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This paper is concerned with the asymptotic expansions of the amplitude of the 
solution of the Helmholtz equation. The original expansions were obtained using a 
pseudo-differential decomposition of the Dirichlet to Neumann operator. This work 
uses first and second order approximations of this operator to derive new asymptotic 
expressions of the normal derivative of the total field. The resulting expansions can 
be used to appropriately choose the ansatz in the design of high-frequency numerical 
solvers, such as those based on integral equations, in order to produce more accurate 
approximation of the solutions around the shadow and the deep shadow regions than 
the ones based on the usual ansatz.
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1. Introduction

Studying the Helmholtz equation at the high-frequency regime is fundamental in both the theoreti-
cal understanding of the corresponding solutions and the derivation of appropriate numerical schemes. The 
well-know asymptotic expansions developed by Melrose and Taylor [40] have significantly contributed in this 
matter and were the key in the design of several high-frequency integral equation methods. Indeed, integral 
equation methods are very efficient and widely used in the solution of acoustic scattering problems (see e.g. 
[23,21] and the references therein). However, the resulting linear systems are dense, ill-conditioned and with 
large size in particular when the frequency increases. Several effective strategies have been proposed to over-
come these difficulties [23,21,3,15,20,7–9,36,42,17,5,31,43,45,16,13,14,12]. Despite this significant progress, 
integral formulations are limited at higher frequencies since the numerical resolution of field oscillations can 
easily lead to impractical computational times. This is why hybrid numerical methods based on a combi-
nation of integral equations and asymptotic methods have found an increasing interest for the solution of 
high-frequency scattering problems. Indeed, the methodologies developed in this connection that specifically 
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concern scattering from a smooth convex obstacle were first introduced in [1,2]. Several other works followed 
these [19,28,4,18,25,35,30,27,26] and mainly consist of improving and analyzing this kind of numerical algo-
rithms in single and multiple scattering configurations. All these methods are mainly based on construction 
of an appropriate ansatz for the solution of integral equations in the form of a highly oscillatory function 
of known phase modulated by an unknown slowly varying envelope, which is expected to generate linear 
systems quasi-independent of the frequency.

The high-frequency integral equation methods mentioned above use the asymptotic expansions developed 
in the well-known paper by Melrose and Taylor [40] in the context of convex obstacles. From these expansions, 
an ansatz is derived and incorporated into integral equations to eliminate the highly oscillatory part of the 
unknown which usually corresponds to the physical density, normal derivative of the total field, computed 
on the surface of the obstacles. This surface is decomposed into three regions, the illuminated and shadows 
regions in addition to the deep shadow one. Each region is then numerically treated differently and the ansatz 
is set in general on the illuminated one. Although carefully designed, the aforementioned high-frequency 
integral equation formulations result in ill-conditioned matrices that limit the numerical accuracy of the 
approximate solutions. One explanation lies in the fact that the rapidly decaying behavior of the unknown 
density in the deep shadow regions is not incorporated into the approximation spaces as it is not intrinsic 
to the chosen ansatz. Generally speaking, it is not clear how to extract all the information needed from the 
leading term in the expansion given in [40], which restricts the construction of the ansatz.

In this paper, we derive new expansions of the normal derivative of the total field using approximations 
of the Dirichlet to Neumann (DtN) operator. The original expansions employed a pseudo-differential de-
composition of the DtN operator, and the related analysis focuses on the behavior of this field around the 
shadow boundary which leads to a corrected formula for the Kirchhoff approximation around this region 
[40]. However, it has been shown that these expansions are valid in the entire surface of the obstacles [25,
28]. Here, we choose first and second order approximations of the DtN operator of the Bayliss–Turkel type 
[11,38]. These conditions were designed to deal with the infinite aspect of the computational domain for 
scattering problems. They were also employed in the design of the On-Surface Radiation Conditions [6]. 
Other approximations such as those developed in [29] can also be adapted to our analysis without specific 
difficulties. To obtain these new expansions, we follow a similar procedure to the one given in [40]. Briefly, it 
consists of first finding the kernel of a certain operator, which allows the computation of its amplitude, and 
then use the stationary phase method to get the final expansions around the shadow boundary. In this case, 
we can use some of the results derived by Melrose and Taylor [40] in our analysis. The resulting expansions 
can then be used to appropriately build an ansatz that contains the expected behavior of the solution in the 
three regions, namely, the illuminated and the deep shadow regions in addition to the shadow boundaries. 
This provides an improvement over the usual ansatz that behaves like Kirchhoff approximations, meaning 
that the corresponding solutions are accurate mostly in the illuminated regions.

This paper is organized as follows. After reviewing the functional setting needed for this analysis, we 
state the problem and explain our choice, regarding the approximation of the DtN operator, in the second 
section. The two following sections are, respectively, devoted to the derivation of asymptotic expansions in 
the context of first and second order approximations of the DtN operator. The last section is reserved for 
some conclusions.

In this work, we will use the following functional spaces (for more details, see for instance [44,22]). Let 
U be an open bounded set of Rn.

• D(U): space of smooth test functions with compact support, from U to Rn.
• D′(U): space of distributions.
• S(Rn): Schwartz space or space of rapidly decreasing functions on Rn.
• S′(Rn): space of tempered distributions, which is the dual space of S(Rn).
• E ′: space of compactly supported distributions.
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• OPSm: space of pseudo-differential operators of order m.
• Im: space of Fourier integral operators of order m.

We will also use symbols of Hörmander’s classes [34,33], we say p(x, ξ) ∈ Sm
ρ,δ if and only if

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−ρ|α|+δ|β|. (1)

In particular we say p(x, ξ) ∈ Sm if p(x, ξ) ∈ Sm
1,0. Note that each p(x, ξ) admits an asymptotic expansion 

of the form

p(x, ξ) ∼
∑
j≥0

pj(x, ξ) (2)

for |ξ| large where the pj(x, ξ) are homogeneous functions of degree m − j in ξ. Finally, if p(x, ξ) ∈ Sm, we 
say p(x, D) ∈ OPSm, where D is the corresponding pseudo-differential operator.

2. Model problem

Consider a convex obstacle O ⊂ Rn+1 such that B = ∂O ⊂ Rn+1 is a hypersurface and let Ω be the 
exterior domain given by Ω = Rn+1 \O. We are interested in solutions of the following wave equation{

(∂tt − Δ)u(x, t) = 0 in Ω × R,

u(x, t) = −δ(t− x · ω) = −ui(x, t) on B × R,
(3)

where ui is the incident wave, ω denotes the incidence direction, δ is the Dirac function, and u ∈ D′(B×R)
[40]. Defining the function w by

w(x, k) =
∫

eiktu(x, t)dt, (4)

leads to the well-posed problem [46]⎧⎪⎪⎨⎪⎪⎩
(Δ + k2)w(x, k) = 0 in Ω × R,

w(x, k) = −eikx·ω on B × R,

w(x, k) = O(|x|−n/2) and (∂|x| − ik)w(x, k) = o(|x|−n/2) for |x| → ∞.

(5)

For each x ∈ ∂O = B, n denotes the outgoing normal vector. In what follows, we use the notation wt =
ws+wi indicating the total field, where ws is the scattered field solution of the problem (5) and wi = eikx·ω. 
The normal derivative of wt is written in the form

∂nw
t = ∂nw

s + ∂nw
i

= K(ω, x, k)eikx·ω. (6)

In addition, we define the Kirchhoff operator (as given in [40]) by

Q = (DtN + (ω · n)∂t)F : E ′(Sn × R) → D′(B × R) (7)

with ω ∈ Sn. Here, Sn indicates the unit sphere of dimension n and DtN ∈ OPS1 [40,32] stands for the 
Dirichlet to Neumann operator (called the forward Neumann operator in [40])
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DtN : E ′(B × R) → D′(B × R), DtN ui = −∂nu|B×R, (8)

and F is a Fourier integral operator defined by [40,24]

Fu(x, t) =
∫

Sn×R

δ(t− s− x · ω)u(ω, s)dωds. (9)

Using a pseudo-differential decomposition of this operator DtN, Melrose and Taylor derived the well-known 
expansion

∂nw
t ∼

∞∑
p,l=0

k2/3−p−2l/3ap,l(ω, x)Ψ(l)(k1/3Z(ω, x))eikx·ω, (10)

where Ψ(τ) ∼
∑∞

j=0 cjτ
1−3j as τ → +∞, and it is rapidly decreasing in the sense of Schwartz as τ → −∞. 

The real-valued function Z is positive on the illuminated region, negative on the shadow region and vanishes 
precisely to first order on the shadow boundary [40]. Here, ap,l result from the application of the stationary 
phase method and the expansion of the symbol of the operator Q [40].

Remark 1. As is mentioned in [40], the first term of the expansion (10) represents the classical Kirchhoff 
approximation. Indeed, if Ψ(k1/3Z(ω, x)) is replaced by the leading term in its asymptotic expansion

Ψ(τ) � −2iτ, for τ → +∞, (11)

and taking a0,0(ω, x) = (n · ω)/Z(ω, x) in the illuminated region Z(ω, x) > 0 (n · ω < 0), we obtain

∂nw
t � k2/3 n · ω

Z(ω, x) (−2ik1/3Z(ω, x))eikx·ω = 2ikn · ωeikx·ω. (12)

Generally speaking, the aforementioned high-frequency integral equation methods, based on an ansatz 
of the form ∂nw

t = η(x)eikx·ω, although delivering better accuracy than the Kirchhoff approach in the 
illuminated region, were designed replicating its behavior, and this explains why the decay in the deep 
shadow region is not observed but somehow forced. This is partly due to the fact that an explicit form 
of the leading term in the asymptotic expansion (10) is not available. We propose in this work to use 
approximations of the DtN map to derive new asymptotic expressions of ∂nw

t. This can allow construction 
of a new ansatz in order to improve the behavior and the accuracy of the solution in the shadow and the deep 
shadow regions. We use first and second order approximations of the DtN operator given by Bayliss–Turkel 
[11]

∂nw
s(x, k) = −ikwi(x, k) + c(x)

2 wi(x, k), (13)

∂nw
s(x, k) = −ikwi(x, k) + c(x)

2 wi(x, k) − c(x)2

8(c(x) − ik)w
i(x, k) − 1

2(c(x) − ik)∂
2
xw

i(x, k), (14)

where c(x) represents the interface curvature. Although these conditions are approximations of the DtN 
operator, we use the sign “=” for the sake of the presentation.

The motivation behind this choice of conditions (13) and (14) is summarized in the next example. Suppose 
that Ω is a circle, in this case the exact solution of problem (5) as well as the plane wave are given by Bessel 
functions. We then compute the quantity

∂nw
t = ∂nw

s + ∂ne
ikx·ω (15)
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Fig. 1. Left: comparison of the exact solution of the problem (5) with the classical Kirchhoff approximation and a first order 
Bayliss–Turkel type approximation (13) for the unit circle illuminated by a plane wave incidence with k = 150. Right: relative 
error, computed for k = 50, 100, 150, 200, of the solution on the shadow and the deep shadow regions for the unit circle, obtained 
by first order Bayliss–Turkel type approximation (13).

using, (a) the exact solution, (b) the first order approximation (13) approximating ∂nw
s, and (c) the Kirch-

hoff approximation which uses the formula (12) in the illuminated region. The resulting calculations are 
exhibited in Fig. 1. We can observe that the Kirchhoff approach produces a reasonable approximation only 
in the illuminated region. In contrast, the solution, based on condition (13), generates a satisfactory approx-
imation over the entire boundary, see the left of Fig. 1. The figure in the right validates this observation. 
Indeed, this figure exhibits the relative error associated with the solution based on (12) on the shadow and 
the deep shadow regions. In this case, the one related to the Kirchhoff approximation is equal to 1 since the 
solution is taken as zero in those regions. This explains why this procedure leads to inaccurate solutions in 
the high-frequency integral formulations. As is shown in [10,38], the second order approximation (14) of the 
DtN operator improves further the accuracy of the solution.

Remark 2. The condition (13) was derived in the case of two and three dimensions while the condition 
(14) was derived only in the two dimensional case [39]. Our computations do not distinguish between these 
two cases. However, at the end of this analysis, we give an example of an expansion derived for a three 
dimensional second order approximation of the DtN operator.

3. Expansion of the Kirchhoff amplitude using the first order approximation

The analysis produced in this paper is based on some results derived in the paper [40] and it consists of 
determining the asymptotic behavior of the Kirchhoff amplitude

aQ(ω, x, k) = K(ω, x, k)eikx·ω. (16)

It begins by determining the kernel associated with the operator (7) in the case where the DtN operator is 
approximated by (13). For the sake of the presentation, we use the notation C(x) = c(x)/2.

Theorem 3. Let O ⊂ Rn+1 be a strictly convex bounded obstacle such that ∂O = B, where B is C∞

hypersurface with positive curvature in Rn+1. Suppose that Ω is an open set of Rn+1 such that Ω = Rn+1\O, 
and let ws be a solution of (5). Using the approximation (13), the operator Q (7) can be written as
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Q = ((1 − n · ω)∂t + C(x))F : E ′(Sn × R) → D′(B × R), (17)

where κQ(ω, x, t) is its kernel given by

κQ(ω, x, t) = ((1 − n · ω)∂t + C(x))κF (ω, x, t), (18)

and κF (ω, x, t) = δ(t − ω · x) is the kernel of the Fourier integral operator F (9).

Proof. Using the approximation (13) and the definition of the total field, we can write

∂nw
t(x, k) = (−ik(1 − n · ω) + C(x))eikx·ω. (19)

To obtain the kernel of the operator Q, we compute the Fourier transform with respect to the variable t. 
Let ϕx(k) = ϕ(x, k) ∈ S(R), we have then

〈∂̂nwt(x, k), ϕ(x, k)〉S′,S =
〈
∂nw

t(x, k), ϕ̂(x, k)
〉
S′,S

=
∫
R

∂nw
t(x, k)ϕ̂(x, k)dk

=
∫

R×R

∂nw
t(x, k)ϕ(x, t)e−iktdkdt

=
∫

R×R

[
−ik(1 − n · ω)eikx·ω + C(x)eikx·ω

]
ϕ(x, t)e−iktdkdt

= (1 − n · ω)
∫

R×R

−ikeikx·ωϕ(x, t)e−iktdkdt

+ C(x)
∫

R×R

eikx·ωϕ(x, t)e−iktdkdt

= 〈((1 − n · ω)∂t + C(x))δ(t− ω · x), ϕ(x, t)〉S′,S

= 〈κQ(ω, x, t), ϕ(x, t)〉S′,S , (20)

where 〈îkf(k), ϕ〉S′,S = 〈−∂tf̂(t), ϕ〉S′,S and 〈êikω·x, ϕ〉S′,S = 〈δ(t − ω · x), ϕ〉S′,S . Therefore

κQ(ω, x, t) = ((1 − n · ω)∂t + C(x))κF (ω, x, t), (21)

and Q = ((1 − n · ω)∂t + C(x))F . �
In the following, we use the same decomposition of the operator F given in [40] (equation (5.9)), that is,

F = J(E1A + E2A′)K, (22)

with E1 ∈ OPS−n/2+1/6, E2 ∈ OPS−n/2−1/6, and J and K are elliptic Fourier integral operators of order 0. 
The operators A and A′ are Fourier Airy integral operators and are defined by

A(l)u(x, t) =
∫

eitk+ixξAi(l)(ξ1k−1/3)û(ξ, k)dξdk, (23)

(̂Au)(ξ, k) = Ai(k−1/3ξ1)û(ξ, k), (24)

(̂A′u)(ξ, k) = Ai′(k−1/3ξ1)û(ξ, k), (25)
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where ξ = (ξ1, . . . , ξn) ∈ Rn, k ∈ R, l is an integer indicating the order of the derivative, Ai is the Airy 
function

Ai(s) = 1
2π

+∞∫
−∞

ei(
t3
3 +st)dt, (26)

with

A±(s) = Ai(e±2πi/3s), (27)

and Ai′ is its derivative. Finally, we define the operator A−1 [40] as follows

̂(A−1u)(ξ, k) = 1
A+(k−1/3ξ1)

û(ξ, k). (28)

The next theorem is concerned with the computation of the amplitude of the operator (17).

Theorem 4. Let K and J be elliptic Fourier integral operators of order 0. Then the operator Q and its kernel 
κQ can be respectively written as

Q = JA−1P1K + JA−1P2K, (29)

κQ(ω, x, t) =
∫

eiψ1(x,ξ,k)−iω·ξ−ikt ((1 − n · ω)a(ω, x, ξ, k) + C(x)b(ω, x, ξ, k)) 1
A+(k−1/3ξ1)

dξdk, (30)

such that P1 ∈ OPS−n/2+5/6 (resp. P2 ∈ OPS−n/2−1/6) with a symbol of the form (1 − n · ω)p1 (resp. 
C(x)p2), where a(ω, x, ξ, k) and b(ω, x, ξ, k) are defined in (48), and A−1 is a pseudo-differential operator 
defined by (28) [40]. In addition, its amplitude is given by

aQ(ω, x, k) =
∫

eikψ2(ω,x,ζ) ((1 − n · ω)a1(ω, x, ζ, k) + C(x)b1(ω, x, ζ, k)) 1
A+(k2/3ζ1)

dζ, (31)

with ξ = kζ, a1(ω, x, ζ, k) = kna(ω, x, kξ, k), b1(ω, x, ζ, k) = knb(ω, x, kξ, k) and ψ2(ω, x, ζ) = ψ1(x, ζ, 1) −
ω · ζ.

Proof. Using (22) and equation (17) we obtain

Q = J(E3A + E4A′)K + C(x)J(E1A + E2A′)K, (32)

where E1 ∈ OPS−n/2+1/6, E2 ∈ OPS−n/2−1/6, E3 ∈ OPS−n/2+1/6+1, and E4 ∈ OPS−n/2−1/6+1. The 
operators A and A′ are Airy operators given by (23). Using Theorem 6.5 in [40], we can write

Q = JA−1P1K + JA−1P2K, (33)

with P1 ∈ OPS−n/2−1/6+1 and P2 ∈ OPS−n/2−1/6. To compute the oscillatory integral related to Q, 
consider ϕ(x, t) ∈ S(Rn × R) and the Dirac delta function δ(ω,t) ∈ E ′(Sn × R) used here to find the kernel 
of Q at the base point [40,41], we have then

〈Qδ(ω,0), ϕ(x, t)〉 = 〈JA−1P1Kδ(ω,0) + JA−1P2Kδ(ω,0), ϕ(x, t)〉
= 〈JA−1P3δ0, ϕ(x, t)〉 + 〈JA−1P4δ0, ϕ(x, t)〉
= 〈JP3A−1δ0, ϕ(x, t)〉 + 〈JP4A−1δ0, ϕ(x, t)〉
= 〈Q1δ(ω,0), ϕ(x, t)〉 + 〈Q2δ(ω,0), ϕ(x, t)〉,
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where

Q1δ(ω,0) = JP3A−1δ0, Q2δ(ω,0) = JP4A−1δ0, (34)

and

Ju(x, t) =
∫

eiψ1(x,η,τ)+iτ(t−t1)−iyηaJ(x, y, t1η, τ)u(y, t1)dydt1dηdτ, (35)

with P3 ∈ OPS−n/2−1/6+1 and P4 ∈ OPS−n/2−1/6 such that P1Kδ(ω,0) = P3δ(ω,0) = P3δ0 and P2Kδ(ω,0) =
P4δ(ω,0) = P4δ0, taking ω as a parameter, and knowing that A−1 commute with P3 and P4 [40]. Here, 
(y, t1) ∈ Rn ×R, (η, τ) indicates the dual of (x, t), and the phase function ψ1 is defined in the three regions 
of the obstacle [40]. In the illuminated region {x ∈ ∂O, n(x) · ω < 0}, it is given by

ψ1(x, η, τ) = −|η′|2
2τ − |x′|2

2 τ + 2
3(−η1τ

−1/3)3/2, (36)

while in the shadow region {x ∈ ∂O, n(x) · ω > 0}, we have

ψ1(x, η, τ) = −|η|′ 2
2τ − |x′|2

2 τ − 2
3(−η1τ

−1/3)3/2. (37)

Finally, on the shadow boundary {x ∈ ∂O, n(x) · ω = 0}, the phase function is as follows

ψ1(x, η, τ) = −|η′|2
2τ − |x′|2

2 τ (38)

since η1 = 0 [40]. Here, x′ = (x2, ..., xn), η′ = (η2, ..., ηn) such that x ∈ ∂O, η ∈ Rn, t, τ ∈ R, and 
aJ(x, y, t1, η, τ) ∈ S0

1,0. The pseudo-differential operator P3 is defined by

P3u(y, t1) =
∫

ei(y−ω)ξ+it1kp3(ω, y, t1ξ, k)û(ξ, k)dξdk, (39)

where (ξ, k) ∈ Rn×R is the dual couple of (y, t1). Our objective is to compute Q1δ(ω,0) = JP3A−1δ0. First, 
using standard calculations on composition of operators [34,37], we have

J ◦ P3u(x, t) =
∫

eiψ1(x,ξ,k)−iω·ξ−itkpJ◦P3(ω, x, ξ, k)û(ξ, k)dξdk, (40)

with

pJ◦P3(ω, x, ξ, k) = q1(ω, x, ξ, k)

=
∫

eiψ1(x,η,τ)−iψ1(x,ξ,k)+iy(ξ−η)+it1(k−τ)+it(k+τ)aJ(x, y, t1, η, τ)p3(ω, y, t1, ξ, k)dydt1dηdτ

= p3(ω, x, ξ, k)#aJ(x, ξ, k), (41)

thus

J ◦ P3u(x, t) =
∫

eiψ1(x,ξ,k)−iω·ξ−itkq1(ω, x, ξ, k)û(ξ, k)dξdk. (42)

To find Q1δ(ω,0) we need to replace u(x, t) by A−1δ0 in (42)
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A−1δ0(x, t) =
∫

eixξ+ikt 1
A+(k−1/3ξ1)

dξdk. (43)

We get

Q1δ(ω,0) = J ◦ P3 ◦ A−1δ0

=
∫

eiψ1(x,ξ,k)−iω·ξ−iktq1(ω, x, ξ, k)Â−1δ0(ξ, k)dξdk

=
∫

eiψ1(x,ξ,k)−iω·ξ−iktq1(ω, x, ξ, k) 1
A+(k−1/3ξ1)

dξdk. (44)

A similar approach for Q2 gives

Q2δ(ω,0) =
∫

eiψ1(x,ξ,k)−iω·ξ−iktq2(ω, x, ξ, k) 1
A+(k−1/3ξ1)

dξdk. (45)

The equation (33) becomes

Qδ(ω,0) =
∫

eiψ1(x,ξ,k)−iω·ξ−ikt [q1(ω, x, ξ, k) + q2(ω, x, ξ, k)] 1
A+(k−1/3ξ1)

dkdξ, (46)

where q2(ω, x, ξ, k) ∈ S
−n/2−1/6
1,0 and q1(ω, x, ξ, k) ∈ S

−n/2+5/6
1,0 . This shows that the kernel κQ is as follows

κQ(ω, x, t) =
∫

eiψ1(x,ξ,k)−iω·ξ−ikt [(1 − n · ω)a(ω, x, ξ, k) + C(x)b(ω, x, ξ, k)] 1
A+(k−1/3ξ1)

dξdk, (47)

where

q1(ω, x, ξ, k) = (1 − n · ω)a(ω, x, ξ, k), q2(ω, x, ξ, k) = C(x)b(ω, x, ξ, k). (48)

Taking now the inverse Fourier transform of κQ, we obtain the following amplitude

aQ(ω, x, k) =
∫

eiψ1(x,ξ,k)−iω·ξ[(1 − n · ω)a(ω, x, ξ, k) + C(x)b(ω, x, ξ, k)] 1
A+(k−1/3ξ1)

dξ. (49)

Applying the change of variable ξ = kζ with ξ ∈ Rn, we find

aQ(ω, x, k) =
∫

eikψ2(ω,x,ζ) [(1 − n · ω)a1(ω, x, ζ, k) + C(x)b1(ω, x, ζ, k)] 1
A+(k2/3ζ1)

dζ, (50)

such that a1(ω, x, ζ, k) = kna(ω, x, kζ, k), b1(ω, x, ζ, k) = knb(ω, x, kζ, k) and ψ2(ω, x, ζ) = ψ1(x, ζ, 1) −
ω · ζ. �

The remaining part of the computation of the asymptotic expression of aQ (50) consists of applying the 
stationary phase method. First, we need the next lemma [40].

Lemma 5. The function Ψ ∈ S1(R) defined as follows

Ψ(τ) = e−iτ3/3
∫ 1

A+(s)e
−isτds (51)

is rapidly decreasing for τ → −∞, where A+(s) = Ai(e 2πi
3 s).
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Theorem 6. The asymptotic expansion of the Kirchhoff amplitude aQ is given by

aQ(ω, x, k) =
P,L∑
p,l=0

k2/3−p−2l/3((1 − n · ω)ap,l(ω, x)

+ C(x)bp,l(ω, x)
)
ψ(l)(k1/3Z(ω, x))eikx·ω + RP,L(k), (52)

such that

|RP,L(k)| ≤ CPLk
−min(2L/3,P+1/3), (53)

and where p ∈ {0, 1.., P}, l ∈ {0, 1.., L}, CPL is a constant depending on L and P , ω is the incidence 
direction, and Z(ω, x) is a continuous real function that is positive on the illuminated region, negative 
on the shadow region, and vanishing on the shadow boundary. The functions ap,l and bp,l result from the 
expansion of the symbols a1 and b1 (see Theorem 4) and the application of the stationary phase method.

Proof. First, let us note that

1
A+

(k2/3ζ1) = F−1

(
1̂

A+(k2/3ζ1)

)

= F−1
(∫

e−iktζ1
k2/3

A+(k2/3ζ1)
dζ1

)
= F−1

(
eik

t3
3 Ψ(k1/3t)

)
= k1/3

∫
eiktζ1+ik t3

3 Ψ(k1/3t)dt. (54)

Using (54) and (50), aQ becomes

aQ(ω, x, k) = k1/3
∫

eikψ2(ω,x,ζ)+iktζ1+ik t3
3 [(1 − n · ω)a1(ω, x, ζ, k) + C(x)b1(ω, x, ζ, k)] Ψ(k1/3t)dtdζ,

(55)

where a1(ω, x, ζ, k) ∈ Sn/2+7/6 and b1(ω, x, ζ, k) ∈ Sn/2+1/6 are given in Theorem 4. Let us assume now 
that

(1 − n · ω)a1(ω, x, ζ, k) + C(x)b1(ω, x, ζ, k) = d1(ω, x, ζ, k) ∈ Sn/2+7/6. (56)

Using properties of pseudo-differential operators [37], we can write

d1(ω, x, ζ, k) =
P∑

p=0
kn/2+7/6−pdp(ω, x, ζ), (57)

with P = n/2 + 7/6, and

dp(ω, x, ζ) = (1 − n · ω)ap(ω, x, ζ) + C(x)bp(ω, x, ζ). (58)

This shows that the integral (55) can be rewritten as
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k1/3
P∑

p=0
kn/2+7/6−p

∫
eikf(ζ,t)dp(ω, x, ζ)Ψ(k1/3t)dtdζ, (59)

such that

f(ζ, t) = ψ2(ω, x, ζ) + tζ1 + t3

3 , (60)

see [40] for more details regarding the definition of f . To get the asymptotic expansion of aQ, it remains to 
apply the stationary phase method to∫

eikf(ζ,t)dp(ω, x, ζ)Ψ(k1/3t)dtdζ. (61)

The conditions for this application are satisfied and the computation of the critical points is done in [40]. 
Using standard calculations regarding the stationary phase method [37,47], we obtain∫

eikf(ζ,t)dp(ω, x, ζ)Ψ(k1/3t)dtdζ

= k−1/3
L∑

l=0

k−2l/3−(n+1)/2dp,l(ω, x)Ψ(l)(k1/3Z(ω, x))eikx·ω + RL(k), (62)

where dp,l(ω, x) = ∂l
ζ1
dp(ω, x, ζ)|ζ=ζc with (ζc, tc) is the critical point, and

|RL(k)| ≤ CLk
−n/2−2L/3−3/2, (63)

with CL a constant. Using (62) in (59), we obtain

aQ(ω, x, k) =
P,L∑
p,l=0

k2/3−p−2l/3((1 − n · ω)ap,l(ω, x)

+ C(x)bp,l(ω, x)
)
Ψ(l)(k1/3Z(ω, x))eikx·ω + RP,L(k), (64)

with

|RP,L(k)| ≤ CPLk
−min(2L/3,P+1/3), (65)

such that l ∈ {0, 1.., L} and P a real number. �
The next theorem establishes a relation between the functions ap,l and bp,l found in (52).

Theorem 7. The functions ap,l and bp,l in (52), p, l ≥ 0, satisfy the equation

bp,l(ω, x) = −ap,l(ω, x)
ik

. (66)

Proof. From equation (17) and the operators F and J used in Theorem 4, P4 and P3 are two pseudo-
differential operators with symbols p4 ∈ S−n/2−1/6 and p3 ∈ S−n/2−1/6+1 respectively, we have

Q = (1 − n · ω)∂tF + C(x)F, Fu(x, t) = JP4A−1u(x, t). (67)
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Similar calculations to the equation (45) give

Fu(x, t) =
∫

eiψ1(x,ξ,k)−iω·ξ−iktb(ω, x, ξ, k) 1
A+(k−1/3ξ1)

û(ξ, k)dξdk, (68)

with b(ω, x, ξ, k) = p4(ω, x, ξ, k)#aJ(x, ξ, k) ∈ S−n/2−1/6, where aJ(x, ξ, k) is given in Theorem 4 and # is 
defined by (41). Knowing that ∂tFu(x, t) = JP3A−1u(x, t) and

∂tFu(x, t) = ∂t

∫
eiψ1(x,ξ,k)−iω·ξ−iktb(ω, x, ξ, k) 1

A+(k−1/3ξ1)
û(ξ, k)dξdk,

=
∫

eiψ1(x,ξ,k)−iω·ξ−ikt(−ik)b(ω, x, ξ, k) 1
A+(k−1/3ξ1)

û(ξ, k)dξdk, (69)

implies that a(ω, x, ξ, k) = −ikb(ω, x, ξ, k). We know that b(ω, x, ξ, k) ∈ S−n/2−1/6, and then usual pseudo-
differential calculus results in a(ω, x, ξ, k) ∈ S−n/2+5/6. This allows us to conclude that ap,l(ω, x) =
−ikbp,l(ω, x). �
3.1. Some estimates of the asymptotic expansion (52)

Two estimates are established in this subsection. For the completion of the paper, we recall the next 
lemma [40].

Lemma 8. The function Ψ given by (51) is rapidly decreasing for τ → −∞ and

Ψ(τ) ∼
∞∑
j=0

cjτ
1−3j for τ → +∞. (70)

The next result compares the asymptotic expansion (52) with ∂nw
t.

Proposition 9. If aQ is the amplitude given by (52), then

|aQ(ω, x, k) − ∂nw
t(x, k)| ≤ Ck−1 for k → +∞, (71)

where C is a real constant and

aQ(ω, x, k) ∼
P,L∑
p,l=0

k2/3−p−2l/3 ((1 − n · ω)ap,l(ω, x) + C(x)bp,l(ω, x))ψ(l)(k1/3Z(ω, x))eikx·ω. (72)

Proof. We know that

∂nw
t(x, k) = −ik(1 − n · ω)eikx·ω + C(x)eikx·ω. (73)

Using Theorem 7, the expansion (72) can be written as

aQ(ω, x, k) ∼ k2/3
(

(1 − n · ω) − C(x)
ik

)
a0,0(ω, x)Ψ(k1/3Z(ω, x))eikx·ω

+
P,L∑

k2/3−p−2l/3
(

(1 − n · ω) − C(x)
ik

)
ap,l(ω, x)Ψ(l)(k1/3Z(ω, x))eikx·ω
p,l=1
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= k2/3
(

(1 − n · ω) − C(x)
ik

)
a0,0(ω, x)Ψ(k1/3Z(ω, x))eikx·ω

+
P−1,L−1∑
β,α=0

k−1−β−2α/3
(

(1 − n · ω) − C(x)
ik

)
aβ+1,α+1(ω, x)Ψ(α+1)(k1/3Z(ω, x))eikx·ω. (74)

From the preceding lemma, we have Ψ(k1/3Z(x, ω)) ∼ −ik1/3Z(x, ω) for k → +∞ and taking a0,0(x, ω) =
1

Z(x,ω) [40], we obtain

aQ(ω, x, k) ∼ (−ik(1 − n · ω) + C(x)) eikx·ω

+
P−1,L−1∑
β,α=0

k−1−β−2α/3
(

(1 − n · ω) − C(x)
ik

)
aβ+1,α+1(ω, x)Ψ(α+1)(k1/3Z(ω, x))eikx·ω.

(75)

Knowing that |∂α+1
τ Ψ(τ)| ≤ Mατ

−α for each τ ∈ R and |1 − n · ω| ≤ 2, we get∣∣aQ(ω, x, k) − ∂nw
t(x, k)

∣∣
≤

P−1,L−1∑
β,α=0

∣∣∣∣k−1−β−2α/3
(

(1 − n · ω) − C(x)
ik

)
aβ+1,α+1(ω, x)Ψ(α+1)(k1/3Z(ω, x))

∣∣∣∣
≤

P−1,L−1∑
β,α=0

Mk−1−β−α

∣∣∣∣2 + maxx∈BC(x)
k

∣∣∣∣
≤ Ck−1, (76)

and C is a real constant. �
The following result estimates (52) near the shadow boundary.

Proposition 10. If aQ is the amplitude given by (52), then

|aQ(ω, x, k)| ≤ Mk2/3 for k → +∞ (77)

where M is a real constant.

Proof. From the definition of aQ(ω, x, k), it follows that

|aQ(ω, x, k)| ≤
P,L∑
p,l=0

k2/3−p−2l/3
∣∣∣∣((1 − n · ω) − C(x)

ik

)∣∣∣∣ ∣∣∣ap,l(ω, x)Ψ(l)(k1/3Z(ω, x))eikx·ω
∣∣∣ , (78)

with p ∈ {0, 1, ..., P} and l ∈ {0, 1, ..., L}. We know that in the shadow boundary |1 −n ·ω| ≤ 1. We assume 
that the curvature is constant, so C(x) = C, then

|aQ(ω, x, k)| ≤ (k2/3 + Ck−1/3)
∣∣∣a0,0(ω, x)Ψ(k1/3Z(ω, x))

∣∣∣
+

P−1,L−1∑
k−1−α−2γ/3(1 + Ck−1)

∣∣∣aα+1,γ+1(ω, x)Ψ(γ+1)(k1/3Z(ω, x))
∣∣∣ . (79)
α,γ=0
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The function Ψ and all its derivatives are bounded,

|a0,0(ω, x)Ψ(k1/3Z(ω, x))| ≤ M1, (80)

for all γ ∈ N , where M1 is a real constant. Thus

|aQ(ω, x, k)| ≤ Mk2/3 +
P−1,L−1∑
α,γ=0

k−1−α−2γ/3(1 + Ck−1)|aα+1,γ+1(ω, x)|Mγ , (81)

such that M = (1 + C)M1 and |Ψ(γ+1)(τ)(k1/3Z(ω, x))| ≤ Mγ . Taking k → +∞, we obtain (77). �
4. Expansion of the Kirchhoff amplitude using the second order approximation

We are now interested in computing the asymptotic expansion in the case where we have

∂nw
s(x, k) = −ikwi(x, k) + c(x)

2 wi(x, k) − c(x)2

8(c(x) − ik)w
i(x, k) − 1

2(c(x) − ik)∂
2
xw

i(x, k)

= −ikwi(x, k) + c(x)
2 wi(x, k) − 1

2(c(x)2 + k2) (c(x) + ik)(c(x)2

4 + ∂2
x)wi(x, k). (82)

As for the first order case, we compute first the kernel associated to the operator Q (7) in the case where 
the DtN is approximated by (82). For the sake of simplicity, we denote the operator (17) by Q1.

Theorem 11. Let O ⊂ Rn+1 be a strictly convex bounded obstacle such that ∂O = B, where B is a C∞

hypersurface with positive curvature in Rn+1. Suppose that Ω is an open set of Rn+1 such that Ω = Rn+1\O. 
Let ws be a solution of (5). Using the approximation (82), the operator Q can be written as

Q = Q1 −
π

2c(x)Te−c(x)|t|(c(x) − ∂t)F̃ , (83)

where κQ(ω, x, t) is its kernel given by

κQ(ω, x, t) = ((1 − n · ω) + c(x)
2 )κF (ω, x, t) − π

2c(x)e
−c(x)|t| ∗ (c(x) − ∂t)κF̃ (ω, x, t), (84)

and Te−c(x)|t| denotes the convolution operator of e−c(x)|t|, F̃ = (c
2(x)
4 + ∂2

x)F , and κF̃ (ω, x, t) = (c
2(x)
4 +

∂2
x)κF (ω, x, t) where κF (ω, x, t) = δ(t − ω · x).

Proof. Using the approximation (82) and the definition of the total field, we can write

∂nw
t(x, k) =

(
−ik(1 − n · ω) + c(x)

2

)
eikx·ω − 1

2(c(x)2 + k2) (c(x) + ik)(c(x)2

4 + ∂2
x)eikx·ω

= Q1(x, k) + Q2(x, k), (85)

with

Q1(x, k) =
(
−ik(1 − n · ω) + c(x)

2

)
eikx·ω, (86)

Q2(x, k) =
(
− 1

2 2 (c(x) + ik)(c(x)2 + ∂2
x)
)
eikx·ω. (87)
2(c(x) + k ) 4
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To obtain the kernel of the operator Q, we compute the Fourier transform of the amplitude ∂nwt(x, k) with 
respect to k. Let ϕx(k) = ϕ(x, k) ∈ S(R), thus〈

̂∂nwt(x, k), ϕ
〉
S′,S

=
〈
Q̂1(x, k), ϕ

〉
S′,S

+
〈
Q̂2(x, k), ϕ

〉
S′,S

. (88)

The quantity 
〈
Q̂1(x, k), ϕ

〉
S′,S

is given by (20). For the one regarding Q2(x, k), we have

〈
Q̂2(x, k), ϕ

〉
S′,S

= 〈Q2(x, k), ϕ̂〉S′,S

= −
∫

R×R

[
1

2(c(x)2 + k2) (c(x) + ik)(c(x)2

4 + ∂2
x)eikx·ω

]
ϕx(t)e−iktdtdk

= −
∫
R

⎡⎣∫
R

1
2(c(x)2 + k2)e

−iktdk ∗
∫
R

(c(x) + ik)(c(x)2

4 + ∂2
x)eikx·ωe−iktdk

⎤⎦ϕx(t)dt

= − π

2c(x) 〈e
−c(x)|t| ∗ (c(x) − ∂t) (c(x)2

4 + ∂2
x)δ(t− ω · x), ϕ〉S′,S

= 〈κQ2(ω, x, t), ϕ〉S′,S . (89)

Taking

κF̃ (ω, x, t) = (c(x)2

4 + ∂2
x)κF (ω, x, t), κF (ω, x, t) = δ(t− ω · x), (90)

we get

κQ(ω, x, t) = ((1 − n · ω)∂t + c(x)
2 )κF (ω, x, t) − π

2c(x)e
−c(x)|t| ∗ (c(x) − ∂t)κF̃ (ω, x, t)

= κQ1(ω, x, t) + κQ2(ω, x, t), (91)

where κQ1(ω, x, t) indicates the kernel of Q1. This allows us to write

Q = Q1 −
π

2c(x)Te−c(x)|t|(c(x) − ∂t)F̃ , (92)

where Te−c(x)|t| is the convolution operator of e−c(x)|t| and F̃ = ( c
2(x)
4 + ∂2

x)F . �
The next theorem is concerned with the computation of the amplitude of the operator (83).

Theorem 12. Let K and J be elliptic Fourier integral operators of order 0. Then the operator Q (83) and 
its kernel κQ can respectively be written as

Q = Q1 −
π

2c(x)Te−c(x)|t|(c(x)JA−1P#
1 K − JA−1P#

2 K), (93)

κQ(ω, x, t) = κQ1(ω, x, t) + κQ2(ω, x, t), (94)

where κQ1(ω, x, t) is the kernel of Q1, and κQ2 is defined by

κQ2(ω, x, t) = −π
∫

e−c(x)|t−r|+iψ1(x,ξ,k)−iω·ξ−ikr[b#(ω, x, ξ, k) − 1
a#(ω, x, ξ, k)] 1

−1/3 dξdkdr.
2 c(x) A+(k ξ1)
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Here P#
1 ∈ OPS−n/2−1/6, P#

2 ∈ OPS−n/2+5/6, a#(ω, x, ξ, k) = ( c
2(x)
4 +∂2

x)a(ω, x, ξ, k), and b#(ω, x, ξ, k) =
( c

2(x)
4 + ∂2

x)b(ω, x, ξ, k) where a(ω, x, ξ, k) and b(ω, x, ξ, k) are defined in Theorem 4. Furthermore, the am-
plitude aQ is given by

aQ(ω, x, k) = aQ1(ω, x, k) + aQ2(ω, x, k), (95)

where aQ1(ω, x, k) is the amplitude (31) and

aQ2(ω, x, k) = −1
2

c(x)
c2(x) + k2

∫
eikψ2(ω,x,ζ)[b#1 (ω, x, ζ, k) − 1

c(x)a
#
1 (ω, x, ζ, k)] 1

A+(k2/3ζ1)
dζ,

such that a#
1 (ω, x, ζ, k) = kna(ω, x, kζ, k) ∈ Sn/2+7/6, b#1 (ω, x, ζ, k) = knb(ω, x, kζ, k) ∈ Sn/2+1/6, and 

ψ2(ω, x, ζ) is given in Theorem 4.

Proof. Using (22) and (83) we obtain

Q = Q1 −
π

2c(x)Te−c(x)|t|(c(x)J(Ẽ1A + Ẽ2A′)K − J(Ẽ3A + Ẽ4A′)K), (96)

where Ẽ1 ∈ OPS−n/2+1/6, Ẽ2 ∈ OPS−n/2−1/6, Ẽ3 ∈ OPS−n/2+1/6+1, and Ẽ4 ∈ OPS−n/2−1/6+1. Using 
Theorem 6.5 in [40], we get

Q = Q1 −
π

2c(x)Te−c(x)|t|(c(x)JA−1P#
1 K − JA−1P#

2 K), (97)

such that P#
1 ∈ OPS−n/2−1/6 with symbol

p#
1 (ω, x, ξ, k) = (c

2(x)
4 + ∂2

x)p2(ω, x, ξ, k), (98)

and P#
2 ∈ OPS−n/2+5/6 with symbol

p#
2 (ω, x, ξ, k) = (c

2(x)
4 + ∂2

x)p1(ω, x, ξ, k), (99)

where p1(ω, x, ξ, k) and p2(ω, x, ξ, k) are described in Theorem 4. As in the first order case, we use now the 
Dirac delta function δ(ω,0) ∈ E ′(Sn ×R) to find the kernel of Q at the base point. Let ϕ(x, t) ∈ S(Rn ×R), 
thus we have

〈Qδ(ω,0), ϕ〉S′,S = 〈Q1δ(ω,0), ϕ〉S′,S − 〈 π

2c(x)e
−c(x)|t| ∗ [c(x)JP#

3 A−1 − JP#
4 A−1]δ0, ϕ〉S′,S

= 〈Q1δ(ω,0), ϕ〉S′,S + 〈Q2δ(ω,0), ϕ〉S′,S , (100)

with P#
3 = P#

1 K and P#
4 = P#

2 K. The term 〈Q1δ(ω,0), ϕ〉S′,S is already computed (46). Therefore, we only 
need

〈Q2δ(ω,0), ϕ〉S′,S = −〈 π

2c(x)e
−c(x)|t| ∗Aδ0, ϕ〉S′,S

= − π

2c(x)

∫
e−c(x)|t−r|〈Aδ0, ϕ〉S′,Sdr, (101)

with
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A = c(x)JP#
3 A−1 − JP#

4 A−1. (102)

On the other hand, we can write

〈Aδ0, ϕ〉S′,S =
∫

eiψ1(x,ξ,k)−iω·ξ−ikt[c(x)b#(ω, x, ξ, k) − a#(ω, x, ξ, k)] 1
A+(k−1/3ξ1)

dξdk, (103)

where b#(ω, x, ξ, k) = p#
3 (ω, x, ξ, k)#aJ(x, ξ, k) and a#(ω, x, ξ, k) = p#

4 (ω, x, ξ, k)#aJ(x, ξ, k) (see (41) for 
the definition of #). This leads to

〈Q2δ(ω,0), ϕ〉S′,S

= − π

2c(x)

∫
e−c(x)|t−r|+iψ1(x,ξ,k)−iω·ξ−ikr[c(x)b#(ω, x, ξ, k) − a#(ω, x, ξ, k)] 1

A+(k−1/3ξ1)
dξdkdr.

Finally, we find

Qδ(ω,0)

= Q1δ(ω,0) −
π

2

∫
e−c(x)|t−r|+iψ1(x,ξ,k)−iω·ξ−ikr[b#(ω, x, ξ, k) − 1

c(x)a
#(ω, x, ξ, k)] 1

A+(k−1/3ξ1)
dξdkdr.

This shows that the kernel κQ is as follows

κQ(ω, x, t) = κQ1(ω, x, t) + κQ2(ω, x, t), (104)

and

κQ2(ω, x, t) = −π

2

∫
e−c(x)|t−r|+iψ1(x,ξ,k)−iω·ξ−ikr[b#(ω, x, ξ, k) − 1

c(x)a
#(ω, x, ξ, k)] 1

A+(k−1/3ξ1)
dξdkdr,

with a#(ω, x, ξ, k) = ( c
2(x)
4 + ∂2

x)a(ω, x, ξ, k) and b#(ω, x, ξ, k) = ( c
2(x)
4 + ∂2

x)b(ω, x, ξ, k). To obtain the 
amplitude aQ, we take the inverse Fourier transform of κQ. The one related to κQ1 is given by (31). First, 
we can write that

κQ2(ω, x, t) = −π

2 e
−c(x)|t| ∗ κA(ω, x, t), (105)

where κA(ω, x, t) is the kernel of the operator (102). Using the inverse Fourier transform, we find

F−1(κQ2)(ω, x, k) = −π

2F
−1(e−c(x)|t|)(k)F−1(κA)(ω, x, k). (106)

Knowing that F−1(e−c(x)|t|) = 1
π

c(x)
c2(x)+k2 , we obtain

aQ2(ω, x, k) = −1
2

c(x)
c2(x) + k2

∫
eiψ1(x,ξ,k)−iω·ξ[b#(ω, x, ξ, k) − 1

c(x)a
#(ω, x, ξ, k)] 1

A+(k−1/3ξ1)
dξ.

Applying the change of variable ξ = kζ with ξ ∈ Rn, we get

aQ2(ω, x, k) = −1
2

c(x)
c2(x) + k2

∫
eikψ2(ω,x,ζ)[b#1 (ω, x, ζ, k) − 1

c(x)a
#
1 (ω, x, ζ, k)] 1

A+(k2/3ζ1)
dζ, (107)

such that a#
1 (ω, x, ζ, k) = kna#(ω, x, kζ, k), b#1 (ω, x, ζ, k) = knb#(ω, x, kζ, k), and ψ2(ω, x, ζ) is described 

in Theorem 4. �
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The next theorem gives the asymptotic expansion of (95).

Theorem 13. The asymptotic expression of the Kirchhoff amplitude (95) is given by

aQ(ω, x, k) = aQ1(ω, x, k)

− 1
2

c(x)
c2(x) + k2

P,L∑
p,l=0

k2/3−p−2l/3
[
b#p,l(ω, x) − 1

c(x)a
#
p,l(ω, x)

]
ψ(l)(k1/3Z(ω, x))eikx·ω

+ RP,L(k), (108)

where

aQ1(ω, x, k) =
P,L∑
p,l=0

k2/3−p−2l/3 ((1 − n · ω)ap,l(ω, x) + C(x)bp,l(ω, x))ψ(l)(k1/3Z(ω, x))eikx·ω. (109)

Here a#
p,l(ω, x) = ( c

2(x)
4 + ∂2

x)ap,l(ω, x), b#p,l(ω, x) = ( c
2(x)
4 + ∂2

x)bp,l(ω, x), p ∈ {0, 1.., P}, l ∈ {0, 1.., L}, ω is 
the incidence direction, and c(x) > 0 is the curvature. In addition, Z(ω, x) is a continuous real function that 
is positive on the illuminated region, negative on the shadow region, and vanishing on the shadow boundary. 
The functions ap,l, bp,l, a#

p,l, and b#p,l result from the expansion of the symbol and the application of the 
stationary phase method.

Proof. The derivation of (108) is based on the application of the stationary phase method to the amplitude 
aQ(ω, x, k) = aQ1(ω, x, k) + aQ1(ω, x, k) where

aQ1(ω, x, k) = k1/3
∫

eikψ2(ω,x,ζ)+iktζ1+ik t3
3 [(1 − n · ω)a1(ω, x, ζ, k) + C(x)b1(ω, x, ζ, k)] Ψ(k1/3t)dtdζ,

(110)

see (55), and

aQ2(ω, x, k) = −1
2

k1/3c(x)
c2(x) + k2

∫
eikψ2(ω,x,ζ)+iktζ1+ikt3/3[b#1 (ω, x, ζ, k) − 1

c(x)a
#
1 (ω, x, ζ, k)]Ψ(k1/3t)dζdt,

(111)

obtained using (54) in (107). The critical point are the same as the ones given in the paper [40] and used 
when applying the stationary phase method to (110) to derive (52). Therefore, the latter method for the 
amplitude aQ leads to the asymptotic expression

aQ(ω, x, k) = aQ1(ω, x, k)

− 1
2

c(x)
c2(x) + k2

P,L∑
p,l=0

k2/3−p−2l/3
[
b#p,l(ω, x) − 1

c(x)a
#
p,l(ω, x)

]
ψ(l)(k1/3Z(ω, x))eikx·ω + RP,L(k),

such that aQ1(ω, x, k) is (109) (first order expansion (52)), a#
p,l(ω, x) = ( c

2(x)
4 +∂2

x)ap,l(ω, x), and b#p,l(ω, x) =
( c

2(x)
4 + ∂2

x)bp,l(ω, x). The remainder RP,L satisfies

|RP,L(k)| ≤ CPLk
−min(2L/3,P+1/3), (112)

and CPL is a constant depending on P and L. �
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Remark 14. As is mentioned in Remark 2, the second order condition (82) is derived in two dimensions. If 
the three dimensional absorbing boundary condition

∂nw
s(x, k) = −(ik − c(x))wi(x, k) − c2(x)(c(x) + ik)

2(c(x)2 + k2)
∂2
xw

i(x, k), (113)

is used (see condition (29) in [39]), then we obtain

aQ(ω, x, k) ∼ aQ1(ω, x, k)

− 1
2

c2(x)
c2(x) + k2

P,L∑
p,l=0

k2/3−p−2l/3
[
c(x)̃bp,l(ω, x) − ãp,l(ω, x)

]
ψ(l)(k1/3Z(ω, x))eikx·ω,

(114)

where aQ1(ω, x, k) is given by (109) with C(x) = c(x), ãp,l(ω, x) = ∂2
xap,l(ω, x), and b̃p,l(ω, x) = ∂2

xbp,l(ω, x).

5. Conclusion

In this paper, we derived some new expansions of the normal derivative of the total field solution of the 
Helmholtz equation. The original expansions are based on a pseudo-differential decomposition of the Dirich-
let to Neumann operator. In this work, we used approximations of this operator to derive new expansions. 
One of the goals is to facilitate construction of a new ansatz class that can be used in the development of 
numerical solvers that are able to produce more accurate solutions.
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