showing that LV1 and v1 have the same sign, and LV1 = 0 and v1 = 0 give the same roots since except 
the factor of cubic polynomial, all other factors are positive due to ωc > 0. Note that the first Lyapunov
constant given in [20] is

LV∗
1 = −63 300(5837λ+36 560)(194 341 522 781λ3+4 397 246 049 014λ2+28 169 289 409 536λ+43 772 534 807 040)

34 070 569(5837λ+166 160)(5837λ+554 960)2 ,

which shows that all LV1, v1 and LV∗
1 have negative sign, indicating that the correct format (3.11) might 

have been used in their calculations [20]. Note that the first factors in the numerators of LV1 and LV∗
1 are 

different, and in fact, executing our Maple program for the second method with the wrong form of J given 
in (3.10) yields the exact expression −2 LV∗

1, indicating a sign problem. The cubic polynomial factor has 
three negative roots: λ1 = −12.406568 · · · , λ2 = −7.930662 · · · , λ3 = −2.289153 · · · , but only the last one 
is located in the interval given in [20],

[
− 337 819 463 133 526 323 681

147 573 952 589 676 412 928 , −
84 454 865 783 381 581 545
36 893 488 147 419 103 232

]
,

which yields a positive critical frequency, ωc ≈ 1.903869, and LV2 ≈ 0.000126, v2 ≈ 0.005392. These two 
values indicate that at the critical value of λ3, solved from LV1 = v1 = LV∗

1 = 0, the second focus value 
(Lyapunov constant) is positive. However, it is shown in [20] that LV∗

2 < 0 at this critical value. To investigate 
this difference, which raises the question about the existence of three limit cycles, we have applied our five 
approaches and Maple programs (four of them using the method of normal forms [21–23,25] and one using 
the method of Lyapunov constants, as presented in this paper), we obtain the second focus value and the 
second Lyapunov constant evaluated at λ = λ3 as

va2 = 0.0053921796 · · · [25], vb2 = 0.0862748740 · · · [21],

vc2 = 0.0028322207 · · · [22], vd2 = 0.0862748740 · · · [23],

LV2 = 0.0001261198 · · · [this paper],

all of them are positive, and vb2 = vd2 = 16vc2, as expected.
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With the formula given in [20], LV∗
2 = g1

g2
, we substitute λ = λ3 into LV∗

2 to obtain

LV∗
2 ≈ −0.613499 × 10−3 < 0,

implying that the wrong form J given in (3.10) might be used in computation. This inconsistency with the 
first Lyapunov constant computation may cause some errors in their computation.

Next, with the formulas (3.3) and (3.4) we can show that at the critical value of λ = λ3, R12 = R23 =
R31 = 1, R21 = R13 = R32 = −1, and P ≈ −8.131719. Thus, due to v2P < 0, one cannot apply 
Poincaré–Bendixson theorem to claim the existence of one more limit cycle. Hence, the example given 
in [20] can have at least 2 limit cycles due to Hopf bifurcation, similar to the cases considered in [19].

3.6. Three limit cycles in class 29 [11]

Later, another try for finding three limit cycles in class 29 was a success [11]. System (1.1) with the 
matrix A, given by

A =

⎡
⎢⎣

2 129
26 λ

27
136 1 μ
99
100

79
6

181
36

⎤
⎥⎦ (λ > 0, μ > 0),

is used in this paper to discuss bifurcation of limit cycles. The Jacobian of the system evaluated at the 
positive equilibrium, at the critical point μ = 148 137 475−11 422 593λ

100 576 964 , has eigenvalues −289
36 and ± i ωc with

ωc =
( 66 074 164 182λ−430 763 319 725

130 750 053 200
)1/2

.

Using these values, we obtain v1 = v1n
v1d

, where

v1n = −75(8 910 617 491 309 507 914 601 934 593 541 676λ3

− 103 023 993 494 982 666 728 650 319 100 938 388λ2

+ 218 258 608 138 994 756 699 580 568 887 833 521λ

− 243 985 609 490 033 480 902 512 448 327 852 625),

v1d = 2 007 951 808 (21 408 029 194 968λ + 542 956 133 991 425)

× (2 676 003 649 371λ + 323 815 810 342 300).

The first Lyapunov constant given in [11] is LV∗
1 = f1(λ)

f2(λ) , and a factorization on f1 and f2 yields

f1 = −7 139 120 625(66 074 164 182λ− 430 763 319 725)

× (8 910 617 491 309 507 914 601 934 593 541 676λ3

− 103 023 993 494 982 666 728 650 319 100 938 388λ2

+ 218 258 608 138 994 756 699 580 568 887 833 521λ

− 243 985 609 490 033 480 902 512 448 327 852 625),

f2 = 3 937 373 499 268 036(21 408 029 194 968λ+ 542 956 133 991 425)

× (2 676 003 649 371λ + 323 815 810 342 300)2.
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Since the first factor in f1 is positive due to ωc > 0, v1 and LV∗
1 have the same sign, and yield a same 

positive root: λ = 9.229463 · · · , at which ωc ≈ 1.170268 > 0 and v2 ≈ 0.011432 > 0. Therefore, we can make 
perturbations on λ and μ such that 0 < v0 � −v1 � v2 to get two small-amplitude limit cycles, with the 
inner one stable and outer unstable, enclosing an unstable equilibrium. To obtain the third limit cycle, we 
use (3.3) to obtain

R12 = R21 = R13 = R32 = 1, R23 = R31 = −1,

implying that this example belongs to class 29 (see Fig. 1). Since the outer small-amplitude limit cycle is 
unstable, one can apply Poincaré–Bendixson theorem to this case to obtain one more limit cycle.

It is noted however that for this example, without the application of Poincaré–Bendixson theorem, 
one cannot obtain three (small-amplitude) limit cycles by using the third focus value. Actually, at 
λ = 9.229463 · · · , v0 = v1 = 0, v2 ≈ 0.011432 and v3 ≈ −0.001876. Since v2 � −v3 though v2 v3 < 0, 
it is not able to find proper perturbations to yield three small-amplitude limit cycles. For example, we may 
perturb λ = 9.229463 · · ·+ ε2 and then μ = 148 137 475−11 422 593λ

100 576 964 + ε1, where ε1 = 0.0000001 and ε2 = 0.001
to obtain

v0 ≈ 0.640259 × 10−7, v1 ≈ −0.859320 × 10−4, v2 ≈ 0.011551, v3 ≈ −0.001790.

Then, the truncated equation, v0 + v1r
2 + v2r

4 + v3r
6 = 0, yields three positive roots: r1 ≈ 0.028971, r2 ≈

0.081832, r3 ≈ 6.451191, but obviously the third root does not lead to a small-amplitude limit cycle. Thus, 
one of the three limit cycles obtained for the example must be obtained by applying Poincaré–Bendixson 
theorem.

3.7. First attempt for finding four limit cycles in class 27 [10]

Finally, we come to the examples given in [10] used to prove the existence of four limit cycles. Similarly, 
they used system (1.1) (with aij > 0) for general discussion as well as deriving the formulas in (3.3) and 
(3.4). However, they also used system (3.8) (with aij < 0) in their two examples. Both examples belong to 
class 27, with the matrices given below:

A =

⎡
⎢⎣ −1 −2 λ

−3
5 −3 μ

n n −5

⎤
⎥⎦ , A =

⎡
⎢⎣ −1 −2 λ

−1
2 −3 μ

n n −5

⎤
⎥⎦ (λ < 0, μ < 0, n < 0).

The first example was used to prove the existence of four limit cycles, while the second one used to disprove 
Conjecture 1.1 [16], and then a new Conjecture 1.2 is proposed.

First, consider example 1, which has a critical point defined by μ = 3(312−11n)λ
50n at which A has eigenvalues 

−9 and ± i (154−17nλ
50 )1/2. A linear transformation is applied to obtain a J in the form of (2.25) (see [16] on 

page 651), which results in opposite signs in the Lyapunov constants. In fact, the first Lyapunov constant 
given in [16] is LV∗

1 = f1(n,λ)
f2(n,λ) , where

f1 = −33(154 − 17nλ)(619 927n3λ3 − 67 592n3λ2 − 22 963 596n2λ2 − 225 420n3λ

− 4 307 432n2λ + 244 214 240nλ− 8 698 560n2 + 51 148 032n− 669 981 312),

f2 = −289n3(2333 − 34nλ)(4204 − 17nλ)2.
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Using the focus value computation, we obtain v1 = v1n
v1d

, where

v1n = 3 (619 927n3λ3 − 67 592n3λ2 − 22 963 596n2λ2 − 225 420n3 − 4 307 432n2λλ

+ 244 214 240nλ− 8 698 560n2 + 51 148 032n− 669 981 312),

v1d = 272n2(2333 − 34nλ)(4204 − 17nλ).

Since n < 0 and 154 −17nλ > 0 (due to ωc > 0), we have f2 > 0, v1d > 0, and that f1 and v1n have opposite 
signs, leading to that LV∗

1 and v1 have opposite signs, as expected. In fact, all our focus values and all of 
their Lyapunov constants have opposite signs.

In the following, we will use our computed focus values to find the conditions on the parameters 
n and λ such that v1 = v2 = 0, but v3 
= 0. In [10] the authors found one solution (n0, λ0) =
(−2.662554649, −2.537333171) satisfying LV∗

1 = LV∗
2 = 0 (or v1 = v2 = 0). But actually, there exist 

two solutions, as shown below. The second focus value v2 = v2n
v2d

, where

v2d = 2 774 400n4(154 − 17nλ)(604 − 17nλ)(2333 − 34nλ)3(4204 − 17nλ)3 > 0,

and the lengthy expression of v2n is omitted here for brevity. Eliminating λ from the two equations v1n =
v2n = 0 yields a solution for λ = λ(n) and a resultant equation:

F1(n) = (83n− 234)(11 271n− 41 083)(45 084n− 2 537 857)(n + 2)(867n + 2629)

× (31 212n + 2 483 689)(29 315 871n2 + 2 341 682 034n− 3 653 192 079 416)

× (88 049 569 592 213 722 972 439 491 781 250n12

− 41 710 228 970 436 880 399 350 763 202 619 375n11

+ 5 237 299 319 334 114 473 187 618 527 061 249 400n10

− 102 269 800 789 270 732 027 540 953 340 621 497 880n9

+ 465 320 020 069 729 018 872 125 899 033 932 657 648n8

+ 252 002 009 127 862 741 539 827 584 565 214 881 103n7

+ 1 667 998 020 294 418 710 629 537 611 678 737 654 606n6

− 680 081 559 118 121 613 815 617 231 021 758 841 896n5

− 76 814 451 844 219 144 429 959 470 876 106 124 635 400n4

− 23 344 849 575 051 062 410 831 292 297 284 678 295 984n3

+ 1 011 923 454 279 486 301 995 116 814 577 210 693 693 536n2

+ 3 420 855 811 193 893 263 603 513 782 545 935 636 410 112n

+ 2 949 258 308 419 850 969 880 028 406 854 418 090 652 288),

which has six negative solutions for n:

n1 = −2.6625546487 · · · , n2 = −1.3463316619 · · · , n3 = −3.0322952710 · · · ,

n4 = −79.5748109701 · · · , n5 = −395.1991822306 · · · , n6 = −2,

among which only the solutions n1 and n2 yield ωc > 0 and λ < 0, and n1 gives the solution n0 obtained 
in [10]. We list the two solutions as follows:



P. Yu et al. / J. Math. Anal. Appl. 436 (2016) 521–555 541
(n1, λ1) = (−2.6625546487 · · · , −2.5373331705 · · · ),

(n2, λ2) = (−1.3463316619 · · · , −3.7238575401 · · · ).

For these two sets of parameter values, we have

for (n1, λ1) : v0 = v1 = v2 = 0, v3 = 0.0000979074 · · · > 0,

for (n2, λ2) : v0 = v1 = v2 = 0, v3 = 0.0238636659 · · · > 0.

Thus, after proper perturbations, we can have three small-amplitude limit cycles bifurcating from the Hopf 
critical point near the positive equilibrium, since

∂(v1, v2)
∂(n, λ)

∣∣∣∣
(n1,λ1)

≈ 0.00002694 
= 0, ∂(v1, v2)
∂(n, λ)

∣∣∣∣
(n2,λ2)

≈ −0.00152843 
= 0,

and the outer small-amplitude limit cycle is unstable due to v3 > 0. In [10], the authors obtained LV∗
3 ≈

−0.002850 < 0, as expected to have an opposite sign.
Next, we apply the formulas in (3.3) and (3.4) to obtain

R12 = R23 = R31 = 1, R21 = R13 = R32 = −1,

for both the two solutions, indicating that this example belongs to class 27, and

P = − 9
12 500n (154 − 17nλ)(22n2λ2 − 24n2λ− 429nλ + 60n2 + 198n + 1560)

=
{

−0.0451924039 · · · for (n1, λ1),
−1.2374371624 · · · for (n2, λ2).

P < 0 implies that the heteroclinic cycle is stable for both the two solutions. Therefore, one cannot apply 
Poincaré–Bendixson theorem to claim the existence of one more limit cycle, and so the conclusion given 
in [10] on the existence of four limit cycles based on example 1 does not hold.

Next, we consider example 2 which was only used in [10] to disprove Conjecture 1.1, and thus the authors 
computed the Lyapunov constants only up to second order. Fortunately, we found that this example can 
have four limit cycles, and detailed analysis is given below.

First, for this example the eigenvalues of A are −9 and ± i (64−nλ
20 )1/2 at the critical point μ = 376−13nλ

20n . 
Then, after a linear transformation is applied to the system such that its linear part is in Jordan canonical 
form, we apply Maple program [25] to obtain vi = vin

vid
, i = 1, 2, where

v1n = 115 401n3λ3 − 2716n3λ2 − 46 060n3λ− 4 388 728n2λ2 − 1 075 136n2λ

− 1 947 680n2 + 47 500 640nλ + 12 083 136n− 129 861 376,

v1d = 1568n2(67 − nλ)(1684 − 7nλ),

v2n = −262 471 073 054 190n10λ10 − (7 998 710 800 080n2 − 172 018 160 740 216n

− 342 297 096 252 795 397)n9λ9 + (9 892 398 516 000n3 + 7 247 212 318 206 700n2

− 121 822 545 116 543 068n− 74 200 186 206 874 349 321)n8λ8

− (6 457 306 779 098 000n3 + 2 379 894 887 154 529 080n2

− 24 745 631 712 017 878 284n− 6 414 837 288 594 228 884 068)n7λ7

− (1 316 253 953 126 000n4 − 1 468 171 957 849 366 000n3
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− 321 173 225 124 284 337 980n2 + 2 229 942 129 925 443 270 512n

+ 281 192 411 460 640 110 028 384)n6λ6 + (713 359 711 182 202 000n4

− 136 599 554 247 456 468 000n3 − 20 142 293 231 832 256 733 360n2

+ 111 659 696 134 043 851 999 296n+ 6 897 145 672 968 670 616 672 512)n5λ5

− (122 406 992 322 048 560 000n4 − 5 209 844 948 778 976 240 000n3

− 637 865 716 306 259 025 365 760n2 + 3 345 467 072 093 461 387 296 512n

+ 98 033 745 270 833 041 155 048 704)n4λ4 + (8 687 604 856 427 238 560 000n4

− 61 437 606 163 833 647 552 000n3 − 10 983 978 259 735 404 266 560 000n2

+ 60 215 735 289 602 477 180 619 776n+ 797 330 432 325 486 507 532 239 872)n3λ3

− (273 783 196 619 554 531 840 000n4 + 232 818 075 145 210 001 664 000n3

− 108 766 943 691 675 900 097 039 360n2 + 624 732 495 673 404 558 453 567 488n

+ 3 459 474 928 185 108 515 962 290 176)n2λ2 + (3 440 002 405 086 520 942 592 000n4

+ 10 105 372 238 152 222 732 288 000n3 − 614 115 070 536 121 720 186 613 760n2

+ 3 394 850 061 788 245 143 273 488 384n+ 6 766 756 123 585 322 428 205 989 888)nλ

− 14 521 440 223 175 938 719 744 000n4 − 52 423 044 664 001 829 945 344 000n3

+ 1 564 142 951 599 349 992 477 982 720n2 − 7 432 390 001 532 099 134 627 971 072n

− 4 132 258 253 599 200 903 619 149 824,

v2d = 387 233 280n4(64 − 7nλ)(244 − 7nλ)(67 − nλ)3(1684 − 7nλ)3.

Similarly, eliminating λ from the equations, v1n = v2n = 0, we obtain a solution for λ = λ(n), and a 
resultant equation:

F2 = (33n− 94)(94n− 4997)(2303n− 8644)(n + 2)(49n + 142)(238n + 16 063)

× (1 241 317n2 + 38 468 528n− 129 961 471 412)

× (13 577 406 839 627 262 063 432 000n12

− 5 918 165 943 152 122 352 145 243 700n11

+ 700 585 215 767 706 068 407 119 498 840n10

− 13 191 031 948 276 720 898 989 353 898 691n9

+ 55 604 513 671 148 633 317 214 637 262 028n8

+ 104 811 087 966 334 990 229 300 928 941 433n7

+ 22 225 813 497 904 059 134 789 783 518 870n6

− 955 759 975 030 448 322 004 857 617 880 092n5

− 7 958 566 929 093 036 242 950 224 009 421 452n4

+ 1 297 887 459 599 762 222 903 065 098 535 676n3

+ 143 664 771 734 509 018 013 888 334 944 526 616n2

+ 465 528 628 784 736 031 135 032 578 026 490 640n

+ 391 343 764 618 894 630 997 428 356 110 445 536).
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The equation F2 = 0 has six negative solutions for n:

n1 = −2.6007711762 · · · , n2 = −1.3463714575 · · · , n3 = −2.8979591836 · · · ,

n4 = −67.4915966386 · · · , n5 = −339.4341404696 · · · , n6 = −2,

and only the first two solutions satisfy ωc > 0 and λ(n) < 0, as given below:

(n1, λ1) = (−2.6007711762 · · · , −2.6701865551 · · · ),

(n2, λ2) = (−1.3463714575 · · · , −3.7431794372 · · · ),

for which we obtain

for (n1, λ1) : v0 = v1 = v2 = 0, v3 = 0.0000885049 · · · > 0,

for (n2, λ2) : v0 = v1 = v2 = 0, v3 = 0.0271341458 · · · > 0.

Then, by applying appropriate perturbations, we can have three small-amplitude limit cycles bifurcating 
from the Hopf critical point near the positive equilibrium because

∂(v1, v2)
∂(n, λ)

∣∣∣∣
(n1,λ1)

≈ 0.000029644 
= 0, ∂(v1, v2)
∂(n, λ)

∣∣∣∣
(n2,λ2)

≈ −0.00168198 
= 0,

and the outer small-amplitude limit cycles are unstable since v3 > 0.
Next, similarly applying the formulas in (3.3) and (3.4) for this example yields

R12 = R23 = R31 = 1, R21 = R13 = R32 = −1,

for both the two solutions, indicating that this example belongs to class 27, and further, we have

P = − 3
2000n (64 − 7nλ)(26n2λ2 − 32n2λ− 517nλ + 80n2 + 254n + 1880)

=
{

0.0181685809 · · · for (n1, λ1),
−1.4398192224 · · · for (n2, λ2).

Hence, the first solution yields v3 P > 0 while the second solution gives v3 P < 0, implying that we can 
apply Poincaré–Bendixson theorem to this example on the first solution to conclude the existence of one 
more limit cycle. Therefore, Theorem 2.1 in [10] about the existence of four limit cycles in system (1.1) for 
class 27 with a heteroclinic cycle on the boundary of the carrying simplex still holds, but the proof must 
use a different solution from their second example.

4. Four small-amplitude limit cycles in classes 27 and 26

Now, in this section we prove our main result: there exist 3-dimensional competitive LV systems which 
can exhibit at least four small-amplitude limit cycles near the positive equilibrium due to Hopf bifurcation 
in classes 27 and 26. Also we will show that the items (ii) and (iii) in Conjecture 1.2 are true.
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4.1. Four small-amplitude limit cycles in class 27

For this class, we have two examples with the matrices, given by

A =

⎡
⎢⎣ 1 2 p2
p3 3 p4
p1 p1 5

⎤
⎥⎦ and A =

⎡
⎢⎣ p1 1 1
p2 1 p4
p3 p1 3

⎤
⎥⎦ , (4.1)

where pi > 0, i = 1, 2, 3, 4. We have the following theorem.

Theorem 4.1. The 3-dimensional LV competitive system (1.1) has at least four small-amplitude limit cycles 
in class 27.

Proof. We will only give a detailed proof for system (1.1) with the first matrix A, and summarize the results 
for the second A. The critical point, defined by

p4 = 1
10p1

[
192 − 6p1p2 − (8 + p1p2)p3

]
, (4.2)

at which the Jacobian of system (1.1), evaluated at the positive equilibrium E(1, 1, 1) (J = −A), has a 
negative eigenvalue −9 and a purely imaginary pair, ± i ωc, where

ωc =
[ 1
10(38 + p1p2p3 − 4p1p2 − 12p3)

]1/2
. (4.3)

Using the following linear transformation,

T =

⎡
⎢⎢⎣

2(p3+1)
p1(p3−4)

10ωc

p1(p3−4)
p1p2+8
10p1

18−7p3
p1(p3−4)

(p3+6)ωc

p1(4−p3)
32−p1p2

10p1

1 0 1

⎤
⎥⎥⎦ , (4.4)

we can transform system (1.1) into a new system such that its linear part is in Jordan canonical form. Then, 
we apply the Maple program (e.g. [25]) to obtain the focus values, vi = vin

vid
, i = 1, 2, 3, where

v1d = 16p2
1(2(p1p2 − 12)2p3

3 − (p1p2 − 12)(24p1p2 − 2273)p2
3

+ 8(12p2
1p

2
2 − 2273p1p2 + 64 048)p3 − 16(8p1p2 − 481)(p1p2 − 212),

v2d = 1 866 240p4
1(p3 − 4)2(p1p2p3 − 4p1p2 − 12p3 + 38)(p1p2p3 − 4p1p2 − 12p3 + 128)

× (p1p2p3 − 4p1p2 − 12p3 + 848)3(2p1p2p3 − 8p1p2 − 24p3 + 481)3,

v3d = 278 628 139 008 000 000 000 000p6
1(p3 − 4)3(8p1p2p3 − 32p1p2 − 96p3 + 709)

× (p1p2p3 − 4p1p2 − 12p3 + 38)2(p1p2p3 − 4p1p2 − 12p3 + 128)2

× (p1p2p3 − 4p1p2 − 12p3 + 848)5(2p1p2p3 − 8p1p2 − 24p3 + 481)5,

v1n = −(13p3
1p

3
2 − 252p3

1p
2
2 + 20p3

1p2 + 576p2
1p

2
2 + 208p2

1p2 + 3360p2
1 − 7840p1p2

+ 19 392p1 + 3072)p3
3 − 2(207p3

1p
3
2 − 1258p3

1p
2
2 − 320p3

1p2 − 3766p2
1p

2
2

+ 11 532p2
1p2 − 49 360p2

1 + 95 360p1p2 − 302 432p1 − 56 512)p2
3

− 8(508p3
1p

3
2 + 1978p3

1p
2
2 + 520p3

1p2 − 2199p2
1p

2
2 − 41 962p2

1p2 + 56 560p2
1

− 120 880p1p2 + 434 512p1 + 206 592)p3 − 12 288p3
1p

3
2 + 1152(6p1 + 467)p2

1p
2
2
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+ 1536(5p2
1 − 193p1 − 4150)p1p2 + 445 440p2

1 + 3 099 648p1 + 17 031 168,

v2n = · · · ,
v3n = · · · .

Here, the lengthy expressions of v2n (having 546 terms) and v3n (having 2422 terms) are not listed for 
brevity. Now we need to solve v1n = v2n = v3n = 0 for p1, p2, p3. Since none of them is a linear equation 
with respect to one of the parameters, we have to solve them using a different approach. Also, due to 
the large and complicated expressions, the built-in Maple command eliminate does not work. We shall 
use another built-in Maple command resultant to find solutions, but it is more involved. The commands 
“resultant (v1n, v2n, p2)” and “resultant (v1n, v3n, p2)” yield two resultant equations: F12 = F0 R12 and 
F13 = F0 R13, where F0, R12 and R13 are polynomials in p1 and p3. Then, again using the command 
“resultant (R12, R13, p1)” we obtain F123 = F1 R123, where

F1 = C1 p
3
3(p3 + 6)78(p3 + 16)3(2p3 + 27)2(13p3 + 128)2,

R123 = R123aR123bR123cR123dR123eR123fR123gR123hR123i,

R123a = 3p2
3 − 62p3 + 360,

R123b = 1431p5
3 − 43 248p4

3 + 387 988p3
3 − 519 488p2

3 − 5 003 712p3 + 2 861 568,

R123c = 34 992p6
3 − 2 550 240p5

3 + 66 441 610p4
3 − 670 030 595p3

3 + 706 773 150p2
3

+ 16 315 647 552p3 + 42 699 363 840,

R123d = 4860p7
3 − 248 373p6

3 + 4 615 605p5
3 − 39 391 410p4

3 + 152 439 000p3
3

+ 14 871 040p2
3 − 2 634 835 968p3 − 832 757 760,

R123e = 16 092p7
3 − 528 807p6

3 + 8 230 671p5
3 − 66 406 545p4

3 + 305 962 625p3
3

− 821 758 608p2
3 + 1 207 592 388p3 − 761 379 264,

R123f = 18 576p9
3 − 412 320p8

3 + 3 837 048p7
3 − 19 177 776p6

3 + 53 179 885p5
3

− 66 565 142p4
3 − 37 703 547p3

3 + 248 579 280p2
3 − 324 282 528p3 + 151 375 392,

R123g = 25 981 560p18
3 − 6 783 087 663p17

3 + 183 805 902 756p16
3 + 74 149 123 298 382p15

3

− 8 646 644 928 599 760p14
3 + 432 134 707 392 093 120p13

3

− 11 193 107 743 022 469 024p12
3 + 79 441 720 395 640 995 168p11

3

+ 4 117 244 407 715 938 345 856p10
3 − 80 237 699 508 671 744 952 320p9

3

− 815 037 765 917 899 962 736 640p8
3 + 10 376 512 356 893 516 058 607 616p7

3

+ 47 080 782 729 938 511 076 589 568p6
3 − 636 488 168 241 770 497 071 120 384p5

3

− 1 811 106 555 190 360 094 602 690 560p4
3

+ 15 368 204 827 836 961 010 535 628 800p3
3

+ 68 182 592 605 320 391 833 893 732 352p2
3

+ 83 710 159 285 007 934 689 856 454 656p3

+ 19 433 465 641 293 486 859 738 939 392,

R123h = · · · ,
R123i = · · · ,

in which C1 is a big integer, and the lengthy expressions of R123h and R123i are omitted.
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Now, solving these univariate polynomials in p3, we obtain 93 positive solutions for p3. Then, among 
these 93 solutions, we use the equations R12 = R13 = 0 to find 38 positive solutions for (p3, p1). Next, 
among the 38 solutions, we use v1n = v2n = v3n = 0 to obtain 10 positive (p3, p1, p2) solutions. In the last 
step, we need to check if these 10 solutions satisfy ωc > 0 and p4 > 0, and finally find only one solution 
satisfying these two conditions, given by

p1 = 1.460400 · · · , p2 = 3.151879 · · · , p3 = 2.128078 · · · , p4 = 9.419456 · · · , (4.5)

for which ωc = 0.620209 · · · . For this solution, the focus values become

v0 = v1 = v2 = v3 = 0, and v4 ≈ −0.452369 < 0.

Moreover, at the solution given in (4.5) we have

∂(v1, v2, v3)
∂(p1, p2, p3)

≈ 0.363684 
= 0.

Thus, according to Lemma 3.1, we can perturb v1, v2 and v3 by using p1, p2 and p3 to obtain three small-
amplitude limit cycles. Further, we change p4 to perturb v0 such that v0 v1 < 0 and |v0| � |v1| to get one 
more small limit cycle, and thus obtain four small-amplitude limit cycles.

Finally, we want to check if we are luck to be able to apply Poincaré–Bendixson theorem to get a 5th 
limit cycle. For the above unique solution given in (4.5), it is easy to use the formulas given in (3.3) and 
(3.4) to obtain

R12 = R23 = R31 = 1, R21 = R13 = R32 = −1, P ≈ 0.003560 > 0,

indicating that unfortunately Poincaré–Bendixson theorem is not applicable for this case due to v4 P < 0.
It should be noted that it is hard to use simulation to show the four small-amplitude limit cycles for 

the critical values of the parameters given in (4.5) with proper perturbations because they are around 
a fourth-order fine focus, causing extremely slow convergence. However, what we can demonstrate using 
numerical simulation is to show that for these critical parameter values all trajectories converge to the 
carrying simplex which contains the positive equilibrium. Also we can show the center manifold for the 
critical values, which actually contains the whole carrying simplex. The center manifold is obtained by 
using our Maple program for the second method after the affine transformation z = I + T−1x and then 
using the formula (2.18) yields the approximated center manifold up to third-order terms:

x3 ≈ −0.00026852x2
1 − 0.03506069x1x2 − 0.03854293x2

2

+ 0.00007096x3
1 + 0.00067345x2

1x2 + 0.00129539x1x
2
2 + 0.00063851x3

2.

It is clear that the quadratic approximation of the center manifold near the positive equilibrium represents 
an elliptic paraboloid. However, when we transform the center manifold back to the original coordinates, 
we obtain

F (z1, z2, z3) ≈ 10.24382231(z1 − 1) + 12.60300630(z2 − 1) + 37.75019310(z3 − 1)

− 0.10795713(z1 − 1)2 + 0.00625568(z2 − 1)2 + 0.41448552(z3 − 1)2

+ 0.29208424(z1 − 1)(z2 − 1) − 0.36161739(z1 − 1)(z3 − 1)

− 0.27553495(z2 − 1)(z3 − 1),
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Fig. 3. (a) System behavior for the first case of class 27 with the critical values given in (4.5): (a) the center manifold near the 
positive equilibrium; and (b) numerical simulation showing convergence to the positive equilibrium.

which shows that the center manifold looks like almost a plane near the positive equilibrium, as shown 
in Fig. 3(a). Hence, the neighborhood of the positive equilibrium is very large and the quadratic elliptic 
paraboloid covers a very large area. In fact, the whole carrying complex is within the local area of the center 
manifold. This is reasonable since the nonlinearity is very weak in this case due to the positive equilibrium 
being a fourth-order fine focus.

To check if there are any other possible limit cycles on the carrying simplex, we will use simulation to 
verify this. Note that the carrying simplex has three vertexes on the z1-axis, z2-axis and z3-axis with the 
coordinates

z∗1 = 3 + p2 ≈ 6.1519, z∗2 = 1 + p3+p4
3 ≈ 4.8492 and z∗3 = 1 + 2p1

5 ≈ 1.5842,

respectively. We can see from the simulation result given in Fig. 3(b), which has the exactly same carrying 
simplex as that shown in Fig. 3(a), that all simulated trajectories with different initial points quickly converge 
to the carrying simplex and almost stay there as a closed orbit. This is not surprising since the convergence 
on this carrying simplex (with an interior equilibrium being a fourth-order fine focus) is extremely slow once 
the trajectories reach the carrying simplex. Theoretically, these trajectories on the carrying simplex should 
converge to the equilibrium since v4 < 0, but the convergence is too slow to be demonstrated by simulation. 
The above discussions show an agreement between the simulation and the theoretical prediction, implying 
that besides the four limit cycles, no other limit cycles can exist on the carrying simplex.

Next, we summarize the results obtained for the example with the second A given in (4.1). With a similar 
procedure used in the first example, we obtain four solutions, given as follows:

pa1 = 1.093819 · · · , pa2 = 1.092774 · · · , pa3 = 2.665493 · · · , pa4 = 2.999624 · · · ,

pb1 = 2.589229 · · · , pb2 = 4.435498 · · · , pb3 = 5.387046 · · · , pb4 = 3.172367 · · · ,

pc1 = 9.210496 · · · , pc2 = 9.351798 · · · , pc3 = 24.537382 · · · , pc4 = 3.302650 · · · ,

pd1 = 27.848014 · · · , pd2 = 33.074642 · · · , pd3 = 66.433114 · · · , pd4 = 7.426532 · · · , (4.6)

and the corresponding focus values evaluated at these solutions are

v0 = v1 = v2 = v3 = 0, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

va4 = −0.1508181513 · · · × 10−8,

vb4 = 0.5095370267 · · · × 10−6,

vc4 = 0.1198056699 · · · × 10−7,

vd = 0.3653554211 · · · × 10−6.
4
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Fig. 4. (a) System behavior for the second case of class 27 with the first set of critical values given in (4.6): (a) the center manifold 
near the positive equilibrium; and (b) numerical simulation showing convergence to the positive equilibrium.

All these four solutions yield

R12 = R23 = R31 = 1, R21 = R13 = R32 = −1,

and thus this example belongs to class 27 for all the four solutions. Moreover, we obtain

P a ≈ 0.00001531, P b ≈ −0.00464832, P c ≈ −0.23665111, P d ≈ −78.58702849,

and so for all the four solutions we have v4 P < 0, implying that Poincaré–Bendixson theorem cannot be 
applied for any of the four solutions. To obtain four small-amplitude limit cycles, we only need to verify the 
following determinant for the four solutions:

∂(v1, v2, v3)
∂(p1, p2, p3)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.7494729616 · · · × 10−14

−0.2763365707 · · · × 10−10

−0.3655856013 · · · × 10−13

0.1982620287 · · · × 10−12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭


= 0.

Thus, three small-amplitude limit cycles are obtained by perturbing p1, p2, p3 and one more small-amplitude 
limit cycle is given by perturbing p4.

Similarly, we can obtain the expressions of the center manifolds for this case and simulate trajectories of 
system (1.1) for the critical values given in (4.6). For example, as shown in Fig. 4, we present the results for 
the first set of the critical values given in (4.6), which yields the center manifold, described in the original 
coordinates, as

F (z1, z2, z3) ≈ 5.57209437(z1 − 1) + 3.09381944(z2 − 1) + 7.09344382(z3 − 1)

− 0.00002820(z1 − 1)2 + 0.00007664(z2 − 1)2 − 0.00016095(z3 − 1)2

− 0.00053096(z1 − 1)(z2 − 1) + 0.00048101(z1 − 1)(z3 − 1)

+ 0.00011515(z2 − 1)(z3 − 1),

which again shows that the linear part dominate the expression and so the center manifold including the 
whole carrying simplex is almost a plane (see Fig. 3(a)). The numerical simulation shown in Fig. 3(b) also 
indicates the similar situation: all trajectories with different initial conditions are firstly all converging to 
the carrying simplex, which has the three vertexes at
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z∗1 = 1 + 2
p1

≈ 2.8285, z∗2 = 1 + p2 + p3 ≈ 5.0924 and z∗3 = p3+4
3 ≈ 2.2218,

and then almost stay there, implying the very slow convergence on the carrying simplex because the positive 
equilibrium is a fourth-order fine focus. The agreement between the simulation and the analytical prediction 
implies that except the four small-amplitude limit cycles, there are no other limit cycles on the carrying 
simplex.

The proof for Theorem 4.1 is complete. �
4.2. Conclusions on items (ii) and (iii) of Conjecture 1.2

Now, we are ready to consider Conjecture 1.2. Although we did not get five limit cycles, we did compute 
the focus values up to v4 as well as the index P for the heteroclinic cycle. Thus, we are able to make decision 
on Items (ii) and (iii) of Conjecture 1.2. In fact, we can prove that these two items are true. That is, we 
have the following result.

Theorem 4.2. For system (1.1), in the case of heteroclinic cycle existing on the boundary of the carrying 
simplex, suppose that the first three focus values vanish (v0 = v1 = v2 = 0). Then, neither the vanish of 
the third focus value (v3 = 0) implies that the heteroclinic cycle is neutrally stable (P = 0), nor conversely 
that the heteroclinic cycle is neutrally stable (P = 0) implies the vanish of the third focus value (v3 = 0). In 
particular, neither the conditions v0 = v1 = v2 = v3 = 0, nor v0 = v1 = v2 = P = 0 imply that the positive 
equilibrium of system (1.1) is a center.

Proof. We need to consider the two cases in class 27 since these two systems have heteroclinic cycles. The 
proof for the first part of the theorem (i.e., the item (ii) in Conjecture 1.2) is straightforward since we have 
already shown in the proof of Theorem 4.2 that v0 = v1 = v2 = v3 = 0 does not yield P = 0, and so the 
first part is true.

To show that the second part of the theorem (i.e., the item (iii) in Conjecture 1.2) is also true, we need 
to prove v3 
= 0 under the conditions: v0 = v1 = v2 = 0 and P = 0. We first consider the first example in 
class 27, in which P is given by

P = 3
500p1

(38 + p1p2p3 − 4p1p2 − 12p3)
[
p3(p1p2 − 10p1 + 8)(2p1p2 + 4p1 − 5)

+ 12p2
1(p2

2 + 2p2 + 5) − 264p1p2 − 168p1 + 960
]
.

Since the first factor is positive (due to ωc > 0), we may solve p3 from the second factor to obtain

p3c = 12p2
1(p2

2 + 2p2 + 5) − 264p1p2 − 168p1 + 960
(p1p2 − 10p1 + 8)(2p1p2 + 4p1 − 5) ,

at which v1n and v2n are simplified to vin = vinn

vind
, i = 1, 2, where vinn and vind are polynomials of p1 and 

p2. Solving the two equations: v1nn = 0 and v2nn = 0 we obtain three positive solutions for (p1, p2) such 
that p3 > 0 and ωc > 0 but none of them satisfies p4 > 0. Moreover, among these three solutions, only 
one satisfies v0 = v1 = v2 = 0. Thus, we have one solution satisfying v0 = v1 = v2 = P = 0, but with 
one of the parameters, p4 taking negative value (outside the physical limitation). Even for this solution, 
v3 ≈ −6777.688726 
= 0. This shows that the conclusion of Theorem 4.2 is true for the first example.

Next, considering the second example. we have the critical value of p2, solved from P = 0, as

p2c = (p1 + 2)(12p2
1 − 11p1p3 + 3p2

3 + 16p1 − 6p3)
,
(3p1 − 2p3 − 2)(p1 − p3 − 2)
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for which v1n and v2n become rational functions of p1 and p3. Letting the numerators of these two functions 
equal zero and eliminating p3 from these two polynomials we obtain a solution p3 = p3(p1) and a resultant 
equation:

R12 = (p1 + 1)(3p1 + 4)(p1 + 3)(p1 + 4)(p1 + 2)(3p3
1 + 44p2

1 + 192p1 + 192)

× (12p5
1 + 311p4

1 + 2896p3
1 + 12 304p2

1 + 23 888p1 + 17 088)(p1 − 4)

× (2p2
1 − p1 − 12)(4368p21

1 − 2 208 348p20
1 − 62 412 886p19

1 − 720 547 221p18
1

− 3 516 987 941p17
1 + 9 230 386 223p16

1 + 276 352 849 087p15
1 + 2 351 832 392 006p14

1

+ 13 503 291 495 696p13
1 + 60 571 893 748 128p12

1 + 210 845 598 341 664p11
1

+ 490 525 009 852 448p10
1 + 313 072 362 303 168p9

1 − 2 733 450 253 244 416p8
1

− 12 509 314 819 438 080p7
1 − 27 975 482 128 885 760p6

1 − 34 991 231 653 621 760p5
1

− 15 757 485 834 600 448p4
1 + 21 929 674 230 202 368p3

1 + 42 449 333 699 215 360p2
1

+ 29 479 620 110 712 832p1 + 7 940 884 779 761 664),

which has 6 positive solutions for p1:

1.025382 · · · , 2.621433 · · · , 8.222485 · · · , 532.969720 · · · , 2.712214 · · · , 4.

For these 6 solutions of p1, we use the formula p3(p1) to find solution for p3, and then using the formula 
p2c to find solution for p2c, and finally verifying p4 indicates that all the 6 solutions yield p1 > 0, p3 > 0, 
p2c > 0 and p4 > 0. One more thing needs to check is ωc and we find that only the first four solutions yield 
ωc > 0. Therefore, we find four solutions:

pA1 = 1.025382 · · · , pA2 = 0.980948 · · · , pA3 = 2.526887 · · · , pA4 = 2.983402 · · · ,

pB1 = 2.621433 · · · , pB2 = 4.562640 · · · , pB3 = 5.429149 · · · , pB4 = 3.163067 · · · ,

pC1 = 8.222485 · · · , pC2 = 8.194314 · · · , pC3 = 22.52972 · · · , pC4 = 2.917147 · · · ,

pC1 = 532.9697 · · · , pD2 = 636.1192 · · · , pD3 = 1247.183 · · · , pD4 = 108.7045 · · · ,

for which ωc > 0, and

v0 = v1 = v2 = 0, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vA3 = 0.6089032187 · · · × 10−6,

vB3 = −0.1540246260 · · · × 10−5,

vC3 = 0.2411287902 · · · × 10−6,

vD3 = −0.0002396875 · · · ,

showing that the third focus value is nonzero for all the four solutions, and so the conclusion of Theorem 4.2
is also true for the second example.

This finishes the proof. �
Remark 4.1. It should be noted from the proof of Theorem 4.2 that under the conditions v0 = v1 = v2 = 0
and P = 0, but v3 
= 0, we may get three small-amplitude limit cycles from perturbing v0, v1 and v2, and 
one more limit cycle by applying Poincaré–Bendixson theorem if v3 P > 0. We only consider the second 
example since the first example does not have feasible parameter solutions for v0 = v1 = v2 = P = 0. For 
simplicity, we take p2 = p2c + 1 and then solve v1n = 0 and v2n = 0 to get two feasible solutions:
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pI1 = 29.68240 · · · , pI2 = 35.38205 · · · , pI3 = 70.65660 · · · , pI4 = 7.78072 · · · ,

pII
1 = 340.9426 · · · , pII

2 = 407.9100 · · · , pII
3 = 797.8659 · · · , pII

4 = 69.9927 · · · ,

which yield ωc > 0 and

v0 = v1 = v2 = 0,
{

vI3 = −0.0000021092 · · · , P = −93.4628545 · · ·
vII
3 = −0.0001818308 · · · , P = −10097.8387 · · · ,

showing that v3 P > 0 and thus Poincaré–Bendixson theorem can be applied. Further,

∂(v1, v2)
∂(p1, p3)

=
{

0.2092511160 · · · × 10−6

0.2589286844 · · · × 10−7

}

= 0,

implying that two small-amplitude limit cycles can be obtained by perturbing p1 and p3. Finally, perturbing 
p4 such that v0 v1 < 0 to get one more small-amplitude limit cycle.

Item (i) in Conjecture 1.2, i.e., the existence of five limit cycles in the 3-dimensional LV system (1.1), 
remains open. However, the results of four small-amplitude limit cycles obtained in this paper for class 27
(which needs the computations on vi, i = 1, 2, 3, 4 and P ) give us hope that a positive answer may be 
confirmed in near future for this conjecture.

4.3. Four small-amplitude limit cycles in class 26

Finally, in this section, we will show that system (1.1) can also have four small-amplitude limit cycles 
in class 26. This may promote studies on other classes 28–31 to see if there exist four limit cycles in those 
classes. For class 26, we also have two examples, with the matrices given by

A =

⎡
⎢⎣ p3 2 p2

1
2 3 p4
p1 p1 5

⎤
⎥⎦ and A =

⎡
⎢⎣ p3 2 p2

3
5 3 p4
p1 p1 5

⎤
⎥⎦ , pi > 0 (i = 1, 2, 3, 4). (4.7)

We have the following result.

Theorem 4.3. The 3-dimensional LV competitive system (1.1) has at least four small-amplitude limit cycles 
in class 26.

Proof. Since these two matrices given in (4.7) are almost identical (except one constant entry), we expect 
that the results for the two systems should be similar. Thus, we only prove the system with the first matrix 
A and then summarize the results for the second one. The Jacobian matrix of system (1.1) with the first 
matrix A, evaluated on the positive equilibrium E(1, 1, 1), at the critical point, defined by

p4 = 1
20p1

(234 − 2p1p2p3 + 126p3 − 11p1p2 + 16p2
3),

has a negative eigenvalue −(p3 + 8) and an imaginary pair, ± i ωc, where

ωc =
[ 1 (46 + 2p1p2p3 + 34p3 − 9p1p2 − 16p2

3)
]1/2

.
20
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Then, using a linear transformation T , where

T =

⎡
⎢⎢⎣

2(11−p3)
p1(2p3−9)

20ωc

p1(2p3−9)
p1p2+2p3+8

10p1
6p3+23

p1(2p3−9)
(2p3+11)ωc

p1(9−2p3)
24−8p3−p1p2

10p1

1 0 1

⎤
⎥⎥⎦ ,

we have a system with its linear part in Jordan canonical form, and apply our Maple program to this system 
to obtain the focus values, vi = vin

vid
, i = 1, 2, 3 (where vin and vid are not listed). Then, eliminating p2 from 

the equations v1n = v2n = 0 and v1n = v3n = 0 yields two solutions p2a(p1, p3) and p2b(p1, p3) for p2, 
and two resultant equations: R12(p1, p3) = 0 and R13(p1, p3) = 0. Further, using the command “resultant 
(R12, R13, p1)” we obtain the resultant equation R123(p3) = 0. Solving this univariate polynomial equation 
results in 95 positive solutions for p3. Then, among these 95 solutions, we use two resultant equations, 
R12(p1, p3) = 0 and R13(p1, p3) = 0, to find 26 positive solutions (p3, p1), among which 12 solutions satisfy 
p2a = p2b > 0. Finally, from the 12 solutions we only find one solution satisfying p4 > 0 and ωc > 0, given 
by

p1 = 2.472968 · · · , p2 = 3.401336 · · · , p3 = 1.202017 · · · , p4 = 5.981176 · · · , (4.8)

for which ωc = 0.643031 · · · , and

v0 = v1 = v2 = v3 = 0, v4 ≈ −0.393059 × 10−5.

Moreover, at the solution given in (4.8), we obtain

∂(v1, v2, v3)
∂(p1, p2, p3)

≈ −0.591553 × 10−8 
= 0,

implying that three small-amplitude limit cycles can be produced by perturbing v1, v2, v3 using p1, p2, p3
and the fourth (the smallest) small limit cycle can be obtained by perturbing v0 using p4.

Finally, we need to check whether this example belongs to class 26 or not. Evaluating the formulas (3.3)
and (3.4) at the solution (4.8) yields

R12 = R21 = R23 = 1, R13 = R31 = R32 = −1, (4.9)

showing that the first example indeed belongs to class 26.
The simulation result for this example is shown in Fig. 5(b), which is different from the previous two 

examples in class 27. In the two examples for class 27, the carrying simplex is almost on a plane (see Figs. 3
and 4). But here the carrying simplex is not a plane, where a part of the boundary is shown in Fig. 5(b), 
and it is seen that the converging trajectories located on the carrying simplex are obviously not on the plane 
based on the triangle (see the triangle in Fig. 5(b)). In fact, the center manifold expressed in the original
coordinates can be approximated as

F (z1, z2, z3) ≈ 11.26973329(z1 − 1) + 16.81543285(z2 − 1) + 33.05750294(z3 − 1)

+ 0.45803447(z1 − 1)2 + 0.48822428(z2 − 1)2 − 0.91752650(z3 − 1)2

− 2.36131219(z1 − 1)(z2 − 1) + 1.78377462(z1 − 1)(z3 − 1)

+ 0.61041412(z2 − 1)(z3 − 1),

which clearly shows the nonlinearity, and the quadratic center manifold is shown in Fig. 5(a), which is 
indeed not a plane.
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Fig. 5. (a) System behavior for the first case of class 26 with the critical values given in (4.8): (a) the center manifold near the 
positive equilibrium; and (b) numerical simulation showing convergence to the positive equilibrium.

It should be noted that since this is class 26, there are additional two equilibrium points on the boundary 
of the carrying simplex, one of them is stable and the other one is unstable. The coordinates of the five 
equilibrium points located on the boundary of the carrying simplex are approximated as

(5.4936, 0, 0), (0, 3.1604, 0), (0, 0, 1.9892), (0.3253, 3.1062, 0), (0.3384, 0, 1.8218),

among which the last second one is unstable, and the last one is stable. This can be seen from Fig. 5(b) 
that one trajectory converges to the above last equilibrium point, while other trajectories quickly converge 
to the carrying simplex and then almost stay there as a closed orbit because the positive equilibrium is a 
fourth-order fine focus. The central area of the carrying simplex is obviously above the triangle plane. The 
simulation indicates that except for the four small-amplitude limit cycles, there are no other limit cycles 
which may occur on the carrying simplex.

For the second example, following a similar procedure, we also obtain only one solution (which is slightly 
different from that given in (4.8), as expected):

p1 = 2.494009 · · · , p2 = 3.390952 · · · , p3 = 1.230410 · · · , p4 = 5.934852 · · · , (4.10)

at which ωc ≈ 0.620188. Further, at the solution we obtain that

v0 = v1 = v2 = v3 = 0, v4 ≈ −0.363907 × 10−5,

and

∂(v1, v2, v3)
∂(p1, p2, p3)

≈ −0.496536 × 10−8 
= 0,

as well as the conditions given in (4.9) hold for this example. Hence, the second example also belongs to 
class 26, and we perturb the first four focus values, vi, i = 0, 1, 2, 3 using pi, i = 1, 2, 3, 4 to obtain four 
small-amplitude limit cycles.

For this example, since the matrix A is almost the same as that for the first example (see Eq. (4.7)), 
and the unique solution given in (4.10) does not have much difference from that for the first example (see 
Eq. (4.8)). So it is expected that the center manifold and simulation result should be very similar to that 
shown in Fig. 5. Indeed, as seen from Fig. 6(a), the center manifold is not a plane, and it can also be seen 
from Fig. 6(b) that all trajectories with different initial points quickly converge to the carrying simplex, 
with one of them particularly converging to the stable equilibrium on the boundary of the carrying simplex. 
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Fig. 6. (a) System behavior for the second case of class 26 with the critical values given in (4.10): (a) the center manifold near the 
positive equilibrium; and (b) numerical simulation showing convergence to the positive equilibrium.

This indicates that except for the four small-amplitude limit cycles, there are no other limit cycles which 
may occur on the carrying simplex. The approximate equations for the center manifold is given by

F (z1, z2, z3) ≈ 11.55561330(z1 − 1) + 16.91789018(z2 − 1) + 32.99673290(z3 − 1)

+ 0.41892209(z1 − 1)2 + 0.47012405(z2 − 1)2 − 0.87731188(z3 − 1)2

− 2.25521701(z1 − 1)(z2 − 1) + 1.72721322(z1 − 1)(z3 − 1)

+ 0.57273933(z2 − 1)(z3 − 1),

and the coordinates of the five equilibrium points located on the boundary of the carrying simplex are 
approximated as

(5.3814, 0, 0), (0, 3.1783, 0), (0, 0, 1.9976), (0.3189, 3.1145, 0), (0.3306, 0, 1.8327),

among which the last second one is unstable, and the last one is stable.
The proof for Theorem 4.3 is complete. �

5. Conclusion

By properly choosing parameter values, we have constructed four 3-dimensional competitive Lotka–
Volterra systems, showing the existence of at least four small-amplitude limit cycles around the positive 
equilibrium due to Hopf bifurcation in classes 27 and 26. Poincaré–Bendixson theorem is not applicable for 
the constructed examples in class 27 though heteroclinic cycles exist. We also give positive answers to the 
Items (ii) and (iii) of a conjecture proposed by Gyllenberg and Yan [10]. Although Item (i) in this conjecture 
remains open, our new results may provide clues to find possible combination of parameter values such that 
besides the four small-amplitude limit cycles, there may exist an additional limit cycle due to the existence 
of heteroclinic cycle. Also, whether there are four limit cycles in other classes 28–31 is still open and worth 
for future studies.
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