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Following Schachermayer, a subset B of an algebra A of subsets of €2 is said to
have the N-property if a B-pointwise bounded subset M of ba(.A) is uniformly
bounded on A, where ba(A) is the Banach space of the real (or complex) finitely
additive measures of bounded variation defined on .A. Moreover B is said to have
the strong N-property if for each increasing countable covering (B, )m of B there
exists 3,, which has the N-property. The classical Nikodym—Grothendieck’s theorem
says that each oc-algebra S of subsets of €2 has the N-property. The Valdivia’s
theorem stating that each o-algebra S has the strong N-property motivated the
main measure-theoretic result of this paper: We show that if (B, )m, is an increasing
countable covering of a o-algebra S and if (Bm,,ms,,....m,,my41 )m,., 1S an increasing
countable covering of B, m,,...,m,, for each p,m; € N, 1 < i < p, then there exists
a sequence (n;); such that each Bpn, n,,. n., 7 € N, has the strong N-property.
In particular, for each increasing countable covering (B, )m of a o-algebra S there
exists B, which has the strong N-property, improving mentioned Valdivia’s theorem.
Some applications to localization of bounded additive vector measures are provided.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let B be a subset of an algebra A of subsets of a set {2 (in brief, set-algebra A). The normed space L(B)
is the span{xc : C € B} of the characteristic functions of each set C' € B with the supremum norm || - ||

and ba(A) is the Banach space of finitely additive measures on .4 with bounded variation endowed with the

variation norm, ie., |-| :=

| (). If {C; : 1 < i < n}is a measurable partition of C' € A and p € ba(A)

then |p| (C) = X;|p| (C;) and, as usual, we represent also by p the linear form in L(A) determined by
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w(xe) = pu(C), for each C € A. By this identification we get that the dual of L(A) with the dual norm is
isometric to ba(A) (see e.g., [2, Theorem 1.13]).

Polar sets are considered in the dual pair < L(A), ba(A) >, M° means the polar of a set M and if B C A
the topology in ba(A) of pointwise convergence in B is denoted by 75(B). (E’,7s(E)) is the vector space
of all continuous linear forms defined on a locally convex space F endowed with the topology 74(FE) of the
pointwise convergence in E. In particular, the topology 7s(L(.A)) in ba(A) is 75(A).

The convex (absolutely convex) hull of a subset M of a topological vector space is denoted by co(M)
(absco(M)) and absco(M) = co(U{rM : |r| = 1}). An equivalent norm to the supremum norm in L(A)
is the Minkowski functional of absco({xc : C € A}) ([14, Propositions 1 and 2|) and its dual norm is
the A-supremum norm, i.e., ||p] := sup{|u(C)| : C € A}, u € ba(A). The closure of a set is marked by
an overline, hence if P C L(A) then span(P) is the closure in L(A) of the linear hull of P. N is the set
{1,2,...} of positive integers.

Recall the classical Nikodym—Dieudonné-Grothendieck theorem (see [1, page 80, named as Nikodym-—
Grothendieck boundedness theorem|): If S is a o-algebra of subsets of a set Q and M is a S-pointwise
bounded subset of ba(S) then M is a bounded subset of ba(S) (i.e., sup{|u(C)| : p € M, C € 8} < o0,
or, equivalently, sup{|u| () : p € M} < 00). This theorem was firstly obtained by Nikodym in [11] for a
subset M of countably additive complex measures defined on S and later on by Dieudonné for a subset M
of ba(2?), where 2% is the o-algebra of all subsets of 2, see [3].

It is said that a subset B of an algebra A of subsets of a set Q has the Nikodym property, N-property
in brief, if the Nikodym-Dieudonné-Grothendieck theorem holds for B, i.e., if each B-pointwise bounded
subset M of ba(A) is bounded in ba(A) (see [12, Definition 2.4] or [15, Definition 1]). Let us note that in
this definition we may suppose that M is 75(.A)-closed and absolutely convex. If B has N-property then the
polar set {x¢c : C € B}° is bounded in ba(.A), hence {x¢ : C € B}°° = absco{xc : C € B} is a neighborhood
of zero in L(A), whence L(B) is dense in L(A).

It is well known that the algebra of finite and co-finite subsets of N fails N-property [2, Example 5 in

page 18] and that Schachermayer proved that the algebra J(I) of Jordan measurable subsets of I := [0, 1]
has N-property (see [12, Corollary 3.5] and a generalization in [4, Corollary]). A recent improvement of
this result for the algebra J(K) of Jordan measurable subsets of a compact k-dimensional interval K :=
I{[a;,b;] : 1 < i < k} in R* has been provided in [15, Theorem 2|, where Valdivia proved that if J(K) is
the increasing countable union U, B, there exists a positive integer n such that B,, has N-property (see [8,
Theorem 1] for a strong result in J(K)). This fact motivated to say that a subset B of a set-algebra A has
the strong Nikodym property, sIN-property in brief, if for each increasing covering U,,B,, of B there exists
B,, which has N-property. As far as we know this result suggested the following very interesting Valdivia’s
open question (2013):

Problem 1 (/15, Problem 1]). Let A be an algebra of subsets of §2. Is it true that N-property of A implies
sN-property?

Note that the Nikodym—-Dieudonné—Grothendieck stating that every o-algebra S of subsets of a set 2
has property N is a particular case of the following Valdivia’s theorem.

Theorem 1 (/1/, Theorem 2]). Each o-algebra S of subsets of 2 has sN -property.

Following [7, Chapter 7, 35.1] a family {B, m,,....m,  P,M1,Ma,...,m, € N} of subsets of A is an

P
increasing web in A if (By,, )m, is an increasing covering of A and (B, ms.....mp,mps1 )my., 1S an increasing
covering of By, ms,...,m,, for each p,m; € N, 1 < i < p. We will say that a set-algebra A of subsets of
Q has the web strong N-property (web-sN-property, in brief) if for each increasing web {Bm, ms....m, :
p,M1, Ma,...,my, € N} in A there exists a sequence (n;); in N such that each By, ny....n; has sN-property,

for each i € N.
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The main measure-theoretic result of this paper is the following theorem, motivated by Theorem 1 and
covering all mentioned results for o-algebras.

Theorem 2. Each o-algebra S of subsets of 2 has web-sN -property.

In particular, if Bmhm%___,mp = B,,, for each p € N, we have the following improvement of Theorem 1:
If (Byn)m is an increasing covering of a o-algebra S of subsets of §) there exists an index n so that B, has
sN-property.

Next section provides properties concerning N-property of subsets of a set-algebra A and unbounded
subsets of ba(A). These results will be used in Section 3 to provide necessary facts to complete the proof of
our main result (Theorem 2).

Last section deals with applications of Theorem 2 to localizations of bounded finite additive vector
measures.

A characterization of sN-property of a set-algebra A by a locally convex property of L(A) was obtained
in [15, Theorem 3|. Analogously a characterization of web-sN-property of a set-algebra A by a locally convex
property of L(.,A) may be found easily following [5] and [10].

2. Nikodym property and deep unbounded sets

To keep the paper self-contained we provided a short proof of the next (well known) proposition.

Proposition 3. Let A be an algebra of subsets of Q0 and let M be an absolutely convex 75(A)-closed subset of
ba(A). The following properties are equivalent:

1. For each finite subset Q of {xa : A € A} the set M N Q° is an unbounded subset of ba(A).

2. For each finite subset Q of {xa : A € A} such that span{M°} N span{Q} = {0} the set M N Q° is
unbounded in ba(A).

3. M° is not a neighborhood of zero in span{M?°} or the codimension of span{M?°} in L(A) is infinite.

If M is unbounded and span{M°} = L(A) then M verifies the previous properties.

Proof. To prove these equivalences recall that if M is a 75(A)-closed and absolutely convex subset of ba(.A)
then M°° = M [7, Chapter 4 20.8.5].

(1) <= (2). Let @ ={xq, : Q: € A, 1 < i < r}. First we prove that if there exists m; € M° such that
XQ, = himy + EQéigrhiXQi and if h : =2+ Elgigr |hl| then

absco(M° U Q) C habsco(M° U{9\{xo,}}) (1)

In fact, if z € absco(M° U Q) then x = A\gmo + L1<i<rAiXQ;, With mg € M° and Xog;<r |Ai| < 1, whence
r = Aomg + Athimi + 22§i<r(/\1hi + /\i)XQr From moy = (1 + ‘/\0| + |>\1h1‘)71(/\0m0 + )\1h1m1) e M°
we get the representation @ = (1 + |Ao| + |A1h1])ma + Eocicr(A1hs + Xi)x @, which verifies the inequality
14+ Aol + [Aha] + Zogicr [A1hi + Ai| < h, whence z € habsco(M° U {Q\{xg, }})- Taking polar sets in (1)
we obtain that

MO {Q\{xa, }}* C MM N Q°%),

hence if M N{QA\{xq, }}° is unbounded one gets that M N Q° is also unbounded. The rest of this equivalence
is obvious.

(2) <= (3). If M° is a neighborhood of zero in span{M°} and if O = {x@, : Qi € A, 1 <i<r}isa
cobase of span{M°} in L(A) then absco(M° U Q) is a neighborhood of zero in L(.A), hence
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(absco(M° U Q))°=MnNQ°

is a bounded subset of ba(A).

If M° is not a neighborhood of zero in span{M°} or if the codimension of span{M°} in L(.A) is infinite,
then for each finite set Q := {xq, : @ € A,1 < i < r} such that span{M°} Nspan{Q} = {0} the set
absco(M° U Q) is not a neighborhood of zero in L(A), whence the set (absco(M° U Q))° = M N Q° is
unbounded in ba(A).

If M is an unbounded subset of ba(A) then M° is not a neighborhood of zero in L(A). If, additionally,
span{M°} = L(A) we have, by denseness, that M° is not a neighborhood of zero in span{M°} and we
obtain that M verifies (3). O

The fact that if a subset M of ba(A) verifies (1) in Proposition 3 then its subsets M N Q° are unbounded,
for each finite subset Q of {x 4 : A € A}, motivates the following definition.

Definition 1. Let B be an element of the algebra A of subsets of Q. A subset M of ba(.A) is deep B-unbounded
if each finite subset Q of {xa : A € A} verifies that

sup{|u(C)|:pe MNQ°, Ce A, C C B} =, (2)
or, equivalently, sup{|p| (B) : p€ M N Q°} = oc.

In particular, a subset M of ba(A) is deep Q-unbounded if M N Q° is an unbounded subset of ba(.A), for
each finite subset Q of {x 4 : A € A}. Therefore an absolutely convex 7,(.A)-closed subset M of ba(.A) is deep
Q-unbounded if and only if M verifies condition (2) or (3) in Proposition 3. If, additionally, span{M°} =
L(A) then M is deep Q-unbounded if and only if it is unbounded.

Next proposition furnishes sequences of deep Q-unbounded subsets of ba(A). The particular case
Um B = A is Theorem 1 in [15].

Proposition 4. Let A be an algebra of subsets of Q and let (B,,)m be an increasing sequence of subsets of A
such that each By, does not have N-property and span{xc : C € Uy B} = L(A). There exists ng € N such
that for each m > ng there exists a deep Q-unbounded 74(A)-closed absolutely convex subset My, of ba(A)

which is pointwise bounded in By, i.e., sup{|pu(C)| : p € My} < oo for each C € B,,. In particular this
proposition holds if Uy, By, = A or if U, B, has N-property.

Proof. If for each m € N the subspace H,, := span{x¢ : C € B,,} has infinite codimension in L(A) then,
by (3) in Proposition 3, the polar set of P, := absco{x¢ : C' € B,,} is the deep Q-unbounded set M, := Py,.
The definition of polar set implies that sup{|u(C)| : up € M,,} < 1, for each C' € B,,. Whence we get the
proposition with ng = 1.

If there exists p such that the codimension of F' := span{xc : C' € B,} in L(A) = span{xc : C € U,,B,,, }
is the finite positive number ¢ then {x¢ : C € U, B,,} ¢ F, whence there exists m; € N and D € By,
such that xp ¢ F and then the codimension of span{xc :C € Bpim,} in L(A) is less or equal than
q — 1. Therefore there exists ng such that span{xc:C € B,,} = L(A), for each m > ngy. As for each

m = ng the set B, does not have N-property there exists an absolutely convex 75(.A)-closed unbounded
subset M, of ba(A) such that sup{|u(C)|: n € My} < ko < o0, for each C' € B,,, and then it follows
that {k;'xc : C € By} C Mg, This inclusion implies that span{xc : C' € B,,} C span{MJ,}, whence
span{ Mg} = L(A), because span{xc : C € B,,} = L(A). Then, by Proposition 3, the unbounded set M,,
is deep Q-unbounded for each m > ng.

If UpnBm = A or if Uy, B, has N-property then span{xc : C € U, B,,} = L(A) and this proposition
holds. O
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Next Proposition 5 follows from [15, Proposition 1]. We give a simplified proof according to our current
notation.

Proposition 5. Let B be an element of an algebra A and {C1,Cs,...,Cq} a finite partition of B by elements
of A. If M is a deep B-unbounded subset of ba(A) there exists C;, 1 < i < ¢, such that M is deep
C;-unbounded.

Proof. If for each 3, 1 < i < ¢, there exists a finite set Q! of characteristic functions of elements of A
such that sup{|u| (C;) : p € M N (Q")°} < H;, i € {1,2,...,q}, then we get the contradiction that the set
Q = Ui<igg Q" verifies that sup{|u| (B) : p € M N Q°} < X1cic Hi. O

Ift = (t1,t2,...,tp), s = (81,52,...,84), T and U are two elements and two subsets of UsN® we define
t(1) == (t1,t2,...,t;) if 1 <4 < p, t(3) :=0if ¢ > p, T(m) := {t(m) : t € T}, for each m € N, ¢t x s :=
(t1,t2, .. tp, tpgi, tpga, .oy tpyg), With tppj =85, for 1 <j< g, and T xU :={txu:teT, ueU}. We
simplify (¢1), (n) and T x {(n)} by t1, n and T x n. The length of t = (t1,t2,...,t,) is p and the cardinal
of a set C is denoted by |C.

If v € UsN® and ¢t x v € U then ¢ x v is an extension of t in U. A sequence (t"), of elements t" =
(0,8, ..., ...) € U,N® is an infinite chain if for each n € N the element t"*! is an extension of the
section t"(n), i.e., ) # t"(n) = t"*1(n).

A subset U of U,N" is increasing at t = (t1,t2,...,t,) € UsN® if U contains p elements th = (t},td,...)
and t' = (t1,ta,... 7t¢,1,t§,t§+1, ...), 1 <i < p,such that t; < ¢, for each 1 < i < p. A non-void subset U of
UsN*® is increasing (increasing respect to a subset V of UsN® ) if U is increasing at eacht € U (at eacht € V),
hence U is increasing if |[U(1)| = co and [{n € N: t(i) x n € U(i + 1)}| = oo, for each t = (¢1,t2,...,t,) €U
and 1 <7 <p.

If {B, : u € UsN°} is an increasing web in A and U is an increasing subset of UgenN® then B :=
{Byu@y s w € U, 1 < i < length u} verifies that (By(1))ucy is an increasing covering of A and for each
u = (uy,ug,...,uy) € U and each i < p the sequence (By(;)xn)u(i)xnet(i+1) IS an increasing covering
of By If, additionally, each element u € U has an extension in U then renumbering the indexes in the
elements of B we get an increasing web.

The Definition 2 deals with increasing subsets of Us;enN® and it is motivated by the technical Example 1
which will be used onwards to complete the proof of Theorem 2. A particular class of increasing trees,
named NV-trees — surely reminding Nikodym and Valdivia —, is considered in [9, Definition 1].

Definition 2. An increasing tree 7" is an increasing subset of UsenN® without infinite chains.

An increasing tree T is trivial if T = T(1); then T is an infinite subset of N. The sets N?, i € N\{1}, and
the set U{(i) x N’ : i € N} are nontrivial increasing trees.

An increasing subset S of an increasing tree T' is an increasing tree. From this observation it follows the
Claim 6.

Claim 6. If (S,,), is a sequence of non-void subsets of an increasing tree T such that for each n € N the set
Sn41 18 increasing respect to Sy, then S := U, S, is an increasing tree.

Proof. It is enough to notice that S is an increasing subset of T. 0O
Example 1. Let B := {Bml,m%m,mp 1P, M1, Moy .., My, € N} be an increasing web in an algebra A of subsets

of Q with the property that for each sequence (m;); € NY there exists ¢ € N such that B, ms,....m, does not
have sN-property. Then there exists an increasing web C := {Cpny mo.,....m, * P, M1, M2,...,my € N} in A
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and an increasing tree T such that for each (¢1,%2,...,t,) € T there exists a deep Q-unbounded 75(.A)-closed

absolutely convex subset My, 1,....+, of ba(.A) which is pointwise bounded in Ct to,...ty 1-€-,

sup{|u(C)| : € My, 4,,....0,} < 00, (3)
for each C € Cy, 1,,...1,-

Proof. If each B,,,, m1 € N, does not have N-property then the example is given by C := B and T :=
N\{1,2,...,m9 — 1}, where ng is the natural number obtained in Proposition 4 applied to the increasing
covering (B, )m, of A. Hence we may suppose that there exists m; € N such that By, has N-property for
each t; > m; and then:

(i1) Either B, does not have sN-property for each t; € N and the inductive process finish defining
To := {tl eN:t; > ml}.

(71) Or there exists m)} € N such that B;, has sN-property for each t; > m). Then we write Q1 := () and
Q/l = {tl EN:tg > m’l}

Let us assume that for each j, with 2 < j < ¢, we have obtained by induction two disjoint subsets Q;
and Q; of N7 such that each t = (t1,t2,...,t;) € Q; U Q;. verifies:

1. t(] — 1) = (t17t2, . ,tjfl) S Q;’—l'

2. If t € Qj the set B; has N-property but it does not have sN-property and S;;_1) := {n € N :
t(j —1) xn € Q; UQj} is a cofinite subset of N such that ¢(j — 1) x Sy;_1) C Q.

3. If t € Q) the set B, has sN-property and S{( )= {neN:t(j—1)xn € Q;UQ;} is a cofinite subset
of N such that t(j — 1) x 5}, ) C Q;.

Jj—1

Ift := (tl,tg, - ,ti) € Q; then Btl,tg
of By, t,,...t;» hence there exists m;y; such that By, 4, .+, » has N-property for each n > m;;1. Then we

t; has sN-property and (By, t,....t;.n)n IS an increasing covering

,,,,,

may have two possible cases:

(i;+1) Either By, 1,,.. 4, » does not have sN-property for each n € N and we define Sy, 4, .. 4, :={n € N:
0,

(ii;+1) or there exists mQH € N such that By, +,... 1, .» has sIN-property for each n > mQH. In this case let
Sty ta,.t; =0 and S ={neN:mj , <n}

7

/ —
mip1 <npand S; 4=

i

158250585

We finish this induction procedure by setting Q1 := U{t x S; : t € Q;} and Qj,, := U{t x S : t € Qj}.
By construction Q;41 and @, verify the properties 1., 2. and 3. with j =14 + 1.

The fact that for each sequence (m;); € NN there exists j € N such that B, ma,...m; does not
have sN-property imply that T, := U{Q; : ¢ € N} does not contain infinite chains, because if
(mi,ma,...,mp) € Qp then By, m,. .m, , has sN-property, whence for each (ti,ts,...,tx) € Q)
there exists ¢ € N and (tg+1,...,tk+q) € N such that (t1,t2,...,t, tht1s- .-, thtq) € Qrrq and then
To(k) = Qi U Q) for each k € N. These equalities imply that T} is increasing, because |Tp(1)| = |Q}| = oo
and if t = (t1,%2,...,tp) € Ty the sets Sg(i_l), 1 <i < p, and Sy,—1) are cofinite subsets of N.

This increasing tree Ty as well as the trivial increasing tree obtained in (i1), also named Tp, verify that for
each t = (t1,t2,...,1t,) € Tp the family Btl,tz,...,tp has N-property and it does not have s N-property, whence

. . . / /
¢, has an increasing covering (Btl)t%___’tmn)n such that each By, ,, does not have N-property.

Htp,m

,,,,,

By Proposition 4 there exists ng € N such that for each n > ng there exists a deep Q-unbounded 7, (.A)-closed
absolutely convex subset My, 1, .. t,n of ba(A) which is Bf, 4, 4 , pointwise bounded, i.e., sup{[u(C)] :
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n} < 00, for each C € By, 4, when n < ng

— 3 /
t,.n- We assume ng = 1, removing B |

e Mty t,,
and changing n by n —ng + 1.

Then we get the example with the increasing tree T := Ty x N and with the increasing web C := {C; : t €
UsN®} in the algebra A such that for each t = (t1,2,...,¢p) € U;N® either C; := Bg(i) ifi<pandt(i)eT

orCe =B if {t(i):1<i<p}NT=0. O

tg,..‘,tp,n

Let U be a subset of U;N®. An element t € U;N® admits increasing extension in U if the set of {v €
UsN® . ¢ x v € U} contains an increasing subset. We need the following obvious properties (a), (b1) and (b2)
to prove Proposition 7, stating that if a subset U of an increasing tree T' does not contain an increasing tree
then T\U contains an increasing tree.

(a) If U is a subset of UsN® and U does not contain an increasing tree then there exists m; € N such that
each n € N\{1,2,...,m;} does not admit increasing extension in U.

(b) Let t € UsN?® and let U be a subset of the increasing tree T'. Suppose that ¢ does not admit increasing
extension in U and that T} := {v € UsN* : t x v € T} # (). Then

(b1) if the increasing tree T is trivial there exists m;;1 € N such that the set

tx {N\{L,2,...,mia ) NT

is an infinite subset of T\U,
(b2) if T} is non-trivial there exists m;, ; € N such that each element of

(tx {N\{1,2,...,mi,})NT(i+1)
does not admit increasing extension in U.

Proposition 7. Let U be a subset of an increasing tree T. If U does not contain an increasing tree then T\U
contains an increasing tree.

Proof. Tt is enough to prove that T\U contains an increasing subset W. Now we follow the scheme of the
proof in Example 1. In fact, if T is a trivial increasing tree the proposition is obvious. Hence we may suppose
that T is a non-trivial increasing tree. Then we define Q1 := ) and by (a) there exists m} € N such that
each element of the set Q) := {n € T(1) : m} < n} does not admit increasing extension in U. Notice that
Q) CT(H\T.

Let us suppose that we have obtained for each j, with 2 < j < 4, two disjoint subsets (); and Q; such
that Q; C T'(5) N (T\U), Q C T(j)\T and each t € Q; U Q) verifies the following properties:

Ltj—1) €@

2. If t € Q; then the cardinal of Sy;_1) == {n € N: #(j — 1) x n € Q; UQj}} is infinite and #(j — 1) x
Sij-1) C Qj-

3. Ift € @ then t does not admit increasing extension in U, the cardinal of Sé(j_l) ={neN:t(j—1)xn €
Q;j U@} is infinite and ¢(j — 1) x Sg(j_l) c Q.

If t € Q) then t € T(i)\T and it does not admit increasing extension in U. If T} = {v € U;N* : t xv € T'}
then, by (b1) and (by), it follows that the following two cases may happen:

1. If Ty is trivial then there exists m;y; € N such that the infinite set Sy :={n € N: m;;; < n,t xn €
T(i+ 1)} verifies that t x Sy C T\U and we define S} := 0.
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i. If T} is non-trivial then there exists m;,; € N such that the infinite set S} := {n € N:mj,; <n,txn €
T(i+1)} verifies that ¢t x S; C T'(i+1)\T and each element of ¢ x .S} does not admit increasing extension
in U. Now we define S; := 0.

We finish this induction procedure by setting Q1 := U{t x S; : t € Q;} and Qj, | := U{t x S : t € Qj}.

By construction Q11 C T'(i + 1) N (T\U), Qi1 C T(i + 1)\T, and each t € Q;11 U Q) verifies the
properties 1., 2. and 3. changing j by ¢ + 1.

As T does not contain infinite chains we deduce from 1. that for each (t1,t2,...,t;) € Q; there exists
g € N and (ti41,...,titq) € N? such that (t1,%2,..., ¢, ti+1,. .., titq) € Qitrq. Whence, for each i € N,
(Uj>i@;) (1) = Q} and then W :=U{Q; : j € N} is a subset of T\U.

W has the increasing property because from W (k) = Q U Qy,, for each k € N, it follows that |[W(1)| =
|Q)| =occandift = (t1,t2,...,t,) € W then (t1,t2,...,t) € Q},if 1 <i <p,and (t1,t2,...,t,) € Qp, hence
the infinite subsets Sé(i—l) and Sy(,—1) of N verify that #(i —1) x Sg(i_l) CQ;CcW(i)and t(p—1) X Syp—1) C
Qp,CW. O

Next Proposition 8 follows from [15, Propositions 2 and 3] and we give a simplified proof according to
our current notation for the sake of completeness.

Proposition 8. Let {B,Q1,...,Q.} be a subset of the algebra A of subsets of Q and let M be a deep
B-unbounded absolutely convex subset of ba(A). Then given a positive real number « and a natural number
q > 1 there exists a finite partition {C1,Cs,...,Cq} of B by elements of A and a subset {p1, fta, ..., g} of
M such that |p;(Cy)| > a and 1¢ir [1(Q5)| < 1, fori=1,2,...,q.

Proof. Let @ = {xB,X01)XQs»--->XQ,}- The deep B-unboundedness of M and the inclusion M C rM
imply that

sup{|p(D)| :p€erMNQ°, DC B, De A} = .

Hence there exists P; C B, with P, € A, and p € rM N Q° such that |u(Py)| > r(1 + ). Clearly
pr=r"tue M, |u(P)| >1+aand |u(f)] = r~ 1 |u(f)] < r~! for each f € Q, hence |u1(B)| <r 1 <1
and Y1<j<r |11(Q;)] < r~tr = 1. The set P, := B\P; verifies that

lp1(Pe)| = [ (P1)| = [ (B)| > 1+ a—1=a.

From Proposition 5 there exists 7 € {1,2} such that M is deep P;-unbounded. To finish the first step of
the proof let Cy := Py if M is deep Ps-unbounded and let C := Py if M is deep P;-unbounded. Then M
is deep B\Cj-unbounded.

Apply the same argument in B\C] to obtain a measurable set Cy C B\Cj and a measure us € M
such that |p2(C2)| > «a, |p2(B\(C1UCL))| > o and E{|u2(Q;)| : 1 < j < r} < 1, being M deep
B\(Cy U Cs)-unbounded. Hence the proof is provided by applying ¢ — 1 times this argument. In the last
step we define pi4 := ptg—1 and Cy = B\(C1 U---UCy—1). O

Proposition 9. Let B be an element of an algebra A and {M; : t € T} a family of deep B-unbounded
subsets of ba(A) indezed by an increasing tree T. If t/ := (], 1}, ... ,tg;j) €T, for each 1 < j <k, and
g =2+3{p; : 1 < j <k} then for each finite partition {C1,Cs,...,Cyq} of B by elements of A there exists
he{1,2,---,q} and an increasing tree Ty such that {t',t2,...,t*} C Ty C T and {M; : t € T\} is a family
of deep B\Ch-unbounded subsets.

Proof. Let {C4,C5,...,Cy} be a finite partition of B by elements of A with ¢ = 2+3{p; : 1 < j < k}. From
Proposition 5 it follows that if {M,, : v € U} is a family of deep B-unbounded subsets of ba(.A) indexed by
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an increasing tree U and V; := {u € U : M, is deep C;-unbounded}, 1 < i < ¢, then U = Ui<i<,Vi and, by
Proposition 7, there exists [, with 1 <[ < ¢, such that V; contains an increasing tree U;. Therefore

(a) If {M, : w € U} is a family of deep B-unbounded subsets indexed by an increasing tree U there exists
1€{1,2,...,q} and an increasing tree U; contained in U such that {M,, : u € U;} is a family of deep
Ci-unbounded subsets.

In particular, for the increasing tree 7' and for each element ¢/ € T, with 1 < j < k, there exist by (a)
and Proposition 5:

(1) ip € {1,2,...,q} and an increasing tree T;, contained in T such that {M; : t € T}, } is a family of deep
C,-unbounded subsets,

(2) ¥ € {1,2,...,q} such that M,; is deep Cy;-unbounded.

Let S:={j:1<j <k, t/¢T,} Foreach j € S and each section t/(m — 1) of t/ = (], 8,... 1 ),

. . © P
with 2 < m < pj, the set W), := {v € U;N® : t/(m — 1) x v € T} is an increasing tree such that
{M(t{,té,u.,tfn,l)xw cw € W} is a family of deep B-unbounded subsets. By (a) there exists:

(3) i, € {1,2,...,q} and an increasing tree V;J, contained in W, such that
{M(t-{,tg,...,t-j Dxv P UE Vit

m—

is a family of deep C}; -unbounded subsets. Clearly (], ], ..., 1] ) x Vi cCT.

»'m—1

As the number of sets C;
he{1,2,---,q} such that

0 Cis, C’Z.g-n, with j € S and 2 < m < p;, is less or equal than ¢ — 1, there exists

D:=Ciy U(U{CuuCy :j€S,2<m<pj}) CB\Ch.

Let T} be the union of the sets T}, {t/ : j € S} and {(¢],8},...,47 )} x Vi withj e Sand 2 <m < Dj.
Clearly for each t € Ty the set M, is deep D-unbounded, whence M; is also deep B\Cj-unbounded. By
construction {t*,#2,...,t*} C T} and T} has the increasing property and it is a subset of the increasing
tree T'. Whence T} is an increasing tree. 0O

We finish this section with a combination of Propositions 8 and 9. The obtained Proposition 10 is a
fundamental tool for the next section.

Proposition 10. Let {B,Q1,...,Q,} be a subset of an algebra A of subsets of Q, and let {M; :t € T} be a
family of deep B-unbounded absolutely convex subsets of ba(A), indexed by an increasing tree T. Then for
each positive real number a and each finite subset {t7 : 1 < j < k} of T there exist {B; € A:1 < j <k},
formed by k pairwise disjoint subsets B; of B, 1 < j < k, a set {u; € M;;, 1 < j < k} and an increasing
tree T such that:

L |pi(By)| > a and L{|pn;(Q:)| : 1 <i<r} <1, forj=1,2,...,k,
2. {tV:1<j<k}CT*CT and {M, :t € T*} is a family of deep (B\ Ui <k Bj)-unbounded sets.

Proof. Let t/ := (t{,té, e ,tg;j), for 1 < j < k. By Proposition 8 applied to B, «a, ¢ := 2 4+ ¥1¢;j<ip; and
M1 there exist a partition {C{,Cy,...,Cj} of B by elements of A and {A1, Ag, -+, Aq} C My such that:
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’)\k(C’é)} >a and Zlgigr p‘k(Qz)‘ < 1, for k = 1,2, ... q, (4)

hence Proposition 9 applied to the sets {C1,C3,---,Cp}, {M;y : t € T} and {t/ : 1 < j < k} gives
he{1,2,---,q} and a family {M, : ¢t € T1 } of deep B\Cj}-unbounded subsets indexed by an increasing tree
Ty such that {t},¢2, ..., t*} C Ty C T. If By := C} and p; := Ap, then (4) holds with A\, = y; and C} = B;.
Clearly {M; : t € T} } is a family of deep B\ Bj-unbounded subsets.

If we apply again Proposition 8 to B\Bi, a, ¢ and My2 we obtain a partition {C?,C3, - ,C’g} of B\B;
by elements of A and {¢1,¢2, -+, (s} C M;2 such that

|<k(clz)} >a and Elgigrkk(Qi)‘ < 17 for k = 1727"'7(17

and then by Proposition 9 (applied to {C},C3,---,C2}, {M; : t € Ty} and {#/ : 1 < j < k}) there
exists [ € {1,2,---,¢} and a family {M; : t € T} of deep (B\Bi)\C7-unbounded subsets indexed by an
increasing tree T, such that {t',¢2,... t*} C Ty C T. Now if By := C? and po := (; then |u2(Bs)| > a,
S{{p2(@i)] 1 <i<r}<1land {M,;:¢ €Ty} is a family of deep B\(By U By)-unbounded subsets. With
k — 2 new repetitions of this procedure we get the proof with T* :=Tj. O

3. Proof of Theorem 2

With a induction procedure based in Proposition 10 we obtain Proposition 12 that together with the
next elementary covering property for families indexed by increasing trees enable to prove Theorem 2.

Proposition 11. If Y = {le,mz,...,mp i p,mi,Ma,...,m, € N} is an increasing web in 'Y and T is an
increasing tree then Y = U{Y, : y € T}.

Proof. Let us suppose that y € Y\(U{Y; : t € T'}). As Y is an increasing web and T is an increasing tree
then Y = U{Y,y) : t € T}, whence there exists u' = (uj,uj,...) € T such that

y € Yy \(U{¥; it € T}).

Assume that there exists {u?,u?,...,u"} C T such that () # v/ ~'(j—1) = v/ (j—1) and y € V,;(;)\U{Y: :
teT}, for 2 <j<n Theny € Yyn)\U{Y; 1t € T}, with u”(n) = (uf,uy,...,uy). As ) is an increasing
web and 7' is an increasing tree then Yn(,) = U{Yyn(n)xs : u"(n) X s € T(n + 1)}, hence there exists
u™*! € T such that u"(n) = u"*!(n) and

Yy S Yun+1(n+1)\(u{l/t it e T})

This induction procedure gives the contradiction that 7' contains the infinite chain (u™),. Therefore
Y=U{Y,:ueT} O

In Proposition 12 we refer to the sequence (i), = (1,1,2,1,2,3,...), obtained with the first components
of N? ordered by the diagonal order, i.e., i, = n —27th(h + 1), if n € |27 h(h+1),27 (b +1)(h +2)] and
h=0,1,2,.... Let us note that i,, < n, for each n € N.

Proposition 12. Let {By, ms,...m, : P, M1, M2,...,my € N} be an increasing web in a o-algebra S of subsets
of Q with the property that for each sequence (m;); € NN there exists h € N such that By ma,....m, does not
have sN-property and let (in)n, = (1,1,2,1,2,3,...). Then there exist a strictly increasing sequence (jn)n
in N, a sequence (B;, j, )n of pairwise disjoints elements of S, a sequence (i, j, )n in ba(S) and a covering
(Cr)r of S such that for each n € N
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ZS{|Min+1jn+1 (Bisjs> 1<s<np <1, (5)
\Winjn (Binjn )| > dn (6)
|in i, (Us{Bij, :n < s})| <1, (7)

and for each r € N and each strictly increasing sequence (ny), such that i,, = r, for each p € N, the set
{ﬂinpjnp : p € N} is Cp.-pointwise bounded, i.e., for each H € C, we have that

sup{

Hinyiny ()| 0 € N} < o0, (8)

Proof. Let {C; : t € UsN°} and T be the increasing web in S and the increasing tree determined in Example 1
such that for each ¢ € T there exists a deep Q2-unbounded 74(S)-closed absolutely convex subset M; of ba(S)
which is C;-pointwise bounded, i.e.,

sup{|u(H)| : p € My} < o0 9)

for each H € C;.

Then, by induction, we prove that there exist a countable increasing tree {t' : i € N} contained in T,
a strictly increasing sequence of natural numbers (k;);, a set {B;; : (i,j) € N?,i < k;} of pairwise disjoint
elements of S and a set {y1;; € My : (i,5) € N2,i < k;} such that if (4,7) € N? and i < k; then

Yo o{lpij(Bsw)| s < ky, 1<v<j} <1, (10)
|1 (Bij)| > J, (11)

and for each i € N and each H € C;; we have

sup{|p; (H)| 1 i < j} < oc. (12)

Fix t! € T. By Proposition 10 with B :=Q, a =1, {Q1,...,Q,} ;=0 and {t' : 1 <i < k} := {t'} there
exist B11 € S, 11 € My and an increasing tree 717 such that

1. |p11(B11)| > 1, {M; :t € T1} is a family of deep 2\ Bjj-unbounded subsets and
2. tleTy CT.

We define ky := 1, S* := {t'} and B! := By;.

Suppose that in the following n — 1 steps of the inductive process we have obtained the finite sequence
ky < k3 < -+ < ky,, in N\{1}, the increasing trees To D T5 D --- D T, contained in T}, the subset
{t1,t2,... thn} of T, the set {B;; : i < kj, j < n} formed by pairwise disjoint elements of S and the set
{1i; € My i < kj, j < n} such that, for each 1 < j < n and each i < k;:

L wij(Bij)| > 4y Sso{lpij(Bso)| : s < kyy1 < v < j} < 1, the union BY := U{By, : s < ky, 1 <0 < j}
verifies that {M; : t € T} is a family of deep Q\ B7-unbounded subsets,
2. 87 :={t":i < k;} CT; and S7 has the increasing property respect to S7=1.

To finish the induction procedure let {tk»*+1 ... tkn+1} be a subset of T,,\{t' : i < k,,} that verifies the
increasing property with respect to S™. Then applying Proposition 10 to Q\B™, {Bs, : s < ky, 1 < v < n},
T, the finite subset S"*1 := {t' : i < k1 1} of T), and n + 1 we obtain a family {Bj,11 : i < kyy1} of
pairwise disjoint elements of S contained in Q\B", a subset {in+1 € Myi : i < kpg1} of ba(S) and an
increasing tree T),11 contained in T}, such that for each ¢ < ky 41,
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L |print1(Bins1)] > n+1, B o {|ptin+1(Bsv)| : 8 < ky, 1 <v < n} <1, the union B" ™! := U{By, : s < ks,
1 < v < n+ 1} has the property that {M; : t € T,,.1} is a family of deep 2\ B"!-unbounded subsets,
2. S"*t1 C T, 1 and S™*! has the increasing property respect to S™.

By Claim 6, U,S, = {t' : i € N} is an increasing tree, whence, by Proposition 11, the sequence (C;:); is
a countable covering of the o-algebra S. As (k;); is increasing then (4,5) € N? and ¢ < j imply that i < k;,
whence {u;; : 7 € N\{1,2,...,i—1}} C My and from this inclusion and (9) with ¢ = ¢* it follows (12), i.e.,
sup,{|pij (H)| : i < j} < oo, for each i € N and each H € Cyi.

With a new induction procedure we determine the increasing sequence (j, ), such that together with the
sequence (i,), = (1,1,2,1,2,3,...) verifies (5), (6), (7) and (8).

Let j; := 1 and suppose that |u;,;,| () < s1, with s € N. Let {N},1 < u < s1} be a partition of
{m € N:m > j;} in s; infinite subsets and define B} := U{B; : (s,t) € Nx N}, s <k}, 1 <u < s1. From
S{|pi gy (BL) 1 1 <u < s1} < s it follows that there exists o/, with 1 < u’ < sy, such that |u;,;, | (BL) < 1,
whence the sets N() := N!, and B! := B, verify that NV € {m € N:m > j;} and

‘lu’ilj1| (Bl) <L

Assume that in the first [ steps of this induction we have obtained a finite sequence j; < jo < --+ < j
in N and a decreasing finite sequence N > N2 5 ... 5 NO of infinite subsets of N such that for
each w € N, 1 <w <1, N@ c {n € N:n > j,} and the variation of the measure Hiyj, i0 the set
BY := U{By : (5,t) € Nx N s < k;} verifies the inequality

Wi (BY) < 1.

Let ji+1 be the first element in N and suppose that ‘,Uil+1jl+l‘ (Q) < 8441, with s;4; € N. Then
Ji < jiyr and if {NF1 1 < r < 8541} is a partition of {m € NO :m > Ji+1} in s;41 infinite disjoint
subfamilies then the subsets BLf! := U{Bg : (s,t) € N x N/Tls < k), 1 < 7 < sp41, verify that
S{tirprjiss | (BEFY) 11 <r < sp4a} < si41, whence it follows that there exists 7/, with 1 < 7/ < 541, such
that the set B!*! := U{By; : (s,t) € N x fol, s < kq} verifies that

’Miz+1jz+1’ (Bl+1) <1

Set N+ .= fol. Then, by induction, we get a strictly increasing sequence (j,,), in N and a decreasing
sequence (N (™), of infinite subsets of N, with jo € N c {m € N:m > j;} and j,.1 € N C {m ¢
N®=1D " m > j,}, for each n > 1, such that the measurable sets B := U{By; : (s,t) € N x N s <k},
n € N, verify that

i, g, | (B™) < 1. (13)

The inclusion j, € N®~1 ¢ N when n < s and the trivial inequalities iy < s < kg < k;. imply that
U{Bi.;. : s € N, n < s} C B", hence from (13) it follows that

i g | (Us{Bi,j, :n < s}) <1,

for each n € N, and this inequality imply (7) because the variation |u|(B) of i in a set B € S verifies that
lW(B)| < |ul (B).
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From the proved relation i, < k;, and the trivial fact that s < n implies that j, < j, < jny1 it follows
that (10) implies (5). The inequality (6) is a particular case of (11). Finally from (12) with i = r we get (8)
because each (inp,jnp) verifies that r = In, < Np < Jn,-

To finish the proposition define C, := Cyr, for each r € N. O
We are at the position to present the proof of Theorem 2. Recall again that (i,), = (1,1,2,1,2,3,...).
Proof of Theorem 2. Assume Theorem 2 fails. Then by Proposition 12 there exist a strictly increasing

sequence (j,)n in N, a sequence (B, ;,)n of pairwise disjoints elements of the o-algebra S, a sequence
(4,4, )n in ba(S) and a covering (C,), of S such that for each n € N

Ss{lting, (Big )|+ s <n}) <1, (14)
i jn (Bin g )| > s (15)
tij, (Us{Bij, 1 n < s})| <1, (16)

and for each strictly increasing sequence (n,), such that i, = r for each p € N we have that the sequence
(Hip, g, )p = (Krjn, )p is pointwise bounded in C,, i.e., for each H € C, we have that

sup{

i, (H)’ :p e N} < oo. (17)
As Hy :== U{B,,;, : s = 1,2,...} € S and (C,), is a covering of the o-algebra S there exists r’ € N such

that Hy € C,v. Fix a strictly increasing sequence (ng), in N\{1} such that i, = r’, for each ¢ € N. Then,
by (17),

sup

Hin, in, (Ho)‘ . g €N} < oo. (18)

The sets Cy := Us{Bi_j, : s <ng}, Bi,_j,, and Dg :=U{B;,j, : ngy < s} are a partition of the set Ho. By

(14), (15) and (16), ‘Ninanq (C)‘ <1, finyjng (Bingjn,) > Jng > ng and |p, j, (D)’ < 1, for each ¢ € N\{1}.
Therefore the inequality

Hinging (H0)| > = |t 0y (O + iy (B i) = |1y, | (D) > g =2,

implies that

lim |3, j., (HO)‘ = o0,
P P P

contradicting (18). O

The following corollary extends Theorems 2 and 3 in [14]. Again following [7, 7 Chapter 7, 35.1] a family
{Bmims..m; + ,mj € N, 1 < j < i < p} of subsets of A is an increasing p-web in A if (B, )m, is an
increasing covering of A and (B, ms...miyy )m.s, 1S an increasing covering of By, m,...m,, for each m; € N,
I<y<i<p.

Corollary 13. Let S be a o-algebra of subsets of Q and let {Bmimy..m, @ &, m; € N, 1 < j <4 < p} be
an increasing p-web in S. Then there exists By, n,,...n, such that if (Bn, n,,...npspir)
covering of Bu, n,,...n, there exists ny 1 € N such that each T4(Bn, n,,..
ba(8S) is 75(S)-convergent.

Spt+1 15 an wncreasing

npnpi1)-Cauchy sequence (fin)n in
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Proof. By Theorem 2 there exists By, n,..n, Which has sN-property. Hence there exists By, n,,..npnp1
which has N-property. Then a 74(Bn, n,,....n,n, ., )-Cauchy sequence (pin), is 75(A)-relatively compact. As
L(By, ns,...npnpe) = L(S) the sequence (f4,,)n, has no more than one 7,(A)-adherent point, whence (j,)n

is 75(A)-convergent. O

4. Applications

We present some applications of Theorem 2 concerning localizations of bounded finitely additive vector
measures.

A finitely additive vector measure, or simply a vector measure, u defined in an algebra A of subsets of
Q with values in a topological vector space F is a map u: A — F such that u(BUC) = u(B) + p(C), for
each pairwise disjoint subsets B, C' € A. The vector measure p is bounded if ;1(A) is a bounded subset of E,
or, equivalently, if the E-valued linear map p: L(A) — E defined by p(xp) := n(B), for each B € A, is
continuous.

A locally convex space E(7) is an (LF)- or (LB)-space if it is, respectively, the inductive limit of an
increasing sequence (Ey,(Tm))m of Fréchet or Banach spaces where the relative topology T 11|g,, induced
on E,, is coarser than 7,,, for each m € N. (E,,(7:n))m is a defining sequence for E(7) with steps E.,(7m),
m € N, and we write E(7) = X, Epn (7). If Tit1lE,, = Tm, for each m € N, then E(7) is a strict (LF)-,
or (LB)-space. From [7, 19.4(4)] it follows that if u: A — E(7) is a vector bounded measure with values in
a strict (LF)-space E(1) = X, By, (7,) then there exists n € N such that u(.A) is a bounded subset of the
step E, (7). For o-algebras the following extension of this result is contained in [14, Theorem 4].

Theorem 14. Let p be a bounded vector measure defined in a o-algebra S of subsets of Q with values in an
(LF)-space E(T) = ¥ Ep(Tm). Then there exists n € N such that u(S) is a bounded subset of Ep (7).

Theorem 2 provides the following proposition that contains Theorem 14 as a particular case.

Proposition 15. Let i be a bounded vector measure defined in a o-algebra S of subsets of Q0 with values in a
topological vector space E(7). Suppose that {Em, may.. m;

i

:mj € N,1 < j <i<p}isan increasing p-web
in E. Then there exists En, n,,... n, such that if En| ny .. n,(Tnyny, n,) 95 an (LF)-space, the topology

Tnyna, o, 05 finer than the relative topology T|g, ., .. o, and if (Enyina, mpysprs (Tnanoy inprsprs ) )spis 05
a defining sequence for En, n,. ... n,(Tni o, m,) there exists np 1 € N such that p(S) is a bounded subset

Of En17n2f" sMpsMNpt1 (Tnl,nzw' ,Tlp,np+1)'

Proof. Let By, m,,...m; = M_l(Eml,mg,...,mi) for each m; € N, 1 < j < i < p. By Theorem 2 there exists

(n1,m2,...,np) € NP such that B, n,,....n, has sN-property. Let (Epn, ny,....np.sp1 (Tnino..npspis) be a

Sp+1
i — -1
defining sequence for Ep, ..., (Tnina,...n,) a0d 1et By, nynpspyr = 17 (Eny o,
AS (Bn17n2y~~~7np75p+1)3p+1 P L
B, ns,...np.nps, has N-property, whence L(Bp, n,....n,mn,.,) is a dense subspace of L(S) and then the

'7np7sp+l)'

is an increasing covering of By, n,,..n, there exists n,;; such that

map with closed graph

Mll(Bnl,nz,,..,nP,nP+1) : L(Bn17n2>~~7np7np+1) - Enlxn27~"7np:np+1 (Tn1,n2,<-~np7np+1)

has a continuous extension v: L(S) = En no.....npmpsr (Tnisna,enpimyia) (By [12, 2.4 Definition and (Ns)]
and [13, Theorems 1 and 14]). The continuity of u: L(S) — E(7) implies that v(A) = u(A), for each A € S.
Whence (S) is a bounded subset of En, ny....np.mp 1 (Tnanoy.cnpingsr ) O

Proposition 15 also holds if we replace (LF)-space by an inductive limit of I',-spaces (see [13, Definition 1]
and, taking into account [12, Property (N3) after 2.4 Definition], apply again [13, Theorems 1 and 14]).
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A particular case of this proposition is the next corollary, which it is also a concrete generalization of
Theorem 14.

Corollary 16. Let p be a bounded vector measure defined in a o-algebra S of subsets of Q0 with values in
an inductive limit E(1) = 3, En(Tm) of an increasing sequence (Ep,(Tm))m of (LF)-spaces. There exists
n1 € N such that for each defining sequence (En,y my(Tnyms))ms Of Eny(Tn,) there exists ng € N which
verifies that 1(S) is a bounded subset of Ep, ny(Tnyong)-

A sequence (z1)x in a locally convex space E is subseries convergent if for every infinite subset J of N
the series ¥{xy, : k € J} converges and (z)y is bounded multiplier if for every bounded sequence of scalars
(Ak)k the series LpAgxy converges.

A Fréchet space F is Fréchet Montel if each bounded subset of E is relatively compact. Important classes
of Montel and Fréchet Montel spaces are considered and studied while Schwartz Theory of Distributions is
described, for instance, in [6, Chapter 3, Examples 3, 4, 5 and 6.].

The following corollary is a generalization of [14, Corollary 1.4] and it follows partially from Corollary 16.

Corollary 17. Let (xk)r be a subseries convergent sequence in an inductive limit E(17) = 3, En(mm) of
an increasing sequence (Ep,(Tm))m of (LF)-spaces. Then there exists ny € N such that for each defining
sequence (Ep, my(Tnyms))me for En, (Tn,) there exists ng € N such that {zy, : k € N} is a bounded subset of
Ery ny(Toy mo)- If, additionally, Ey, b, (Th, n,) is a Fréchet Montel space then the sequence (zx)y is bounded
multiplier in Eny ny (T n,)-

Proof. As the sequence () is subseries convergent then the additive vector measure y: 2% — E(7) defined
by u(J) := Speswy, for each J € 2V is bounded, because as (f(x}))x is subseries convergent for each f € B’
we get that X922, | f(z)| < oo.

By Corollary 16 there exists n; € N such that for each defining sequence (Ey,; m, (Tny.ms ) )ms 108 Eny (Tn,)
there exists ny € N with the property that u(2Y) = {Speyzy : J € 2V} is a bounded subset of Ey, i, (Tiy s )-
Then Xy [Arf(xr)] < oo for each continuous linear form f defined on E,, y,(7n, n,) and each bounded
sequence (Ag)x of scalars, whence (Zg?:l)\jxj)k is a bounded sequence in Ey, 5, (Tn, n,) Which has at most
one adherent point, because XA, f(x) converges for each f € (Epn, ny(Tayms))s If By ny(Toyn,) is a
Montel space then the bounded subset {Z?Zl)\jxj : k € N} is relatively compact and then the series XpApzy
converges in Ey, ny (Tnyn,). O

Recall that a vector measure p defined in an algebra A of subsets of {2 with values in a Banach space F
is strongly additive whenever given a sequence (B,,),, of pairwise disjoint elements of .4 the series ¥, u(By,)
converges in norm [2, I.1. Definition 14]. Each strongly additive vector measure p is bounded [2, I.1. Corol-
lary 19].

Corollary 18. Let u be a bounded vector measure defined in a o-algebra S of subsets of Q) with values in
an inductive limit E(7) = X Em(Tm) of an increasing sequence (B (Tm))m of (LB)-spaces such that each
E..(Tm) admit a defining sequence (Epm m, (Tm,ms))m, 0f Banach spaces which does not contain a copy of [°°.
If H is a dense subset of E'(7s(E)) such that fu is countably additive for each f € H, then there exists
(n1,m2) € N2 such that pi is a En, ny(Tny n, )-valued countably additive vector measure.

Proof. By Corollary 16 there exists (n1,n2) € N? such that u(S) is a bounded subset of Ey, n, (Tny.ns)-
As Ep, ny(Tny my) does not contain a copy of [°° then, by (]2, I.4. Theorem 2]), the measure p is strongly
additive, hence if (B, : n € N) is a sequence of pairwise disjoint subsets of S then ¥, u(B,,) converges to
the vector x in Ey, n,(Tn,,ny ). Therefore f(z) = X, fu(B,,) for each f € E' and, by countably additivity of
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fu when f € H, we have that f(x) = 3, fu(By) = fu(U,B,) for each f € H. By density x = u(U,B,,),
whence X, u(Byp) = t(UnBy) in Epy ny (Tiyne). O

Proposition 19. Let i be a bounded vector measure defined in a o-algebra S of subsets of Q0 with values in a
topological vector space E(T). Suppose that {Em, ms.....m;

such that if (B ny....npmper Jmpss 05 an increasing covering of En, n,. .. n,
mp11 € N, is sequentially complete then there

:mj € N, 1< j<i<p} isan increasing p-web
in E. There exists En, n,....n,

with the property that each relative topology T|g
exists ny+1 € NP such that u(S) C Epy sy,

n1,n2,..np,mpyq

yMp,Mp41°

Proof. Let By, my,...om; = ,ufl(Emhmzy,__,mi) for each m; € N, 1 < j < i < p+ 1. By Theorem 2 there
exists (n1,ng,...,np) € NP such that Bnl,n27,,,7np has sN-property, whence there exists n,41 € NP such that

By ns.....;np.nyy, has N-property, therefore En, n, . nyn, i (TIE,, ., ) is a dense subspace of E(7),

o TpaTpt1
hence density and sequential completeness imply that the continuous restriction of u to L(Bm’n%“,nmnp +1)

has a continuous extension v to L(S) with values in the space Enno,..inpmpir (TEny g inpiny ) AS
p: L(S) — E(7) is continuous then v = p and we get that u(S) C En, ny,...npnyis- O

Corollary 20. Let p be a bounded additive vector measure defined in a o-algebra S of subsets of ) with
values in an inductive limit E(1) = Y, Em, (Tm,) of an increasing sequence (Ep,, (Tm,))m, of countable
dimensional topological vector spaces. Then there exists ny such that span{u(S)} is a finite dimensional
subspace of En, (Tn,)-

Proof. For each my; € N let (Ey, m,)m, be an increasing covering of E,,, by finite dimensional vector
subspaces. {Em, m, : mj; € N1 < j < ¢ < 2} is an increasing 2-web in E. As the relative topology
B,y duced on Ep,, m, is complete then, by Proposition 19, there exists (ny,ns) € N? such that
w(S) C Epyny. O
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