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Following Schachermayer, a subset B of an algebra A of subsets of Ω is said to 
have the N-property if a B-pointwise bounded subset M of ba(A) is uniformly 
bounded on A, where ba(A) is the Banach space of the real (or complex) finitely 
additive measures of bounded variation defined on A. Moreover B is said to have 
the strong N-property if for each increasing countable covering (Bm)m of B there 
exists Bn which has the N -property. The classical Nikodym–Grothendieck’s theorem 
says that each σ-algebra S of subsets of Ω has the N-property. The Valdivia’s 
theorem stating that each σ-algebra S has the strong N -property motivated the 
main measure-theoretic result of this paper: We show that if (Bm1 )m1 is an increasing 
countable covering of a σ-algebra S and if (Bm1,m2,...,mp,mp+1 )mp+1 is an increasing 
countable covering of Bm1,m2,...,mp , for each p, mi ∈ N, 1 � i � p, then there exists 
a sequence (ni)i such that each Bn1,n2,...,nr , r ∈ N, has the strong N -property. 
In particular, for each increasing countable covering (Bm)m of a σ-algebra S there 
exists Bn which has the strong N -property, improving mentioned Valdivia’s theorem. 
Some applications to localization of bounded additive vector measures are provided.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let B be a subset of an algebra A of subsets of a set Ω (in brief, set-algebra A). The normed space L(B)
is the span{χC : C ∈ B} of the characteristic functions of each set C ∈ B with the supremum norm ‖ · ‖
and ba(A) is the Banach space of finitely additive measures on A with bounded variation endowed with the 
variation norm, i.e., | · | := | · | (Ω). If {Ci : 1 � i � n} is a measurable partition of C ∈ A and μ ∈ ba(A)
then |μ| (C) = Σi |μ| (Ci) and, as usual, we represent also by μ the linear form in L(A) determined by 
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μ(χC) := μ(C), for each C ∈ A. By this identification we get that the dual of L(A) with the dual norm is 
isometric to ba(A) (see e.g., [2, Theorem 1.13]).

Polar sets are considered in the dual pair < L(A), ba(A) >, M◦ means the polar of a set M and if B ⊂ A
the topology in ba(A) of pointwise convergence in B is denoted by τs(B). (E′, τs(E)) is the vector space 
of all continuous linear forms defined on a locally convex space E endowed with the topology τs(E) of the 
pointwise convergence in E. In particular, the topology τs(L(A)) in ba(A) is τs(A).

The convex (absolutely convex) hull of a subset M of a topological vector space is denoted by co(M)
(absco(M)) and absco(M) = co(∪{rM : |r| = 1}). An equivalent norm to the supremum norm in L(A)
is the Minkowski functional of absco({χC : C ∈ A}) ([14, Propositions 1 and 2]) and its dual norm is 
the A-supremum norm, i.e., ‖μ‖ := sup{|μ(C)| : C ∈ A}, μ ∈ ba(A). The closure of a set is marked by 
an overline, hence if P ⊂ L(A) then span(P ) is the closure in L(A) of the linear hull of P . N is the set 
{1, 2, . . .} of positive integers.

Recall the classical Nikodym–Dieudonné–Grothendieck theorem (see [1, page 80, named as Nikodym–
Grothendieck boundedness theorem]): If S is a σ-algebra of subsets of a set Ω and M is a S-pointwise 
bounded subset of ba(S) then M is a bounded subset of ba(S) (i.e., sup{|μ(C)| : μ ∈ M, C ∈ S} < ∞, 
or, equivalently, sup{|μ| (Ω) : μ ∈ M} < ∞). This theorem was firstly obtained by Nikodym in [11] for a 
subset M of countably additive complex measures defined on S and later on by Dieudonné for a subset M
of ba(2Ω), where 2Ω is the σ-algebra of all subsets of Ω, see [3].

It is said that a subset B of an algebra A of subsets of a set Ω has the Nikodym property, N -property 
in brief, if the Nikodym–Dieudonné–Grothendieck theorem holds for B, i.e., if each B-pointwise bounded 
subset M of ba(A) is bounded in ba(A) (see [12, Definition 2.4] or [15, Definition 1]). Let us note that in 
this definition we may suppose that M is τs(A)-closed and absolutely convex. If B has N -property then the 
polar set {χC : C ∈ B}◦ is bounded in ba(A), hence {χC : C ∈ B}◦◦ = absco{χC : C ∈ B} is a neighborhood 
of zero in L(A), whence L(B) is dense in L(A).

It is well known that the algebra of finite and co-finite subsets of N fails N -property [2, Example 5 in 
page 18] and that Schachermayer proved that the algebra J (I) of Jordan measurable subsets of I := [0, 1]
has N -property (see [12, Corollary 3.5] and a generalization in [4, Corollary]). A recent improvement of 
this result for the algebra J (K) of Jordan measurable subsets of a compact k-dimensional interval K :=
Π{[ai, bi] : 1 � i � k} in Rk has been provided in [15, Theorem 2], where Valdivia proved that if J (K) is 
the increasing countable union ∪mBm there exists a positive integer n such that Bn has N -property (see [8, 
Theorem 1] for a strong result in J (K)). This fact motivated to say that a subset B of a set-algebra A has 
the strong Nikodym property, sN -property in brief, if for each increasing covering ∪mBm of B there exists 
Bn which has N -property. As far as we know this result suggested the following very interesting Valdivia’s 
open question (2013):

Problem 1 ([15, Problem 1]). Let A be an algebra of subsets of Ω. Is it true that N -property of A implies 
sN -property?

Note that the Nikodym–Dieudonné–Grothendieck stating that every σ-algebra S of subsets of a set Ω
has property N is a particular case of the following Valdivia’s theorem.

Theorem 1 ([14, Theorem 2]). Each σ-algebra S of subsets of Ω has sN -property.

Following [7, Chapter 7, 35.1] a family {Bm1,m2,...,mp
: p, m1, m2, . . . , mp ∈ N} of subsets of A is an 

increasing web in A if (Bm1)m1 is an increasing covering of A and (Bm1,m2,...,mp,mp+1)mp+1 is an increasing 
covering of Bm1,m2,...,mp

, for each p, mi ∈ N, 1 � i � p. We will say that a set-algebra A of subsets of
Ω has the web strong N -property (web-sN -property, in brief) if for each increasing web {Bm1,m2,...,mp

:
p, m1, m2, . . . , mp ∈ N} in A there exists a sequence (ni)i in N such that each Bn1,n2,...,ni

has sN -property, 
for each i ∈ N.
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The main measure-theoretic result of this paper is the following theorem, motivated by Theorem 1 and 
covering all mentioned results for σ-algebras.

Theorem 2. Each σ-algebra S of subsets of Ω has web-sN -property.

In particular, if Bm1,m2,...,mp
= Bm1 for each p ∈ N , we have the following improvement of Theorem 1: 

If (Bm)m is an increasing covering of a σ-algebra S of subsets of Ω there exists an index n so that Bn has
sN -property.

Next section provides properties concerning N -property of subsets of a set-algebra A and unbounded 
subsets of ba(A). These results will be used in Section 3 to provide necessary facts to complete the proof of 
our main result (Theorem 2).

Last section deals with applications of Theorem 2 to localizations of bounded finite additive vector 
measures.

A characterization of sN -property of a set-algebra A by a locally convex property of L(A) was obtained 
in [15, Theorem 3]. Analogously a characterization of web-sN -property of a set-algebra A by a locally convex 
property of L(A) may be found easily following [5] and [10].

2. Nikodym property and deep unbounded sets

To keep the paper self-contained we provided a short proof of the next (well known) proposition.

Proposition 3. Let A be an algebra of subsets of Ω and let M be an absolutely convex τs(A)-closed subset of 
ba(A). The following properties are equivalent:

1. For each finite subset Q of {χA : A ∈ A} the set M ∩Q◦ is an unbounded subset of ba(A).
2. For each finite subset Q of {χA : A ∈ A} such that span{M◦} ∩ span{Q} = {0} the set M ∩ Q◦ is 

unbounded in ba(A).
3. M◦ is not a neighborhood of zero in span{M◦} or the codimension of span{M◦} in L(A) is infinite.

If M is unbounded and span{M◦} = L(A) then M verifies the previous properties.

Proof. To prove these equivalences recall that if M is a τs(A)-closed and absolutely convex subset of ba(A)
then M◦◦ = M [7, Chapter 4 20.8.5].

(1) ⇐⇒ (2). Let Q = {χQi
: Qi ∈ A, 1 � i � r}. First we prove that if there exists m1 ∈ M◦ such that 

χQ1 = h1m1 + Σ2�i�rhiχQi
and if h := 2 + Σ1�i�r |hi| then

absco(M◦ ∪Q) ⊂ h absco(M◦ ∪ {Q\{χQ1}}). (1)

In fact, if x ∈ absco(M◦ ∪ Q) then x = λ0m0 + Σ1�i�rλiχQi
, with m0 ∈ M◦ and Σ0�i�r |λi| � 1, whence 

x = λ0m0 + λ1h1m1 + Σ2�i�r(λ1hi + λi)χQi
. From m2 := (1 + |λ0| + |λ1h1|)−1(λ0m0 + λ1h1m1) ∈ M◦

we get the representation x = (1 + |λ0| + |λ1h1|)m2 + Σ2�i�r(λ1hi + λi)χQi
which verifies the inequality 

1 + |λ0| + |λ1h1| + Σ2�i�r |λ1hi + λi| � h, whence x ∈ h absco(M◦ ∪ {Q\{χQ1}}). Taking polar sets in (1)
we obtain that

M ∩ {Q\{χQ1}}◦ ⊂ h(M ∩Q◦),

hence if M∩{Q\{χQ1}}◦ is unbounded one gets that M∩Q◦ is also unbounded. The rest of this equivalence 
is obvious.

(2) ⇐⇒ (3). If M◦ is a neighborhood of zero in span{M◦} and if Q = {χQi
: Qi ∈ A, 1 � i � r} is a 

cobase of span{M◦} in L(A) then absco(M◦ ∪Q) is a neighborhood of zero in L(A), hence
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(absco(M◦ ∪Q))◦ = M ∩Q◦

is a bounded subset of ba(A).
If M◦ is not a neighborhood of zero in span{M◦} or if the codimension of span{M◦} in L(A) is infinite, 

then for each finite set Q := {χQi
: Qi ∈ A, 1 � i � r} such that span{M◦} ∩ span{Q} = {0} the set 

absco(M◦ ∪ Q) is not a neighborhood of zero in L(A), whence the set (absco(M◦ ∪ Q))◦ = M ∩ Q◦ is 
unbounded in ba(A).

If M is an unbounded subset of ba(A) then M◦ is not a neighborhood of zero in L(A). If, additionally, 
span{M◦} = L(A) we have, by denseness, that M◦ is not a neighborhood of zero in span{M◦} and we 
obtain that M verifies (3). �

The fact that if a subset M of ba(A) verifies (1) in Proposition 3 then its subsets M ∩Q◦ are unbounded, 
for each finite subset Q of {χA : A ∈ A}, motivates the following definition.

Definition 1. Let B be an element of the algebra A of subsets of Ω. A subset M of ba(A) is deep B-unbounded 
if each finite subset Q of {χA : A ∈ A} verifies that

sup{|μ(C)| : μ ∈ M ∩Q◦, C ∈ A, C ⊂ B} = ∞, (2)

or, equivalently, sup{|μ| (B) : μ ∈ M ∩Q◦} = ∞.

In particular, a subset M of ba(A) is deep Ω-unbounded if M ∩Q◦ is an unbounded subset of ba(A), for 
each finite subset Q of {χA : A ∈ A}. Therefore an absolutely convex τs(A)-closed subset M of ba(A) is deep 
Ω-unbounded if and only if M verifies condition (2) or (3) in Proposition 3. If, additionally, span{M◦} =
L(A) then M is deep Ω-unbounded if and only if it is unbounded.

Next proposition furnishes sequences of deep Ω-unbounded subsets of ba(A). The particular case 
∪mBm = A is Theorem 1 in [15].

Proposition 4. Let A be an algebra of subsets of Ω and let (Bm)m be an increasing sequence of subsets of A
such that each Bm does not have N -property and span{χC : C ∈ ∪mBm} = L(A). There exists n0 ∈ N such 
that for each m � n0 there exists a deep Ω-unbounded τs(A)-closed absolutely convex subset Mm of ba(A)
which is pointwise bounded in Bm, i.e., sup{|μ(C)| : μ ∈ Mm} < ∞ for each C ∈ Bm. In particular this 
proposition holds if ∪mBm = A or if ∪mBm has N -property.

Proof. If for each m ∈ N the subspace Hm := span{χC : C ∈ Bm} has infinite codimension in L(A) then, 
by (3) in Proposition 3, the polar set of Pm := absco{χC : C ∈ Bm} is the deep Ω-unbounded set Mm := P ◦

m. 
The definition of polar set implies that sup{|μ(C)| : μ ∈ Mm} � 1, for each C ∈ Bm. Whence we get the 
proposition with n0 = 1.

If there exists p such that the codimension of F := span{χC : C ∈ Bp} in L(A) = span{χC : C ∈ ∪mBm}
is the finite positive number q then {χC : C ∈ ∪mBm} 
⊂ F , whence there exists m1 ∈ N and D ∈ Bp+m1

such that χD /∈ F and then the codimension of span{χC : C ∈ Bp+m1} in L(A) is less or equal than 
q − 1. Therefore there exists n0 such that span{χC : C ∈ Bm} = L(A), for each m � n0. As for each 
m � n0 the set Bm does not have N -property there exists an absolutely convex τs(A)-closed unbounded 
subset Mm of ba(A) such that sup{|μ(C)| : μ ∈ Mm} < kC < ∞, for each C ∈ Bm, and then it follows 
that {k−1

C χC : C ∈ Bm} ⊂ M◦
m. This inclusion implies that span{χC : C ∈ Bm} ⊂ span{M◦

m}, whence 
span{M◦

m} = L(A), because span{χC : C ∈ Bm} = L(A). Then, by Proposition 3, the unbounded set Mm

is deep Ω-unbounded for each m � n0.
If ∪mBm = A or if ∪mBm has N -property then span{χC : C ∈ ∪mBm} = L(A) and this proposition 

holds. �
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Next Proposition 5 follows from [15, Proposition 1]. We give a simplified proof according to our current 
notation.

Proposition 5. Let B be an element of an algebra A and {C1, C2, . . . , Cq} a finite partition of B by elements 
of A. If M is a deep B-unbounded subset of ba(A) there exists Ci, 1 � i � q, such that M is deep 
Ci-unbounded.

Proof. If for each i, 1 � i � q, there exists a finite set Qi of characteristic functions of elements of A
such that sup{|μ| (Ci) : μ ∈ M ∩ (Qi)◦} < Hi, i ∈ {1, 2, . . . , q}, then we get the contradiction that the set 
Q = ∪1�i�qQi verifies that sup{|μ| (B) : μ ∈ M ∩Q◦} < Σ1�i�qHi. �

If t = (t1, t2, . . . , tp), s = (s1, s2, . . . , sq), T and U are two elements and two subsets of ∪sN
s we define 

t(i) := (t1, t2, . . . , ti) if 1 � i � p, t(i) := ∅ if i > p, T (m) := {t(m) : t ∈ T}, for each m ∈ N, t × s :=
(t1, t2, . . . , tp, tp+1, tp+2, . . . , tp+q), with tp+j := sj , for 1 � j � q, and T × U := {t × u : t ∈ T, u ∈ U}. We 
simplify (t1), (n) and T × {(n)} by t1, n and T × n. The length of t = (t1, t2, . . . , tp) is p and the cardinal 
of a set C is denoted by |C|.

If v ∈ ∪sN
s and t × v ∈ U then t × v is an extension of t in U . A sequence (tn)n of elements tn =

(tn1 , tn2 , . . . , tnn, . . .) ∈ ∪sN
s is an infinite chain if for each n ∈ N the element tn+1 is an extension of the 

section tn(n), i.e., ∅ 
= tn(n) = tn+1(n).
A subset U of ∪nN

n is increasing at t = (t1, t2, . . . , tp) ∈ ∪sN
s if U contains p elements t1 = (t11, t12, . . .)

and ti = (t1, t2, . . . , ti−1, tii, t
i
i+1, . . .), 1 < i � p, such that ti < tii, for each 1 � i � p. A non-void subset U of 

∪sN
s is increasing (increasing respect to a subset V of ∪sN

s) if U is increasing at each t ∈ U (at each t ∈ V ), 
hence U is increasing if |U(1)| = ∞ and |{n ∈ N : t(i) × n ∈ U(i + 1)}| = ∞, for each t = (t1, t2, . . . , tp) ∈ U

and 1 � i < p.
If {Bu : u ∈ ∪sN

s} is an increasing web in A and U is an increasing subset of ∪s∈NN
s then B :=

{Bu(i) : u ∈ U , 1 � i � length u} verifies that (Bu(1))u∈U is an increasing covering of A and for each 
u = (u1, u2, . . . , up) ∈ U and each i < p the sequence (Bu(i)×n)u(i)×n∈U(i+1) is an increasing covering 
of Bu(i). If, additionally, each element u ∈ U has an extension in U then renumbering the indexes in the 
elements of B we get an increasing web.

The Definition 2 deals with increasing subsets of ∪s∈NN
s and it is motivated by the technical Example 1

which will be used onwards to complete the proof of Theorem 2. A particular class of increasing trees, 
named NV -trees – surely reminding Nikodym and Valdivia –, is considered in [9, Definition 1].

Definition 2. An increasing tree T is an increasing subset of ∪s∈NN
s without infinite chains.

An increasing tree T is trivial if T = T (1); then T is an infinite subset of N. The sets Ni, i ∈ N\{1}, and 
the set ∪{(i) × N

i : i ∈ N} are nontrivial increasing trees.
An increasing subset S of an increasing tree T is an increasing tree. From this observation it follows the 

Claim 6.

Claim 6. If (Sn)n is a sequence of non-void subsets of an increasing tree T such that for each n ∈ N the set 
Sn+1 is increasing respect to Sn, then S := ∪nSn is an increasing tree.

Proof. It is enough to notice that S is an increasing subset of T . �
Example 1. Let B := {Bm1,m2,...,mp

: p, m1, m2, . . . , mp ∈ N} be an increasing web in an algebra A of subsets 
of Ω with the property that for each sequence (mi)i ∈ N

N there exists q ∈ N such that Bm1,m2,...,mq
does not 

have sN -property. Then there exists an increasing web C := {Cm1,m2,...,mp
: p, m1, m2, . . . , mp ∈ N} in A
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and an increasing tree T such that for each (t1, t2, . . . , tp) ∈ T there exists a deep Ω-unbounded τs(A)-closed 
absolutely convex subset Mt1,t2,...,tp of ba(A) which is pointwise bounded in Ct1,t2,...,tp , i.e.,

sup{|μ(C)| : μ ∈ Mt1,t2,...,tp} < ∞, (3)

for each C ∈ Ct1,t2,...,tp .

Proof. If each Bm1 , m1 ∈ N, does not have N -property then the example is given by C := B and T :=
N\{1, 2, . . . , n0 − 1}, where n0 is the natural number obtained in Proposition 4 applied to the increasing 
covering (Bm1)m1 of A. Hence we may suppose that there exists m1 ∈ N such that Bt1 has N -property for 
each t1 � m1 and then:

(i1) Either Bt1 does not have sN -property for each t1 ∈ N and the inductive process finish defining 
T0 := {t1 ∈ N : t1 � m1}.

(ii1) Or there exists m′
1 ∈ N such that Bt1 has sN -property for each t1 � m′

1. Then we write Q1 := ∅ and 
Q′

1 := {t1 ∈ N : t1 � m′
1}.

Let us assume that for each j, with 2 � j � i, we have obtained by induction two disjoint subsets Qj

and Q′
j of Nj such that each t = (t1, t2, . . . , tj) ∈ Qj ∪Q′

j verifies:

1. t(j − 1) = (t1, t2, . . . , tj−1) ∈ Q′
j−1.

2. If t ∈ Qj the set Bt has N -property but it does not have sN -property and St(j−1) := {n ∈ N :
t(j − 1) × n ∈ Qj ∪Q′

j} is a cofinite subset of N such that t(j − 1) × St(j−1) ⊂ Qj .
3. If t ∈ Q′

j the set Bt has sN -property and S′
t(j−1) := {n ∈ N : t(j− 1) ×n ∈ Qj ∪Q′

j} is a cofinite subset 
of N such that t(j − 1) × S′

t(j−1) ⊂ Q′
j .

If t := (t1, t2, . . . , ti) ∈ Q′
i then Bt1,t2,...,ti has sN -property and (Bt1,t2,...,ti,n)n is an increasing covering 

of Bt1,t2,...,ti , hence there exists mi+1 such that Bt1,t2,...,ti,n has N -property for each n � mi+1. Then we 
may have two possible cases:

(ii+1) Either Bt1,t2,...,ti,n does not have sN -property for each n ∈ N and we define St1,t2,...,ti := {n ∈ N :
mi+1 � n} and S′

t1,t2,...,ti := ∅,
(iii+1) or there exists m′

i+1 ∈ N such that Bt1,t2,...,ti,n has sN -property for each n � m′
i+1. In this case let 

St1,t2,...,ti := ∅ and S′
t1,t2,...,ti := {n ∈ N : m′

i+1 � n}.

We finish this induction procedure by setting Qi+1 := ∪{t × St : t ∈ Q′
i} and Q′

i+1 := ∪{t × S′
t : t ∈ Q′

i}. 
By construction Qi+1 and Q′

i+1 verify the properties 1., 2. and 3. with j = i + 1.
The fact that for each sequence (mi)i ∈ N

N there exists j ∈ N such that Bm1,m2,...,mj
does not 

have sN -property imply that T0 := ∪{Qi : i ∈ N} does not contain infinite chains, because if 
(m1, m2, . . . , mp) ∈ Qp then Bm1,m2,...,mp−1 has sN -property, whence for each (t1, t2, . . . , tk) ∈ Q′

k

there exists q ∈ N and (tk+1, . . . , tk+q) ∈ N
q such that (t1, t2, . . . , tk, tk+1, . . . , tk+q) ∈ Qk+q and then 

T0(k) = Qk ∪Q′
k, for each k ∈ N. These equalities imply that T0 is increasing, because |T0(1)| = |Q′

1| = ∞
and if t = (t1, t2, . . . , tp) ∈ T0 the sets S′

t(i−1), 1 < i < p, and St(p−1) are cofinite subsets of N.
This increasing tree T0 as well as the trivial increasing tree obtained in (i1), also named T0, verify that for 

each t = (t1, t2, . . . , tp) ∈ T0 the family Bt1,t2,...,tp has N -property and it does not have sN -property, whence 
Bt1,t2,...,tp has an increasing covering (B′

t1,t2,...,tp,n)n such that each B′
t1,t2,...,tp,n does not have N -property. 

By Proposition 4 there exists n0 ∈ N such that for each n � n0 there exists a deep Ω-unbounded τs(A)-closed 
absolutely convex subset Mt1,t2,...,tp,n of ba(A) which is B′

t ,t ,...,t ,n pointwise bounded, i.e., sup{|μ(C)| :

1 2 p
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μ ∈ Mt1,t2,...,tp,n} < ∞, for each C ∈ B′
t1,t2,...,tp,n. We assume n0 = 1, removing B′

t1,t2,...,tp,n when n < n0
and changing n by n − n0 + 1.

Then we get the example with the increasing tree T := T0 ×N and with the increasing web C := {Ct : t ∈
∪sN

s} in the algebra A such that for each t = (t1, t2, . . . , tp) ∈ ∪sN
s either Ct := B′

t(i) if i � p and t(i) ∈ T

or Ct := Bt if {t(i) : 1 � i � p} ∩ T = ∅. �
Let U be a subset of ∪sN

s. An element t ∈ ∪sN
s admits increasing extension in U if the set of {v ∈

∪sN
s : t × v ∈ U} contains an increasing subset. We need the following obvious properties (a), (b1) and (b2)

to prove Proposition 7, stating that if a subset U of an increasing tree T does not contain an increasing tree 
then T\U contains an increasing tree.

(a) If U is a subset of ∪sN
s and U does not contain an increasing tree then there exists m1 ∈ N such that 

each n ∈ N\{1, 2, . . . , m1} does not admit increasing extension in U .
(b) Let t ∈ ∪sN

s and let U be a subset of the increasing tree T . Suppose that t does not admit increasing 
extension in U and that Tt := {v ∈ ∪sN

s : t × v ∈ T} 
= ∅. Then
(b1) if the increasing tree Tt is trivial there exists mi+1 ∈ N such that the set

(t× {N\{1, 2, . . . ,mi+1}) ∩ T

is an infinite subset of T\U ,
(b2) if Tt is non-trivial there exists m′

i+1 ∈ N such that each element of

(
t× {N\{1, 2, . . . ,m′

i+1}
)
∩ T (i + 1)

does not admit increasing extension in U .

Proposition 7. Let U be a subset of an increasing tree T . If U does not contain an increasing tree then T\U
contains an increasing tree.

Proof. It is enough to prove that T\U contains an increasing subset W . Now we follow the scheme of the 
proof in Example 1. In fact, if T is a trivial increasing tree the proposition is obvious. Hence we may suppose 
that T is a non-trivial increasing tree. Then we define Q1 := ∅ and by (a) there exists m′

1 ∈ N such that 
each element of the set Q′

1 := {n ∈ T (1) : m′
1 � n} does not admit increasing extension in U . Notice that 

Q′
1 ⊂ T (1)\T .
Let us suppose that we have obtained for each j, with 2 � j � i, two disjoint subsets Qj and Q′

j such 
that Qj ⊂ T (j) ∩ (T\U), Q′

j ⊂ T (j)\T and each t ∈ Qj ∪Q′
j verifies the following properties:

1. t(j − 1) ∈ Q′
j−1.

2. If t ∈ Qj then the cardinal of St(j−1) := {n ∈ N : t(j − 1) × n ∈ Qj ∪ Q′
j} is infinite and t(j − 1) ×

St(j−1) ⊂ Qj .
3. If t ∈ Q′

j then t does not admit increasing extension in U , the cardinal of S′
t(j−1) := {n ∈ N : t(j−1) ×n ∈

Qj ∪Q′
j} is infinite and t(j − 1) × S′

t(j−1) ⊂ Q′
j .

If t ∈ Q′
i then t ∈ T (i)\T and it does not admit increasing extension in U . If Tt = {v ∈ ∪sN

s : t × v ∈ T}
then, by (b1) and (b2), it follows that the following two cases may happen:

i. If Tt is trivial then there exists mi+1 ∈ N such that the infinite set St := {n ∈ N : mi+1 � n, t × n ∈
T (i + 1)} verifies that t × St ⊂ T\U and we define S′

t := ∅.
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ii. If Tt is non-trivial then there exists m′
i+1 ∈ N such that the infinite set S′

t := {n ∈ N : m′
i+1 < n, t ×n ∈

T (i +1)} verifies that t ×S′
t ⊂ T (i +1)\T and each element of t ×S′

t does not admit increasing extension 
in U . Now we define St := ∅.

We finish this induction procedure by setting Qi+1 := ∪{t × St : t ∈ Q′
i} and Q′

i+1 := ∪{t × S′
t : t ∈ Q′

i}.
By construction Qi+1 ⊂ T (i + 1) ∩ (T\U), Q′

i+1 ⊂ T (i + 1)\T , and each t ∈ Qi+1 ∪ Q′
i+1 verifies the 

properties 1., 2. and 3. changing j by i + 1.
As T does not contain infinite chains we deduce from 1. that for each (t1, t2, . . . , ti) ∈ Q′

i there exists 
q ∈ N and (ti+1, . . . , ti+q) ∈ N

q such that (t1, t2, . . . , ti, ti+1, . . . , ti+q) ∈ Qi+q. Whence, for each i ∈ N, 
(∪j>iQj)(i) = Q′

i and then W := ∪{Qj : j ∈ N} is a subset of T\U .
W has the increasing property because from W (k) = Qk ∪Q′

k, for each k ∈ N, it follows that |W (1)| =
|Q′

1| = ∞ and if t = (t1, t2, . . . , tp) ∈ W then (t1, t2, . . . , ti) ∈ Q′
i, if 1 < i < p, and (t1, t2, . . . , tp) ∈ Qp, hence 

the infinite subsets S′
t(i−1) and St(p−1) of N verify that t(i −1) ×S′

t(i−1) ⊂ Q′
i ⊂ W (i) and t(p −1) ×St(p−1) ⊂

Qp ⊂ W . �
Next Proposition 8 follows from [15, Propositions 2 and 3] and we give a simplified proof according to 

our current notation for the sake of completeness.

Proposition 8. Let {B, Q1, . . . , Qr} be a subset of the algebra A of subsets of Ω and let M be a deep 
B-unbounded absolutely convex subset of ba(A). Then given a positive real number α and a natural number 
q > 1 there exists a finite partition {C1, C2, . . . , Cq} of B by elements of A and a subset {μ1, μ2, . . . , μq} of 
M such that |μi(Ci)| > α and Σ1�j�r |μi(Qj)| � 1, for i = 1, 2, . . . , q.

Proof. Let Q = {χB , χQ1 , χQ2 , . . . , χQr
}. The deep B-unboundedness of M and the inclusion M ⊂ rM

imply that

sup{|μ(D)| : μ ∈ rM ∩Q◦, D ⊂ B, D ∈ A} = ∞.

Hence there exists P1 ⊂ B, with P1 ∈ A, and μ ∈ rM ∩ Q◦ such that |μ(P1)| > r(1 + α). Clearly 
μ1 = r−1μ ∈ M , |μ1(P1)| > 1 + α and |μ1(f)| = r−1 |μ(f)| � r−1 for each f ∈ Q, hence |μ1(B)| � r−1 � 1
and Σ1�j�r |μ1(Qj)| � r−1r = 1. The set P2 := B\P1 verifies that

|μ1(P2)| � |μ1(P1)| − |μ1(B)| > 1 + α− 1 = α.

From Proposition 5 there exists i ∈ {1, 2} such that M is deep Pi-unbounded. To finish the first step of 
the proof let C1 := P1 if M is deep P2-unbounded and let C1 := P2 if M is deep P1-unbounded. Then M
is deep B\C1-unbounded.

Apply the same argument in B\C1 to obtain a measurable set C2 ⊂ B\C1 and a measure μ2 ∈ M

such that |μ2(C2)| > α, |μ2(B\(C1 ∪ C2))| > α and Σ{|μ2(Qj)| : 1 � j � r} � 1, being M deep 
B\(C1 ∪ C2)-unbounded. Hence the proof is provided by applying q − 1 times this argument. In the last 
step we define μq := μq−1 and Cq = B\(C1 ∪ · · · ∪ Cq−1). �
Proposition 9. Let B be an element of an algebra A and {Mt : t ∈ T} a family of deep B-unbounded 
subsets of ba(A) indexed by an increasing tree T . If tj := (tj1, t

j
2, . . . , t

j
pj

) ∈ T , for each 1 � j � k, and 
q = 2 + Σ{pj : 1 � j � k} then for each finite partition {C1, C2, . . . , Cq} of B by elements of A there exists 
h ∈ {1, 2, · · · , q} and an increasing tree T1 such that {t1, t2, . . . , tk} ⊂ T1 ⊂ T and {Mt : t ∈ T1} is a family 
of deep B\Ch-unbounded subsets.

Proof. Let {C1, C2, . . . , Cq} be a finite partition of B by elements of A with q = 2 +Σ{pj : 1 � j � k}. From 
Proposition 5 it follows that if {Mu : u ∈ U} is a family of deep B-unbounded subsets of ba(A) indexed by 
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an increasing tree U and Vi := {u ∈ U : Mu is deep Ci-unbounded}, 1 � i � q, then U = ∪1�i�qVi and, by 
Proposition 7, there exists l, with 1 � l � q, such that Vl contains an increasing tree Ul. Therefore

(a) If {Mu : u ∈ U} is a family of deep B-unbounded subsets indexed by an increasing tree U there exists 
l ∈ {1, 2, . . . , q} and an increasing tree Ul contained in U such that {Mu : u ∈ Ul} is a family of deep 
Cl-unbounded subsets.

In particular, for the increasing tree T and for each element tj ∈ T , with 1 � j � k, there exist by (a) 
and Proposition 5:

(1) i0 ∈ {1, 2, . . . , q} and an increasing tree Ti0 contained in T such that {Mt : t ∈ Ti0} is a family of deep 
Ci0 -unbounded subsets,

(2) ij ∈ {1, 2, . . . , q} such that Mtj is deep Cij -unbounded.

Let S := {j : 1 � j � k, tj /∈ Ti0}. For each j ∈ S and each section tj(m − 1) of tj = (tj1, t
j
2, . . . , t

j
pj

), 
with 2 � m � pj , the set W j

m := {v ∈ ∪sN
s : tj(m − 1) × v ∈ T} is an increasing tree such that 

{M(tj1,t
j
2,...,t

j
m−1)×w : w ∈ W j

m} is a family of deep B-unbounded subsets. By (a) there exists:

(3) ijm ∈ {1, 2, . . . , q} and an increasing tree V j
m contained in W j

m such that

{M(tj1,t
j
2,...,t

j
m−1)×v : v ∈ V j

m}

is a family of deep Cijm
-unbounded subsets. Clearly (tj1, t

j
2, . . . , t

j
m−1) × V j

m ⊂ T .

As the number of sets Ci0 , Cij , Cijm
, with j ∈ S and 2 � m � pj , is less or equal than q − 1, there exists 

h ∈ {1, 2, · · · , q} such that

D := Ci0 ∪ (∪{Cij ∪ Cijm
: j ∈ S, 2 � m � pj}) ⊂ B\Ch.

Let T1 be the union of the sets Ti0 , {tj : j ∈ S} and {(tj1, t
j
2, . . . , t

j
m−1)} ×V j

m, with j ∈ S and 2 � m � pj . 
Clearly for each t ∈ T1 the set Mt is deep D-unbounded, whence Mt is also deep B\Ch-unbounded. By 
construction {t1, t2, . . . , tk} ⊂ T1 and T1 has the increasing property and it is a subset of the increasing 
tree T . Whence T1 is an increasing tree. �

We finish this section with a combination of Propositions 8 and 9. The obtained Proposition 10 is a 
fundamental tool for the next section.

Proposition 10. Let {B, Q1, . . . , Qr} be a subset of an algebra A of subsets of Ω, and let {Mt : t ∈ T} be a 
family of deep B-unbounded absolutely convex subsets of ba(A), indexed by an increasing tree T . Then for 
each positive real number α and each finite subset {tj : 1 � j � k} of T there exist {Bj ∈ A : 1 � j � k}, 
formed by k pairwise disjoint subsets Bj of B, 1 � j � k, a set {μj ∈ Mtj , 1 � j � k} and an increasing 
tree T ∗ such that:

1. |μj(Bj)| > α and Σ{|μj(Qi)| : 1 � i � r} � 1, for j = 1, 2, . . . , k,
2. {tj : 1 � j � k} ⊂ T ∗ ⊂ T and {Mt : t ∈ T ∗} is a family of deep (B\ ∪1�j�k Bj)-unbounded sets.

Proof. Let tj := (tj1, t
j
2, . . . , t

j
pj

), for 1 � j � k. By Proposition 8 applied to B, α, q := 2 + Σ1�j�kpj and 
Mt1 there exist a partition {C1

1 , C
1
2 , . . . , C

1
q } of B by elements of A and {λ1, λ2, · · · , λq} ⊂ Mt1 such that:
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∣∣λk(C1
k)
∣∣ > α and Σ1�i�r |λk(Qi)| � 1, for k = 1, 2, . . . , q, (4)

hence Proposition 9 applied to the sets {C1
1 , C

1
2 , · · · , C1

q }, {Mt : t ∈ T} and {tj : 1 � j � k} gives 
h ∈ {1, 2, · · · , q} and a family {Mt : t ∈ T1} of deep B\C1

h-unbounded subsets indexed by an increasing tree 
T1 such that {t1, t2, . . . , tk} ⊂ T1 ⊂ T . If B1 := C1

h and μ1 := λh then (4) holds with λk = μ1 and C1
k = B1. 

Clearly {Mt : t ∈ T1} is a family of deep B\B1-unbounded subsets.
If we apply again Proposition 8 to B\B1, α, q and Mt2 we obtain a partition {C2

1 , C
2
2 , · · · , C2

q } of B\B1
by elements of A and {ζ1, ζ2, · · · , ζq} ⊂ Mt2 such that

∣
∣ζk(C2

k)
∣
∣ > α and Σ1�i�r |ζk(Qi)| � 1, for k = 1, 2, . . . , q,

and then by Proposition 9 (applied to {C2
1 , C

2
2 , · · · , C2

q }, {Mt : t ∈ T1} and {tj : 1 � j � k}) there 
exists l ∈ {1, 2, · · · , q} and a family {Mt : t ∈ T2} of deep (B\B1)\C2

l -unbounded subsets indexed by an 
increasing tree T2 such that {t1, t2, . . . , tk} ⊂ T2 ⊂ T . Now if B2 := C2

l and μ2 := ζl then |μ2(B2)| > α, 
Σ{|μ2(Qi)| : 1 � i � r} � 1 and {Mt : t ∈ T2} is a family of deep B\(B1 ∪ B2)-unbounded subsets. With 
k − 2 new repetitions of this procedure we get the proof with T ∗ := Tk. �
3. Proof of Theorem 2

With a induction procedure based in Proposition 10 we obtain Proposition 12 that together with the 
next elementary covering property for families indexed by increasing trees enable to prove Theorem 2.

Proposition 11. If Y = {Ym1,m2,...,mp
: p, m1, m2, . . . , mp ∈ N} is an increasing web in Y and T is an 

increasing tree then Y = ∪{Yy : y ∈ T}.

Proof. Let us suppose that y ∈ Y \(∪{Yt : t ∈ T}). As Y is an increasing web and T is an increasing tree 
then Y = ∪{Yt(1) : t ∈ T}, whence there exists u1 = (u1

1, u
1
2, . . .) ∈ T such that

y ∈ Yu1
1
\(∪{Yt : t ∈ T}).

Assume that there exists {u2, u3, . . . , un} ⊂ T such that ∅ 
= uj−1(j−1) = uj(j−1) and y ∈ Yuj(j)\ ∪{Yt :
t ∈ T}, for 2 � j � n. Then y ∈ Yun(n)\ ∪ {Yt : t ∈ T}, with un(n) = (un

1 , u
n
2 , . . . , u

n
n). As Y is an increasing 

web and T is an increasing tree then Yun(n) = ∪{Yun(n)×s : un(n) × s ∈ T (n + 1)}, hence there exists 
un+1 ∈ T such that un(n) = un+1(n) and

y ∈ Yun+1(n+1)\(∪{Yt : t ∈ T}).

This induction procedure gives the contradiction that T contains the infinite chain (un)n. Therefore 
Y = ∪{Yu : u ∈ T}. �

In Proposition 12 we refer to the sequence (in)n = (1, 1, 2, 1, 2, 3, . . .), obtained with the first components 
of N2 ordered by the diagonal order, i.e., in = n − 2−1h(h + 1), if n ∈ ] 2−1h(h + 1), 2−1(h + 1)(h + 2) ] and 
h = 0, 1, 2, . . . . Let us note that in � n, for each n ∈ N.

Proposition 12. Let {Bm1,m2,...,mp
: p, m1, m2, . . . , mp ∈ N} be an increasing web in a σ-algebra S of subsets 

of Ω with the property that for each sequence (mi)i ∈ N
N there exists h ∈ N such that Bm1,m2,...,mh

does not 
have sN -property and let (in)n = (1, 1, 2, 1, 2, 3, . . .). Then there exist a strictly increasing sequence (jn)n
in N, a sequence (Binjn)n of pairwise disjoints elements of S, a sequence (μinjn)n in ba(S) and a covering 
(Cr)r of S such that for each n ∈ N
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Σs{
∣∣μin+1jn+1(Bisjs)

∣∣ : 1 � s � n} < 1, (5)

|μinjn(Binjn)| > jn, (6)

|μinjn(∪s{Bisjs : n < s})| < 1, (7)

and for each r ∈ N and each strictly increasing sequence (np)p such that inp
= r, for each p ∈ N, the set 

{μinpjnp
: p ∈ N} is Cr-pointwise bounded, i.e., for each H ∈ Cr we have that

sup{
∣
∣∣μinpjnp

(H)
∣
∣∣ : p ∈ N} < ∞. (8)

Proof. Let {Ct : t ∈ ∪sN
s} and T be the increasing web in S and the increasing tree determined in Example 1

such that for each t ∈ T there exists a deep Ω-unbounded τs(S)-closed absolutely convex subset Mt of ba(S)
which is Ct-pointwise bounded, i.e.,

sup{|μ(H)| : μ ∈ Mt} < ∞ (9)

for each H ∈ Ct.
Then, by induction, we prove that there exist a countable increasing tree {ti : i ∈ N} contained in T , 

a strictly increasing sequence of natural numbers (kj)j , a set {Bij : (i, j) ∈ N
2, i � kj} of pairwise disjoint 

elements of S and a set {μij ∈ Mti : (i, j) ∈ N
2, i � kj} such that if (i, j) ∈ N

2 and i � kj then

Σs,v{|μij(Bsv)| : s � kv, 1 � v < j} < 1, (10)

|μij(Bij)| > j, (11)

and for each i ∈ N and each H ∈ Cti we have

sup
j
{|μij(H)| : i � j} < ∞. (12)

Fix t1 ∈ T . By Proposition 10 with B := Ω, α = 1, {Q1, . . . , Qr} := ∅ and {ti : 1 � i � k} := {t1} there 
exist B11 ∈ S, μ11 ∈ Mt1 and an increasing tree T1 such that

1. |μ11(B11)| > 1, {Mt : t ∈ T1} is a family of deep Ω\B11-unbounded subsets and
2. t1 ∈ T1 ⊂ T .

We define k1 := 1, S1 := {t1} and B1 := B11.
Suppose that in the following n − 1 steps of the inductive process we have obtained the finite sequence 

k2 < k3 < · · · < kn in N\{1}, the increasing trees T2 ⊃ T3 ⊃ · · · ⊃ Tn contained in T1, the subset 
{t1, t2, . . . , tkn} of Tn, the set {Bij : i � kj , j � n} formed by pairwise disjoint elements of S and the set 
{μij ∈ Mti : i � kj , j � n} such that, for each 1 < j � n and each i � kj :

1. |μij(Bij)| > j, Σs,v{|μij(Bsv)| : s � kv, 1 � v < j} < 1, the union Bj := ∪{Bsv : s � kv, 1 � v � j}
verifies that {Mt : t ∈ Tj} is a family of deep Ω\Bj-unbounded subsets,

2. Sj := {ti : i � kj} ⊂ Tj and Sj has the increasing property respect to Sj−1.

To finish the induction procedure let {tkn+1, . . . , tkn+1} be a subset of Tn\{ti : i � kn} that verifies the 
increasing property with respect to Sn. Then applying Proposition 10 to Ω\Bn, {Bsv : s � kv, 1 � v � n}, 
Tn, the finite subset Sn+1 := {ti : i � kn+1} of Tn and n + 1 we obtain a family {Bin+1 : i � kn+1} of 
pairwise disjoint elements of S contained in Ω\Bn, a subset {μin+1 ∈ Mti : i � kn+1} of ba(S) and an 
increasing tree Tn+1 contained in Tn such that for each i � kn+1,
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1. |μin+1(Bin+1)| > n + 1, Σs,v{|μin+1(Bsv)| : s � kv, 1 � v � n} < 1, the union Bn+1 := ∪{Bsv : s � ks,

1 � v � n + 1} has the property that {Mt : t ∈ Tn+1} is a family of deep Ω\Bn+1-unbounded subsets,
2. Sn+1 ⊂ Tn+1 and Sn+1 has the increasing property respect to Sn.

By Claim 6, ∪nSn = {ti : i ∈ N} is an increasing tree, whence, by Proposition 11, the sequence (Cti)i is 
a countable covering of the σ-algebra S. As (kj)j is increasing then (i, j) ∈ N

2 and i � j imply that i � kj , 
whence {μij : j ∈ N\{1, 2, . . . , i − 1}} ⊂ Mti and from this inclusion and (9) with t = ti it follows (12), i.e., 
supj{|μij(H)| : i � j} < ∞, for each i ∈ N and each H ∈ Cti .

With a new induction procedure we determine the increasing sequence (jn)n such that together with the 
sequence (in)n = (1, 1, 2, 1, 2, 3, . . .) verifies (5), (6), (7) and (8).

Let j1 := 1 and suppose that |μi1j1 | (Ω) < s1, with s1 ∈ N. Let {N1
u , 1 � u � s1} be a partition of 

{m ∈ N : m > j1} in s1 infinite subsets and define B1
u := ∪{Bst : (s, t) ∈ N ×N1

u , s � kt}, 1 � u � s1. From 
Σ{|μi1j1 | (B1

u) : 1 � u � s1} < s1 it follows that there exists u′, with 1 � u′ � s1, such that |μi1j1 | (B1
u′) < 1, 

whence the sets N (1) := N1
u′ and B1 := B1

u′ verify that N (1) ⊂ {m ∈ N : m > j1} and

|μi1j1 | (B1) < 1.

Assume that in the first l steps of this induction we have obtained a finite sequence j1 < j2 < · · · < jl
in N and a decreasing finite sequence N (1) ⊃ N (2) ⊃ · · · ⊃ N (l) of infinite subsets of N such that for 
each w ∈ N, 1 � w � l, N (w) ⊂ {n ∈ N : n > jw} and the variation of the measure μiwjw in the set 
Bw := ∪{Bst : (s, t) ∈ N ×N (w), s � kt} verifies the inequality

|μiwjw | (Bw) < 1.

Let jl+1 be the first element in N (l) and suppose that 
∣
∣μil+1jl+1

∣
∣ (Ω) < sl+1, with sl+1 ∈ N. Then 

jl < jl+1 and if {N l+1
r , 1 � r � sl+1} is a partition of {m ∈ N

(l) : m > jl+1} in sl+1 infinite disjoint 
subfamilies then the subsets Bl+1

r := ∪{Bst : (s, t) ∈ N × N l+1
r , s � kt}, 1 � r � sl+1, verify that 

Σ{
∣∣μil+1jl+1

∣∣ (Bl+1
r ) : 1 � r � sl+1} < sl+1, whence it follows that there exists r′, with 1 � r′ � sl+1, such 

that the set Bl+1 := ∪{Bst : (s, t) ∈ N ×N l+1
r′ , s � kt} verifies that

∣∣μil+1jl+1

∣∣ (Bl+1) < 1.

Set N (l+1) := N l+1
r′ . Then, by induction, we get a strictly increasing sequence (jn)n in N and a decreasing 

sequence (N (n))n of infinite subsets of N, with j2 ∈ N (1) ⊂ {m ∈ N : m > j1} and jn+1 ∈ N (n) ⊂ {m ∈
N (n−1) : m > jn}, for each n > 1, such that the measurable sets Bn := ∪{Bst : (s, t) ∈ N ×N (n), s � kt}, 
n ∈ N, verify that

|μinjn | (Bn) < 1. (13)

The inclusion js ∈ N (s−1) ⊂ N (n) when n < s and the trivial inequalities is � s � ks � kjs imply that 
∪{Bisjs : s ∈ N, n < s} ⊂ Bn, hence from (13) it follows that

|μinjn | (∪s{Bisjs : n < s}) < 1,

for each n ∈ N, and this inequality imply (7) because the variation |μ| (B) of μ in a set B ∈ S verifies that 
|μ(B)| � |μ| (B).
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From the proved relation is � kjs and the trivial fact that s � n implies that js � jn < jn+1 it follows 
that (10) implies (5). The inequality (6) is a particular case of (11). Finally from (12) with i = r we get (8)
because each (inp

, jnp
) verifies that r = inp

� np � jnp
.

To finish the proposition define Cr := Ctr , for each r ∈ N. �
We are at the position to present the proof of Theorem 2. Recall again that (in)n = (1, 1, 2, 1, 2, 3, . . .).

Proof of Theorem 2. Assume Theorem 2 fails. Then by Proposition 12 there exist a strictly increasing 
sequence (jn)n in N, a sequence (Binjn)n of pairwise disjoints elements of the σ-algebra S, a sequence 
(μinjn)n in ba(S) and a covering (Cr)r of S such that for each n ∈ N

Σs{|μinjn(Bisjs)| : s < n}) < 1, (14)

|μinjn(Binjn)| > jn, (15)

|μinjn(∪s{Bisjs : n < s})| < 1, (16)

and for each strictly increasing sequence (np)p such that inp
= r for each p ∈ N we have that the sequence 

(μinpjnp
)p = (μrjnp

)p is pointwise bounded in Cr, i.e., for each H ∈ Cr we have that

sup{
∣∣
∣μinpjnp

(H)
∣∣
∣ : p ∈ N} < ∞. (17)

As H0 := ∪{Bisjs : s = 1, 2, . . .} ∈ S and (Cr)r is a covering of the σ-algebra S there exists r′ ∈ N such 
that H0 ∈ Cr′ . Fix a strictly increasing sequence (nq)q in N\{1} such that inq

= r′, for each q ∈ N. Then, 
by (17),

sup{
∣
∣∣μinq jnq

(H0)
∣
∣∣ : q ∈ N} < ∞. (18)

The sets Cq := ∪s{Bisjs : s < nq}, Binq jnq
and Dq := ∪s{Bisjs : nq < s} are a partition of the set H0. By 

(14), (15) and (16), 
∣∣
∣μinq jnq

(C)
∣∣
∣ < 1, μinq jnq

(Binq jnq
) > jnq

> nq and 
∣∣
∣μinq jnq

(D)
∣∣
∣ < 1, for each q ∈ N\{1}. 

Therefore the inequality
∣∣∣μinq jnq

(H0)
∣∣
∣ > −

∣∣
∣μinq jnq

(C)
∣∣
∣ + μinq jnq

(Binq jnq
) −

∣∣
∣μinq jnq

∣∣
∣ (D) > nq − 2,

implies that

lim
p

∣
∣∣μinp jnp

(H0)
∣
∣∣ = ∞,

contradicting (18). �
The following corollary extends Theorems 2 and 3 in [14]. Again following [7, 7 Chapter 7, 35.1] a family 

{Bm1m2...mi
: i, mj ∈ N, 1 � j � i � p} of subsets of A is an increasing p-web in A if (Bm1)m1 is an 

increasing covering of A and (Bm1m2...mi+1)mi+1 is an increasing covering of Bm1m2...mi
, for each mj ∈ N, 

1 � j � i < p.

Corollary 13. Let S be a σ-algebra of subsets of Ω and let {Bm1m2...mi
: i, mj ∈ N, 1 � j � i � p} be 

an increasing p-web in S. Then there exists Bn1,n2,...,np
such that if (Bn1,n2,...,npsp+1)sp+1 is an increasing 

covering of Bn1,n2,...,np
there exists np+1 ∈ N such that each τs(Bn1,n2,...,npnp+1)-Cauchy sequence (μn)n in 

ba(S) is τs(S)-convergent.
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Proof. By Theorem 2 there exists Bn1n2...np
which has sN -property. Hence there exists Bn1,n2,...,npnp+1

which has N -property. Then a τs(Bn1,n2,...,npnp+1)-Cauchy sequence (μn)n is τs(A)-relatively compact. As 
L(Bn1,n2,...,npnp+1) = L(S) the sequence (μn)n has no more than one τs(A)-adherent point, whence (μn)n
is τs(A)-convergent. �
4. Applications

We present some applications of Theorem 2 concerning localizations of bounded finitely additive vector 
measures.

A finitely additive vector measure, or simply a vector measure, μ defined in an algebra A of subsets of 
Ω with values in a topological vector space E is a map μ : A → E such that μ(B ∪ C) = μ(B) + μ(C), for 
each pairwise disjoint subsets B, C ∈ A. The vector measure μ is bounded if μ(A) is a bounded subset of E, 
or, equivalently, if the E-valued linear map μ : L(A) → E defined by μ(χB) := μ(B), for each B ∈ A, is 
continuous.

A locally convex space E(τ) is an (LF )- or (LB)-space if it is, respectively, the inductive limit of an 
increasing sequence (Em(τm))m of Fréchet or Banach spaces where the relative topology τm+1|Em

induced 
on Em is coarser than τm, for each m ∈ N. (Em(τm))m is a defining sequence for E(τ) with steps Em(τm), 
m ∈ N, and we write E(τ) = ΣmEm(τm). If τm+1|Em

= τm, for each m ∈ N, then E(τ) is a strict (LF )-, 
or (LB)-space. From [7, 19.4(4)] it follows that if μ : A → E(τ) is a vector bounded measure with values in 
a strict (LF )-space E(τ) = ΣmEm(τm) then there exists n ∈ N such that μ(A) is a bounded subset of the 
step En(τn). For σ-algebras the following extension of this result is contained in [14, Theorem 4].

Theorem 14. Let μ be a bounded vector measure defined in a σ-algebra S of subsets of Ω with values in an 
(LF )-space E(τ) = ΣmEm(τm). Then there exists n ∈ N such that μ(S) is a bounded subset of En(τn).

Theorem 2 provides the following proposition that contains Theorem 14 as a particular case.

Proposition 15. Let μ be a bounded vector measure defined in a σ-algebra S of subsets of Ω with values in a 
topological vector space E(τ). Suppose that {Em1,m2,··· ,mi

: mj ∈ N, 1 � j � i � p} is an increasing p-web 
in E. Then there exists En1,n2,··· ,np

such that if En1,n2,··· ,np
(τn1,n2,··· ,np

) is an (LF )-space, the topology 
τn1,n2,··· ,np

is finer than the relative topology τ |En1,n2,··· ,np
and if (En1,n2,··· ,np,sp+1(τn1,n2,··· ,np,sp+1))sp+1 is 

a defining sequence for En1,n2,··· ,np
(τn1,n2,··· ,np

) there exists np+1 ∈ N such that μ(S) is a bounded subset 
of En1,n2,··· ,np,np+1(τn1,n2,··· ,np,np+1).

Proof. Let Bm1,m2,...,mi
:= μ−1(Em1,m2,...,mi

) for each mj ∈ N, 1 � j � i � p. By Theorem 2 there exists 
(n1, n2, . . . , np) ∈ N

p such that Bn1,n2,...,np
has sN -property. Let (En1,n2,...,np,sp+1(τn1n2...npsp+1))sp+1 be a 

defining sequence for En1,n2,...,np
(τn1,n2,...,np

) and let Bn1,n2,...,np,sp+1 := μ−1(En1,n2,...,np,sp+1).
As (Bn1,n2,...,np,sp+1)sp+1 is an increasing covering of Bn1,n2,...,np

there exists np+1 such that
Bn1,n2,...,np,np+1 has N -property, whence L(Bn1,n2,...,np,np+1) is a dense subspace of L(S )̇ and then the 
map with closed graph

μ|L(Bn1,n2,...,np,np+1 ) : L(Bn1,n2,...,np,np+1) → En1,n2,...,np,np+1(τn1,n2,...np,np+1)

has a continuous extension υ : L(S) → En1,n2,...,np,np+1(τn1,n2,...,np,np+1) (by [12, 2.4 Definition and (N2)]
and [13, Theorems 1 and 14]). The continuity of μ : L(S) → E(τ) implies that υ(A) = μ(A), for each A ∈ S. 
Whence μ(S) is a bounded subset of En1,n2,...,np,np+1(τn1,n2,...,np,np+1). �

Proposition 15 also holds if we replace (LF )-space by an inductive limit of Γr-spaces (see [13, Definition 1]
and, taking into account [12, Property (N2) after 2.4 Definition], apply again [13, Theorems 1 and 14]). 
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A particular case of this proposition is the next corollary, which it is also a concrete generalization of 
Theorem 14.

Corollary 16. Let μ be a bounded vector measure defined in a σ-algebra S of subsets of Ω with values in 
an inductive limit E(τ) = ΣmEm(τm) of an increasing sequence (Em(τm))m of (LF )-spaces. There exists 
n1 ∈ N such that for each defining sequence (En1,m2(τn1,m2))m2 of En1(τn1) there exists n2 ∈ N which 
verifies that μ(S) is a bounded subset of En1,n2(τn1,n2).

A sequence (xk)k in a locally convex space E is subseries convergent if for every infinite subset J of N
the series Σ{xk : k ∈ J} converges and (xk)k is bounded multiplier if for every bounded sequence of scalars 
(λk)k the series Σkλkxk converges.

A Fréchet space E is Fréchet Montel if each bounded subset of E is relatively compact. Important classes 
of Montel and Fréchet Montel spaces are considered and studied while Schwartz Theory of Distributions is 
described, for instance, in [6, Chapter 3, Examples 3, 4, 5 and 6.].

The following corollary is a generalization of [14, Corollary 1.4] and it follows partially from Corollary 16.

Corollary 17. Let (xk)k be a subseries convergent sequence in an inductive limit E(τ) = ΣmEm(τm) of 
an increasing sequence (Em(τm))m of (LF )-spaces. Then there exists n1 ∈ N such that for each defining 
sequence (En1,m2(τn1,m2))m2 for En1(τn1) there exists n2 ∈ N such that {xk : k ∈ N} is a bounded subset of 
En1,n2(τn1,n2). If, additionally, En1,n2(τn1,n2) is a Fréchet Montel space then the sequence (xk)k is bounded 
multiplier in En1,n2(τn1,n2).

Proof. As the sequence (xk)k is subseries convergent then the additive vector measure μ : 2N → E(τ) defined 
by μ(J) := Σk∈Jxk, for each J ∈ 2N, is bounded, because as (f(xk))k is subseries convergent for each f ∈ E′

we get that Σ∞
k=1 |f(xk)| < ∞.

By Corollary 16 there exists n1 ∈ N such that for each defining sequence (En1,m2(τn1,m2))m2 for En1(τn1)
there exists n2 ∈ N with the property that μ(2N) = {Σk∈Jxk : J ∈ 2N} is a bounded subset of En1,n2(τn1,n2). 
Then Σk |λkf(xk)| < ∞ for each continuous linear form f defined on En1,n2(τn1,n2) and each bounded 
sequence (λk)k of scalars, whence (Σk

j=1λjxj)k is a bounded sequence in En1,n2(τn1,n2) which has at most 
one adherent point, because Σkλkf(xk) converges for each f ∈ (En1,n2(τn1,n2))′. If En1,n2(τn1,n2) is a 
Montel space then the bounded subset {Σk

j=1λjxj : k ∈ N} is relatively compact and then the series Σkλkxk

converges in En1,n2(τn1,n2). �
Recall that a vector measure μ defined in an algebra A of subsets of Ω with values in a Banach space E

is strongly additive whenever given a sequence (Bn)n of pairwise disjoint elements of A the series Σnμ(Bn)
converges in norm [2, I.1. Definition 14]. Each strongly additive vector measure μ is bounded [2, I.1. Corol-
lary 19].

Corollary 18. Let μ be a bounded vector measure defined in a σ-algebra S of subsets of Ω with values in 
an inductive limit E(τ) = ΣmEm(τm) of an increasing sequence (Em(τm))m of (LB)-spaces such that each 
Em(τm) admit a defining sequence (Em,m2(τm,m2))m2 of Banach spaces which does not contain a copy of l∞. 
If H is a dense subset of E′(τs(E)) such that fμ is countably additive for each f ∈ H, then there exists 
(n1, n2) ∈ N

2 such that μ is a En1,n2(τn1,n2)-valued countably additive vector measure.

Proof. By Corollary 16 there exists (n1, n2) ∈ N
2 such that μ(S) is a bounded subset of En1,n2(τn1,n2). 

As En1,n2(τn1,n2) does not contain a copy of l∞ then, by ([2, I.4. Theorem 2]), the measure μ is strongly 
additive, hence if (Bn : n ∈ N) is a sequence of pairwise disjoint subsets of S then Σnμ(Bn) converges to 
the vector x in En1,n2(τn1,n2). Therefore f(x) = Σnfμ(Bn) for each f ∈ E′ and, by countably additivity of 
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fμ when f ∈ H, we have that f(x) = Σnfμ(Bn) = fμ(∪nBn) for each f ∈ H. By density x = μ(∪nBn), 
whence Σnμ(Bn) = μ(∪nBn) in En1,n2(τn1,n2). �
Proposition 19. Let μ be a bounded vector measure defined in a σ-algebra S of subsets of Ω with values in a 
topological vector space E(τ). Suppose that {Em1,m2,...,mi

: mj ∈ N, 1 � j � i � p} is an increasing p-web 
in E. There exists En1,n2,...,np

such that if (En1,n2,...,np,mp+1)mp+1 is an increasing covering of En1,n2,...,np

with the property that each relative topology τ |En1,n2,...,np,mp+1
, mp+1 ∈ N, is sequentially complete then there 

exists np+1 ∈ N
p such that μ(S) ⊂ En1,n2,··· ,np,np+1 .

Proof. Let Bm1,m2,...,mi
:= μ−1(Em1,m2,...,mi

) for each mj ∈ N, 1 � j � i � p + 1. By Theorem 2 there 
exists (n1, n2, . . . , np) ∈ N

p such that Bn1,n2,...,np
has sN -property, whence there exists np+1 ∈ N

p such that 
Bn1,n2,...,np,np+1 has N -property, therefore En1,n2,...,npnp+1(τ |En1,n2,...,np,np+1

) is a dense subspace of E(τ), 
hence density and sequential completeness imply that the continuous restriction of μ to L(Bn1,n2,...,np,np+1)
has a continuous extension v to L(S) with values in the space En1,n2,...,np,np+1(τ |En1,n2,...,np,np+1

). As 
μ : L(S) → E(τ) is continuous then v = μ and we get that μ(S) ⊂ En1,n2,...,np,np+1 . �
Corollary 20. Let μ be a bounded additive vector measure defined in a σ-algebra S of subsets of Ω with 
values in an inductive limit E(τ) = Σm1Em1(τm1) of an increasing sequence (Em1(τm1))m1 of countable 
dimensional topological vector spaces. Then there exists n1 such that span{μ(S)} is a finite dimensional 
subspace of En1(τn1).

Proof. For each m1 ∈ N let (Em1,m2)m2 be an increasing covering of Em1 by finite dimensional vector 
subspaces. {Em1,m2 : mj ∈ N, 1 � j � i � 2} is an increasing 2-web in E. As the relative topology 
τ |Em1,m2

induced on Em1,m2 is complete then, by Proposition 19, there exists (n1, n2) ∈ N
2 such that 

μ(S) ⊂ En1,n2 . �
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