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Abstract

Approximation properties of multivariate Kantorovich-Kotelnikov type operators generated
by different band-limited functions are studied. In particular, a wide class of functions with
discontinuous Fourier transform is considered. The Lp-rate of convergence for these operators
is given in terms of the classical moduli of smoothness. Several examples of the Kantorovich-
Kotelnikov operators generated by the sinc-function and its linear combinations are provided.
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1 Introduction

The Kantorovich–Kotelnikov operator is an operator of the form

Kw(f, ϕ;x) =
∑
k∈Z

(
w

∫ k+1
w

k
w

f(u)du

)
ϕ(wx− k), x ∈ R, w > 0, (1)

where f : R → C is a locally integrable function and ϕ is an appropriate kernel satisfying certain
”good” properties, as a rule ϕ is a band-limited function or a function with a compact support, e.g.,
B-spline. The operator Kw was introduced in [3], although in other forms, it was known previously,
see, e.g., [12, 13, 20]. During the last years, in view of some important applications, this operator
has drawn attention by many mathematicians and has been especially actively studied [4, 7, 8, 9,
10, 13, 15, 16, 17, 18, 23, 27, 28].

The operator Kw has several advantages over the generalized sampling operators

Sw(f, ϕ;x) =
∑
k∈Z

f

(
k

w

)
ϕ(wx− k), x ∈ R, w > 0. (2)
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that has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 704030; the second author is also supported by grants from RFBR #
15-01-05796-a, St. Petersburg State University # 9.38.198.2015.
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First of all, using the averages w
∫ k+1

w
k
w

f(u)du instead of the sampled values f(k/w) allows to deal

with discontinues signals and reduce the so-called time-jitter errors. Note that the latter property
is very useful in the theory of Signal and Image Processing. Moreover, unlike to the generalized
sampling operators Sw, the operator (1) is continuous in Lp(R) and, therefore, provides better
approximation order than Sw in most cases.

In the literature, there are several generalizations and refinements of the Kantorovich–Kotelnikov
operator Kw (see, e.g., [1, 11, 13, 16, 17, 18, 20, 23, 27, 28]). In this paper, we study approximation
properties of the following multivariate analogue of (1)

Qj(f, ϕ, ϕ̃;x) =
∑
k∈Zd

(
mj

∫
Rd

f(u)ϕ̃(M ju+ k)du

)
ϕ(M jx+ k), x ∈ Rd, j ∈ Z, (3)

where M is a dilation matrix, m = |detM |, and ϕ̃ and ϕ are appropriate functions. Note that if
d = 1 and ϕ̃(x) = χ[0,1](x) (the characteristic function of [0, 1]), then (3) represents the standard
Kantorovich–Kotelnikov operator Kmj .

Convergence and approximation properties of the operator (3) have been actively studied by
many authors (see [1, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 23, 27, 28]). The most general results
on estimates of the error of approximation by Qj have been obtained in the case of compactly
supported ϕ and ϕ̃. In particular in [13] (see also [12]) it was proved the following result: if ϕ
and ϕ̃ are compactly supported, ϕ ∈ Lp(R

d), ϕ̃ ∈ Lq(R
d), 1/p+ 1/q = 1, M is an isotropic dilation

matrix, and Q0 reproduces polynomials of degree n − 1, then for any f ∈ Lp(R), 1 ≤ p ≤ ∞, and
n ∈ N we have

‖f −Qj(f, ϕ, ϕ̃)‖Lp(Rd) ≤ C(p, d, n, ϕ, ϕ̃)ωn(f, ‖M−j‖)p, (4)

where ωn(f, h)p is the modulus of smoothness of order n.
Concerning band-limited functions ϕ, it turns out that approximation properties of the operators

Qj have been studied mainly in the case where ϕ̃ is some characteristic function (see, e.g., [3, 7, 8,
9, 10, 16, 23, 27, 28]) and, unlike to compactly supported functions ϕ, there are several limitations
and drawbacks in the available results. First of all, the methods previously used are essentially
restricted to the case of integrable functions ϕ, which do not allow to consider the functions of type
sinc(x) = (sinπx)/(πx). Secondly, the conditions imposed on the kernel ϕ cannot provide high
rate of convergence of Qj(f) even for sufficiently smooth functions f . At that, the corresponding
estimates are given in the terms of Lipschitz classes. For example, it follows from [8] that for any
f ∈ Lp(R) ∩ Lip(ν), 1 ≤ p ≤ ∞, 0 < ν ≤ 1, we have∥∥∥∥f − 1

2

∑
k∈Z

(
w

∫ k+1
w

k
w

f(u)du

)
sinc2
(
wx− k

2

)∥∥∥∥
Lp(R)

= O(w−ν), w → +∞. (5)

In this paper, we improve the mentioned drawbacks and study the rate of convergence of the
operator (3) for a wide class of band-limited functions ϕ including non-integrable ones. In particular,
estimation (4) is proved for a large class of functions ϕ̃ including both compactly supported and

band-limited functions, provided that Dβ(1−ϕ̂̂̃ϕ)(0) = 0 for all β ∈ Zd
+, ‖β‖�1 < n (see Theorems 17

and 17 ′). In the partial cases, this gives an answer to the question posed in [3] about approximation
properties of the following sampling series (see Section 6):

∑
k∈Z

(
w

∫ k+1
w

k
w

f(u)du

)
sinc(wx− k), x ∈ R, w > 0.

The paper is organized as follows: in Section 2 we introduce notation and give some basic facts.
In Section 3 we consider approximation properties of some generalized sampling operators of type Qj .
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These operators are defined similarly to the operators Qj but with appropriate tempered distribution
in place of the function ϕ̃ that, in particular, allows to include in the consideration operators of type
Sw. The Lp-rate of convergence of such generalized sampling operators is given in terms of Fourier
transform of f and has several drawbacks, which we improve in the next sections. Section 4 is
devoted to auxiliary results. In Section 5 we prove two main results that provide estimates of the
error of approximation by the operator Qj in terms of the classical moduli of smoothness. The
results of this section can be considered as counterparts of the corresponding results from Section 3.
Finally, in Section 6 we consider some special cases and provide a number of examples.

2 Notation and basic facts

N is the set of positive integers, R is the set of real numbers, C is the set of complex numbers. Rd is
the d-dimensional Euclidean space, x = (x1, . . . , xd) and y = (y1, . . . , yd) are its elements (vectors),
(x, y) = x1y1 + . . . + xdyd, |x| =

√
(x, x), 0 = (0, . . . , 0) ∈ Rd; Br = {x ∈ Rd : |x| ≤ r},

Td = [− 1
2 ,

1
2 ]

d; Zd is the integer lattice in Rd, Zd
+ := {x ∈ Zd : x ≥ 0}. If α, β ∈ Zd

+, a, b ∈ Rd, we

set [α] =
d∑

j=1

αj , α! =
d∏

j=1

(αj !),

(
β

α

)
=

β!

α!(β − α)!
, Dαf =

∂[α]f

∂xα
=

∂[α]f

∂α1x1 . . . ∂αdxd
,

δab is the Kronecker delta.
A real d × d matrix M whose eigenvalues are bigger than 1 in modulus is called a dilation

matrix. Throughout the paper we consider that such a matrix M is fixed and m = |detM |, M∗

denotes the conjugate matrix to M . Since the spectrum of the operator M−1 is located in Br, where
r = r(M−1) := limj→+∞ ‖M−j‖1/j is the spectral radius of M−1, and there exists at least one point
of the spectrum on the boundary of Br, we have

‖M−j‖ ≤ CM,ϑ ϑ
−j , j ≥ 0, (6)

for every positive number ϑ which is smaller in modulus than any eigenvalue of M . In particular,
we can take ϑ > 1, then

lim
j→+∞

‖M−j‖ = 0.

Lp denotes Lp(R
d), 1 ≤ p ≤ ∞, with the usual norm ‖f‖p = ‖f‖Lp(Rd). We say that ϕ ∈ L0

p if
ϕ ∈ Lp and ϕ has a compact support. We use Wn

p , 1 ≤ p ≤ ∞, n ∈ N, to denote the Sobolev space

on Rd, i.e. the set of functions whose derivatives up to order n are in Lp, with the usual Sobolev
semi-norm given by

‖f‖Ẇn
p
=
∑
[ν]=n

‖Dνf‖p.

If f, g are functions defined on Rd and fg ∈ L1, then 〈f, g〉 := ∫
Rd fg. If f ∈ L1, then its Fourier

transform is Ff(ξ) = f̂(ξ) =
∫
Rd f(x)e

−2πi(x,ξ) dx.

If ϕ is a function defined on Rd, we set

ϕjk(x) := mj/2ϕ(M jx+ k), j ∈ Z, k ∈ Rd.

Denote by S the Schwartz class of functions defined on Rd. The dual space of S is S ′, i.e. S ′

is the space of tempered distributions. The basic facts from distribution theory can be found, e.g.,
in [29]. Suppose f ∈ S, ϕ ∈ S ′, then 〈ϕ, f〉 := 〈f, ϕ〉 := ϕ(f). If ϕ ∈ S ′, then ϕ̂ denotes its Fourier

transform defined by 〈f̂ , ϕ̂〉 = 〈f, ϕ〉, f ∈ S. If ϕ ∈ S ′, j ∈ Z, k ∈ Zd, then we define ϕjk by
〈f, ϕjk〉 = 〈f−j,−M−jk, ϕ〉 for all f ∈ S.
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Denote by S ′
N the set of all tempered distribution whose Fourier transform ϕ̂ is a function on

Rd such that |ϕ̂(ξ)| ≤ Cϕ|ξ|N for almost all ξ /∈ Td, N = N(ϕ) ≥ 0, and |ϕ̂(ξ)| ≤ C ′
ϕ for almost all

ξ ∈ Td.
Denote by B = B(Rd) the class of functions ϕ given by

ϕ(x) =

∫
Rd

θ(ξ)e2πi(x,ξ) dξ,

where θ is supported in a parallelepiped Π := [a1, b1]× · · · × [ad, bd] and such that θ
∣∣
Π
∈ Cd(Π).

Let 1 ≤ p ≤ ∞. Denote by Lp the set

Lp :=

⎧⎨⎩ϕ ∈ Lp : ‖ϕ‖Lp
:=

∥∥∥∥ ∑
k∈Zd

|ϕ(·+ k)|
∥∥∥∥
Lp(Td)

< ∞
⎫⎬⎭ .

With the norm ‖ · ‖Lp , Lp is a Banach space. The simple properties are: L1 = L1, ‖ϕ‖p ≤ ‖ϕ‖Lp ,
‖ϕ‖Lq ≤ ‖ϕ‖Lp for 1 ≤ q ≤ p ≤ ∞. Therefore, Lp ⊂ Lp and Lp ⊂ Lq for 1 ≤ q ≤ p ≤ ∞. If ϕ ∈ Lp

and compactly supported, then ϕ ∈ Lp for p ≥ 1. If ϕ decays fast enough, i.e. there exist constants
C > 0 and ε > 0 such that |ϕ(x)| ≤ C(1 + |x|)−d−ε for all x ∈ Rd, then ϕ ∈ L∞.

The modulus of smoothness ωn(f, ·)p of order n ∈ N for a function f ∈ Lp is defined by

ωn(f, h)p = sup
|δ|<h, δ∈Rd

‖Δn
δ f‖p,

where

Δn
δ f(x) =

n∑
ν=0

(−1)ν
(
n

ν

)
f(x+ δν).

3 Preliminary results

Scaling operator
∑

k∈Zd〈f, ϕ̃jk〉ϕjk is a good tool of approximation for many appropriate pairs of
functions ϕ, ϕ̃. Let us consider the case, where ϕ̃ is a tempered distribution, e.g., the delta-function
or a linear combination of its derivatives. In this case the inner product 〈f, ϕ̃jk〉 has meaning

only for functions f in S. To extend the class of functions f one can replace 〈f, ϕ̃jk〉 by 〈f̂ ,̂̃ϕjk〉.
Approximation properties of such operators for certain classes of distributions ϕ̃ and functions ϕ
were studied, e.g., in [16] and [18].

Repeating step-by-step the proof of Theorem 4 in [18] and using Corollary 10 in [16], it is easy
to prove the following result.

Proposition 1 Let N ∈ Z+, ϕ̃ ∈ S ′
N , ϕ ∈ B. Suppose that there exist n ∈ N and δ ∈ (0, 1/2) such

that ϕ̂̂̃ϕ is boundedly differentiable up to order n on {|ξ| < δ}; supp ϕ̂ ⊂ B1−δ; D
β(1 − ϕ̂̂̃ϕ)(0) = 0

for [β] < n. If 2 ≤ p < ∞, 1/p+ 1/q = 1, γ ∈ (N + d/p,N + d/p+ ε), ε > 0, and

f ∈ Lp, f̂ ∈ Lq, f̂(ξ) = O(|ξ|−N−d−ε) as |ξ| → ∞, (7)

then ∥∥∥∥f −
∑
k∈Zd

〈f̂ ,̂̃ϕjk〉ϕjk

∥∥∥∥q
p

≤ C1‖M∗−j‖γq
∫

|M∗−jξ|≥δ

|ξ|qγ |f̂(ξ)|qdξ

+ C2‖M∗−j‖nq
∫

|M∗−jξ|<δ

|ξ|qn|f̂(ξ)|qdξ,

where C1 and C2 do not depend on j and f .
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Proposition 1 does not provide approximation order of
∑

k∈Zd〈f̂ ,̂̃ϕjk〉ϕjk better than ‖M∗−j‖n
even for very smooth functions f . This can be fixed under stronger restrictions on ϕ given in the
following definition.

Definition 2 A tempered distribution ϕ̃ and a function ϕ is said to be strictly compatible if there

exists δ ∈ (0, 1/2) such that ϕ̂(ξ)̂̃ϕ(ξ) = 1 a.e. on {|ξ| < δ} and ϕ̂(ξ) = 0 a.e. on {|l − ξ| < δ} for
all l ∈ Zd \ {0}.
Remark 3 It is well known that the shift-invariant space generated by a function ϕ has approxi-
mation order n if and only if the Strang–Fix condition of order n is satisfied for ϕ (that is Dβϕ̂(l) = 0
whenever l ∈ Zd, l 
= 0, [β] < n). This fact appeared in the literature in different situations many

times (see, e.g., [1], [2], [11], and [22, Ch. 3]). The condition Dβ(1 − ϕ̂̂̃ϕ)(0) = 0, [β] < n, is also
a natural requirement for providing approximation order n of scaling operators. This assumption
often appears (especially in wavelet theory) in other terms, in particular, in terms of polynomial
reproducing property (see [12, Lemma 3.2]). It is clear that to provide an infinitely large approx-
imation order, these conditions should be satisfied for any n. Clearly, the latter holds for strictly
compatible functions ϕ and ϕ̃.

Supposing that ̂̃ϕ(ξ) = 1 a.e. on {|ξ| < δ}, it is easy to see that the simplest example of ϕ
satisfying Definition 2 is the tensor product of the sinc functions.

Proposition 4 [16, Theorem 11] Let N ∈ Z+, ϕ̃ ∈ S ′
N , ϕ ∈ B, ϕ̃ and ϕ are strictly compatible.

If 2 ≤ p < ∞, 1/p+1/q = 1, γ ∈ (N + d/p,N + d/p+ ε), ε > 0, and a function f satisfies (7), then∥∥∥∥f −
∑
k∈Zd

〈f̂ ,̂̃ϕjk〉ϕjk

∥∥∥∥q
p

≤ C‖M∗−j‖γq
∫

|M∗−jξ|≥δ

|ξ|qγ |f̂(ξ)|qdξ, (8)

where C does not depend on j and f .

Note that Propositions 4 is an analog of the following Brown’s result [5]:∣∣∣∣∣f(x)−∑
k∈Z

f(−2−jk) sinc(2jx+ k)

∣∣∣∣∣ ≤ C

∫
|ξ|>2j−1

|f̂(ξ)|dξ, x ∈ R,

whenever the Fourier transform of f is summable on R.
There are several drawbacks in Propositions 1 and 4. First, they are proved only in the case

p ≥ 2. Second, there are additional restrictions on the function f . Even in the case ϕ̃ ∈ L0
q,

where
∑

k∈Zd〈f, ϕ̃jk〉ϕjk has meaning for every f ∈ Lp, the error estimate is obtained only for
functions f satisfying (7) with N = 0. Third, the error estimate is given in the terms of decreasing
of Fourier transforms unlike to common estimates, which usually are given in the terms of moduli
of smoothness.

Below, under more restrictive conditions on ϕ̃, we obtain analogues of the above propositions for
all f ∈ Lp, 1 ≤ p ≤ ∞, and give the estimates of the error of approximation in terms of the classical
moduli of smoothness.

4 Auxiliary results

The following auxiliary statements will be useful for us.

Lemma 5 Let either 1 < p < ∞, ϕ ∈ B or 1 ≤ p ≤ ∞, ϕ ∈ Lp, and a = {ak}k∈Zd ∈ �p. Then∥∥∥∥ ∑
k∈Zd

akϕ0k

∥∥∥∥
p

≤ Cϕ,p‖a‖�p . (9)
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Proof. In the case ϕ ∈ B, the proof of (9) follows from [16, Proposition 9]. Concerning the case
ϕ ∈ Lp see [11, Theorem 2.1]. �

Lemma 6 Let f ∈ Lp. Suppose that either 1 < p < ∞, ϕ ∈ B or 1 ≤ p ≤ ∞, ϕ ∈ L0
q, 1/p+1/q = 1.

Then ( ∑
k∈Zd

|〈f, ϕ0k〉|p
) 1

p

≤ C ′
ϕ,p‖f‖p. (10)

Proof. In the case ϕ ∈ B, the proof of (10) see in [16, Proposition 6]. The case ϕ ∈ L0
q follows

from [17, Lemmas 4 and 5]. �

Combining the above lemmas, we obtain the following statement.

Lemma 7 Let f ∈ Lp, 1 < p < ∞, and j ∈ N. Suppose ϕ ∈ B and ϕ̃ ∈ B ∪ Lq, 1/p + 1/q = 1.
Then ∥∥∥∥ ∑

k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C‖f‖p, (11)

where C does not depend on f and j.

Proof. If ϕ̃ ∈ B, then the proof of (11) directly follows from Lemmas 5 and 6. In the case
ϕ̃ ∈ Lq, we find g ∈ Lq, ‖g‖q ≤ 1, such that∥∥∥∥ ∑

k∈Zd

〈
f, ϕ̃jk

〉
ϕjk

∥∥∥∥
p

=

∣∣∣∣〈 ∑
k∈Zd

〈f, ϕ̃jk〉ϕjk, g

〉∣∣∣∣ = ∣∣∣∣〈f,∑
k∈Zd

〈ϕjk, g〉ϕ̃jk

〉∣∣∣∣. (12)

It follows from the Hölder inequality and Lemmas 5 and 6 that∣∣∣∣〈f,∑
k∈Zd

〈ϕjk, g〉ϕ̃jk

〉∣∣∣∣ ≤ ‖f‖p
∥∥∥ ∑

k∈Zd

〈ϕjk, g〉ϕ̃jk

∥∥∥
q

≤ Cϕ̃,q‖f‖p
( ∑

k∈Zd

|〈ϕjk, g〉|q
)1/q

≤ Cϕ̃,qC
′
ϕ,q‖f‖p.

(13)

Thus, combining (12) and (13), we obtain (11). �

Similarly one can prove the following generalization of Lemma 7 to the limiting cases p = 1,∞.

Lemma 7 ′ Let f ∈ Lp, p = 1 or p = ∞, j ∈ N. Suppose that

(i) ϕ ∈ L1 and ϕ̃ ∈ L∞ in the case p = 1;
(ii) ϕ ∈ L∞ and ϕ̃ ∈ L1 in the case p = ∞.

Then ∥∥∥∥ ∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C‖f‖p,

where C does not depend on f and j.

Lemma 8 Let N ∈ Z+, ϕ̃ ∈ S ′
N , ϕ ∈ B ∪ L2, and ϕ̃ and ϕ be strictly compatible. If a function

f ∈ L2 is such that its Fourier transform is supported in {ξ : |M∗−jξ| < δ}, where δ is from
Definition 2, then

f =
∑
k∈Zd

〈f̂ ,̂̃ϕjk〉ϕjk a.e. (14)

6



Proof. In the case ϕ ∈ B, the proof of the lemma follows from (8). In the case ϕ ∈ L2, it follows
from [18, eq. (4.15)] that (8) holds and, therefore, one has (14). �

Let Bσ
p , 1 ≤ p ≤ ∞, σ > 0, denote the set of all entire functions f in Cd which are of (radial)

exponential type σ and being restricted to Rd belong to Lp.

Lemma 9 [30, Theorem 3] Let n ∈ N, 1 ≤ p ≤ ∞, 0 < h < 2π/σ, |ξ| = 1, and Pσ ∈ Bσ
p . Then

‖Dn,ξPσ‖p ≤
(

σ

2 sin(σh/2)

)n
‖Δn

hξPσ‖p,

where
Dn,ξf(x) = F−1((ix, ξ)nf̂(x)).

Corollary 10 In terms of Lemma 9, we have

‖Pσ‖Ẇn
p
≤ Cσnωn(Pσ, σ

−1)p,

where C does not depend on Pσ.

Proof. By Lemma 9, for any 1 ≤ j ≤ d, we have that∥∥∥∥ ∂n

∂xn
j

Pσ

∥∥∥∥
p

≤ Cσn‖Δn
σ−1ej

Pσ‖p ≤ Cσnωn(Pσ, σ
−1)p,

which obviously implies (4). �

We need several basic properties of the modulus of smoothness (see, e.g., [21, Ch. 4]).

Lemma 11 Let f, g ∈ Lp, 1 ≤ p ≤ ∞, and n ∈ N. Then for any δ > 0, we have

(i) ωn(f + g, δ)p ≤ ωn(f, δ)p + ωn(g, δ)p;

(ii) ωn(f, δ)p ≤ 2n‖f‖p;
(iii) ωn(f, λδ)p ≤ (1 + λ)nωn(f, δ)p, λ > 0.

Let us also recall the Jackson-type theorem in Lp (see, e.g., [21, Theorem 5.2.1 (7)] or [26, 5.3.2]).

Lemma 12 Let f ∈ Lp, 1 ≤ p ≤ ∞, n ∈ N, and σ > 0. Then there exists Pσ ∈ Bσ
p such that

‖f − Pσ‖p ≤ Cωn(f, 1/σ)p, (15)

where C is a constant independent of f and Pσ.

5 Main results

Our main results are based on the following lemma.

Lemma 13 Let 1 ≤ p ≤ ∞, n ∈ N, ϕ ∈ (B∪L2)∩Lp, and ϕ̃ ∈ Lq, 1/p+1/q = 1. Suppose that the
functions ϕ and ϕ̃ are strictly compatible and there exists a constant c = c(n, p, d, ϕ, ϕ̃) such that∥∥∥∥ ∑

k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ c‖f‖p. (16)

Then ∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
, (17)

where C does not depend on f and j.

7



Proof. Let g ∈ Lp ∩ L2 be such that

‖f − g‖p ≤ ωn

(
f, ‖M∗−j‖)

p
. (18)

Using (16) and (18), we have∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ ‖f − g‖p +
∥∥∥∥g − ∑

k∈Zd

〈g, ϕ̃jk〉ϕjk

∥∥∥∥
p

+

∥∥∥∥ ∑
k∈Zd

〈g − f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ (1 + c)ωn

(
f, ‖M∗−j‖)

p
+

∥∥∥∥g − ∑
k∈Zd

〈g, ϕ̃jk〉ϕjk

∥∥∥∥
p

.

(19)

By Lemma 12, for any n ∈ N and g ∈ Lp ∩ L2 there exists a function Jn(g) : Rd → C such that

supp Ĵn(g) ⊂ {|ξ| < δ−1‖M∗−j‖} and

‖g − Jn(g)‖p ≤ C1ωn

(
g, δ−1‖M∗−j‖)

p
, (20)

where δ is from Definition 2 and C1 does not depend on g and j.

By Lemma 8, taking into account that 〈Ĵn(g),̂̃ϕjk〉 = 〈Jn(g), ϕ̃jk〉 and {|ξ| < δ−1‖M∗−j‖} ⊂
{|M∗−jξ| < δ}, we have ∑

k∈Zd

〈Jn(g), ϕ̃jk〉ϕjk = Jn(g). (21)

Thus, using (20), (21), and (16), we derive∥∥∥∥g − ∑
k∈Zd

〈g, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ ‖g − Jn(g)‖p +
∥∥∥∥ ∑

k∈Zd

〈g − Jn(g), ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ (1 + c)‖g − Jn(g)‖p ≤ C2ωn

(
g, δ−1‖M∗−j‖)

p
.

(22)

Next, using Lemma 11 and (18), we get

ωn

(
g, δ−1‖M∗−j‖)

p
≤ (1 + δ−1)nωn

(
g, ‖M∗−j‖)

p

≤ C3

(
‖f − g‖+ ωn

(
f, ‖M∗−j‖)

p

)
≤ 2C3ωn

(
f, ‖M∗−j‖)

p

= C4ωn

(
f, ‖M−j‖)

p
.

(23)

Finally, combining (19), (22), and (23), we obtain (17). �

The following statement is a multivariate analogue of Theorem 7 in [25]. It is also a counterpart
of Proposition 4 in some sense.

Theorem 14 Let f ∈ Lp, 1 < p < ∞, and n ∈ N. Suppose ϕ ∈ B, ϕ̃ ∈ B ∪ Lq, 1/p+ 1/q = 1, and
ϕ and ϕ̃ are strictly compatible. Then∥∥∥∥f −

∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
, (24)

where C does not depend on f and j.

Proof. The proof follows from Lemma 13 and Lemma 7. �
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Remark 15 By (6), it is easy to see that in (24) and in further similar estimates, the modulus
ωn

(
f, ‖M−j‖)

p
can be replaced by ωn

(
f, ϑ−j

)
p
, where ϑ is a positive number smaller in modulus

than any eigenvalue of M . Note that ‖M−1‖ may be essentially bigger than ϑ−1.

In the following result, we give an analogue of Theorem 14 for the limiting cases p = 1 and
p = ∞.

Theorem 14 ′ Let f ∈ Lp, p = 1 or p = ∞, and n ∈ N. Suppose the functions ϕ and ϕ̃ are strictly
compatible and

(i) ϕ ∈ B ∩ L1 and ϕ̃ ∈ L∞ in the case p = 1;

(ii) ϕ ∈ L∞ and ϕ̃ ∈ L1 in the case p = ∞.

Then ∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
,

where C does not depend on f and j.

Proof. The proof follows from Lemmas 13 and 7 ′. �

Remark 16 It is easy to see that Theorem 14 ′ is valid if we replace the condition ϕ ∈ B ∩ L1 by
ϕ ∈ L2.

The next theorem is the main result of the paper. This result essentially extends the classes of
functions ϕ and ϕ̃ from Theorem 14 and can be considered as a counterpart of Proposition 1.

Theorem 17 Let f ∈ Lp, 1 < p < ∞, and n ∈ N. Suppose ϕ ∈ B, supp ϕ̂ ⊂ B1−ε for some

ε ∈ (0, 1), ϕ̂ ∈ Cn+d+1(Bδ) for some δ > 0; ϕ̃ ∈ B ∪ Lq, 1/p + 1/q = 1, ̂̃ϕ ∈ Cn+d+1(Bδ) and

Dβ(1− ϕ̂̂̃ϕ)(0) = 0 for all β ∈ Zd
+, [β] < n. Then∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
, (25)

where C does not depend on f and j.

Proof. First, let us prove that for any f ∈ Wn
p∥∥∥∥f −

∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C0‖f‖Ẇn
p
‖M−j‖n, (26)

where C0 does not depend on f and j.
Choose 0 < δ′ < δ′′ such that ϕ̂(ξ) 
= 0 on {|ξ| ≤ δ′} and δ′ ≤ δ. Set

F (ξ) =

⎧⎪⎨⎪⎩
1− ϕ̂(ξ)̂̃ϕ(ξ)

ϕ̂(ξ)
if |ξ| ≤ δ′,

0 if |ξ| ≥ δ′′

and extend this function such that F ∈ Cn+d+1(Rd). Define ψ̃ by
̂̃
ψ = F . Obviously, the function

ψ̃ is continuous and ψ̃(x) = O(|x|−γ) as |x| → ∞, where γ > n+ d.
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Since ψ̃ ∈ B and ϕ̃ ∈ Lq ∪ B, by Lemma 7, we have∥∥∥∥ ∑
k∈Zd

〈f, ϕ̃jk + ψ̃jk〉ϕjk

∥∥∥∥
p

≤
∥∥∥∥ ∑

k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

+

∥∥∥∥ ∑
k∈Zd

〈f, ψ̃jk〉ϕjk

∥∥∥∥
p

≤ C1‖f‖p.

Now, taking into account that ϕ̂(ξ)(̂̃ϕ(ξ) + ̂̃ψ(ξ)) = 1 whenever |ξ| ≤ δ′, we obtain from Lemma 13
that for every f ∈ Wn

p∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃ik + ψ̃jk〉ϕjk

∥∥∥∥
p

≤ C2ωn

(
f, ‖M−j‖)

p
≤ C3‖f‖Ẇn

p
‖M−j‖n.

Thus, to prove (26), it remains to verify that for f ∈ Wn
p∥∥∥∥ ∑

k∈Zd

〈f, ψ̃jk〉ϕjk

∥∥∥∥
p

≤ C4‖f‖Ẇn
p
‖M−j‖n. (27)

Let k ∈ Zd, z ∈ [−1/2, 1/2]d − k, y = M−jz. Since Dβ ̂̃ψ(0) = 0 whenever [β] < n, we have∫
Rd

yαψ̃jk(y) dy = 0, j ∈ Z, α ∈ Zd
+, [α] < n.

Hence, due to Taylor’s formula with the integral remainder,

|〈f, ψ̃jk〉| =
∣∣∣∣ ∫
Rd

f(x)ψ̃jk(x) dx

∣∣∣∣
=

∣∣∣∣ ∫
Rd

ψ̃jk(x)

( n−1∑
ν=0

1

ν!
((x1 − y1)∂1 + · · ·+ (xd − yd)∂d)

ν
f(y)

+

1∫
0

(1− t)n−1

(n− 1)!

(
(x1 − y1)∂1 + · · ·+ (xd − yd)∂d

)n
f(y + t(x− y)) dt

)
dx

∣∣∣∣
≤
∫
Rd

dx |x− y|n|ψ̃jk(x)|
1∫

0

∑
[β]=n

|Dβf(y + t(x− y))| dt.

From this, using Hölder’s inequality and taking into account that

|x− y|n ≤ ‖M−j‖n|M jx− z|n,

|ψ̃jk(x)| ≤ C5m
j/2

(1 + |M jx+ k|)γ ≤ C6m
j/2

(1 + |M jx− z|)γ ,

10



we obtain

|〈f, ψ̃jk〉| ≤ C6m
j/2‖M−j‖n

∫
Rd

dx
|M jx− z|n

(1 + |M jx− z|)γ
1∫

0

∑
[β]=n

|Dβf(y + t(x− y))| dt

≤ C6m
j/2‖M−j‖n

(∫
Rd

|M jx− z|n
(1 + |M jx− z|)γ dx

)1/q

×
(∫

Rd

|M jx− z|ndx
(1 + |M jx− z|)γ

( 1∫
0

∑
[β]=n

|Dβf(y + t(x− y))| dt
)p) 1

p

= C6m
j
2− j

q ‖M−j‖n
(∫

Rd

|x− z|n dx
(1 + |x− z|)γ

)1/q

×
(∫

Rd

|M jx− z|ndx
(1 + |M jx− z|)γ

( 1∫
0

∑
[β]=n

|Dβf(y + t(x− y))| dt
)p) 1

p

≤ C7m
j
2− j

q ‖M−j‖n
(∫

Rd

|M j(x− y)|ndx
(1 + |M j(x− y)|)γ

1∫
0

∑
[β]=n

|Dβf(y + t(x− y))|p dt
) 1

p

= C7m
j
2− j

q ‖M−j‖n
(∫

Rd

|M ju|ndu
(1 + |M ju|)γ

1∫
0

∑
[β]=n

|Dβf(y + tu)|p dt
) 1

p

.

(28)

Next, it follows from (28) and Lemma 5 that∥∥∥∥ ∑
k∈Zd

〈f, ψ̃jk〉ϕjk

∥∥∥∥p
p

≤ C8m
p( j

2− j
p )
∑
k∈Zd

|〈f, ψ̃jk〉|p

= C8m
p( j

2− j
p )
∑
k∈Zd

∫
[−1/2,1/2]d−k

dz|〈f, ψ̃jk〉|p

≤ C9‖M−j‖pn
∫
Rd

dz

∫
Rd

|M ju|ndu
(1 + |M ju|)γ

1∫
0

∑
[β]=n

|Dβf(M−jz + tu)|p dt

= C9‖M−j‖pn
∫
Rd

dz

∫
Rd

|u|ndu
(1 + |u|)γ

1∫
0

∑
[β]=n

|Dβf(z + tM−ju)|p dt

= C9‖M−j‖pn
∫
Rd

|u|ndu
(1 + |u|)γ

1∫
0

dt

∫
Rd

∑
[β]=n

|Dβf(z + tM−ju)|p dz

= C9‖M−j‖pn
∫
Rd

|u|ndu
(1 + |u|)γ

1∫
0

dt

∫
Rd

∑
[β]=n

|Dβf(z)|p dz

≤ C10‖M−j‖pn‖f‖p
Ẇn

p

.

This implies (27) and, therefore, (26).
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Now let us prove inequality (25). By Lemma 12, there exists Pσ ∈ Bσ
p , σ = 1/‖M−j‖, such that

‖f − Pσ‖p ≤ C11ωn(f, 1/σ)p. (29)

Using Lemma 7, we obtain∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C12‖f − Pσ‖p +
∥∥∥∥Pσ −

∑
k∈Zd

〈Pσ, ϕ̃jk〉ϕjk

∥∥∥∥
p

. (30)

Next, by (26) and Corollary 10, we derive∥∥∥∥Pσ −
∑
k∈Zd

〈Pσ, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C0‖Pσ‖Ẇn
p
‖M−j‖n ≤ C13ωn (Pσ, 1/σ)p . (31)

Finally, combining (29)–(31) and using Lemma 11, we get∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ C14 (‖f − Pσ‖p + ωn(Pσ, 1/σ)p)

≤ C15 (‖f − Pσ‖p + ωn(f, 1/σ)p) ≤ Cωn

(
f, ‖M−j‖)

p
,

which implies (25). �

In the following result, we give an analogue of Theorem 17 for the limiting cases p = 1 and
p = ∞.

Theorem 17 ′ Let f ∈ Lp, p = 1 or p = ∞, and n ∈ N. Suppose the functions ϕ and ϕ̃ are such

that ϕ̂, ̂̃ϕ ∈ Cn+d+1(Bδ) for some δ > 0, Dβ(1 − ϕ̂̂̃ϕ)(0) = 0 for all β ∈ Zd
+, [β] < n, ϕ ∈ B,

supp ϕ̂ ⊂ B1−ε for some ε ∈ (0, 1), and

(i) ϕ ∈ L1 and ϕ̃ ∈ L∞ in the case p = 1;

(ii) ϕ ∈ L∞ and ϕ̃ ∈ L1 in the case p = ∞.

Then ∥∥∥∥f −
∑
k∈Zd

〈f, ϕ̃jk〉ϕjk

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
,

where C does not depend on f and j.

Proof. The proof is similar to the proof of Theorem 17. We only note that one needs to use
Lemmas 7 ′ and 13 ′ instead of Lemmas 7 and 13. At that, in the case p = ∞, using the first
inequality in (28) and Lemma 5, we get∥∥∥∥ ∑

k∈Zd

〈f, ψ̃jk〉ϕjk

∥∥∥∥
∞

≤ C1m
j
2 sup
k∈Zd

|〈f, ψ̃jk〉|

≤ C2m
j‖M−j‖n‖f‖Ẇn∞

sup
k∈Zd

∫
Rd

|M jx− z|n
(1 + |M jx− z|)γ dx

≤ C3‖M−j‖n‖f‖Ẇn∞
.

Theorem 17 ′ is proved. �

Remark 18 Note that any function ϕ̃ ∈ L0
p, 1 ≤ p ≤ ∞, satisfies assumptions ϕ̃ ∈ Lp ⊂ Lp and̂̃ϕ ∈ Cn+d+1(Bδ), and hence can be used in Theorems 17 and 17 ′.
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6 Special Cases

I. Let us start from the classical multivariate Kotelnikov type decomposition that can be obtain by
using the function

sinc(x) :=

d∏
ν=1

sin(πxν)

πxν
, x ∈ Rd.

In what follows, we restrict ourselves by the case 1 < p < ∞.

Proposition 19 Let f ∈ Lp, 1 < p < ∞, and let U be a bounded measured subset of Rd. Then∥∥∥∥f −
∑
k∈Zd

mj

mesU

∫
M−jU

f(−M−jk + t) dt sinc(M j ·+k)

∥∥∥∥
p

≤ Cω1(f, ‖M−j‖)p, (32)

where the constant C does not depend on f and j. If, in addition, U is symmetric with respect to
the origin, then in (32) the modulus of continuity ω1(f, ‖M−j‖)p can be replaced by the second order
modulus of smoothness ω2(f, ‖M−j‖)p.

Proof. We use Theorem 17 for

ϕ(x) = sinc(x) and ϕ̃(x) =
1

mesU
χU (x).

Then, taking into account that ̂̃ϕ(0) = 1 and

〈f, ϕ̃jk〉 = mj/2

mesU

∫
M−jU

f(−M−jk + t) dt,

we can verify that all assumptions of Theorem 17 are satisfied with n = 1, which provides inequal-
ity (32).

Now, let U be symmetric with respect to the origin. In this case,

∂

∂xj
(1− ϕ̂̂̃ϕ)(0) = − ∂ ̂̃ϕ

∂xj
(0) =

2πi

mesU

∫
U

xjdx = 0, 1 ≤ j ≤ d.

Therefore, all assumptions of Theorem 17 are satisfied with n = 2. �

Remark 20 Relation (32) gives a general answer to the question posed in [3] concerning approxi-
mation properties of the sampling series given by∑

k∈Zd

mj

mesU

∫
M−jU

f(−M−jk + t) dt sinc(M j ·+k)

in the spaces Lp for 1 < p < ∞.

Remark 21 It follows from Theorem 17 ′ that Proposition 19 is valid for all f ∈ Lp, 1 ≤ p ≤ ∞,
if we replace sinc(x) by sinc2(x) in (32). In particular, this gives an improvement of estimate (5).
The same conclusion holds for all propositions presented below.

II. Now let us show that using of an appropriate linear combination of the function sinc(x) rather
than this function itself can provide better rates of the approximation by the corresponding sampling
operator.
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Proposition 22 Let f ∈ Lp, 1 < p < ∞, n ∈ N, and let U be a bounded measured subset in Rd.
Then there exists a finite set of numbers {al}l∈Zd ⊂ C depending only on d, n, and U such that for

ϕ(x) =
∑
l

al sinc(x+ l) (33)

we have ∥∥∥∥f −
∑
k∈Zd

mj

mesU

∫
M−jU

f(−M−jk + t) dt ϕ(M j ·+k)

∥∥∥∥
p

≤ Cωn(f, ‖M−j‖)p, (34)

where the constant C does not depend on f and j.

Proof. Let ϕ̃(x) = 1
mesU χU (x). Find complex numbers cα, α ∈ Zd

+, [α] < n, satisfying

c0 = 1,
∑

0≤α≤β

(
β

α

)
Dβ−α ̂̃ϕ(0)cα = 0 ∀β ∈ Zd

+, 0 < [β] < n

and set

T (ξ) =
∑

0≤[α]≤n

cα

d∏
j=1

gαj (ξj), (35)

where gk is a trigonometric polynomial such that dlgk
dtl

(0) = δkl for all l = 0, . . . , k. It is not difficult
to deduce explicit recursive formulas for finding such polynomials (see, e.g., [19, Sec. 3.4] or [24]).
Obviously, DαT (0) = cα and Dα(T · ϕ̂)(0) = Dα(T ·χ[−1/2,1/2]d)(0) = cα for all α ∈ Zd

+, [α] < n. If

now T (ξ) =
∑

l ale
2πi(l,ξ), then setting ϕ(x) =

∑
l al sinc(x+ l), we obtain that Dβ(1− ϕ̂̂̃ϕ)(0) = 0

for all β ∈ Zd
+, [β] < n. Thus, due to Theorem 17, we have inequality (34). �

Let us write explicit formulas for the function (33) and for the polynomial T given by (35) in
the cases d = 1, 2 and n = 4.

Example 1. Let first d = 1, U = [−1/2, 1/2], and M = 2. Then

̂̃ϕ(0) = 1, ̂̃ϕ′
(0) = 0, ̂̃ϕ′′

(0) = −π2

3
, ̂̃ϕ′′′

(0) = 0,

which yields c0 = 1, c1 = 0, c2 = π2

3 , c3 = 0, and

T (ξ) = 1 +
π2

3
g2(ξ),

where

g2(u) = − 1

8π2
(2− 5e2πiu + 4e4πiu − e6πiu).

Hence

ϕ(x) =
11

12
sinc(x) +

5

24
sinc(x+ 1)− 1

6
sinc(x+ 2) +

1

24
sinc(x+ 3)

and, by Proposition 22, we have∥∥∥∥f −
∑
k∈Z

2j
∫

[−2−j−1,2−j−1]

f(−2−jk + t) dt ϕ(2j ·+k)

∥∥∥∥
p

≤ Cω4(f, 2
−j)p.
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Example 2. Now let d = 2 and U = [−1/2, 1/2]2. Simple calculations show that in this case
one has

T (ξ) = g0(ξ1)g0(ξ2) +
π2

3
g2(ξ1)g0(ξ2) +

π2

3
g0(ξ1)g2(ξ2) = 1 +

π2

3
(g2(ξ1) + g2(ξ2)),

and, therefore,

ϕ(x1, x2) =
5

6
sincx1 sincx2 +

sincx2

24
(5 sinc(x1 + 1)− 4 sinc(x1 + 2) + sinc(x1 + 3))

+
sincx1

24
(5 sinc(x2 + 1)− 4 sinc(x2 + 2) + sinc(x2 + 3)).

It follows from (34) that∥∥∥∥f −
∑
k∈Z2

mj

∫
M−j [−1/2,1/2]2

f(−M−jk + t) dt ϕ(M j ·+k)

∥∥∥∥
p

≤ Cω4(f, ‖M−j‖)p.

Example 3. Similarly to Example 2, if d = 2 and U = B1, taking into account that

ϕ̃(x) =
Γ(1 + d/2)

πd/2
χB1(x),

̂̃ϕ(ξ) = Γ(1 + d/2)
Jd/2(2π|ξ|)
(π|ξ|)d/2 ,

where Jλ is the Bessel function of the first kind of order λ, we obtain

T (ξ1, ξ2) = 1− π2(g2(ξ1) + g(ξ2))

and

ϕ(x1, x2) =
3

2
sincx1 sincx2 − sincx2

8
(5 sinc(x1 + 1)− 4 sinc(x1 + 2) + sinc(x1 + 3))

− sincx1

8
(5 sinc(x2 + 1)− 4 sinc(x2 + 2) + sinc(x2 + 3)).

Hence, ∥∥∥∥f −
∑
k∈Z2

mj

π

∫
M−jB1

f(−M−jk + t) dt ϕ(M j ·+k)

∥∥∥∥
p

≤ Cω4(f, ‖M−j‖)p.

III. Another improvement of the estimate given in Proposition 19 can be obtained by using an
appropriate linear combination of the averaging operator rather than linear combinations of the
function ϕ(x) = sinc(x). Thus, the following estimate is a trivial consequence of Proposition 22:

∥∥∥∥f −
∑
k∈Zd

∑
l

al
mj

mesU

∫
M−j(U+l)

f(−M−jk + t) dt sinc(M j ·+k)

∥∥∥∥
p

≤ Cωn(f, ‖M−j‖)p, (36)

where al is the l-th coefficient of the polynomial T defined by (35) and the constant C does not
depend on f and j.

Now let us obtain an analog of (36) for other functions ϕ.
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Proposition 23 Let f ∈ Lp, 1 < p < ∞, n ∈ N, and let U be a bounded measured subset in Rd.
Suppose the function ϕ satisfies conditions of Theorem 17. Then there exists a finite set of numbers
{bl}l∈Zd ⊂ C depending only on d, n, U , and ϕ such that∥∥∥∥f −

∑
k∈Zd

∑
l

bl
mj

mesU

∫
M−j(U−l)

f(−M−jk + t) dt ϕ(M j ·+k)

∥∥∥∥
p

≤ Cωn(f, ‖M−j‖)p, (37)

where the constant C does not depend on f and j.

Proof. Find complex numbers c′α, α ∈ Zd
+, [α] < n, satisfying

c′0 = 1,
∑

0≤α≤β

(
β

α

)
Dβ−αϕ̂(0)c′α = 0 ∀β ∈ Zd

+, 0 < [β] < n.

Next, for ϕ̃(x) = 1
mesU χU (x), we find complex numbers cα, α ∈ Zd, [α] < n, satisfying

c0 = 1,
∑

0≤α≤β

(
β

α

)
Dβ−α ̂̃ϕ(0)cα = c′β ∀β ∈ Zd

+, 0 < [β] < n,

and set

Q(ξ) =
∑

0≤[α]≤n

cα

d∏
j=1

gαj (ξj), (38)

where gα is as in (35). If now Q(ξ) =
∑
l

ble
2πi(l,ξ), then setting

ψ̃(x) =
∑
l

blϕ̃(x+ l),

we obtain that Dβ(1−ϕ̂
̂̃
ψ)(0) = 0 for all β ∈ Zd

+, [β] < n. Thus, due to Theorem 17, we have (37). �

Example 4. In this example, we consider radial functions ϕ(x) = Rδ(x) given by the Bochner-
Riesz type kernel

Rδ(x) :=
Γ(1 + δ)

πδ

Jd/2+δ(2π|x|)
|x|d/2+δ

.

Some results on approximation properties of sampling expansions generated by radial functions with
a diagonal matrix M can be found in [6]. Let also d = 2, n = 4, and U = B1. By analogy with the
above examples, we can compute that the polynomial Q(ξ) given in (38) has the form

Q(ξ) = 1 + (2δ − π2)(g2(ξ1) + g2(ξ2))

and, therefore, by (37), we derive∥∥∥∥f −
∑
k∈Z2

3∑
l1=0

3∑
l2=0

bl1,l2m
j

π

∫
M−j(B1−(l1,l2))

f(−M−jk + t) dtRδ(M
j ·+k)

∥∥∥∥
p

≤ Cω4(f, ‖M−j‖)p,

where

b0,0 = 1− 2δ − π2

2π2
, b1,0 = b0,1 =

5(2δ − π2)

8π2
,

b2,0 = b0,2 =
−(2δ − π2)

2π2
, b3,0 = b0,3 =

2δ − π2

8π2
,

16



and
b1,1 = b1,2 = b2,1 = 0.

IV. Finally, from Theorem 14, we obtain the following result related to the classical Kotelnikov
decomposition.

Proposition 24 Let f ∈ Lp, 1 < p < ∞, f̂ be locally summable, and n ∈ N. Then∥∥∥∥f −mj/2
∑
k∈Zd

∫
[−1/2,1/2]d

f̂(M∗jξ)e−2πi(k,ξ)dξ sinc(M j ·+k)

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
, (39)

where the constant C does not depend on f and j.

Proof. We apply Theorem 14 for ϕ(x) = ϕ̃(x) = sinc(x). Since ŝinc(ξ) = χ[−1/2,1/2]d(ξ) and

ŝincjk(ξ) = m−j/2e2πi(k,M
∗−jξ)χ[−1/2,1/2]d(M

∗−jξ), we have

〈f, sincjk〉 = 〈f̂ , ŝincjk〉 = mj/2

∫
Rd

f̂(M∗jξ)̂̃ϕ(M∗jξ)dξ =

∫
[−1/2,1/2]d

f̂(M∗jξ)e−2πi(k,ξ)dξ,

which, by Theorem 14, proves the proposition. �

Finally, let us note that (39) can be also written in the following form∥∥∥∥f −
∑
k∈Zd

F−1(χM∗j [−1/2,1/2]d f̂)(M
∗−jk) sinc(M j ·+k)

∥∥∥∥
p

≤ Cωn

(
f, ‖M−j‖)

p
. (40)
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