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In this paper, we prove nonexistence of positive supersolutions of a semilinear 
equation −div (A(x)∇u) + b(x) · ∇u = f(u) in exterior domains in Rn (n ≥ 3), 
where A(x) is bounded and uniformly elliptic, b(x) = O(|x|−1), divb = 0 and 
f is a continuous and positive function in (0, ∞) satisfying f(u) ∼ uq as u → 0
with q ≤ n/(n − 2). Furthermore, we investigate general conditions on b and f for 
nonexistence of positive supersolutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider nonexistence of positive (weak) solutions to differential inequalities

Lu := −div (A(x)∇u) + b(x) · ∇u ≥ f(x, u) in Rn \BR, (1)

where n ≥ 3 and BR is a ball of radius R > 0 centered at the origin and A = A(x) is a bounded measurable 
matrix-valued function which satisfies

‖A‖L∞(Rn) < ∞, (A(x)ξ) · ξ ≥ |ξ|, ∀x ∈ Rn, ξ ∈ Rn.

Throughout the paper, we also assume that the vector-valued function b = b(x) belongs to (L2
loc(Rn))n and 

f : Rn × (0, ∞) → (0, ∞) is a continuous function. Specific conditions on b and f will be described later.
Gidas [6] and Gidas and Spruck [7] proved the nonexistence of positive C2 supersolutions of

−	u + βx

|x|2 · ∇u = uq in Rn \BR (2)
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for 1 < q ≤ (n − β)/(n − β − 2). When β = 0, the range of the exponent is

1 < q ≤ n

(n− 2) . (3)

Note that if β < 0, then 1 < (n − β)/(n − β − 2) < n/(n − 2). Therefore, when b = O(|x|−1) and 
b �= 0, the nonexistence range (3) changes, in general. The exponent (n −β)/(n −β−2) is sharp. Indeed, for 
−∞ < β < n −2 and q > (n −β)/(n −β−2), the equation (2) has a positive solution u(x) = c(n, q)|x|−2/(q−1).

This type of nonexistence theorem has been extended for more general supersolutions of linear and 
nonlinear equations by many authors, see e.g. [22,19,17,18,5,12–14,4,1,2].

Recently, Armstrong and Sirakov [4] treated a wide class of second order (nonlinear) elliptic differential 
operators and nonlinearities. They developed a new method to show nonexistence of supersolutions of the 
equation

−Q[u] = f(x, u) in Rn \BR, (4)

where Q[u] is several homogeneous elliptic differential operators with general nonlinearity f(x, u). In par-
ticular, they proved that if Q[u] = 	u and if f(x, u) = f(u) satisfying lim infs→0 s

−n/(n−2)f(s) > 0, then 
the equation (4) has no positive supersolutions.

On the other hand, Kondratiev et al. [14] gave a sufficient condition on b to assure the nonexistence of 
positive supersolutions of (1) for f(x, u) = uq with 1 < q ≤ n/(n − 2). In [14], it was assumed that A(x) is 
Hölder continuous and periodic with the same period, b satisfies some Kato type conditions, moreover,

‖|b‖| =
{
C > 0;

´
Rn |b|2φ2 dx´
Rn |∇φ|2 dx ≤ C2 ∀φ ∈ C∞

c (Rn)
}

(5)

is sufficiently small in some sense. Under these conditions, it was proved that (1) has no positive weak 
supersolutions if and only if q ≤ n/(n − 2).

In this paper, we give new sufficient conditions on b and f for nonexistence of positive supersolutions, 
using methods in [4] and techniques of (nonlinear) potential theory (see e.g. [11,21,15,10]). We shall prove 
the following:

Theorem 1. Suppose that vector field b = b0 + b1 satisfies

‖|b0‖| < ∞ and divb0 = 0 in Rn (6)

and

b1 ∈ (Ln,1(Rn \BR))n for some R ≥ 0. (7)

Assume that f(x, u) = |x|−γg(u), γ < 2 and

lim inf
s→0

s−qg(s) > 0

for q = 1 + (2 − γ)/(n − 2). Then (1) has no positive weak solutions.

Here, Lp,σ(Ω) is a Lorentz space (see Section 2 for details). When A(x) = I, b1 = 0 and f(x, u) = uq, 
Theorem 1 becomes as follows:



JID:YJMAA AID:20828 /FLA Doctopic: Partial Differential Equations [m3L; v1.194; Prn:22/12/2016; 10:22] P.3 (1-18)
T. Hara / J. Math. Anal. Appl. ••• (••••) •••–••• 3
Corollary 2. Suppose that vector field b0 satisfies (6), and that q ≤ n/(n −2). Then the differential inequality

−	u + b0 · ∇u ≥ uq in Rn \BR (8)

has no positive weak solutions.

Remark 3. The nonexistence range q ≤ n/(n − 2) is sharp. Let η be a smooth bump function, and let 
ϕ = (1 − η(x)) log(|x|). Then

b0(x) =
(

∂ϕ

∂x2
,− ∂ϕ

∂x1
, 0, . . . , 0

)T

satisfies (6) and b0(x) · x = 0 outside of supp η. Therefore, for this b0 and q > n/(n − 2), (8) has a positive 
solution u(x) = |x|−2/(q−1) with sufficiently large R > 0. Note that b(x) = β|x|−2x does not satisfy (6) for 
any β �= 0, because this vector field has a scalar potential β log(|x|).

Remark 4. From a similar cutoff argument, if b(x) = (bi(x)) ∈ (Ln,∞(Rn \ BR))n has a vector potential 
i.e. there exists a skew symmetric matrix valued function V (x) = (vij(x)) (i, j = 1, . . . n) such that bi(x) =∑n

j=1 ∂jvij(x), then we can apply Corollary 2. Here, we emphasize that we have considered the equation in 
exterior domains.

Remark 5. The assumption on b1 closely relate to Kato-type conditions. For example, by a simple calcula-
tion, if b0 = 0,

|b1(x)| ≤ β(|x|)
|x| and

∞̂

R

β(s)ds
s

< ∞ for some R ≥ 0, (9)

then b satisfies our condition (7) and the assumptions in [14].

Kondratiev et al. [14] proved an Aronson-type estimate of a fundamental solution of (∂t +L). From this 
estimate, it follows that if u is a positive supersolution of Lu = 0 in Rn \ B1/2, then there is a positive 
constant c > 0 such that

inf
∂BR

u ≥ cR2−n in Rn \B1. (10)

The lower bound plays an important role in the proof of nonexistence theorem. They used the assumptions 
on Hölder continuity and periodicity of A(x) to prove this. Semenov [20] proved an Aronson-type estimate 
for bounded A(x) and b0 satisfying the condition (6) (see also [16] for A(x) = I). Also, he studied somewhat 
general conditions on b. Unfortunately, we can not use his result under the assumption (7).

We prove (10) more directly using a method in [21,15,10]. We do not need the Hölder continuity and 
periodicity of A(x).

Next, we give another condition on b and f for nonexistence of supersolutions.

Theorem 6. Instead of the assumptions on b1 and f as in Theorem 1, suppose that b1 satisfies

‖|b11Rn\BR
‖| → 0 as R → ∞. (11)

Assume that f(x, u) = |x|−γg(u), γ < 2 and
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lim inf
s→0

s−q0g(s) > 0

for some 1 < q0 < 1 + (2 − γ)/(n − 2). Then (1) has no positive weak solutions.

If b ∈ (Ln(Rn \BR))n for some R > 0, then (11) holds since

‖|b1
Rn\BR

‖| ≤ C(n, σ)‖b‖Ln(Rn\BR) → 0 as R → ∞.

Hence, we also have the following:

Corollary 7. If b ∈ (Ln(Rn \ BR))n for some R > 0, and f(u) = uq with q < n/(n − 2), then (1) has no 
positive weak solutions.

Remark 8. The nonexistence range q < n/(n − 2) is sharp. Indeed, as Example 3.12 in [14], the equation

−	u + βx

|x|2 log |x| · ∇u = un/(n−2) in Rn \BR (12)

has a positive supersolution u(x) = c(|x| log |x|)2−n for β < 2 − n. Since

1
|x| log |x| ∈ Ln(Rn \B2) \ Ln,1(Rn \B2),

the nonexistence theorem of supersolutions does not hold for the critical exponent q = n/(n − 2). Here, we 
also note that (10) cannot hold for b ∈ (Ln(Rn \BR))n in general.

Organization of the paper In Section 2, we recall some properties of Lorentz spaces. In Section 3, we prove 
several quantitative properties of weak (super-, sub-)solutions to Lu = f(x). In particular, we establish 
Lemma 15. In Section 4, we derive (10) using results of Section 3. In Section 5, we investigate behavior of

m(r) := inf
A(r)

u

by using results in Section 3 and 4, and we prove Theorem 1. In Section 6, we give a proof of Theorem 6
modifying the proof of Theorem 1.

Notation We use the following notation in this paper. Let Ω be a domain of Rn.

• BR(x0) := {x ∈ Rn : |x − x0| < R}, BR := BR(0).
• A(R) := B2R \BR.
• |A| := the Lebesgue measure of a measurable set A.
• 1A(x) := the indicator function of A.
• −́

A
f dx := 1

|A|
´
A
f dx.

• f+ := max{f, 0}, f− := max{−f, 0}.

2. Lorentz spaces

First, we recall some properties of Lorentz spaces. For 1 < p < ∞ and 1 ≤ σ ≤ ∞, we take

‖f‖Lp,σ(Ω) :=

⎧⎪⎨
⎪⎩
(
p
´∞
0

(
t|{x ∈ Ω; |f(x)| ≥ t}|1/p

)σ dt
t

)1/σ
if σ < ∞,

sup t|{x ∈ Ω; |f(x)| ≥ t}|1/p if σ = ∞,
t>0
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and

Lp,σ(Ω) :=
{
f ; Ω → R measurable; ‖f‖Lp,σ(Ω) < ∞

}
.

Note that Lp,p(Ω) = Lp(Ω) and Lp,σ(Ω) � Lp,τ (Ω) for 1 ≤ σ < τ ≤ ∞. In particular,

‖f‖Lp,τ (Ω) ≤ C(p, σ, τ)‖f‖Lp,σ(Ω).

For 1 ≤ σ < ∞, ‖ · ‖Lp,σ(Ω) is defined by an integral. Hence, for any f ∈ Lp,σ(Rn),

‖f1
Rn\BR

‖Lp,σ(Rn) → 0 as R → ∞. (13)

On the other hand, ‖f1
Rn\BR

‖Lp,∞(Rn) does not generally go to 0 as R → ∞, for example, |x|−1 ∈ Ln,∞(Rn) \
Ln,σ(Rn). The following Hölder type inequality is standard:

Lemma 9 ([8, p. 52]). Assume that 1 < p, p′ < ∞ and 1
p + 1

p′ = 1. Then,

∣∣∣∣∣∣
ˆ

Ω

fg dx

∣∣∣∣∣∣ ≤ ‖f‖Lp,1(Ω)‖g‖Lp′,∞(Ω).

According to a sharp form of Sobolev inequality (see e.g. [3]), for any φ ∈ C∞
c (Rn), we have

ˆ

Rn

|b|2φ2 dx ≤ ‖|b|2‖Ln/2,∞(Rn)‖φ2‖Ln/(n−2),1(Rn)

= ‖b‖2
Ln,∞(Rn)‖φ‖2

L2n/(n−2),2(Rn) ≤ S2
2‖b‖2

Ln,∞(Rn)‖∇φ‖2
L2(Rn).

In particular, for any 1 ≤ σ ≤ ∞,

‖|b‖| ≤ C(n, σ)‖b‖Ln,σ(Rn). (14)

3. Regularity of solutions to Lu = f(x)

In this section, we review the properties of weak (super-, sub-)solutions of Lu = f(x). We say that 
u ∈ H1

loc(Ω) is a weak (super-, sub-)solution of the equation Lu = f(x, u) in Ω if f(x, u) ∈ L1
loc ∩H−1(Ω)

and
ˆ

Ω

A∇u · ∇φ + b · ∇uφ dx = (≥,≤)
ˆ

Ω

f(x, u)φdx, (15)

for any nonnegative φ ∈ C∞
c (Ω). By the uniform ellipticity of A, we have the following:

Lemma 10. Let u be a weak subsolution to the equation Lu = 0 in Ω. Then max{u, k} is a weak subsolution 
to the same equation. Let u be a weak supersolution to the equation Lu = 0 in Ω. Then min{u, k} is a weak 
supersolution to the same equation.

Since A is uniformly elliptic and divb0 = 0,
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ˆ

Ω

A∇u · ∇u + b · ∇uu dx

=
ˆ

Ω

A∇u · ∇u dx + 1
2

ˆ

Ω

b0 · ∇(u2) dx +
ˆ

Ω

b1 · ∇uu dx

≥
ˆ

Ω

|∇u|2 dx− ‖|b1‖|
ˆ

Ω

|∇u|2 dx

(16)

for any u ∈ C∞
c (Rn). Therefore, when ‖|b1‖| < 1, the operator L is coercive. Hereafter, for simplicity, we 

always assume that

‖|b1‖| ≤
1
2 . (17)

Note that from (14), there is a constant B1 = B1(n) such that

‖b1‖Ln,1(Rn) ≤ B1 =⇒ ‖|b1‖| ≤
1
2 . (18)

The following comparison principle is proved by standard methods:

Lemma 11 (Comparison principle). Assume (17). Let u ∈ H1(Ω) be a weak supersolution to Lu = 0 in Ω, 
and let v ∈ H1(Ω) be a weak subsolution to Lu = 0 in Ω. If (u − v)− ∈ H1

0 (Ω), then u ≥ v in Ω.

Moreover, from De Giorgi or Moser’s iteration technique and the John–Nirenberg lemma, we can get the 
following estimates (see e.g. [9]):

Lemma 12. Assume (17). Let u be a weak subsolution to Lu = 0 in BR(x0). Then for any p > 0 there exists 
a constant CB depending only on n, ‖A‖L∞(Rn), ‖|b0‖| and p such that

sup
BR/2(x0)

u+ ≤ CB

⎛
⎜⎝ −

ˆ

BR(x0)

up
+ dx

⎞
⎟⎠

1/p

. (19)

Lemma 13. Assume (17). Let u be a nonnegative weak supersolution to Lu = 0 in B2R(x0). Then there exist 
constants σ > 0 and CW depending only on n, ‖A‖L∞(Rn) and ‖|b0‖| such that

⎛
⎜⎝ −

ˆ

BR(x0)

uσ dx

⎞
⎟⎠

1/σ

≤ CW inf
BR(x0)

u. (20)

Next, we assume the smallness of ‖b1‖Ln,1(Ω). Let

‖b1‖Ln,1(Ω) ≤ B2 := min{B1,
1

2S∞
}, (21)

where S∞ = (n(n − 2))−1/2|B1|−1/n.

Lemma 14. Assume (21). Let Ω be a bounded domain. Let u ∈ H1
0 (Ω) be a weak solution to Lu = f in Ω. 

Then there exists a positive constant C depending only on n such that
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‖u‖Ln/(n−2),∞(Ω) ≤ C‖f‖L1(Ω).

Proof. By the result in [10], if u ∈ H1
0 (Ω) satisfies the equation −div (A∇u) + b0 · ∇u = g, then

‖u‖Ln/(n−2),∞(Ω) ≤ S2
∞‖g‖L1(Ω)

and

‖∇u‖Ln/(n−1),∞(Ω) ≤ S∞‖g‖L1(Ω).

Hence, applying the second inequality for g = −b1 · ∇u + f , we get

‖∇u‖Ln/(n−1),∞(Ω) ≤ S∞
(
‖b1 · ∇u‖L1(Ω) + ‖f‖L1(Ω)

)
≤ S∞‖b1‖Ln,1(Ω)‖∇u‖Ln/(n−1),∞(Ω) + S∞‖f‖L1(Ω).

By the assumption on b1, this implies that

‖∇u‖Ln/(n−1),∞(Ω) ≤ C‖f‖L1(Ω).

Consequently, we get

‖u‖Ln/(n−2),∞(Ω) ≤ S2
∞

(
‖b1 · ∇u‖L1(Ω) + ‖f‖L1(Ω)

)
≤ S2

∞‖b1‖Ln,1(Ω)‖∇u‖Ln/(n−1),∞(Ω) + S2
∞‖f‖L1(Ω)

≤ C‖f‖L1(Ω).

This completes the proof. �
Below, we also assume that

‖b1‖Ln,1(Ω) ≤ B3 := min{B2,
C(n)
CLCW

}, (22)

where, C(n) is a sufficiently small constant depending only on n to be determined later (see (28)). Under 
this condition, we get the following potential lower bound:

Lemma 15. Assume (22). Let f ∈ L1(B2R(x0)) ∩ H−1(B2R(x0)) and f ≥ 0. Let u be a nonnegative weak 
supersolution to Lu ≥ f(x) in B2R(x0). Let x0 be a Lebesgue point of u. Then there exists a constant CL

depending only on n, ‖A‖L∞(Rn) and ‖|b0‖| such that

u(x0) ≥
1
CL

If2 (x0, R),

where

If2 (x0, R) =
R̂

0

⎛
⎜⎝s2−n

ˆ

Bs(x0)

f dx

⎞
⎟⎠ ds

s
.
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Proof. Without loss of generality, we may assume that x0 = 0 and 0 is a Lebesgue point of u. For k = 0, 1, . . ., 
we take Rk = 21−kR. Fix k. Let η(x) = (1 −(8/Rk)dist(x, BRk+1))+ and let w ∈ H1

0 (BRk
) be a weak solution 

to

Lw = ηf in BRk
.

Then w ≥ 0 in BRk
by the minimum principle. Let

M := sup
∂B 3

4Rk

w, m := inf
∂B 3

4Rk

w.

According to Lemma 12 and 13, we have

M ≤ C(n)CLCWm. (23)

Let w̃ := min{w, M}. Since w̃ is a weak supersolution in B 3
4Rk

, the minimum principle yields w̃ ≥ m in 
B 3

4Rk
. Since w̃ ≥ m in B 3

4Rk
, we have

m

ˆ

BRk+1

f dx ≤
ˆ

BRk

fw̃ dx ≤
ˆ

BRk

A∇w · ∇w̃ + b · ∇ww̃ dx. (24)

Note that if ∇w̃(x) �= 0 then w̃(x) = w(x). Therefore,
ˆ

BRk

A∇w · ∇w̃ dx =
ˆ

BRk

A∇w̃ · ∇w̃ dx ≤ ‖A‖L∞(Ω)

ˆ

BRk

|∇w̃|2 dx.

Moreover, since divb0 = 0, we have
ˆ

BRk

b0 · ∇ww̃ dx = −
ˆ

BRk

b0 · w̃∇w̃ dx = −1
2

ˆ

BRk

b0 · (∇w̃2) dx = 0.

Using Lemma 9 and Lemma 14, we have

∣∣∣∣∣∣∣
ˆ

BRk

b1 · ∇ww̃ dx

∣∣∣∣∣∣∣ ≤ M‖b1‖Ln,1(Ω)‖∇w‖Ln/(n−1),∞(BRk
)

≤ C(n)M‖b1‖Ln,1(Ω)‖f‖L1(BRk+1 ).

(25)

Take v ∈ H1
0 (BRk

) such that
⎧⎨
⎩
Lv = 0 in BRk

\B 3
4Rk

,

v = M on B 3
4Rk

.

Then, by Lemma 11, v − w̃ ≥ 0 in BRk
. Since w̃ is a weak supersolution to Lw̃ = 0 in BRk

, we have

〈Lw̃, (v − w̃)〉 ≥ 0.

This implies that
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ˆ

BRk

|∇w̃|2 dx ≤ C

ˆ

BRk

|∇v|2 dx = C

ˆ

BRk
\B 3

4Rk

|∇v|2 dx. (26)

Next, we choose φ ∈ C∞
c (BRk

) such that φ ≡ 1 on BRk+1 and |∇φ| ≤ C
Rk

. Since Lv = 0 in BRk
\B 3

4Rk
and 

v −Mφ ∈ H1
0 (BRk

\B 3
4Rk

),

〈Lv, (v −Mφ)〉 = 0.

Hence,
ˆ

BRk
\B 3

4Rk

|∇v|2 dx ≤ C

ˆ

BRk
\B 3

4Rk

|∇Mφ|2 dx ≤ CM2Rn−2
k . (27)

Combining these inequalities (23)–(27), we obtain

m

ˆ

BRk+1

f dx ≤ (C(n)(CLCW )2)m2Rn−2
k + (C(n)CLCW ‖b1‖Ln,1(Ω))m

ˆ

BRk+1

f dx.

Thus, if

‖b1‖Ln,1(Ω) ≤
1
2

1
C(n)CLCW

, (28)

then, we also get

m

ˆ

BRk+1

f dx ≤ Cm2Rn−2
k .

If m = 0, then we have f |BRk+1
= 0 by Lemma 13. Thus,

R2−n
k

ˆ

BRk+1

f dx ≤ Cm.

On the other hand, by Lemma 11, we have

w ≤ u− inf
∂BRk

u in BRk
.

Therefore,

m ≤ inf
∂B 3

4Rk

(u− inf
∂BRk

u) ≤ inf
∂BRk+1

(u− inf
∂BRk

u).

Consequently, we have

R2−n
k

ˆ

BRk+1

f dx ≤ C

(
inf

∂BRk+1

u− inf
∂BRk

u

)
, (29)

for k = 0, 1, . . .. Summing over all k = 0, 1, . . ., we arrive at
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∞∑
k=0

R2−n
k

ˆ

BRk+1

f dx ≤ C lim
k→∞

inf
∂BRk+1

u.

By Lemma 11, we have

lim
k→∞

inf
∂BRk

u = lim
k→∞

inf
BRk

u ≤ lim
k→∞

−
ˆ

BRk

u dx = u(0).

Since

C(n)
∞∑
k=0

R2−n
k

ˆ

BRk+1

f dx ≥
R̂

0

s1−n

ˆ

Bs

f dx ds = If2 (0, R),

we arrived at the desired lower bound. �
4. Global behavior of supersolutions of Lu = 0 in exterior domains

In this section, we investigate the asymptotic behavior of supersolutions to Lu = 0 in Rn \BR. First, we 
show the existence of a global weak supersolution which approaches zero near infinity.

Lemma 16. Assume (17). Then there exists a positive function U satisfying ‖∇U‖L2(Rn) < ∞ and

{
LU = 1B1/2 in Rn,

u(x) → 0 as |x| → ∞.
(30)

Moreover, if (22) holds, then there exists a positive constant C such that

1
C
|x|2−n ≤ U(x) ≤ C|x|2−n in Rn \B1. (31)

Proof. Let R > 1/2 and let UR ∈ H1
0 (BR) be a weak solution to LUR = 1B1/2 . By the coercivity of L and 

Sobolev’s inequality, we have

1
2‖∇UR‖2

L2(BR) ≤
ˆ

BR

1B1/2UR dx

≤ ‖1‖L2n/(n+2)(B1/2)‖UR‖L2n/(n−2)(BR)

≤ C(n) · S‖∇UR‖L2(BR).

Therefore we have

‖∇UR‖L2(BR) ≤ C(n). (32)

The right-hand side does not depend on R. By Lemma 10 UR, is a weak subsolution to Lu = 0 in Rn \B1/2. 
Using Lemma 12, Lemma 9 and Sobolev’s inequality, for any x ∈ Rn \B1 we have
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UR(x) ≤ CB −
ˆ

B|x|/2(x)

UR dy

≤ CB
1

|B|x|/2|
‖1‖L2n/(n+2)(B|x|/2(x))‖UR‖L2n/(n−2)(B|x|/2(x))

≤ C|x|1−n/2‖∇UR‖L2(BR) ≤ C|x|1−n/2.

By the maximum principle, UR increases with respect to R. Let U = limR→∞ UR; then U has the upper 
bound

U(x) ≤ C|x|1−n/2 in Rn \B1.

Moreover, by (32), ∇UR converges to ∇U weakly in L2(Rn). Therefore, U is a weak solution to (30).
Next, we shall prove the second part of the theorem. Using Lemma 12, Hölder’s inequality, and Lemma 14, 

we get

UR(x) ≤ CB −
ˆ

B|x|/2(x)

UR dy

≤ CB
1

|B|x|/2|
‖1‖Ln/2,1(B|x|/2(x))‖UR‖Ln/(n−2),∞(B|x|/2(x))

≤ C|x|2−n‖UR‖Ln/(n−2),∞(BR) ≤ C|x|2−n.

Therefore, U has the desired upper bound. Finally, we derive the lower bound of U . For |x| > 1 and 
s ≥ 3|x|/2, B1/2 ⊂ Bs(x). Thus, applying Lemma 15 for Lu = 1B1/2 in B4|x|(x), we obtain

U(x) ≥ 1
CL

I
1B1/2
2 (x, 2|x|) = 1

CL

2|x|ˆ

0

s2−n|B1/2 ∩Bs(x)|ds
s

≥ 1
CL

2|x|ˆ

3|x|/2

s2−n|B1/2 ∩Bs(x)|ds
s

= 1
CLC(n) |x|

2−n.

This completes the proof. �
Using the function U and an argument in [4], we can show the following Hadamard-type properties of 

positive supersolutions of Lu = 0.

Lemma 17. Assume (17). Let u �≡ 0 be a nonnegative weak supersolution to Lu = 0 in Rn \B1.

1. Let

m(r) := inf
A(r)

u

for r ≥ 1. Then m(r) is bounded from above.
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2. Let U be the function in Lemma 16 and let

ρ(r) := inf
A(r)

u

U

for r ≥ 1. Then

ρ(r) = inf
Rn\Br

u

U
.

Moreover, if (22) holds, then we have the lower bound

m(r) ≥ 1
C
r2−n.

5. Proof of Theorem 1

In this section, we consider semilinear equations Lu ≥ f(x, u) and prove Theorem 1. Below, we normalize 
L for the simplification of arguments. By the definition of the Lorentz norm ‖ · ‖Ln,1(Ω), taking sufficiently 
large R0, we may assume that ‖b1‖Ln,1(Rn\BR0 ) is sufficiently small. Moreover, rescaling by

Ar(x) = A(rx), (b)r(x) = rb(rx), fr(x, s) = r2f(rx, s) (r = 2R0) ,

we may assume that R = 1
2 . Note that ‖Ar‖L∞(Rn) = ‖A‖L∞(Rn) and ‖|(bi)r‖| = ‖|bi‖| (i = 0, 1). Therefore, 

we may assume that R = 1
2 and that condition (22) holds, without loss of generality.

Proof of Theorem 1. Suppose existence of a positive weak solution u. For r ≥ 1, we take

m(r) := inf
A(r)

u, ρ(r) := inf
A(r)

u

U
,

where U is the function in Lemma 16. We derive a contradiction by investigating the behavior of m(r). We 
divide the proof into several steps.

Step 1. Fix r ≥ 1. Since u is a nonnegative weak supersolution to Lu = 0 in B4r \ Br/2, by Lemma 13
and a simple covering argument, we can show that

⎛
⎜⎝ −

ˆ

A(r)

uσ dx

⎞
⎟⎠

1/σ

≤ C∗ inf
A(r)

u, (33)

where C∗ is a constant depending only on n and CW . Let α(n) = inf{|A(1) ∩B1/8(x0)|; x0 ∈ A(1)} and let 
C1 = C∗(2|A1|/α(n))1/σ. Also, let

Q(r) = {x ∈ A(r); m(r) ≤ u(x) ≤ C1m(r)}.

Then, by Chebyshev’s inequality,

C1m(r)
(
|A(r) \Q(r)|

|A(r)|

)1/σ

≤

⎛
⎜⎝ −

ˆ

A(r)

uσ dx

⎞
⎟⎠

1/σ

≤ C(n)CW ·m(r).

Hence,
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|A(r) \Q(r)| ≤ 1
2α(n)rn. (34)

Let x0 ∈ A(r). Then, since

(
Q(r) ∩Br/8(x0)

)
∪ (A(r) \Q(r)) ⊃ A(r) ∩Br/8(x0),

by the definition of α(n) and (34), we have

|Q(r) ∩Br/8(x0)| ≥ α(n)rn − |A(r) \Q(r)| ≥ 1
2α(n)rn.

Step 2. Let

F (r, s) := inf
r≤|x|≤2r
s≤t≤C1s

f(x, t).

Since u satisfies

Lu(x) ≥ f(x, u(x)) ≥ inf
Q(r)

f(x, u(x))1Q(r) ≥ F (r,m(r))1Q(r),

using Lemma 15 in Br/2(x0), we obtain

u(x0) ≥
1
CL

r/4ˆ

0

s1−n

ˆ

Bs(x0)

F (r,m(r))1Q(r) dx ds

≥ 1
CL

r/4ˆ

r/8

s1−n|Q(r) ∩Br/8(x0)| ds · F (r,m(r))

≥ 1
CL

· 1
2α(n)rn

r/4ˆ

r/8

s1−n ds · F (r,m(r))

≥ 1
C(n)CL

r2F (r,m(r)).

(35)

Therefore, taking the infimum over A(r), we get

m(r) ≥ 1
C
r2F (r,m(r)).

By Lemma 17, m(r) is bounded. Thus

rγF (r,m(r)) ≤ Cr−2+γ → 0 as r → ∞.

By the assumption on f(x, s), this implies m(r) → 0 or m(r) → ∞ as r → ∞. The latter is impossible, 
since m(r) is bounded, so we must have that

m(r) → 0 as r → ∞.

By the assumption on f , for sufficiently large r, we have
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m(r) ≤ Cr2−n.

By Lemma 16, we have the lower bound U(x) ≥ 1
C |x|2−n. Therefore, we have

ρ(r) ≤ C.

Step 3. Next, we derive a lower bound of ρ. By Lemma 17, we have

u(x) ≥ ρ(r/2)U(x) in Rn \Br/2.

Thus, u − ρ(r/2)U is nonnegative in Rn \Br/2. Fix x ∈ A(r). By a similar calculation to (35), we get

(u− ρ(r/2)U)(x) ≥ 1
C(n)CL

1
C
r2F (r,m(r)).

By Lemma 16, we have the upper bound U(x) ≤ C|x|2−n. Hence,

u(x) ≥ ρ(r/2)U(x) + 1
C
r2F (r,m(r)) ≥

(
ρ(r/2) + 1

C
rnF (r,m(r))

)
U(x),

for any x ∈ A(r). Taking the infimum over A(r), we get

ρ(r) ≥ ρ(r/2) + 1
C
rnF (r,m(r)),

where C is a constant independent of r. By the assumption on f , there is a positive constant c > 0 such 
that lim infr→∞ rnF (r, m(r)) ≥ c. Repeating this estimate, we arrive at

ρ(2kr) → ∞ as k → ∞,

which contradicts the upper bound on ρ. This completes the proof. �
6. Proof of Theorem 6

By the same argument as in Section 5, without loss of generality, we may assume that

‖|b1‖| ≤ B4,

where B4 = B4(n, Λ, q0) is a sufficiently small constant to be determined later (see (39)).
In order to prove Theorem 6 we prepare two lemmas. First, we show the following sharp form the weak 

Harnack inequality

Lemma 18. Assume

‖|b1‖| ≤
n

(n− 2)p0
− 1 (36)

for some p0 ∈ (0, n
n−2 ). If u �≡ 0 is a nonnegative weak supersolution to Lu = 0 in Rn \B1/2, then

inf
∂BR

u ≥ 1
C
R−n/p0 . (37)
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Proof. Let L = inf∂B1 u. By the strong minimum principle, L is positive. By considering ũ = min{u, L}, 
we may assume that u is a weak supersolution in Rn. Set pk = p0( n

n−2 )−k for k = 1, 2, . . .. Since pk → 0 as 
k → ∞, by Lemma 13, there is a sufficiently large k∗ such that

⎛
⎝ −

ˆ

BR

upk∗ dx

⎞
⎠

1/pk∗

≤ C inf
BR/2

u. (38)

For k = 0, 1, . . . k∗, we choose a nested ball sequence BR/2 = B0 � B1 � · · · � Bk∗ = BR. Fix 1 ≤ k ≤ k0. 
Set p = pk, w = up/2 and take η ∈ C∞

c (Bk) with η ≡ 1 in Bk−1. Choosing a test function φ = up−1η, we 
get

0 ≤ (p− 1)
ˆ

Ω

A∇u · ∇uup−2η2 dx + 2
ˆ

Ω

A∇u · up−1∇ηη dx

− 2
p

ˆ

Ω

b0 · up∇ηη dx +
ˆ

Ω

b1 · ∇uup−1η2 dx.

By the Cauchy–Schwarz inequality and Young’s inequality ab ≤ εa2

2 + b2

2ε , we have

2
(

1
p
− 1

)2 ˆ

Ω

|∇w|2η2 dx ≤ C

ˆ

Ω

w2|∇η|2 dx +
ˆ

Ω

|b1|2w2η2 dx.

Since

‖|b1‖|2 ≤
(

1
p1

− 1
)2

≤
(

1
p
− 1

)2

,

we have
ˆ

Ω

|∇w|2η2 dx ≤ C

ˆ

Ω

w2|∇η|2 dx.

On the other hand, by Sobolev’s inequality, we have

⎛
⎝ ˆ

Ω

(wη)2n/(n−2) dx

⎞
⎠

(n−2)/n

≤ S2
ˆ

Ω

|∇(wη)|2 dx

≤ 2S2

⎛
⎝ ˆ

Ω

|∇w|2η2 + w2|∇η|2 dx

⎞
⎠ .

Since w = upk/2, by combining the two inequalities, we obtain

⎛
⎜⎝ ˆ

Bk−1

upk−1 dx

⎞
⎟⎠

pk/pk−1

=

⎛
⎜⎝ ˆ

Bk−1

w2n/(n−2) dx

⎞
⎟⎠

(n−2)/n

≤ C‖∇η‖2
L∞(Ω)

ˆ
w2 dx = C‖∇η‖2

L∞(Ω)

ˆ
upk dx.
Bk Bk
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Repeating this estimate, we arrive at

⎛
⎜⎝ −

ˆ

BR/2

up0 dx

⎞
⎟⎠

1/p0

≤ C

⎛
⎝ −

ˆ

BR

upk∗ dx

⎞
⎠

1/pk∗

.

Combining this inequality and (38), we get

⎛
⎝ −

ˆ

BR

up0 dx

⎞
⎠

1/p0

≤ C inf
BR/2

u.

Therefore, we have

LR−n/p0 ≤

⎛
⎝ 1
|B1|

ˆ

BR

up0 dx

⎞
⎠

1/p0

·R−n/p0 ≤ C inf
BR/2

u.

Since infBR
u = inf∂BR

u by the minimum principle, we obtain the desired lower bound. �
Next, we prove the following modified potential lower bound:

Lemma 19. Assume (17). Let f ∈ L∞(B2R(x0)) be a nonnegative function. Let u be a nonnegative weak 
supersolution to Lu ≥ f(x) in B2R(x0). Then there exist constants CL1 and CL2 depending only on n, 
‖A‖L∞(Rn) and ‖|b0‖| such that

u(x0) + CL2R
2‖|b1‖|‖f‖L∞(Ω) ≥

1
CL1

If2 (x0, R).

Proof. We follow the proof of Lemma 15. By the assumption on b1, we get

∣∣∣∣∣∣∣
ˆ

BRk

b1 · ∇w(w̃φ2) dx

∣∣∣∣∣∣∣ ≤ M

⎛
⎜⎝ ˆ

BRk

|b1|2φ2 dx

⎞
⎟⎠

1/2 ⎛
⎜⎝ ˆ

BRk

|∇w|2 dx

⎞
⎟⎠

1/2

≤ M‖|b1‖|‖∇φ‖L2(BRk
)‖∇w‖L2(BRk

).

On the other hand, by the energy inequality, we have

‖∇w‖L2(BRk
) ≤ CRn

k‖f‖L∞(BRk
).

Thus, we have ∣∣∣∣∣∣∣
ˆ

BRk

b1 · ∇w(w̃φ2) dx

∣∣∣∣∣∣∣ ≤ CMRn
k‖|b1‖|‖f‖L∞(BRk

),

instead of (25). Consequently, we have

R2−n
k

ˆ

B

f dx ≤ C

(
inf

∂BRk+1

u− inf
∂BRk

u

)
+ C2−2kR2‖|b1‖|‖f‖L∞(Ω),
Rk+1
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for k = 0, 1, . . ., instead of (29). Since 
∑∞

k=0 2−2k = 4
3 , taking the sum for all k = 0, 1, . . ., we get the desired 

inequality. �
Proof of Theorem 6. We follow the proof of Theorem 1. Replacing Lemma 15 by the above Lemma, we get

u(x0) + CL2r
2‖|b1‖|F (r,m(r)) ≥ 1

C(n)CL1

r2F (r,m(r)),

instead of (35). Thus, if ‖|b1‖| ≤ (2C(n)CL1CL2)−1, then we have

m(r) ≥ 1
C
r2F (r,m(r)).

Therefore, by the assumption on f , we have

m(r) ≤ Cr−2/(q0−1).

On the other hand, if

‖|b1‖| ≤
n

(n− 2)q1
− 1

for some n(q0 − 1)/2 < q1 < n/(n − 2), then by Lemma 18, we have

m(r) ≥ 1
C
r−n/q1 .

This contradicts to the upper bound on m(r), so taking

B4 := min{1
2 ,

1
2C(n)CL1CL2

,
n

(n− 2)q1
− 1}, (39)

we conclude the proof. �
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