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1. Introduction

In this paper we study the local solvability in top degree of the differential complex defined by the 
operators

Lj = ∂tj − (∂tjφ)(t, A)A, j = 1, . . . , n,

where A is a linear operator, densely defined in a Hilbert space H. We shall assume that A is unbounded, 
but it is self-adjoint, positive definite and it has a bounded inverse A−1; and where φ(t, A) are power series 
with respect to A−1, with coefficients in C∞(Ω), for some open set Ω ⊂ R

n, that is,

φ(t, A) =
∑
k≥0

φk(t)A−k.

These power series are assumed to be convergent in L(H, H), as well as each of their t-derivatives, uniformly 
with respect to t on compact subsets of Ω.
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Our analysis will focus on a neighborhood Ω of the origin. If Ω ⊂ R is an open interval containing the 
origin, [8] shows us necessary and sufficient conditions for the local solvability and hypoellipticity of the 
operator L = ∂t − φ(t, A)A at t = 0.

This work concerns the following problem:

For each k ∈ Z+ such that N > n+k
2 , N ∈ Z+, find open neighborhoods of 0, ωN ⊂ ΩN , such that

∀f ∈ C∞
(n)(ΩN , H∞), ∃v(N) ∈ Ck

(n−1)(ωN , Hk) such that Lv(N) = f in wN , (1.1)

where

Lv(N) =
( n∑

j=1
Ljv

(N)
j

)
dt1 ∧ ... ∧ dtn.

We denote by Cω(Ω) the space of analytic functions in Ω and assume φ0 ∈ Cω(Ω). In the text, �φ0 and 
�φ0 denote the real part and the imaginary part of φ0, respectively.

Let B be the ball {t ∈ R
n : |t| < R} ⊂⊂ Ω.

Definition 1.1. We say that condition (ψ1) holds on B if, for every real number a, the set

{t ∈ B : �φ0 ≤ a} has no compact connected components.

Definition 1.2. We say that condition (ψ2) holds on B if, for every real number a, the set

{t ∈ B : �φ0 ≥ a} has no compact connected components.

Definition 1.3. We say that conditions (ψ1) and (ψ2) hold at 0 if, for any open ball B centered at the origin, 
there exists an open subset Ω′ ⊂ B containing 0 such that both (ψ1) and (ψ2) hold on Ω′.

The main result states:

Theorem 1.4. Condition (ψ1) at 0 is necessary and sufficient to solve (1.1).

The case where A is a linear operator, densely defined in H, unbounded and self-adjoint is also considered. 
That is, we study the problem:

For each k ∈ Z+ such that N > n+k
2 , N ∈ Z+, find open neighborhoods of 0, ωN ⊂ ΩN , such that

∀f ∈ C∞
(n)(ΩN , H∞), ∃v(N) ∈ Ck

(n−1)(ωN , Hk) such that L0v
(N) = f in wN , (1.2)

where

L0v
(N) =

( n∑
j=1

Lj,0v
(N)
j

)
dt1 ∧ ... ∧ dtn, Lj,0 = ∂tj − (∂tj�φ0)(t)A, j = 1, . . . , n.

The result proved is the following:

Theorem 1.5. Conditions (ψ1) and (ψ2) at 0 are necessary and sufficient to solve (1.2).

Remark. In problems (1.1) and (1.2) a category argument shows that ωN can be assumed to depend only 
on ΩN and not on f .
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2. Notations

Let H be a Hilbert space and let A be a linear operator, densely defined in H, unbounded but self-adjoint, 
positive definite and has a bounded inverse A−1.

If Ω is an open set in Rn, with variable t = (t1, . . . , tn), we denote by QA(Ω) the ring of the power series 
of the form

φ(t, A) =
∑
k≥0

φk(t)A−k,

where φk ∈ C∞(Ω), and the series of all t-derivatives converge in L(H, H), uniformly on compact subsets 
of Ω.

We will use the scale of “Sobolev” spaces (for s ∈ R) defined by A (see also [1,3,8]): if s ≥ 0, Hs is the 
space of elements u of H such that Asu ∈ H, equipped with the norm ‖u‖s = ‖Asu‖0, where ‖ ‖0 denotes 
the norm in H = H0; if s < 0, Hs is the completion of H for the norm ‖u‖s = ‖Asu‖0. The inner product 
in Hs will be denoted by ( , )s. Whatever s ∈ R, m ∈ R, Am is an isomorphism (for the Hilbert space 
structures) of Hs onto Hs−m. A good example of this construction is obtained when A = (1 − Δx)1/2 and 
H = L2(Rν): then Hs is the “true” Sobolev space in Rν , of degree s.

By H∞ we denote the intersection of the spaces Hs, equipped with the projective limit topology, and by 
H−∞ their union, with the inductive limit topology. Since, for each s ∈ R, Hs and H−s can be regarded as 
the dual of each other, so can H∞ and H−∞: given their topologies, they are the strong dual of each other.

We denote by C∞(Ω, H∞) the space of C∞ functions in Ω valued in H∞. It is the intersection of the 
spaces Cj(Ω, Hk) (of the j-continuously differentiable functions defined in Ω and valued in Hk) as the 
non-negative integers j, k tend to +∞. We equip C∞(Ω, H∞) with its natural C∞ topology. If K is any 
compact subset of Ω, we denote by C∞

c (K, H∞) the subspace of C∞(Ω, H∞) consisting of the functions 
which vanish identically outside K. It is a closed linear subspace of C∞(Ω, H∞), hence a Fréchet space, and 
we denote by C∞

c (Ω, H∞) the inductive limit of C∞
c (K, H∞) as K ranges over all compact subsets of Ω.

We will denote by D′(Ω, H−∞) the dual of C∞
c (Ω, H∞), and refer to it as the space of distributions 

in Ω valued in H−∞. By D′0(Ω, H−∞) we denote the dual of Cc(Ω, H∞), and refer to it as the space of 
distributions of order 0 in Ω valued in H−∞.

3. The spaces HHH s; HHH s(K); HHH s
loc(Ω); HHH M(Ω), HHH −M(Ω), M ∈ ZZZ+; and AAA (Ω, Hw)

We will denote by S (Rn, H∞) the space of all functions u ∈ C∞(Rn, H∞) such that, for all pairs of 
polynomials P and Q in the variable t, and with complex coefficients, P (t)Q(∂t)u(t) remains in a bounded 
subset of H∞ as t varies over Rn, i.e., such that

∀s ∈ R, sup
t∈Rn

||P (t)Q(∂t)u(t)||s < ∞. (3.1)

We equip S (Rn, H∞) with its natural topology (i.e., we take as a basis of continuous seminorms the 
expressions in (3.1)).

We define the integral of a continuous function valued in a locally convex vector space as the limit of 
Riemann sums. Then, if u ∈ S (Rn, H∞), we may form its Fourier transform F (u) = û by

û(τ) =
∫

e−itτu(t)dt, ∀τ ∈ R
n.
Rn
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It can be checked at once that û(τ) ∈ H∞ for every τ ∈ R
n; and that û ∈ S (Rn, H∞). Moreover, the 

Fourier transform is a continuous linear map from S (Rn, H∞) into itself, and it can be verified that its 
inverse is given by the usual formula:

u(t) = (2π)−n

∫
Rn

eitτ û(τ)dτ, ∀t ∈ R
n,

which shows that the Fourier transform is an isomorphism from S (Rn, H∞) onto itself.
As usually, except for a multiplicative constant, the Fourier transform can be extended as an isometry 

of L2(Rn, H) onto itself. We have precisely:∫
||û(τ)||20dτ = (2π)n

∫
||u(t)||20dt.

We denote by S ′(Rn, H−∞) the dual of S (Rn, H∞), and we refer to it as the space of tempered distri-
butions on Rn, valued in H−∞. Since C∞

c (Rn, H∞) is dense in S (Rn, H∞), we can identify S ′(Rn, H−∞)
(as a set) with a subspace of D′(Rn, H−∞). The transposition of the Fourier transform gives an isomor-
phism from S ′(Rn, H−∞) onto itself, which extends the initial one, and will also be referred to as a Fourier 
transform.

We define the operator Λs : S ′(Rn, H−∞) → S ′(Rn, H−∞) by

Λs(u(t)) = F−1{(1 + |τ |2 + A2)s/2û(τ)
}
.

Definition 3.1. H s, s ∈ R, is the space of tempered distributions u on Rn, valued in H−∞, such that its 
Fourier transform û is a measurable function and

(1 + |τ |2 + A2)s/2û ∈ L2(Rn, H) .

The norm in H s is given by

|||u|||2s = 1
(2π)n

∫
Rn

||(1 + |τ |2 + A2)s/2û(τ)||20dτ .

If u ∈ H s and p ∈ R, then we have |||Λsu|||2p = |||u|||2s+p, i.e., Λs : H s+p → H p is an isometry.

Definition 3.2. Let K be a compact subset of Rn. Then we call

H s(K) = {u ∈ H s | supp u is a subset of K},

with the topology induced by H s.

By supp u we will always mean the support of u.
Let Ω be an open subset of Rn.

Definition 3.3. We call

H s
loc(Ω) = {u ∈ D′(Ω, H−∞) | ∀φ ∈ C∞

c (Ω), we have φu ∈ H s},

with the coarsest locally convex topology which renders all the maps u → φu from H s
loc(Ω) into H s

continuous.
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We give below two important properties of the spaces H s and H s
loc(Ω):

∀s, r ∈ R, r ≥ 0, we have continuous injections

H s+r → H s, H s+r
loc (Ω) → H s

loc(Ω) .

∀s, r ∈ R, r ≥ 0, ∀α ∈ Z
n
+, Ar∂α

t is a continuous operator

from H s into H s−r−|α|, from H s
loc(Ω) into H

s−r−|α|
loc (Ω).

Definition 3.4. Let M, k ∈ Z+ and α ∈ Z
n
+. We call

H M (Ω) = {u ∈ L2(Ω, H) | Ak∂α
t u ∈ L2(Ω, H), |α| + k ≤ M},

equipped with the norm

|||u|||M =
( ∑

|α|+k≤M

‖Ak∂α
t u‖2

L2(Ω,H)

)1/2

.

Definition 3.5. Let M, k ∈ Z+ and α ∈ Z
n
+. We call

H −M (Ω) =
{
T ∈ D′(Ω, H) | T =

∑
|α|+k≤M

Ak∂α
t uα,k, uα,k ∈ L2(Ω, H)

}
,

equipped with the norm

|||T |||−M = inf

{( ∑
|α|+k≤M

‖uα,k‖2
L2(Ω,H)

)1/2}
.

We also give a version of Gagliardo’s inequality in the abstract set-up:

Proposition 3.6 (Gagliardo’s inequality). If s, s1, s2 are real numbers such that s > s1 ≥ s2, then for each 
ε > 0, there exists M > 0 depending on ε such that

|||u|||s1 ≤ ε|||u|||s + M |||u|||s2 , ∀u ∈ H s(K).

We denote by S (Rn) the Schwartz space of rapidly decaying C∞ functions in Rn. As in the classical 
theory we have:

Theorem 3.7. If φ ∈ S (Rn) and u ∈ H s, s ∈ R, then φu ∈ H s and

|||φu|||s ≤ C|||u|||s, C = C(φ, s).

Proposition 3.8. If φ ∈ S (Rn) and s ∈ R, then

[Λs, φ] : H p → H p−s+1 is continuous, ∀p ∈ R.

Corollary 3.9. Let M ∈ Z+, γ ∈ Z
n
+ and s ∈ R. If Q(t, ∂t) =

∑
|γ|≤M

aγ∂
γ
t , aγ ∈ S (Rn), then

[Λs, Q] : H p → H p−s−M+1 is continuous, ∀p ∈ R.
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Another important class of functions is the following (see [7]):

Definition 3.10. We denote by A (Ω, Hω) the subspace of C∞(Ω, H∞) given by the set of functions u ∈
C∞(Ω, H∞) such that, for every t0 ∈ Ω, there exist a relatively compact open neighborhood U of t0
contained in Ω and C > 0 such that, for every k ∈ Z+ and every α ∈ Z

n
+,

sup
t∈U

‖∂α
t A

ku(t)‖0 ≤ C |α|+k+1(|α| + k)! . (3.2)

Alternatively, we have (see [6]):

Definition 3.11. We denote by C∞(Ω, Eσ) the subspace of C∞(Ω, H∞) given by the set of functions u ∈
C∞(Ω, H∞) such that, for every t0 ∈ Ω, there exists a relatively compact open neighborhood U of t0
contained in Ω such that

Eσ = {u(t)| eσAu(t) ∈ H, t ∈ U} for some σ > 0,

i.e.,

∞∑
k=0

||Aku(t)||0
k! σk < ∞ , t ∈ U, for some σ > 0.

Indeed, it suffices to set |α| = 0 in (3.2) and take σ such that Cσ < 1. Conversely, u(t) ∈ Eσ ⊂ Eσ′ , for 
some 0 < σ′ < 1, σ′ < σ, t ∈ U . Thus, there exists k0 ∈ Z+ such that, if k > k0, we have

||Aku(t)||0
k! σ′k < 1.

By induction on |α|, we conclude the proof.

4. The differential complex

From now on we consider Ω an open subset of Rn, 0 ∈ Ω, and define, for p = 0, ..., n, the spaces

C∞
(p)(Ω, H∞) .=

{
f =
∑
|J|=p

fJ(t)dtJ , fJ ∈ C∞(Ω, H∞)
}

and

D′
(p)(Ω, H−∞) .=

{
f =
∑
|J|=p

fJ dtJ , fJ ∈ D′(Ω, H−∞)
}
,

where J is an ordered multi-index (j1, ..., jp) of integers such that 1 ≤ j1 < j2 < ... < jp ≤ n, |J | = p its 
length and dtJ = dtj1 ∧ ... ∧ dtjp . Given φ ∈ QA(Ω), we define the operators

Lj = ∂tj − (∂tjφ)(t, A)A, j = 1, . . . , n, (∂tjφ)(t, A) =
∞∑
k=0

(∂tjφk)A−k,

and introduce, for p = 0, ..., n − 1, the differential complex

L : C∞
(p)(Ω, H∞) −→ C∞

(p+1)(Ω, H∞) or

L : D′
(p)(Ω, H−∞) −→ D′

(p+1)(Ω, H−∞)
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given by

Lf =
n∑

j=1

∑
|J|=p

LjfJdtj ∧ dtJ .

It is easily seen that [Lj , Lk] = Lj(Lk) −Lk(Lj) = 0 and so L2 = 0, that is, L is a complex; and that Lf = 0
if p = n. In the same way, we also define the differential complex

L0f =
n∑

j=1

∑
|J|=p

Lj,0fJdtj ∧ dtJ ,

where Lj,0 = ∂tj − (∂tj�φ0)(t)A, j = 1, . . . , n.

Definition 4.1. L is locally solvable at the origin in degree p, 1 ≤ p ≤ n, if, given a neighborhood Ω′ ⊂ Ω of 
the origin, there exists a neighborhood Ω′′ ⊂ Ω′, 0 ∈ Ω′′, such that

∀f ∈ C∞
(p)(Ω′, H∞), Lf = 0, ∃u ∈ D′

(p−1)(Ω′′, H−∞) such that Lu = f in Ω′′.

Lemma 4.2. L is locally solvable at the origin in degree p if and only if this is true of L0.

Proof. Set

α1(t, A) = i �φ0(t)I + φ(t, A) − φ0(t)I , t ∈ Ω′.

It is immediately checked that u �→ U(t)u, where

U(t) = eα1(t,A)A,

defines an automorphism of D′
(p)(Ω′, H−∞) or of C∞

(p)(Ω′, H∞), 0 ≤ p ≤ n.
For each f ∈ D′

(p)(Ω′, H−∞), 0 ≤ p ≤ n, we have

L Uf = UL0f

and

L0U
−1f = U−1

Lf.

Then, for 1 ≤ p ≤ n, the end of the proof is an easy consequence of both equalities above. �
In virtue of Lemma 4.2, we get

Lemma 4.3. Definition 4.1 for p = n is equivalent to:

∃ an open set U ⊂ Ω′, 0 ∈ U , such that ∀g ∈ C∞
c (U, H∞), ∃ vj ∈ D′(U, H−∞), j = 1, . . . , n, satisfying

L1,0v1 + . . . + Ln,0vn = g in U.
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5. Solvability

From now on we assume φ0 ∈ Cω(Ω) real-valued. We recall that B = {t ∈ R
n : |t| < R} ⊂⊂ Ω and 

initially we study the following equation (local solvability):

[S0]1 For every f ∈ C∞
c (B,H∞), there exist uj ∈ D′(B,H−∞), j = 1, . . . , n, satisfying

L1,0u1 + . . . + Ln,0un = f in B. (5.1)

Theorem 5.1. Condition (ψ1) on B is necessary and sufficient for the local solvability of the equation (5.1).

6. Conditions (ψ1) and (ψ2)

Proposition 6.1. Conditions (ψ1) and (ψ2) on B are equivalent to

min
K

φ0 = min
∂K

φ0, for all compact subset K of B

and

max
K

φ0 = max
∂K

φ0, for all compact subset K of B,

respectively, where ∂K is the boundary of K.

Proof. See [4], Proposition 2.2. �
Proposition 6.2. (Case n = 1) Let J be the set {t ∈ R : |t| < a} and let φ0 be a real analytic function in J . 
Then condition (ψ1) holding on J is equivalent to

(ψ′
1) if φ′

0(t) < 0 for some t ∈ J, then φ′
0(t) ≤ 0, ∀t ∈ J, t > t.

Proof. The equivalence is trivial if φ0 is a constant. If (ψ′
1) is not fulfilled, then there exist points t2 > t1

in J such that φ′
0(t1) < 0 < φ′

0(t2). By intermediate value theorem, the set Z containing points where φ′
0

is null intersects the interval ]t1, t2[. We may write Z∩]t1, t2[= {s1, ..., sN}, which has a finite number of 
points, since φ0 is analytic and it is not a constant. Necessarily there exists j such that φ′

0 changes the sign, 
from minus to plus, at sj. Thus, sj is a strict local minimum point of φ0 and, therefore, (ψ1) does not hold 
when K is a small compact interval centered at sj .

Conversely, if (ψ1) does not hold on J , then there exists an interval I ⊂⊂ J such that

min
I

φ0 < min
∂I

φ0.

Let

φ0(t1)
.= min

I
φ0.

Since t1 is a local minimum point of φ0, it follows that φ′
0(t1) = 0 and, as φ′

0 is analytic in J , there exists 
an open interval I ′ ⊂ I, t1 ∈ I ′, such that t1 is an isolated zero of φ′

0 in I ′. Again, t1 being a local minimum 
point of φ0 in I ′ implies that
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φ′
0(t) < 0, t < t1 t ∈ I ′,

φ′
0(t) > 0, t > t1 t ∈ I ′,

which is the contradiction of (ψ′
1). �

Proposition 6.3. (ψ1) implies the existence of a constant C > 0 satisfying the following property:
• ∀ t ∈ B, ∃ a curve γt, analytic by parts, which connects t to a point on the border of B, satisfying 

φ0(s) ≤ φ0(t) for every s on γt, and the length of γt ≤ C.

Proof. See [4], Proposition 2.6. �
7. Sufficiency of Theorem 5.1

The formal adjoint of Lj,0 is equal to L∗
j,0 = −

(
∂tj + ∂tjφ0(t)A

)
.

If φ0 is a constant, then

u1(t) =
t1∫

T0

f(s1, t2, ..., tn)ds1, T0 ∈ [−R,R], u2 = ... = un = 0,

is a C∞(B, H∞) solution of the equation.
Let us suppose that φ0 is not a constant. We take t ∈ B. By Proposition 6.3, there exists a curve γt and 

a constant C > 0 such that γt connects t ∈ B to a point t ∈ ∂B, satisfying φ0(s) ≤ φ0(t) for every s on γt, 
and the length of γt ≤ C. We have

−u(t) =
∫
γt

ds

(
e(φ0(s)−φ0(t))Au(s)

)

= −
1∫

0

n∑
j=1

[
e(φ0(γt(ν))−φ0(t))AL∗

j,0u(γt(ν))
]
s′j(ν)dν, ∀ u ∈ C∞

c (B,H∞).

Hence,

‖u(t)‖0 ≤
1∫

0

( n∑
j=1

‖ e(φ0(γt(ν))−φ0(t))AL∗
j,0u(γt(ν)) ‖2

0

)1/2( n∑
j=1

[s′j(ν)]2
)1/2

dν

≤ C1

n∑
j=1

(
sup

ν∈[0,1]
‖L∗

j,0u(γt(ν))‖0

) 1∫
0

‖γ′
t(ν)‖dν

︸ ︷︷ ︸
≤C

≤ C2

n∑
j=1

sup
B

‖L∗
j,0u‖0,

which implies

sup
t∈B

‖u(t)‖0 ≤ C2

n∑
sup
t∈B

‖L∗
j,0u(t)‖0, ∀u ∈ C∞

c (B,H∞). (7.1)

j=1
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Define, with the topology induced by (Cc(B, H∞))n, the subspace

E = {(L∗
1,0ψ, ...,L∗

n,0ψ) : ψ ∈ C∞
c (B,H∞)} ↪→ (Cc(B,H∞))n.

For each f ∈ C∞(B, H∞) ⊃ C∞
c (B, H∞), consider the mapping

E
T−→ C

(L∗
1,0ψ, ...,L∗

n,0ψ) �−→
∫
B

(ψ(t), f(t))0dt .

Due to (7.1), T is well defined and it is continuous, that is,

|T (L∗
1,0ψ, ...,L∗

n,0ψ)| ≤ C3

n∑
j=1

sup
t∈B

‖L∗
j,0ψ(t)‖0.

By Hahn–Banach theorem, there exists a continuous linear functional T̃ : (Cc(B, H∞))n −→ C which is an 
extension of T , that is, T̃ = (T̃1, ..., T̃n) ∈

(
D′0(B, H−∞)

)n
↪→
(
D′(B, H−∞)

)n.
Therefore,

< L1,0T̃1 + ... + Ln,0T̃n , ψ > =
n∑

j=1
< T̃j ,L∗

j,0 ψ >

= T̃ (L∗
1,0ψ, ...,L∗

n,0ψ)

= T (L∗
1,0ψ, ...,L∗

n,0ψ)

=
∫
B

(ψ(t), f(t))0dt

= < f, ψ >, ∀ψ ∈ C∞
c (B,H∞) .

We now prove the sufficiency when n = 1. Indeed, conditions (ψ1) and (ψ′
1) on J are equivalent to the 

following property (see [8], page 208):

• (ψ′′
1 ) There is a point T0 in the closure of J such that, for every t ∈ J and for every s ∈ J belonging to 

the interval joining t to T0, we have

φ0(t) − φ0(s) ≤ 0.

Suppose that (ψ′′
1 ) holds. Then, a solution of the equation

∂tu− (∂tφ0)(t)Au = f in J,

with an arbitrary f ∈ C∞
c (J, H∞), is given by

u(t) =
t∫

T0

e(φ0(t)−φ0(s))Af(s)ds ∈ C∞(J,H∞).
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8. Necessity of Theorem 5.1

Lemma 8.1. If [S0]1 is satisfied, then for any compact K ⊂ B, there exists an integer M ≥ 0 and a constant 
C > 0 such that, ∀u, f ∈ C∞

c (K, H∞),

∣∣∣∣
∫

(f(t), u(t))0dt
∣∣∣∣ ≤ C

(
sup
t∈K

∑
l+|β|≤M

‖Al∂β
t f(t) ‖0

)(
n∑

j=1
sup
t∈K

∑
l+|β|≤M

‖Al∂β
t L∗

j,0u(t) ‖0

)
. (8.1)

Proof. Consider the bilinear mapping

C∞
c (K,H∞) × C∞

c (K,H∞) J−→ C

(f, u) �−→
∫ (

f(t), u(t)
)
0dt .

We know that C∞
c (K, H∞), equipped with the seminorms

sup
t∈K

∑
l+|β|≤M

‖ Al∂β
t f(t) ‖0,

is a Fréchet space and that it is a metrizable space under the seminorms

n∑
j=1

sup
t∈K

∑
l+|β|≤M

‖ Al∂β
t L∗

j,0u(t) ‖0 .

For fixed u, f �−→ J(f, u) is continuous.
For fixed f , by hypothesis there exist vj ∈ D′(B, H−∞), j = 1, ..., n, such that 

∑
Lj,0vj = f . This yields

∣∣∣∣
∫ (

f(t), u(t)
)
0dt

∣∣∣∣ ≤ C(K)
n∑

j=1
sup
t∈K

∑
l+|β|≤M

‖ Al∂β
t L∗

j,0u(t) ‖0 .

So u �−→ J(f, u) is continuous. From the classical functional analysis theory, J is continuous in both 
variables. This proves (8.1). �

We now prove the necessity of condition (ψ1) on B.
We are going to show that, if (ψ1) does not hold on B, then (8.1) cannot hold either, for some compact 

K ⊂ B, whatever the integer M ≥ 0 and the constant C > 0.
Assuming that (ψ1) does not hold on B, we can find a compact K1 in B, 

◦
K1 �= ∅, such that

min
K1

φ0︸ ︷︷ ︸
.=φ0(t0)

< min
∂K1

φ0.

Let us set

α0(t0, t)
.= φ0(t) − min

K1
φ0, t ∈ K1.

Then we have
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α0(t0, t) > 0, t ∈ ∂K1,

α0(t0, t) ≥ 0, t ∈ K1.

Due to the continuity of α0 in B we can find a compact K, K1 ⊂ K ⊂ B, K �= K1, such that α0(t0, t) ≥ 0, 
∀t ∈ K. We select a function g ∈ C∞, g(t) ≥ 0, with compact support in K, equal to one in K1 and such 
that, for a suitable constant c > 0,

α0(t0, t) ≥ c > 0 whenever ∇g(t) �= 0. (8.2)

Observe that, given any u0 ∈ H∞, the function

h(t) = e−α0(t0,t)Au0

is a solution of the homogeneous equation −L∗
j,0h = 0. Consequently,

−L∗
j,0
(
gh
)

=
(
∂tjg
)
h. (8.3)

We use the spectral resolution dEλ of the operator A and consider a point, which we denote by τ2, 
towards +∞ in the spectrum of A. We shall denote by Πτ the spectral projector of A corresponding to the 
interval

Jτ =
{
λ ∈ R+ : |λ− τ2| ≤ τ

}
,

that is to say,

Πτ =
∫
Jτ

dE(λ) .

We choose u0,τ ∈ H∞ such that

‖u0,τ‖0 = 1, Πτu0,τ = u0,τ .

Note that such an element u0,τ always exists. Indeed, we know that there exists u1(τ) ∈ H such that 
u1(τ) = Πτu1(τ) �= 0. We may then take, for some ε > 0,

u0,τ = e−εAu1(τ)/‖e−εAu1(τ)‖0.

Note that

h(t) = e−α0(t0,t)Au0 =
∫
Jτ

e−α0(t0,t)λdE(λ)u0 . (8.4)

We apply (8.1) with u = gh and f = F
(
τ(t − t0)

)
u0,τ , where F is a non-negative C∞ function on Rn, 

vanishing for |t| > 1 and equal to 1 for t = 0. Note that suppF ⊂ K, for large τ .
From our choice of u0,τ we derive at once (τ is large)

∥∥Alu0,τ
∥∥

0 =
∥∥AlΠτu0,τ

∥∥
0 =
(∫

Jτ

λ2ld‖E(λ)u0,τ‖2
0

)1/2

≤ (τ2 + τ)l‖Πτu0,τ‖0 ≤ 2lτ2l,
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whence

sup
t∈K

∑
l+|β|≤M

∥∥Al∂β
t f(t)

∥∥
0 = C ′

M τ2M .

And if we combine (8.2), (8.3) and (8.4) (taking into account the definition of Jτ ), we get

n∑
j=1

sup
t∈K

∑
l+|β|≤M

‖Al∂β
t L∗

j,0u(t)‖0 ≤ C ′′
Mτ2M e−c(τ2−τ) , for large τ .

Thus, if (8.1) is valid, we should have (for large τ)∣∣∣∣
∫

(u(t), f(t))0dt
∣∣∣∣ ≤ CMτ4Me−cτ2/2. (8.5)

On the other hand, ∫
(u(t), f(t))0dt = 1

τn

∫
|s|≤1

∫
Jτ

e−α0(t0,t0+s/τ)λd‖E(λ)u0,τ‖2
0F (s)ds .

But, if s ∈ suppF (hence |s| ≤ 1),

0 ≤ α0

(
t0, t0 + s

τ

)
≤ C1τ

−2 .

Therefore, for a suitable constant c′ > 0 and all sufficiently large τ ,
∣∣∣ ∫ (u(t), f(t)

)
0dt
∣∣∣ ≥ 1

τn
e−C1(1+ 1

τ )
∫

F (s)ds︸ ︷︷ ︸
>0

∫
Jτ

d‖E(λ)u0,τ‖2
0

︸ ︷︷ ︸
‖Πτu0,τ‖2

0=1

≥ c′τ−n

and this contradicts (8.5).

9. A more precise result of the local solvability of the underdetermined system

In this section we write ||v||s,B′ = sup
t∈B′

||v(t)||s, where B′ is an open subset whose compact closure is 

contained in B = {t ∈ R
n : |t| < R}. We recall the following well known lemma:

Lemma 9.1. Let ω be an open subset of Rn and let Φ be a real C∞ function in ω. Suppose that there exist 
M > 0 and 0 ≤ θ < 1 such that

|∇Φ| ≥ M |Φ|θ in ω. (9.1)

Define Σ = {t ∈ ω | ∇Φ(t) = 0} and consider, for each t ∈ ω \ Σ, the solution γt(τ) of{
γ̇t = − ∇Φ

|∇Φ| (γt)
γt(0) = t

defined in [0, δ(t)[. Then there exists a C > 0 and σ ≥ 1 such that

Φ(t) − Φ(γt(τ)) ≥ Cτσ, ∀τ ∈ [0, δ(t)[.
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Remarks. The inequality above implies that δ(t) is uniformly bounded in ω. There exists the limit

lim
τ→δ(t)−

γt(τ) .= l(t) ∈ ∂ω ∪ Σ

for each t ∈ ω \ Σ. Furthermore, if l(t) ∈ Σ then Φ(t) > 0.

Proposition 9.2. Let L∗
0 = −(dt + d(φ0)A) be defined on B and suppose that the real analytic function φ0

satisfies (ψ1) and (9.1) on B. Then, for every ε > 0 there exist B′ ⊂⊂ B and a constant C ′ = C ′(B′) > 0
such that

||v||ε,B′ ≤ C ′||L∗
0v||0,B′ , ∀v ∈ C∞

c (B′, H∞).

Proof. Let u ∈ C∞
c (B, H∞) and consider B′ ⊂⊂ B and t ∈ B′ \ Σ. We study two cases:

First case: l(t) ∈ ∂B.
We know that

−eφ0(t)Au(t) =
∫
γt

ds(eφ0(s)Au(s))

=
∫
γt

eφ0(s)AL∗
0u(s)ds.

Hence,

Aεu(t) = −
∫
γt

Aεe(φ0(s)−φ0(t))AL∗
0u(s)ds.

Taking Lemma 9.1 into account, we have

||u(t)||ε ≤
∫
γt

||Aεe(φ0(s)−φ0(t))AL∗
0u(s)||0|ds|

≤ C1 sup
s∈γt

||L∗
0u(s)||0 length(γt)

≤ C1||L∗
0u||0,B length(γt) , ∀t ∈ B′ \ Σ.

As φ0 has no local minimum, Σ has empty interior and then

||u||ε,B′ ≤ C ′||L∗
0u||0,B .

Therefore,

||v||ε,B′ ≤ C ′||L∗
0v||0,B′ , ∀v ∈ C∞

c (B′, H∞).

Second case: l(t) ∈ Σ (φ0(t) > 0).
We choose t0 arbitrarily close to l(t) satisfying:

• φ0(t0) < 0 (φ0 has no local minimum).
• t0 ∈ V , where V is an open convex neighborhood of l(t) in which φ0(s) < φ0(t), ∀s ∈ V .
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Notice that

eφ0(t)Au(t) = {eφ0(t)Au(t) − eφ0(l(t))Au(l(t))} + {eφ0(l(t))Au(l(t)) − eφ0(t0)Au(t0)} + eφ0(t0)Au(t0).

Using

eφ0(t)Au(t) − eφ0(l(t))Au(l(t)) = −
∫
γt

eφ0(s)AL∗
0u(s)ds

we have

u(t) = −
∫
γt

e(φ0(s)−φ0(t))AL∗
0u(s)ds + e−φ0(t)A{eφ0(l(t))Au(l(t)) − eφ0(t0)Au(t0)}

+ e(φ0(t0)−φ0(t))Au(t0).

To estimate ||u(t)||ε we estimate the following terms:

1. ∣∣∣∣
∣∣∣∣
∫
γt

Aεe(φ0(s)−φ0(t))AL∗
0u(s)ds

∣∣∣∣
∣∣∣∣
0
≤ C2 sup

s∈γt

||L∗
0u(s)||0 length(γt), (9.2)

as in the first case.
2.

||Aεe(φ0(t0)−φ0(t))Au(t0)||0 .

As l(t) ∈ Σ, it follows that φ0(t0) < 0 < φ0(t). Thus,

||Aεe(φ0(t0)−φ0(t))Au(t0)||0 ≤ C3||u(t0)||0 . (9.3)

3.

||Aεe−φ0(t)A{eφ0(l(t))Au(l(t)) − eφ0(t0)Au(t0)}||0 .

By the choice of t0 it follows that φ0(s) < φ0(t), ∀s ∈ [l(t), t0]. We use

eφ0(l(t))Au(l(t)) − eφ0(t0)Au(t0) = −
∫

s∈[l(t),t0]

eφ0(s)AL∗
0u(s)ds.

Thus, we get

||Aεe−φ0(t)A{eφ0(l(t))Au(l(t)) − eφ0(t0)Au(t0)}||0 ≤
∫

s∈[l(t),t0]

||Aεe(φ0(s)−φ0(t))AL∗
0u(s)||0|ds|

≤ C4 sup
s∈[l(t),t0]

||L∗
0u(s)||0 |t0 − l(t)|. (9.4)
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Adding the estimates (9.2), (9.3) and (9.4), we obtain, ∀t ∈ B′ \ Σ,

||u(t)||ε ≤ C2 sup
s∈B

||L∗
0u(s)||0 length(γt) + C3 sup

s∈B
||u(s)||0 + C4 sup

s∈B
||L∗

0u(s)||0 |t0 − l(t)| .

Since t0 is arbitrarily close to l(t), it follows that

||u(t)||ε ≤ C2 sup
s∈B

||L∗
0u(s)||0 length(γt) + C3 sup

s∈B
||u(s)||0, ∀t ∈ B′ \ Σ.

As φ0 has no local minimum, Σ has empty interior and then

||u||ε,B′ ≤ C5(||L∗
0u||0,B + ||u||0,B).

Hence,

||v||ε,B′ ≤ C5(||L∗
0v||0,B′ + ||v||0,B′) , ∀v ∈ C∞

c (B′, H∞).

If necessary, we can take a small enough B′ such that

||v||0,B′ ≤ 1
C5 + 1 ||v||ε,B

′ .

Therefore,

||v||ε,B′ ≤ C ′||L∗
0v||0,B′ , ∀v ∈ C∞

c (B′, H∞). �
Proposition 9.3. Let L∗

0 = −(dt + d(φ0)A) be defined on B. Suppose that for every ε > 0 there exists a 
B′ ⊂⊂ B and C ′ = C ′(B′) > 0 such that

||v||ε,B′ ≤ C ′||L∗
0v||0,B′ , ∀v ∈ C∞

c (B′, H∞).

Then, for every s ∈ R and every ε > 0 we have

||v||s+ε,B′ ≤ C ′||L∗
0v||s,B′ , ∀v ∈ C∞

c (B′, H∞). (9.5)

Proof.

||v||s+ε,B′ = ||Asv||ε,B′

≤ C ′||L∗
0A

sv||0,B′

= C ′||L∗
0v||s,B′ , ∀v ∈ C∞

c (B′, H∞). �
Remark. (9.5) can be written as

sup
t∈B′

||v(t)||s+ε ≤ C ′
n∑

j=1
sup
t∈B′

||L∗
j,0v(t)||s. (9.6)

Proposition 9.4. Suppose that for every s ∈ R and every ε > 0 there exist B′ ⊂⊂ B and C ′ = C ′(B′) > 0
such that

||v||s+ε,B′ ≤ C ′||L∗
0v||s,B′ , ∀v ∈ C∞

c (B′, H∞).
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Then, for every s ∈ R, every ε > 0 and every f ∈ C∞
c (B′, Hs), there exists a uj ∈ D′0(B′, Hs+ε), j = 1, ..., n, 

such that

n∑
j=1

Lj,0uj = f.

Proof. Define, with the topology induced by (Cc(B′, H−s−ε))n, the subspace

E = {(L∗
1,0ψ, ...,L∗

n,0ψ) : ψ ∈ C∞
c (B′, H∞)} ↪→ (Cc(B′, H−s−ε))n.

For each f ∈ C∞
c (B′, Hs), consider the mapping

E
T−→ C

(L∗
1,0ψ, ...,L∗

n,0ψ) �−→
∫
B′

(A−sψ(t), Asf(t))0dt .

Due to (9.6), T is well defined and it is continuous, that is,

|T (L∗
1,0ψ, ...,L∗

n,0ψ)| ≤
∫
B′

||Asf(t)||0dt sup
t∈B′

||ψ(t)||−s

≤ CC ′
n∑

j=1
sup
t∈B′

‖L∗
j,0ψ(t)‖−s−ε.

By Hahn–Banach theorem, T admits a continuous extension u : (Cc(B′, H−s−ε))n −→ C, that is, it admits 
uj ∈ D′0(B′, Hs+ε), j = 1, ..., n, such that

< L1,0u1 + ... + Ln,0un , ψ > =
n∑

j=1
< uj ,L∗

j,0 ψ >

= u(L∗
1,0ψ, ...,L∗

n,0ψ)

= T (L∗
1,0ψ, ...,L∗

n,0ψ)

=
∫
B′

(A−sψ(t), Asf(t))0dt

= < f, ψ >, ∀ψ ∈ C∞
c (B′, H∞) . �

Remark. Propositions 9.2, 9.3 and 9.4 are valid if φ0 is a real C∞ function satisfying (ψ1) and (9.1) on B.

10. Finite order regularity solutions of Theorem 5.1

Define Δ = L2
1,0 + ... + L2

n,0 −A2. Then Δ = Δ0 + Q, where Δ0 =
∑n

j=1 ∂
2
tj −A2 and

Q =
n∑

j=1

{
− ∂2

tjφ0(t)A− 2∂tjφ0(t)A∂tj + (∂tjφ0(t))2A2
}
.

Proposition 10.1. There exists an open set U ⊂⊂ B, 0 ∈ U , such that, for some C > 0, we have

|||u|||2 ≤ C(|||Δu|||0 + |||u|||0), ∀u ∈ C∞
c (U,H∞).
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Proof. We may assume ∇φ0(0) = 0. If u ∈ C∞
c (B, H∞), then

|||Δ0u|||20 = 1
(2π)n

∫
Rn

||F (Δ0u)(τ)||20dτ

= 1
(2π)n

∫
Rn

||(|τ |2 + A2)F (u)(τ)||20dτ

≥ 1
2 |||u|||22 − |||u|||20 .

Thus,

|||u|||22 ≤ 4|||Δu|||20 + 4|||Qu|||20 + 2|||u|||20 . (10.1)

Given ε > 0 there exists an open neighborhood of the origin U ⊂⊂ B such that |∂tjφ0(t)| ≤ ε, ∀t ∈ U , 
∀j = 1, ..., n. It follows that there exists a constant M > 0 such that |∂2

tjφ0(t)| ≤ M , ∀t ∈ U , ∀j = 1, ..., n. 
If u ∈ C∞

c (U, H∞), then

|||Qu|||20 =
∫
Rn

||Qu(t)||20dt

≤
n∑

j=1

(
4
∫
Rn

||∂2
tjφ0(t)Au(t)||20dt + 4

∫
Rn

||2∂tjφ0(t)∂tjAu(t)||20dt +

2
∫
Rn

||(∂tjφ0(t))2A2u(t)||20dt
)

≤ 4nM2|||u|||21 + 6nε2|||u|||22.

Using this estimate in (10.1) we obtain

|||u|||22 ≤ 4|||Δu|||20 + 16nM2|||u|||21 + 24nε2|||u|||22 + 2|||u|||20. (10.2)

By Gagliardo’s inequality, there exists M ′ > 0, depending on ε, such that

|||u|||21 ≤ 2ε2|||u|||22 + 2M ′2|||u|||20 .

Combining this estimate and (10.2) it follows that

|||u|||22 ≤ 4|||Δu|||20 + (32nM2ε2 + 24nε2)|||u|||22 + (32nM2M ′2 + 2)|||u|||20 .

If we now choose ε such that (32nM2 + 24n)ε2 < 1, we finally prove the proposition. �
Lemma 10.2. For every open set V ⊂⊂ U , for every s ∈ R, there exists C = C(s, V ) > 0 such that

|||v|||s+2 ≤ C(|||Δv|||s + |||v|||s), ∀v ∈ C∞
c (V,H∞). (10.3)

Proof. Let V ⊂⊂ U be an open set and let also χ ∈ C∞
c (U) be identically equal to one in V . For a real 

number s and for v ∈ C∞
c (V, H∞), we obtain
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|||v|||s+2 = |||Λs(χv)|||2
≤ |||χΛsv|||2 + |||[Λs, χ]v|||2
≤ |||χΛsv|||2 + C1|||v|||s+1.

If we apply Proposition 10.1, we obtain

|||v|||s+2 ≤ C0|||Δ(χΛsv)|||0 + C2|||v|||s+1.

Since Δ(χΛs) = ΛsΔχ + [Δχ, Λs], where [Δχ, Λs] is an operator of order s + 1, it follows that

|||v|||s+2 ≤ C0|||ΛsΔ(χv)|||0 + C3|||v|||s+1

= C0|||Δ(χv)|||s + C3|||v|||s+1

≤ C4(|||Δv|||s + |||v|||s+1). (10.4)

By Gagliardo’s inequality, there exists M > 0, depending on C4, such that

|||v|||s+1 ≤ 1
C4 + 1 |||v|||s+2 + M |||v|||s.

Using this estimate in (10.4), we prove the assertion. �
Lemma 10.3. Let V be an open set such that V ⊂⊂ U . If u ∈ H s+1

loc (V ) is such that Δu ∈ H s
loc(V ), then 

u ∈ H s+2
loc (V ).

Proof. Let W ⊂⊂ V be an open set and let θ ∈ C∞
c (V ) be identically equal to one in W . It will suffice to 

show that θu ∈ H s+2.
Let Bε = e−εAρε ∗ ·, where {ρε} is the usual family of mollifiers in Rn. As in the classical theory, we have 

Bε(θu) → θu in H s+1 as ε → 0 and also

ΔBε(θu) = BεΔ(θu) + [Δ, Bε](θu) ε→0−→ Δ(θu) in H s

by Friedrich’s lemma, since Δ(θu) ∈ H s. Thus, if we take εn → 0 and if we apply (10.3) for v = Bεm(θu) −
Bεn(θu), we conclude that {Bεn(θu)} is a Cauchy sequence in H s+2. Hence, θu ∈ H s+2. �
Proposition 10.4. Let s ∈ R. If u ∈ D′(U, H−∞) is such that Δu ∈ H s

loc(U), then u ∈ H s+2
loc (U).

Proof. Let u ∈ D′(U, H−∞) and let s ∈ R. Let also V ⊂⊂ U be an open set. As in the classical theory 
of distributions, we can find l ∈ Z+ such that u

∣∣
V

∈ H s−l+1
loc (V ). Since Δu

∣∣
V

∈ H s−l
loc (V ), if we apply 

Lemma 10.3 replacing u and s by u
∣∣
V

and s − l, respectively, we obtain u
∣∣
V
∈ H s−l+2

loc (V ). By an iteration 
process, it follows that u

∣∣
V
∈ H s+2

loc (V ). Therefore, u ∈ H s+2
loc (U). �

Lemma 10.5. For N ≥ 1, ΔN is hypoelliptic in U .

Proof. Let u ∈ D′(U, H−∞) such that Δu ∈ C∞(U, H∞). By Proposition 10.4, u ∈ H s+2
loc (U), for every s. 

Therefore, u ∈ C∞(U, H∞). By induction on N , ΔN is hypoelliptic in U . �
Lemma 10.6. For every open set V ⊂⊂ U , for every s ∈ R and for every M ≥ 0, there exists C ′ = C ′(s, V ) >
0 such that

|||v|||s+2 ≤ C ′(|||Δv|||s + |||v|||s−M ), ∀v ∈ C∞
c (V,H∞). (10.5)
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Proof. Let ε < 1/C. By Gagliardo’s inequality there exists M ′ = M ′(ε) > 0 such that

|||v|||s ≤ ε|||v|||s+2 + M ′|||v|||s−M , ∀v ∈ C∞
c (V,H∞).

Combining this estimate and (10.3), we prove the lemma. �
Lemma 10.7. For every open set V ⊂⊂ U , for every s ∈ R and for every N ∈ Z

∗
+, there exists C =

C(s, N, V ) > 0 such that

|||v|||s+2N ≤ C(|||ΔNv|||s + |||v|||s), ∀v ∈ C∞
c (V,H∞). (10.6)

Proof. By an iteration process using (10.5) we obtain

|||v|||s+2N ≤ C ′N |||ΔNv|||s + C ′N |||ΔN−1v|||s−M + C ′N−1|||ΔN−2v|||s+2−M +

C ′N−2|||ΔN−3v|||s+4−M + · · · + C ′2|||Δv|||s+2(N−2)−M + C ′|||v|||s+2(N−1)−M .

We now choose M = 2(N − 1). It follows that

|||v|||s+2N ≤ C ′N |||ΔNv|||s + C ′N |||ΔN−1v|||s−2(N−1) + C ′N−1|||ΔN−2v|||s−2(N−2) +

C ′N−2|||ΔN−3v|||s−2(N−3) + · · · + C ′2|||Δv|||s−2 + C ′|||v|||s.

But for every k = 1, 2, 3, ..., N − 1, Δk is a continuous operator from H s into H s−2k. The proof is 
complete. �
Lemma 10.8. For every s ∈ R, for every N ∈ Z

∗
+ and for every t0 ∈ U , there exists a neighborhood ωs,N of 

t0 such that for some constant C1 = C1(s, N) > 0,

|||v|||s+2N ≤ C1|||ΔNv|||s, ∀v ∈ C∞
c (ωs,N , H∞).

Proof. Let us suppose that there exist s ∈ R, N ∈ Z
∗
+ and t0 ∈ U , which can be translated to the origin, 

such that for all sufficiently large j ∈ N, there exists vj ∈ C∞
c (B1/j(0), H∞) such that

|||vj |||s+2N > j |||ΔNvj |||s.

Writing uj = vj/|||vj |||s+2N , we obtain

uj ∈ C∞
c (B1/j(0), H∞), |||uj |||s+2N = 1, |||ΔNuj |||s < 1/j.

From the equality, we conclude that a subsequence of uj converges weakly in H s+2N (B1(0)), hence, it 
converges in H s(B1(0)) to some u ∈ H s(B1(0)), which means that ΔNujl −→ ΔNu in the sense of 
distributions. From the inequality we obtain ΔNujl −→ 0 in H s(B1(0)). Thus, ΔNu = 0 is such that 
suppu = {0}. Therefore u = 0.

On the other hand, by (10.6), it follows that

|||ujl |||s+2N = 1 ≤ C(|||ΔNujl |||s + |||ujl |||s),

such that |||ΔNujl |||s −→ 0 and |||ujl |||s −→ 0, which is a contradiction. �
Proposition 10.9. Given M ∈ Z and N ∈ Z

∗
+ there exists a neighborhood ω of the origin such that, given 

f ∈ H M (ω), there exists u ∈ H 2N+M (ω) satisfying ΔNu = f in ω.
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Proof. If Δ∗ denotes the formal adjoint of Δ, then we may find an analogous estimate to that in Propo-
sition 10.1. Thus, as obtained in Lemma 10.8, there exists a neighborhood ω = ωM,N of the origin such 
that

|||φ|||−M ≤ C ′|||Δ∗Nφ|||−2N−M , ∀φ ∈ C∞
c (ω,H∞). (10.7)

Define, with the norm induced by H −2N−M (ω), the subspace

E = Δ∗N (C∞
c (ω,H∞)) ⊂ C∞

c (ω,H∞) ⊂ H −2N−M (ω).

We now consider the mapping

E
T−→ H −M (ω)

Δ∗Nφ �−→ φ.

Due to (10.7), T is well defined and it is continuous. Therefore, T admits a continuous linear extension 
F : H −2N−M (ω) → H −M (ω), since E is a subspace of the Hilbert space H −2N−M (ω) and H −M (ω) is a 
Banach space.

Let the transpose of F be the map G : H M (ω) → H 2N+M (ω). For f ∈ H M (ω) and φ ∈ C∞
c (ω, H∞), 

we obtain

< ΔNGf, φ > = < f, FΔ∗Nφ > = < f, φ > . �
Theorem 10.10. Δ is analytic-hypoelliptic in U .

Before the proof, we note that it follows from Lemma 10.5 that u ∈ C∞(U, H∞). Since the statement of 
the theorem is local, it is sufficient to prove that every point in U has an open neighborhood ω where u is 
analytic. In view of Lemma 10.8, we may take ω ⊂⊂ U so small such that

|||∂α
t A

lv|||0 ≤ C ′|||Δv|||0, |α| + l ≤ 2, ∀v ∈ C∞
c (ω,H∞). (10.8)

We denote by ωε the open set of points in ω at distance > ε from the complementary of ω, and introduce 
the notation

Nε(u) =
(∫
ωε

||u(t)||20dt
) 1

2
.

Lemma 10.11. With a constant C, independent of v, ε and ε1, we have

ε|α|+lNε+ε1(∂α
t A

lv) ≤ C
(
ε|α|+lNε1(Δv) +

∑
|β|+l<2

ε|β|+lNε1(∂
β
t A

lv)
)
, (10.9)

if |α| + l ≤ 2 and v ∈ C∞(ω, H∞).

Proof. We can choose φ ∈ C∞
c (ωε1) such that φ = 1 in ωε+ε1 and

|∂α
t φ| ≤ Cαε

−|α| (10.10)

for suitable constants Cα independent of ε and ε1.
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Using (10.8) and (10.10) we obtain, if |α| + l ≤ 2,

Nε+ε1(∂α
t A

lv) ≤ |||∂α
t A

l(φv)|||0 ≤ C ′|||Δ(φv)|||0

≤ C
(
Nε1(Δv) + ε−2Nε1(v) + ε−1

n∑
j=1

Nε1(∂tjv) + ε−1Nε1(Av)
)
.

If we multiply by ε2, the estimate (10.9) follows when |α| + l = 2, and it is trivial if |α| + l < 2. �
Proof of Theorem 10.10. Choose a small open set ω ⊂⊂ U such that Lemma 10.11 is valid and that ∫
ω
dt < 1.
Writing ci = sup

t∈ω
|∂α

t ∂
2
tiφ0(t)| + 2 sup

t∈ω
|∂α

t ∂tiφ0(t)| + sup
t∈ω

|∂α
t (∂tiφ0(t))2| we have, by hypothesis for some 

constant D,

n∑
i=1

ci ≤ D|α|+1 |α|! .

This implies that

ε|α|
n∑

i=1
ci ≤ D|α|+1 |α|! j−|α|, (10.11)

where the supremum in the formula of ci is now taken over ωjε and such that jε < 1 is sufficiently small.
The analyticity of f = Δu means that

sup
ω

||∂α
t A

lf ||0 ≤ D|α|+l+1(|α| + l)|α|+l ,

for some constant D. And this implies that

ε|α|+l sup
ω|α|ε

||∂α
t A

lf ||0 ≤ D|α|+l+1 , (10.12)

(|α| + l)ε < 1.
We now claim that there exists a constant C1 such that for every ε > 0 and every integer j > 0, we have

ε|α|+lNjε(∂α
t A

lu) ≤ C
|α|+l+1
1 if |α| < 2 + j. (10.13)

It is easy to verify that this is true when j = 1. Assuming that (10.13) is proved for one value of j, we shall 
show that (10.13) follows with j replaced by j +1. To do so we only have to estimate the derivatives ∂α

t A
lu

with |α| = 2 + j. We can write α = α′ + α′′ where |α′| = j and |α′′| = 2. Applying ∂α′
t Al to Δu = f gives

Δ∂α′

t Alu = ∂α′

t Alf + g , (10.14)

where

g =
n∑

i=1

∑
0<γ≤α′

(
α′

γ

)(
∂γ
t ∂

2
tiφ0(t)∂α′−γ

t Al+1u + 2∂γ
t ∂tiφ0(t)∂α′+ei−γ

t Al+1u

− ∂γ
t (∂tiφ0(t))2∂α′−γ

t A2+lu
)
;
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here ei = (0, ...0, 1, 0, ..., 0), where 1 is at the i-th position. We can estimate the right-hand side of g by 
means of (10.13). In view of (10.11) and the fact that

∑
|γ|=k,γ≤α′

(
α′

γ

)
=
(
j

k

)
,

we obtain

ε2+j+lNjε(g) ≤
j∑

k=1

(
j

k

)
Dk+1k!j−kCj+2+l−k+1

1

≤
j∑

k=1

Dk+1Cj+2+l−k+1
1 ≤ 2D2Cj+2+l

1

if C1 > sup (2D, 1). If we use this estimate and (10.12) in (10.14), it follows that

ε2+j+lNjε(Δ∂α′

t Alu) ≤ Dj+l+1 + 2D2Cj+2+l
1 (10.15)

if C1 > sup (2D, 1).
We now apply Lemma 10.11 to ∂α′

t u with ε1 = jε and α replaced by α′′. In view of (10.15) and (10.13), 
we then obtain

ε|α
′+α′′|+lN(j+1)ε(∂α′+α′′

t Alu) ≤ C(Dj+l+1 + 2D2Cj+2+l
1 + C2C

2+j
1 )

where C2 =
∑

|β|+l<2

1. Hence (10.13) follows with j replaced by j + 1 provided that

C(Dj+l+1 + 2D2Cj+2+l
1 + C2C

2+j
1 ) ≤ C2+j+l+1

1 .

This condition is fulfilled for every j if C1 > sup(2D, 1, C(1 + 2D2 + C2)). Thus the proof of (10.13) is 
completed.

Now it follows from (10.13) that u is analytic in ω. In fact, let K be a compact subset of ω and choose 
c > 0 so that K ⊂ ωc. Setting j = |α| and ε = c/j in (10.13), we then obtain

Nc(∂α
t A

lu) ≤ C
|α|+l+1
1 (|α|/c)|α|+l.

Application of

sup
t∈K

||Alu(t)||20 ≤ C ′
∑
|β|≤n

∫
ωc

||∂β
t A

lu(t)||20dt (10.16)

with u replaced by ∂α
t u gives, with a constant C,

sup
t∈K

||∂α
t A

lu(t)||0 ≤ C(C1/c)|α|+l(|α| + l + n)(|α|+l+n).

The right-hand side can be estimated by C|α|+l+1(|α| + l)! for some constant C, which proves the analyticity 
of u.

For a proof of (10.16), see [5], page 109. �
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Lemma 10.12. For N ≥ 1, ΔN is analytic-hypoelliptic in U .

Proof. By induction on N . �
11. Sufficiency of Theorem 1.4

By hypothesis, there exists an open ball B′ centered at the origin such that ψ1 holds on B′. Applying 
Theorem 5.1, for every f ∈ C∞

c (B′, H∞), there exist u(N)
j ∈ D′0(B′, H−∞), j = 1, ..., n, such that

n∑
j=1

Lj,0 u
(N)
j = ΔNf in B′.

From the fact that the distributions u(N)
j are of order zero, if the integer M is such that

M >
n

2 (11.1)

then:

• we can choose an open ball, centered at the origin, ΩN
.= BN (0) ⊂⊂ B′ satisfying Lemma 10.8. In the 

equation above we take the restrictions of u(N)
j , j = 1, ..., n, and of f to BN (0). Relabeling them, we get

n∑
j=1

Lj,0 u
(N)
j = ΔNf in BN (0), (11.2)

where u(N)
j ∈ D′0(BN (0), H−∞), j = 1, ..., n, and f ∈ C∞(BN (0), H∞).

• u
(N)
j ∈ H −M (BN (0)).

Due to Proposition 10.9, there exists, for each j, v(N)
j ∈ H 2N−M (BN (0)) satisfying

ΔNv
(N)
j = u

(N)
j . (11.3)

If we take

2N −M > k + n

2 , (11.4)

it follows that H 2N−M (BN (0)) ⊂ Ck(BN (0), Hk). From (11.1) and (11.4), if N > n+k
2 then, for each j, 

v
(N)
j ∈ Ck(BN (0), Hk). Combining (11.2) and (11.3), we obtain

ΔN
( n∑

j=1
Lj,0 v

(N)
j − f

)
= 0.

Applying Lemma 10.12, it follows that there exists gN ∈ A (BN (0), Hw) such that

n∑
j=1

Lj,0 v
(N)
j − f = gN . (11.5)

But we can choose a small ball ωN
.= BN (̇0) ⊂⊂ BN (0) such that the function
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hN (t) =
t1∫

0

e(φ0(t1,t2,...,tn)−φ0(s1,t2,...,tn))AgN (s1, t2, ..., tn)ds1 ∈ A (BN (̇0), Hw)

is a solution of the equation

L1,0 hN = gN in BN (̇0). (11.6)

In fact, by hypothesis, gN ∈ C∞(BN (0), Eσ) for some σ > 0. We have to prove that hN ∈ C∞(BN (̇0), Eσ′)
for some σ′ > 0, for some BN (̇0) ⊂⊂ BN (0). Let 0 < σ′ < σ. It suffices to choose BN (̇0) in order to have

0 < σ′ + φ0(t1, t2, ..., tn) − φ0(s1, t2, ..., tn) < σ.

Finally, from (11.5) and (11.6), we obtain

L1,0 (v(N)
1 − hN ) + L2,0v

(N)
2 + ... + Ln,0v

(N)
n = f in BN (̇0).

12. Necessity of Theorem 1.4

By hypothesis, (1.1) is fulfilled. By Lemma 4.3, there exists an open ball BN (̇0) ⊂ BN (0) such that for 
every g ∈ C∞

c (BN˙̇(0), H∞) there exist vj ∈ D′(BN˙̇(0), H∞), j = 1, ..., n, such that

L1,0v1 + . . . + Ln,0vn = g in BN˙̇(0).

Applying Theorem 5.1, ψ1 holds on BN˙̇(0). Therefore, ψ1 holds at 0.

13. Corollary

As a consequence of Theorem 1.4, we have

Corollary 13.1. Condition (ψ2) at 0 is necessary and sufficient to solve the equation

L∗
1,0u

(N)
1 + . . . + L∗

n,0u
(N)
n = f in ωN .

Proof. In fact, setting χ0 = −φ0, it follows that

−L∗
j,0 = ∂tj − ∂tjχ0(t)A and min

K
χ0 = min

∂K
χ0, ∀ compact K of B. �

14. General case

Let H be a Hilbert space and let A be a linear operator, densely defined in H, unbounded, but self-adjoint.
Let (Eλ), −∞ < λ < ∞, be a spectral resolution of A.
For ε > 0, we consider three orthogonal projections of H defined by the operators E−ε, Eε − E−ε and 

I − Eε, and their correspondent spaces H− = E−εH, H0 = (Eε − E−ε)H and H+ = (I − Eε)H, that are 
Hilbert spaces, since they are closed in H. These spaces are two by two orthogonal and they define H by 
H = H− ⊕H0 ⊕H+. Let A− be the restriction of A to the elements of its domain that are in H−; in H−, 
the operator A− is self-adjoint, negative definite and has a bounded inverse. Let A0 be the restriction of 
A to the elements of H0; in H0, the operator A0 is self-adjoint and bounded. At long last, let A+ be the 
restriction of A to the elements of its domain that are in H+; in H+, the operator A+ is self-adjoint, positive 
definite and has a bounded inverse. Those three operators determine the operator A by A = A− +A0 +A+.
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As −A− is a self-adjoint operator, positive definite and has a bounded inverse in H−, we may define 
the family of “Sobolev” spaces Hs

−, for s ∈ R. Once A+ is a self-adjoint operator, positive definite and 
has a bounded inverse in H+, we define the family of “Sobolev” spaces Hs

+, for s ∈ R. Then we define 
Hs = Hs

− ⊕H0 ⊕Hs
+, for s ∈ R. In this general case we also define H∞, H−∞, C∞(Ω, H∞), C∞

c (Ω, H∞), 
D′(Ω, H−∞) etc, where Ω is an open set in Rn.

The spaces H∞
+ and H∞

− defined, respectively, by A+ and by −A− have duals denoted by H−∞
+ and 

H−∞
− .
We now prove Theorem 1.5:

Proof. We split equation (1.2) into three equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

(
∂tju

(N)
j− + (∂tjφ0)(t)(−A−)u(N)

j−
)

= f−,

n∑
j=1

(
∂tjuj0 − (∂tjφ0)(t)A0uj0

)
= f0,

n∑
j=1

(
∂tju

(N)
j+ − (∂tjφ0)(t)A+u

(N)
j+
)

= f+,

where u(N)
j− ∈ Ck(ωN , Hk

−), uj0 ∈ Ck(ωn, H0), u(N)
j+ ∈ Ck(ωN , Hk

+), f− ∈ C∞(ΩN , H∞
− ), f0 ∈ C∞(ΩN , H0), 

f+ ∈ C∞(ΩN , H∞
+ ).

By Corollary 13.1, we solve the first equation above if and only if condition (ψ2) holds at 0. By Theo-
rem 1.4, we solve the third equation above if and only if condition (ψ1) holds at 0. Now, a C∞(ωN , H0)
solution of the second equation is given by

u20 ≡ ... ≡ un0 ≡ 0, u10(t) =
t1∫

0

e(φ0(t1,t2,...,tn)−φ0(s1,t2,...,tn))A0f0(s1, t2, ..., tn)ds1.

Indeed, the exponential in the integrand defines a bounded linear operator in H0 and an automorphism 
(depending smoothly on t) on the spaces of distributions D′(ωN , H0), C∞(ωN , H0), etc. �
15. Examples

Example 15.1 (A solvable system but no solvable Lj,0). Consider B = {t ∈ R
2 : |t| < R} ⊂⊂ Ω and 

φ0 : Ω −→ R given by φ0(t1, t2) = t21 + t22 − 3t1t2.

Proof. (0, 0) is the only critical point of φ0, and the hessian of φ0 at (0, 0), H(0, 0), is equal to −5 < 0. 
Hence, φ0 does not have local minimum value and, consequently, the underdetermined system is solvable 
by Theorem 1.4.

We state that L1,0 is not solvable in B. Indeed, the function (∂t1φ0)(t1, 0) = 2t1 does not satisfy (ψ′
1) on 

I1 = {t1 : (t1, 0) ∈ B}. Hence, L1,0 is not solvable in I1. Therefore, L1,0 is not solvable in B. The proof that 
L2,0 is not solvable in B is analogous. �
Example 15.2. Let H = L2(Rν) and let A = Q(Dx) be a positive pseudodifferential operator, elliptic, where 
Q ∈ C∞(Rν , R), Q(λξ) = λmQ(ξ) if m > 0, λ ≥ 1, |ξ| ≥ 1 and that Q never vanishes. We assume

φ(t, Q(Dx)) =
∞∑
k=0

φk(t)Q−k(Dx) ∈ QQ(Dx)(Ω) , φ0 ∈ Cω(Ω) .
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Remark. |Q(ξ1)| ≤ C|ξ1|m, if |ξ1| ≥ 1.

Statement 1: Q(Dx) is densely defined in L2.

Proof. The domain of Q(Dx) : D
(
Q(Dx)

)
⊂ L2 −→ L2 is given by D

(
Q(Dx)

)
= {u ∈ L2 : Q(Dx)u ∈ L2}

and, by Parseval’s formula, D
(
Q(Dx)

)
= {u ∈ L2 : Q(ξ)û(ξ) ∈ L2}.

On the other hand, for every u ∈ S we have û ∈ S , which implies

∫
Rν

|Q(ξ)û(ξ)|2dξ ≤ C1 + C2
∫

|ξ1|≥1

|ξ|2m|û(ξ)|2dξ < ∞,

that is, Q(ξ)û ∈ L2. Thus, S ⊂ D
(
Q(Dx)

)
and, as D

(
Q(Dx)

)
⊂ L2, it follows from the density of S in 

L2 that D
(
Q(Dx)

)
is dense in L2. �

Statement 2: Q(Dx) is unbounded, since it has order greater than 0.

Statement 3: Q(Dx) is a self-adjoint pseudodifferential operator.

Proof. For every u and for every v in the domain of Q(Dx) we have, using Parseval’s formula,

∫
Rν

(
Q(Dx)u(x)

)
v(x)dx =

∫
Rν

u(x)Q(Dx)v(x)dx.

As Q(Dx) is a positive definite symmetric operator, it has a Friedrichs’ extension, that is, the extension is 
positive definite and self-adjoint. �
Statement 4: Q−1(Dx) ∈ L(L2(Rν), L2(Rν)).

Proof. We have the pseudodifferential operator

Q−1(Dx)u(x) = 1
(2π)ν

∫ ∫
ei(x−y).ξQ−1(ξ)u(y)dydξ, u ∈ S .

But, Q−1 ∈ S−m(Rν) ⊂ S0(Rν), where S−m and S0 are the spaces of symbols of order −m and 0, 
respectively. Therefore, Q−1(Dx) ∈ L(L2(Rν), L2(Rν)). �

We denote by As(Rν) = As the space of elements u in L2(Rν) such that Qs(Dx)u ∈ L2, equipped with 
the norm

‖u‖2
As = ‖Qs(Dx)u‖2

0 = 1
(2π)ν

∫
Rν

|Q2s(ξ)||û(ξ)|2dξ.

Then consider the spaces

Hs(Rν) =
{
u ∈ S ′ : 1

(2π)ν

∫
(1 + |ξ|2)s|û(ξ)|2dξ < ∞

}

Rν
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and

As(Rν) =
{
u ∈ L2 : 1

(2π)ν

∫
Rν

|Q2s(ξ)||û(ξ)|2dξ < ∞
}
.

Statement 5: 
⋂
s≥0

As =
⋂
s≥0

Hs = H∞.

Proof. Since Q(Dx) is elliptic, there exists C > 0 such that |Q(ξ)| ≥ C|ξ|m, ∀ξ ∈ R
ν . Conversely, we already 

know that there exists C > 0 such that |Q(ξ)| ≤ C|ξ|m, if |ξ| ≥ 1. �
As the 5 statements are fulfilled, L, defined by the operators Lj = ∂tj − (∂tjφ)(t, Q(Dx))Q(Dx), j =

1, ..., n, is solvable in terms of Theorem 1.4.

Example 15.3. Let H = L2(Rν) and let A = Q(Dx) be a positive pseudodifferential operator, elliptic, where 
Q ∈ C∞(Rν , R), Q(λξ) = λQ(ξ), λ ≥ 1, |ξ| ≥ 1 and that Q never vanishes. We assume

∞∑
k=0

sup
t∈K

|∂α
t φk(t)| ||Q−k||L∞(Rν) < ∞, ∀ compact K ⊂ Ω, ∀α ∈ Z

n
+.

This is a particular case of Example 15.2 taking m = 1. This example is an intersection with a result 
presented in [9]. Setting

B(t,Dx) = −
( ∞∑

k=0

φk(t)Q−k(Dx)
)
Q(Dx), φ0 ∈ Cω(Ω), φk ∈ C∞(Ω), k ≥ 1,

the fundamental hypotheses in [9] are:

• there is a C∞ function of t in Ω, valued in L∞(Rν), R(t, ξ), such that B0(t, ξ) = B(t, ξ) − R(t, ξ) is 
positive homogeneous of degree one with respect to ξ.

• B0(t, ξ) is a C∞ function of t in Ω, with values in the space of C1 functions of ξ in Rν − {0}.

But

B(t, ξ) = −φ0(t)Q(ξ)︸ ︷︷ ︸
B0(t,ξ)

−
∞∑
k=1

φk(t)Q−k+1(ξ)

︸ ︷︷ ︸
R(t,ξ)

.

Then B0 ∈ C∞(Ω, S1(Rν)) is positive homogeneous of degree one in ξ for |ξ| ≥ 1 and R(t, ξ) converges in 
the space C∞(Ω, L∞(Rν)), where S1 is the space of symbols of order 1.

We now write

B0(t, ξ) = �B0(t, ξ) + i �B0(t, ξ) = −(�φ0)(t)Q(ξ)︸ ︷︷ ︸
B0

1(t,ξ)

−i (�φ0)(t)Q(ξ) ,

and the hypotheses become:
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• B0
1(t, ξ) is real-valued and positive homogeneous of degree one with respect to ξ.

• B0
1(t, ξ) is a C∞ function of t in Ω with values in C1(Rν − {0}).

Actually, in our case B0
1 ∈ C∞(Ω, S1(Rν)) is real-valued and satisfies B0

1(t, λξ) = λB0
1(t, ξ), if λ ≥ 1, |ξ| ≥ 1.

It remains to verify that φ(t, Q(Dx)) ∈ QQ(Dx)(Ω). Indeed, since

||Q−1(Dx)u||L2 = 1
(2π)ν/2

||Q−1(ξ)û||L2

≤ ||Q−1||L∞(Rν) ||u||L2 , u ∈ L2,

it follows that, for every compact K ⊂ Ω, for every α ∈ Z
n
+,

∞∑
k=0

sup
t∈K

|∂α
t φk(t)| ||Q−k(Dx)||L(L2(Rν)) ≤

∞∑
k=0

sup
t∈K

|∂α
t φk(t)| ||Q−k||L∞(Rν) < ∞.

Thus, 
∞∑
k=0

φk(t)Q−k(Dx) converges in C∞(Ω; L(L2(Rν))
)
, that is, 

∞∑
k=0

φk(t)Q−k(Dx) ∈ QQ(Dx)(Ω).

Setting, for every ξ ∈ R
ν and for every real r,

B(ξ, r) =
{
t ∈ B : B0

1(t, ξ) < r
}

,

in [9] the complex L has the condition (ψ1) holding on B, in dimension n − 1, if

B −B(ξ, r) =
{
t ∈ B : B0

1(t, ξ) = −(�φ0)(t)Q(ξ) ≥ r
}

=
{
t ∈ B : (�φ0)(t) ≤

−r

Q(ξ)

}

has no compact connected component. Since Q(ξ) never vanishes, condition (ψ1) on B can be written as: 
for every real r, the set

{
t ∈ B : (�φ0)(t) ≤ r

}
has no compact connected component.

Therefore, keeping our notation, theorem II.1.2 in [9] can be written as

Theorem 15.4. Suppose that the complex L has the condition (ψ1) holding on B, in dimension n − 1. 
Then, given any open set O ′ ⊂⊂ B, 0 ∈ O ′, and any element f of C∞

(n)(Ω, H∞), there is an element u of 
D′

(n−1)(O ′, H−∞) solution of Lu = f in O ′.

But, of course, we also have the solvability of the complex L in terms of Theorem 1.4.

Example 15.5. Let H = L2(R) and let A = Dx. It is well known that Dx is densely defined in L2(R), 
unbounded and it is self-adjoint. Furthermore, Dx defines H∞.

This example performs the general case. We have the solvability of the complex L0 defined by the 
operators Lj,0 = ∂tj − (∂tj�φ0)(t)Dx , j = 1, . . . , n, in terms of Theorem 1.5.
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Let us now make a link with [2] and show that it is a consequence to have local solvability at 0 ∈ R
n+1. 

In fact, given f ∈ C∞
c (B × R) ⊂ C∞

c (B, H∞), there exist uj ∈ D′(B, H−∞) ⊂ D′(B × R), j = 1, ..., n, such 
that

L1,0u1 + . . . + Ln,0un = f in B × R.

The locally integrable structure is characterized by{
Lj,0Z = 0, j = 1, ..., n,
dZ �= 0, in B × J,

where J is an open interval centered at the origin in R and Z(t, x) = x − i�φ0(t). Then we recall the 
condition Pn−1 at 0 ∈ R

n+1: “there is an open neighborhood of 0 over which every regular fiber of Z has 
no compact connected component”. To find a fiber of Z over B × J we write{

Z = x + iφ(t),
Z = x0 + iy0, x0 ∈ J, y0 ∈ R.

Thus, to say that over B×J every regular fiber of Z, {t ∈ B : φ(t) = y0} ×{x0}, has no compact connected 
component coincides with the definition of (ψ1) and (ψ2) at 0.
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