Doctopic: Partial Differential Equations YJMAA:20828

J. Math. Anal. Appl. e e e (e s ee) s o e—0oe

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Liouville theorems for supersolutions of semilinear elliptic
equations with drift terms in exterior domains

Takanobu Hara

Department of Mathematics and Information Sciences, Tokyo Metropolitan University,
Minami-Ohsawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan

ARTICLE INFO ABSTRACT

Article history: In this paper, we prove nonexistence of positive supersolutions of a semilinear
Received 5 August 2016 equation —div (A(z)Vu) + b(z) - Vu = f(u) in exterior domains in R" (n > 3),
Available online xxxx where A(z) is bounded and uniformly elliptic, b(z) = O(|z|~!), divb = 0 and

Submitted by Y. Du f is a continuous and positive function in (0, 00) satisfying f(u) ~ u? as u — 0

with ¢ < n/(n — 2). Furthermore, we investigate general conditions on b and f for
nonexistence of positive supersolutions.

Keywords:

Liouville theorem
Drift terms
Semilinear equations
Potential theory
Fundamental solution

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider nonexistence of positive (weak) solutions to differential inequalities
Lu = —div (A(x)Vu) + b(z) - Vu > f(z,u) in R™\ Bg, (1)

where n > 3 and Bp is a ball of radius R > 0 centered at the origin and A = A(z) is a bounded measurable
matrix-valued function which satisfies

[AllL@n) <00, (A(@)§)-£ =[], Vo eR", £eR™

Throughout the paper, we also assume that the vector-valued function b = b(z) belongs to (L2 .(R™))" and

loc
f:R™ x (0,00) — (0,00) is a continuous function. Specific conditions on b and f will be described later.

Gidas [6] and Gidas and Spruck [7] proved the nonexistence of positive C? supersolutions of
put+ 2 Vu=u! inR"\Bp 2)
x
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for1<g<(n—p)/(n—p—2). When 8 = 0, the range of the exponent is

1o g 3)

Note that if 8 < 0, then 1 < (n — 8)/(n — 8 —2) < n/(n — 2). Therefore, when b = O(|z|~!) and
b # 0, the nonexistence range (3) changes, in general. The exponent (n—3)/(n— 8 —2) is sharp. Indeed, for
—00 < < n—2andq > (n—f)/(n—F—2), the equation (2) has a positive solution u(z) = ¢(n, ¢)|z| /(41

This type of nonexistence theorem has been extended for more general supersolutions of linear and
nonlinear equations by many authors, see e.g. [22,19,17,18,5,12-14,4,1,2].

Recently, Armstrong and Sirakov [4] treated a wide class of second order (nonlinear) elliptic differential
operators and nonlinearities. They developed a new method to show nonexistence of supersolutions of the
equation

_Q[u] = f(x,u) in R" \B_R7 (4)

where Qu] is several homogeneous elliptic differential operators with general nonlinearity f(z,w). In par-
ticular, they proved that if Q[u] = Au and if f(z,u) = f(u) satisfying liminfs_,o s~"/(*=2) f(s) > 0, then
the equation (4) has no positive supersolutions.

On the other hand, Kondratiev et al. [14] gave a sufficient condition on b to assure the nonexistence of
positive supersolutions of (1) for f(x,u) = u? with 1 < ¢ < n/(n — 2). In [14], it was assumed that A(z) is
Holder continuous and periodic with the same period, b satisfies some Kato type conditions, moreover,

2 42
bl = {c S0 den PPO7de o e 03°<R“>} (5)

Jan V@2 dz —

is sufficiently small in some sense. Under these conditions, it was proved that (1) has no positive weak
supersolutions if and only if ¢ < n/(n — 2).

In this paper, we give new sufficient conditions on b and f for nonexistence of positive supersolutions,
using methods in [4] and techniques of (nonlinear) potential theory (see e.g. [11,21,15,10]). We shall prove
the following:

Theorem 1. Suppose that vector field b = bg + by satisfies
Ilbolll <00 and divbg=0 inR" (6)
and
by € (L™ (R™\ Br))" for some R > 0. (7)
Assume that f(z,u) = || g(u), v < 2 and
lirsrgi(l)qf s79(s) >0

forq=14+(2—7)/(n—2). Then (1) has no positive weak solutions.

Here, LP?(Q) is a Lorentz space (see Section 2 for details). When A(z) = I, by = 0 and f(z,u) = uf,
Theorem 1 becomes as follows:
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Corollary 2. Suppose that vector field by satisfies (6), and that ¢ < n/(n—2). Then the differential inequality
—~Au+bg-Vu>u? inR"\ Br (8)
has no positive weak solutions.

Remark 3. The nonexistence range ¢ < n/(n — 2) is sharp. Let 1 be a smooth bump function, and let
¢ = (1 —n(z))log(|z|). Then

_(9¢ _9¢ '
bo(iE) = <6—x2,—8—x1,0,...,0>

satisfies (6) and bg(z) - * = 0 outside of supp 7. Therefore, for this by and ¢ > n/(n — 2), (8) has a positive
solution u(z) = |z|~2/(4=1) with sufficiently large R > 0. Note that b(z) = B|z|~2z does not satisfy (6) for
any 3 # 0, because this vector field has a scalar potential §log(|x]).

Remark 4. From a similar cutoff argument, if b(x) = (b;(z)) € (L™>°(R" \ Bg))" has a vector potential
i.e. there exists a skew symmetric matrix valued function V(z) = (v;;(x)) (4,7 = 1,...n) such that b;(z) =
Z?Zl 0;v;5(x), then we can apply Corollary 2. Here, we emphasize that we have considered the equation in
exterior domains.

Remark 5. The assumption on by closely relate to Kato-type conditions. For example, by a simple calcula-
tion, if by = 0,

p(lzl)

|z

[by(z)] < and /B(S)ﬁ < oo for some R >0, (9)
s
R

then b satisfies our condition (7) and the assumptions in [14].

Kondratiev et al. [14] proved an Aronson-type estimate of a fundamental solution of (9; + £). From this
estimate, it follows that if u is a positive supersolution of Lu = 0 in R™ \ Bj /o, then there is a positive
constant ¢ > 0 such that

inf u > cR*" in R"\ B. (10)
Br
The lower bound plays an important role in the proof of nonexistence theorem. They used the assumptions
on Holder continuity and periodicity of A(x) to prove this. Semenov [20] proved an Aronson-type estimate
for bounded A(z) and bg satisfying the condition (6) (see also [16] for A(z) = I). Also, he studied somewhat
general conditions on b. Unfortunately, we can not use his result under the assumption (7).
We prove (10) more directly using a method in [21,15,10]. We do not need the Holder continuity and
periodicity of A(x).
Next, we give another condition on b and f for nonexistence of supersolutions.

Theorem 6. Instead of the assumptions on by and f as in Theorem 1, suppose that by satisfies
11551l =0 as R — oc. (11)

Assume that f(xz,u) = |z| " Vg(u), v < 2 and
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liminf s™%g(s) > 0
s—0
for some 1 < qo <14 (2—7)/(n—2). Then (1) has no positive weak solutions.
If b € (L"(R™ \ Bg))" for some R > 0, then (11) holds since

b1z, Il < C(n,o)|b]

L (R*"\BRr) —0 as R— oo.
Hence, we also have the following:

Corollary 7. If b € (L"(R"™ \ Bg))" for some R > 0, and f(u) = u? with ¢ < n/(n — 2), then (1) has no
positive weak solutions.

Remark 8. The nonexistence range ¢ < n/(n — 2) is sharp. Indeed, as Example 3.12 in [14], the equation

Bx

. — (=2 ih R™"\ Ba 19
eFlogla] " m R\ Ba (12)

—Au +
has a positive supersolution u(x) = ¢(|z|log |x|)>~" for 8 < 2 — n. Since

4ELanB_2 Ln7an E’
TogTa] € LB\ B\ L R\ By)
the nonexistence theorem of supersolutions does not hold for the critical exponent ¢ = n/(n — 2). Here, we
also note that (10) cannot hold for b € (L"(R™ \ Bg))" in general.

Organization of the paper In Section 2, we recall some properties of Lorentz spaces. In Section 3, we prove
several quantitative properties of weak (super-, sub-)solutions to Lu = f(z). In particular, we establish
Lemma 15. In Section 4, we derive (10) using results of Section 3. In Section 5, we investigate behavior of

m(r) = /ixr(lrf) u

by using results in Section 3 and 4, and we prove Theorem 1. In Section 6, we give a proof of Theorem 6
modifying the proof of Theorem 1.

Notation We use the following notation in this paper. Let 2 be a domain of R™.

o Bp(zo) :={z € R" : |z — zo| < R}, Bg := Bg(0).
e A(R):= Bag \ Bg.

e |A] := the Lebesgue measure of a measurable set A.
e 1,4(z) := the indicator function of A.
fAfdm::ﬁfAfdx.

o fi:=max{f, 0}, f_ :=max{—f,0}.

2. Lorentz spaces

First, we recall some properties of Lorentz spaces. For 1 < p < oo and 1 < ¢ < 0o, we take

(pfo“’ (t{z € Q; |f(z)| > t}|V/P)° %)1/” if o < o0,

sup;~o t|{z € Q; |f(z)] Zt}|1/p if 0 = oo,

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift
terms in exterior domains, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2016.10.053

I fllzre () ==




Doctopic: Partial Differential Equations YJMAA:20828

T. Hara / J. Math. Anal. Appl. e e s (eeee) ese—oee 5
and

LP7(Q) == {f; Q — R measurable; ||f||rr0 () < oo} .
Note that LPP(Q2) = LP(Q2) and LP?(Q) C LP7(Q) for 1 < 0 < 7 < oo. In particular,
[ fllzem @) < C(p, 0, )| fllLro )
For 1 <o < oo, || - [[zr.o () is defined by an integral. Hence, for any f € LP7(R"),
\\fan\E\|LP,a(Rn) —0 as R — oo. (13)

On the other hand, || f1gn\ 55 | v () does not generally go to 0 as R — oo, for example, |z|~' € L™>°(R™)\
L™7(R™). The following Holder type inequality is standard:

Lemma 9 (/8, p. 52]). Assume that 1 < p,p’ < oo and % + % = 1. Then,

/ Fg dz| < 1l lgll ey
Q

According to a sharp form of Sobolev inequality (see e.g. [3]), for any ¢ € C°(R"™), we have

/\bl2¢2 dz < |[[bJ2[| /2,00 @) 16° | Lo n 2.1 e
R’Vl

= bl F e gy [0 720/ n2).2(@ny < S2IBIT 00 (R) IV 72y -
In particular, for any 1 < o < oo,
bl < C(n, o) bl Lo @n).- (14)
3. Regularity of solutions to Lu = f(x)

In this section, we review the properties of weak (super-, sub-)solutions of Lu = f(z). We say that
u € HE (Q) is a weak (super-, sub-)solution of the equation Lu = f(z,u) in Q if f(z,u) € LL . N H1(Q)
and

/AVu-V(Z)—Fb-Vu(Z)dx: (Z,S)/f(x,u)¢dx, (15)
Q

Q

for any nonnegative ¢ € C2°(£2). By the uniform ellipticity of A, we have the following:
Lemma 10. Let u be a weak subsolution to the equation Lu =0 in Q. Then max{u,k} is a weak subsolution
to the same equation. Let u be a weak supersolution to the equation Lu =0 in Q. Then min{u, k} is a weak

supersolution to the same equation.

Since A is uniformly elliptic and divbg = 0,
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/AVu~Vu+b~Vuudx
Q

1 2
:/AVU-Vudx+§/bO~V(u )dm+/b1~Vuudx (16)

Q Q Q
> [ 19 dz = oul] [ Vuf do
Q Q

for any u € C°(R™). Therefore, when |||b1||| < 1, the operator £ is coercive. Hereafter, for simplicity, we
always assume that

1
S )
Note that from (14), there is a constant B; = B;(n) such that
1
o1l zns@ny < Br == [[ball < 5 (18)

The following comparison principle is proved by standard methods:

Lemma 11 (Comparison principle). Assume (17). Let u € HY(Q) be a weak supersolution to Lu = 0 in €,
and let v € H*(Q) be a weak subsolution to Lu =0 in Q. If (u—v)_ € H(Q), then u > v in Q.

Moreover, from De Giorgi or Moser’s iteration technique and the John—Nirenberg lemma, we can get the
following estimates (see e.g. [9]):

Lemma 12. Assume (17). Let u be a weak subsolution to Lu =0 in Br(xg). Then for any p > 0 there exists
a constant Cp depending only on n, ||A||L®n), |[|boll| and p such that
1/p

sup uy <Cp ][ uf dx : (19)

Bry2(%o) Balzo)
R\(T0

Lemma 13. Assume (17). Let u be a nonnegative weak supersolution to Lu = 0 in Bagp(xo). Then there exist
constants o > 0 and Cy depending only on n, ||A| pe®n) and |[boll| such that

1/o
][ u’ dx < Cw inf w. (20)
BR(QZ())
Br(zo)
Next, we assume the smallness of [|by[|zn.1(q). Let
. 1
||b1HL"»1(Q) S BQ = mln{Bl, F}, (21)

where So, = (n(n —2))~Y2|By|~/".

Lemma 14. Assume (21). Let Q be a bounded domain. Let u € Hg() be a weak solution to Lu = f in Q.
Then there exists a positive constant C depending only on n such that

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift
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||uHL"/("*2)v00(Q) < C”fHLl(Q)

Proof. By the result in [10], if u € H}(Q) satisfies the equation —div (AVu) + by - Vu = g, then

||u||L"/("*2>’°°(Q) < Sc2>o||gHL1(Q)

and

[Vl n/o-1).00 () < SoollgllLr(0)-
Hence, applying the second inequality for g = —by - Vu + f, we get
[Vl nsn-1.00 () < Soo (Ib1 - Vaull iy + | fllLr @)
< SolbillLna@[Vull pr/e-v. @) + Sl fll 1 (0)-
By the assumption on by, this implies that
HVU”LW,/(W,—I),QQ(Q) < C||f||L1(Q).
Consequently, we get
[l /200 () < 5% (b1 - Vel pa ) + 1f 122 (0))

< 82 1Ib1ll nr (@) IVl Lrsn-y.o0 () + SZ L f L1 (02)
<Ol fllzra)-

This completes the proof. O

Below, we also assume that

C(n)

by [l oo < By := min{By, 1y
[b1llLn1 () < Bz :=min{B; CLCW}

(22)

where, C(n) is a sufficiently small constant depending only on n to be determined later (see (28)). Under
this condition, we get the following potential lower bound:

Lemma 15. Assume (22). Let f € L'(Bagr(xo)) N H Y (Bag(z0)) and f > 0. Let u be a nonnegative weak

supersolution to Lu > f(x) in Bag(xo). Let o be a Lebesgue point of w. Then there exists a constant C,
depending only on n, ||A| L ®ny and |[|boll| such that

1
u(zg) > 0*15(99073),
L

where

R
- d
Ig(xo,R):/ s2n / fdx ?S
0

BS(IQ)
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Proof. Without loss of generality, we may assume that xy = 0 and 0 is a Lebesgue point of u. For k = 0,1, .. .,
we take Ry, = 2! 7" R. Fix k. Let (z) = (1—(8/Ry,)dist(z, Br,,,))+ and let w € H}(Bg, ) be a weak solution
to

Lw=mnf in Bg,.

Then w > 0 in Bg, by the minimum principle. Let

According to Lemma 12 and 13, we have

Let @ := min{w, M }. Since @ is a weak supersolution in Bnga the minimum principle yields @ > m in
B%Rk. Since w > m in B%Rk, we have

m / fdx < /szdacg /AVw~VQD—|—b-Vw{[)dx. (24)
B

Rig41 Br,, Ry,

Note that if Vi (z) # 0 then w(x) = w(x). Therefore,

/AVw-Vdemz /AVlI)-Vﬁ)deHAHLoo(Q) / | V|2 da.

Br Br Br,

k k

Moreover, since divbg = 0, we have

—1
/bo-wad:c:—/bo-wvwdx=7/bo-(vwz)dxzo.

BRk BRk BRk

Using Lemma 9 and Lemma 14, we have

/ b1 - Vww dx S M”blHLn,l(Q)||vw||Ln/(n—1),oo(BRk)

BRk

S Cn)M|byl| @) I f L (Br,, ,)-
Take v € H{(Bg,) such that

Ly =0 in Bpg, \B%Rkv
v=DM on Bsg,.
Then, by Lemma 11, v — @ > 0 in Bg, . Since @ is a weak supersolution to L& = 0 in Bpg,, we have
(L, (v — @) = 0.

This implies that

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift
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/|Vﬁ)|2dm§0/|V1}|2d$:C / |Vo|? d. (26)

Br,, Br,, BRk\B%Rk

Next, we choose ¢ € C°(Bg, ) such that ¢ =1 on Bg,_, and [V¢| < R%. Since Lv =0 in Bg, \ Bap, and
v—M¢ e Hy(Br, \ Bsp,),

(Lv, (v — M¢g)) =0.

Hence,

/ Vo2 dx < C / |VMo|* de < CM*R} 2. (27)

Br \Byp, Br \Byp,

Combining these inequalities (23)—(27), we obtain

m / fdz < (C(n)(CLCw)*)m* Ry~ + (C(n)CLCOw b | L1 ())m / fdx.

Thus, if

1 1

by || pr () < = s
Ibillerr@ = 5 6006 Cw

then, we also get
m / fdx < C’mzRZ_Q.
BRk+1
If m = 0, then we have f|BRk+1 =0 by Lemma 13. Thus,
R / fdz < Cm.
BRk+1
On the other hand, by Lemma 11, we have

w<u— inf w in Bg,.
aBRk

Therefore,

m < inf (uw— inf uw) < inf (u— inf w).
B3 g, dBg, 0Br, dBr,

Consequently, we have

Rr41 9Bg,,

R / fdx§0< inf w— inf u> (29)

BRI«+1

for k =0,1,.... Summing over all k = 0,1, ..., we arrive at

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift
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oo
5 R fdr < C lim inf w.
k—o0 8BRk 1
k=0 B +
Rp41

By Lemma 11, we have

lim inf w= lim inf v < lim udz = u(0).
k— o0 8BR,€ k—oo Br,, k— o0

BRk

Since

50 R
Cn)Y R / fdxz/sl—”/fdxds:lg(o,R),
Bs

k=0
Bry,, 0

we arrived at the desired lower bound. O

4. Global behavior of supersolutions of Lu = 0 in exterior domains

In this section, we investigate the asymptotic behavior of supersolutions to Lu = 0 in R"\ Bg. First, we
show the existence of a global weak supersolution which approaches zero near infinity.

Lemma 16. Assume (17). Then there exists a positive function U satisfying ||VU||p2wn) < 00 and

LU = 131/2 m Rn7 (30)
u(z) =0 as |x| — oo.
Moreover, if (22) holds, then there exists a positive constant C such that
1 2—n 2—-n 1 n\ B,
5|x| <U(z) < Clz| in R™\ Bj. (31)

Proof. Let R > 1/2 and let Ur € Hg(Bgr) be a weak solution to LUg = 1p,,- By the coercivity of £ and
Sobolev’s inequality, we have

1
§HVUR”%2(BR)§ /].Bl/QURdI'
Br

< 1Ml p2nsnt2 (B, ) IURI 20/ -2 ()

< C(n)- S|IVURL2(BR)-
Therefore we have
IVUR|L2(Br) < C(n). (32)

The right-hand side does not depend on R. By Lemma 10 Ug, is a weak subsolution to Lu = 0 in R™\ By 5.
Using Lemma 12, Lemma 9 and Sobolev’s inequality, for any z € R™ \ B; we have
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Un(@)<Co f Undy
Bz /2(z)
SCB#”]-”LQ"/("‘F?)(B @) IURl L2n/n-2) (B, ()
Bl 2] || /2 lol/2

< Ola' 2| VUgll L2 (8 < Claf' 2.

By the maximum principle, Ug increases with respect to R. Let U = limg_,oc Ug; then U has the upper
bound

Ulz) < Clz[*™? in R™\ B;.

Moreover, by (32), VUg converges to VU weakly in L?(R"™). Therefore, U is a weak solution to (30).
Next, we shall prove the second part of the theorem. Using Lemma 12, Holder’s inequality, and Lemma 14,
we get

Un(z) < Cp ][ Up dy
Biz/2(2)
1
< Cp—=I1]
| Bz /2]

< Claf " |UR| /=200 gy < Cla*~"

Ln/21 (B j2(x)) IUR| Ln/(n=2),20 (B, /2(x))

Therefore, U has the desired upper bound. Finally, we derive the lower bound of U. For |z| > 1 and
s > 3|z[/2, Byja C Bs(z). Thus, applying Lemma 15 for Lu = 1p, , in By, (z), we obtain

2|z|
1.1 1 o ds
U)= L @2 = o [ 8 |Byan B T
0
7 d
_ S
Z C_L 82 "|Bl/gﬁBS($)|?
3lz|/2
1 2—n
= oo

This completes the proof. O

Using the function U and an argument in [4], we can show the following Hadamard-type properties of
positive supersolutions of Lu = 0.

Lemma 17. Assume (17). Let u # 0 be a nonnegative weak supersolution to Lu =0 in R™ \ Bj.

1. Let

forr > 1. Then m(r) is bounded from above.

Please cite this article in press as: T. Hara, Liouville theorems for supersolutions of semilinear elliptic equations with drift
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2. Let U be the function in Lemma 16 and let

u
= inf —
plr) =l 5
forr > 1. Then
u
= 1 f
p(r) T

Moreover, if (22) holds, then we have the lower bound

m(r) > =r? "

Ql=

5. Proof of Theorem 1

In this section, we consider semilinear equations Lu > f(x,u) and prove Theorem 1. Below, we normalize
L for the simplification of arguments. By the definition of the Lorentz norm || - || pn.1(), taking sufficiently
large Ry, we may assume that |[by|| L1 (Rr\Bry) s sufficiently small. Moreover, rescaling by

A(x) = A(rz),  (b)(z) =rb(rz), fo(z,5)=r*f(re,s) (r=2Ry),
we may assume that R = 1. Note that || A || Lo rn) = | A Lo (rny and |||(b;), ||| = [IIbil] (i = 0,1). Therefore,
we may assume that R = % and that condition (22) holds, without loss of generality.

Proof of Theorem 1. Suppose existence of a positive weak solution u. For r > 1, we take

m(r) = fi‘r(lrf) u, p(r) = j‘r(lrf) %

where U is the function in Lemma 16. We derive a contradiction by investigating the behavior of m(r). We
divide the proof into several steps.

Step 1. Fix r > 1. Since u is a nonnegative weak supersolution to Lu = 0 in By, \ B, /2, by Lemma 13
and a simple covering argument, we can show that

1/o
][ u’ dx < C, inf u, (33)
A(r)
A(r)

where C, is a constant depending only on n and Cy . Let a(n) = inf{|A(1) N By 5(x0)|; xo € A(1)} and let
Cy = C.(2|A1]/a(n))/?. Also, let

Q(r) ={z € A(r); m(r) <wu(z) < Cim(r)}.
Then, by Chebyshev’s inequality,

Guntr) (1120

Hence,
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1
[ A\ Q(r)] < ga(n)r™.
Let zo € A(r). Then, since

(Q(r) N By ys(wo)) U (A(r) \ Q(r)) D A(r) N By s (o),

by the definition of a(n) and (34), we have

Q) 1 Byys(ao)] = aln)r™ —|A(r) \ Q)| > alm)r™

Step 2. Let

Since u satisfies
Lu(z) > f(z,u(x)) > él(lf) f@,u(@) gy = Fr,m(r)1ga),
using Lemma 15 in B, /; (o), we obtain

r/4

U(Jf()) > C_ /Sl_n / F(T,m(r))lQ(r) dr ds
L
0 BS(I())

r/4

> — / s77MQ(r) N B, 3(wo)| ds - F(r,m(r))

r/4

> c, ~%a(n)r" / s ds - F(r,m(r))
r/8

> ————7r?F(r,m(r)).
Therefore, taking the infimum over A(r), we get

m(r)

> 67’2F(r,m(r)).
By Lemma 17, m(r) is bounded. Thus

P F(r,m(r)) <Cr 2™ =0 asr — oco.

YJMAA:20828

13

By the assumption on f(z,s), this implies m(r) — 0 or m(r) — oo as r — oo. The latter is impossible,

since m(r) is bounded, so we must have that
m(r) =0 asr— oo.

By the assumption on f, for sufficiently large r, we have
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m(r) < Or* =",
By Lemma 16, we have the lower bound U(z) > &|x|?>~". Therefore, we have
p(r) < C.
Step 3. Next, we derive a lower bound of p. By Lemma 17, we have
u(z) > p(r/2)U(z) inR"™\ B, .
Thus, u — p(r/2)U is nonnegative in R™ \ B, 5. Fix € A(r). By a similar calculation to (35), we get

(= plr/DV)@) > e g7 Flrm(n).

By Lemma 16, we have the upper bound U(z) < C|z|?>~". Hence,

) 2 pr/2U) + G rm(r) = (slr/2) + G Foam()) UGo)
for any x € A(r). Taking the infimum over A(r), we get

o) 2 p(r/2) + G F(rm(r),

where C' is a constant independent of r. By the assumption on f, there is a positive constant ¢ > 0 such
that liminf, _, . 7™ F(r, m(r)) > c. Repeating this estimate, we arrive at

p(2Fr) = 00 as k — oo,
which contradicts the upper bound on p. This completes the proof. 0O

6. Proof of Theorem 6

By the same argument as in Section 5, without loss of generality, we may assume that
b1l < Ba,

where By = By(n, A, qo) is a sufficiently small constant to be determined later (see (39)).
In order to prove Theorem 6 we prepare two lemmas. First, we show the following sharp form the weak
Harnack inequality

Lemma 18. Assume

n

bif| < —— —1 36
ol < o5 (36)
for some po € (0, -"5). If u # 0 is a nonnegative weak supersolution to Lu =0 in R™ \ By /o, then
inf u > lR_"/po. (37)
oBr ~ C
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Proof. Let L = infyp, u. By the strong minimum principle, L is positive. By considering @ = min{u, L},

we may assume that u is a weak supersolution in R™. Set py = 100(n7_12)7]C for k=1,2,.... Since pp — 0 as
k — oo, by Lemma 13, there is a sufficiently large k, such that
1/,
][up’“* dx < C inf w. (38)
Brys

Br

For k= 0,1,... k., we choose a nested ball sequence Br/, = By € B1 € -+ € By, = Bg. Fix 1 <k < ko.
Set p = pr, w = uP/? and take n € C2°(By) with n = 1 in By_;. Choosing a test function ¢ = uP?~'n, we
get

0<(p- 1)/AVU - VuuP~*n* dz + Q/AVU P~ Vg da
Q2 Q

2
— 1—)/b0 -uPVnndr + /b1 -VuuP~1n? d.
Q Q

b2
2¢?

2
1
2 <— —1) /|Vw\2772dac§C/w2|V77|2dx+/\b1|2w2772 dx.
p
Q Q 9)

s (1 ?
bef” < | ——1
J4!

/\Vw|2772 drx < C’/w2|V77|2dx.
Q Q

. . 9 . . 2
By the Cauchy—Schwarz inequality and Young’s inequality ab < <5~ + we have

Since

IN
7\
SRR

|

[t
N——

[\

we have

On the other hand, by Sobolev’s inequality, we have

(n—2)/n

/(wn)zn/("—2> dz < 52/|V(wn)l2dw
) Q

<282 /|Vw\2772+w2|V17|2 dx
Q

Since w = uP*/?, by combining the two inequalities, we obtain

Pk /Prk—1 (n—2)/n
/ uP*=1 dx = / w2 ("=2) dg
Br_1 By—1
< CI Tl ey [ w?de = OVl [ v o
Bk Bk
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Repeating this estimate, we arrive at

1/pO 1/pk*
][ uP° dx <C ][up’“* dx
Bry2 Br
Combining this inequality and (38), we get
1/po
][up" dx < C inf u.
Brys
Br
Therefore, we have
1/po
LR /P < L / uPo dx .R™Po < O inf u.
|Bl| Brya
Br

Since infp, v = infsp, v by the minimum principle, we obtain the desired lower bound. O
Next, we prove the following modified potential lower bound:

Lemma 19. Assume (17). Let f € L>*(Bagr(xo)) be a nonnegative function. Let u be a nonnegative weak
supersolution to Lu > f(x) in Bag(xo). Then there exist constants Cr1 and Cpa depending only on n,
| Al oo (mmy and [|[bo|| such that

w(zo) + CraR? oyl £l oo () = I} (z, R).

1
Cr1
Proof. We follow the proof of Lemma 15. By the assumption on by, we get

1/2
/ b, - Vw(w¢?)dr| < M / by |*¢? dx / |Vwl|? da
B Bp,

Br

1/2

k Ry,

< M[b1l[IVOllL2(5r ) IVwliL2(Bs, )-

On the other hand, by the energy inequality, we have

IVwllL2(Br,) < CRE|fllLo(Br,)-

Thus, we have

[ b Vut@e) ds| < BB 1 5,

instead of (25). Consequently, we have

Rpyq OBR,

R / fdx§C< inf w— inf u> + C27 K R?||[by |[[[| f]l £ (92)
k

BRk+1
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for k=0,1,..., instead of (29). Since Y ;- (272F = %, taking the sum for all k = 0,1, ..., we get the desired

inequality. O

Proof of Theorem 6. We follow the proof of Theorem 1. Replacing Lemma 15 by the above Lemma, we get

u(wo) + Crar®||[by ||| F (r,m(r)) > 2F (r,m(r)),

Cn)Cr,
instead of (35). Thus, if ||b1]|| < (2C(n)CL1CL2)~!, then we have

m(r) > ér2F(r, m(r)).

Therefore, by the assumption on f, we have
m(r) < Cr—2/(q0—-1)

On the other hand, if

n
byl € ——— — 1
(Il < =

for some n(go —1)/2 < q1 < n/(n — 2), then by Lemma 18, we have
1
> *"/‘h_
m(r) > o

This contradicts to the upper bound on m(r), so taking

1 1 n
27 20(’0)0[,10127 (n — 2)(]1

B4 := min{ -1}, (39)

we conclude the proof. 0O
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