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We deal with a one-dimensional temperature dependent model for fatigue accu-
mulation in a moving visco-elasto-plastic material in contact with an elasto-plastic 
obstacle. The problem for the unknown displacement and temperature is formu-
lated using hysteresis operators as solution operators of the underlying variational 
inequalities. The existence result for this problem, consisting of the momentum and 
energy balance equations and an evolution equation for the fatigue, is obtained us-
ing a priori estimates established for the space discretized problem. The uniqueness 
result follows from the Lipschitz continuity of the nonlinearities.
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1. Introduction

The aim of this paper is to present a new model accounting for the fatigue accumulation in a moving 
inhomogeneous visco-elasto-plastic bar with a contact boundary condition and its mathematical analysis. 
The main novelty is the combination of fatigue accumulation in (visco-)elasto-plastic structures with a 
contact boundary condition, that (at least from the mathematical point of view) is generally a challenging 
problem (see for instance [16]).

Concerning the problem of fatigue accumulation in oscillating visco-elasto-plastic beams and plates, our 
basic modeling idea is the assumption that the fatigue accumulation is proportional to the dissipated energy. 
This is motivated by the so-called rainflow method for cycling fatigue accumulation in uniaxial processes, 
where damage is assumed to be proportional to the total area of closed hysteresis loops, which can in turn 
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be interpreted as energy dissipation (see [11]). As we already mentioned in our previous contributions, this 
viewpoint is new in the literature, either because our focus is related to the dynamics of the processes 
(compared, for instance, with [26], [40], [48] that go into the direction of rate-independent damage processes 
in nonlinear elasticity) and also because the approach used in other papers, that interpret damage processes 
as a kind of phase transition in the material, (see for instance [4], [8], [9], [41]) is based on the idea that 
damage processes are driven by large deformations. We presented our main modeling ideas in [18], where 
also the thermodynamic consistency of the model was shown. Mathematical analysis of fatigue problems 
started in [19], where we dealt with the case of an oscillating elasto-plastic plate under the simplified 
situation of given temperature history. We obtained existence and uniqueness of a solution locally in time; 
according to the model indeed, material softening takes place under increasing fatigue and material failure 
is manifested in finite time. From [20], we started dealing with the non-isothermal case. We first treated the 
1D case (beam), showing existence and uniqueness of a strong solution in the simplified setting where only 
the elastic component of the model depends on the fatigue. The extension to the 2D case (plate) has been 
considered in [21], where we proved existence of solutions for the whole time interval, assuming that the 
fatigue accumulation rate is proportional only to the plastic part of the dissipation rate. Finally in [10], [22], 
[17] we pursued the study of fatigue accumulation in oscillating visco-elasto-plastic structures by presenting 
a new phase field model under the additional hypothesis that the material can partially recover by the effect 
of local melting. We were able to treat both the 1D (beam) case and the 2D case (plate), showing global 
existence in time of a solution of the underlying system of momentum and energy balances coupled with 
the evolution equation for the fatigue rate and a differential inclusion for the phase dynamics. In the 1D 
case also uniqueness was obtained, in 2D it remains an open problem.

In the present paper unlike [19] and similarly to [24], we assume that out of all dissipative components 
in the energy balance, only the purely plastic dissipation produces damage. This different perspective is 
usually considered in engineering literature. From the mathematical viewpoint, the problem does not exhibit 
singularities and the expected solutions are global in time. On the other hand we consider here an additional 
difficulty that the weight function ϕ in the definition of the Prandtl–Ishlinskii operator depends also on the 
fatigue parameter m; this creates nontrivial mathematical complications when dealing with the fatigue 
terms in the estimates.

Concerning the contact problem, this is classically described by the so-called Signorini boundary con-
ditions where the obstacle is assumed to be rigid. The original problem – modeling of an anisotropic 
non-homogeneous elastic body, resting on a rigid frictionless surface and subject only to its mass forces – 
was posed by A. Signorini during a course taught in 1959: he explicitly invited young analysts to study 
the problem and to determine if it is well-posed in a physical sense, i.e. if its solution exists and is unique 
or not. The Signorini problem was then solved by G. Fichera [23] and later interpreted as a free boundary 
problem [36]; a weak formulation of the problem can be given in terms of variational inequalities, after the 
fundamental work by J.L. Lions and G. Stampacchia [38].

The general problem is very complicated and attempts in many directions have been made. Problem was 
considered with or without friction, the obstacle was supposed to be non-deformable or moving, material 
to be elastic or viscoelastic, viscoelasticity has been often considered as a way to overcome the difficulty of 
the original problem.

We refer to [16] together with the references therein for a general and wide survey for the mathematical 
analysis of contact problems with friction and a major part of the analysis for contact problems without 
friction.

There are several different ways how to deal with the non-smoothness of the problem: the most classical 
approach is the penalization method (see for instance [25], [16], [34]): it consists in penalizing the obstacle 
constraint with elasticity modulus considered as penalty parameter, and then solving the penalized problem; 
among the other methods we mention also the characteristic method (see [46], [13] and references therein), 
valid only for 1D problems.
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Models for contact, delamination and damage in elastic media are recently becoming very popular. In 
[5], [6], [7] and related references, contact problems between a viscoelastic body and a rigid support were 
considered, and the effects due to adhesion, friction and the evolution of temperature were taken into 
account. In [32] a quasi-static approach to delamination and adhesive contact was considered, see also 
delamination and contact problems in [42], [43], [44], [45].

It is physically more reasonable to consider dynamic contact problems, but the mathematical analysis 
is even more complicated. The first construction of a solution to a physically well posed dynamic problem 
was obtained in [1] for a vibrating string. No significant results have been obtained for elastic materials 
in dimension greater than 1, despite considerable efforts by mathematicians; we quote for instance the 
contributions of [2], [46], [47]. In higher space dimensions, in [25] the existence of a weak solution to the 
wave equation with contact at the boundary was proved. In [39] the existence result for unilateral contact 
problems where the space of admissible functions is a subset of the space of continuous functions was 
presented and finally in [35] the existence of a strong solution to the wave equation in a halfspace with 
contact at the boundary and conservation of energy was considered; this result essentially depends on this 
special geometric assumption.

From more recent years we can quote the paper [33], where a dynamic point of view was taken into 
account; the authors consider a visco-elastic rod and a deformable obstacle. This modeling situation is also 
the point of view of the new approach suggested in recent papers [30] and [31], where the authors dealt 
with the more complicated setting of (visco)-elasto-plasticity. In [30] the modeling of the contact boundary 
condition using hysteresis operators was presented and it was combined with an elasto-plastic dynamical 
problem. In [31] a full thermomechanical 1D model taking into account the exchange between different types 
of energy in an oscillating visco-elasto-plastic body in contact with an elasto-plastic obstacle is considered 
and analyzed. These two papers constitute also a novelty because they consider elasto-plastic dynamical 
contact problems which have not been considered in literature so far (if we exclude some results already 
presented in [15]). Indeed, while in the classical approach such kinds of problems are solved by means 
of the idea to penalize the constraints, derive energy estimates independent of the penalty and let the 
penalty parameter tend to 1, by the hysteresis approach variational inequalities are solved independently of 
the momentum balance equation, finer analytical properties of the solution operators are derived and the 
momentum balance equation is solved as an operator–differential equation. The advantage of the hysteresis 
method is that hysteresis operators in mechanics are typically (almost) monotone, Lipschitz continuous, 
and satisfy two-level energy inequalities. PDEs with hysteresis can thus be solved by standard techniques 
(Galerkin, discretization, etc.).

In the present paper, we combine the mathematical difficulties coming from modeling the dynamic contact 
problem and the material fatigue. The result is an involved model formulated using hysteresis operators 
as solution operators of the underlying variational inequalities to control the contact boundary conditions, 
where the unknown functions are displacement, temperature and material fatigue. We take into account 
irreversible deformations both of the body and of the obstacle, as well as the fact that the plastic deformation 
of elasto-plastic bodies in contact dissipates energy which is transformed into heat. This in turn increases the 
temperature of the body and by thermal expansion, the motion of the body is affected. The existence result 
for this problem, consisting of the momentum and energy balance equations and an evolution equation for 
the fatigue is obtained using a priori estimates established for the space discretized problem. The uniqueness 
result follows from the Lipschitz continuity of the nonlinearities. We refer in particular to Section 4.1 for a 
detailed description of the main mathematical difficulties (related to hysteresis, material fatigue and contact 
boundary conditions) together with the main novelty of our contribution.

Our model is described in detail in Section 2. The main result is stated in Section 3, together with the 
Hypotheses on the data. We introduce the space discretization of the problem in Section 4 and derive suitable 
a priori estimates needed to show the convergence of the approximated solutions to the original problem. 
We perform this limit procedure in Section 4, which therefore also contains the proof of the existence of 
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solutions to our problem. Then, in Section 5, a continuous dependence of the solutions on the data is proved, 
which implies uniqueness. The Appendix is devoted to Sobolev interpolation inequalities (for more details 
see [31]), which are used in the proof of the main result.

2. Description of the model

We consider an inhomogeneous elasto-plastic bar of length L which vibrates longitudinally. The bar is 
free to move on one end as long as it does not hit a material obstacle, while on the other end a force is 
applied. Let u(x, t) be the displacement at time t of the material point of spatial coordinate x ∈ Ω with 
Ω := (0, L), and let σ be the σ11 component of the stress tensor. The motion is governed by the equation

ρutt − σx = 0, (2.1)

where ρ denotes the mass density (see (H6) below). Here and in the sequel, we denote with (·)x := ∂(·)
∂x and 

(·)t := ∂(·)
∂t the partial derivatives; when dealing with ODEs (see for instance Definition 2.1), we will use 

instead the notation ˙(·) (except for operators, for which we will always use the notation (·)t), to indicate 
the time derivative. The stress σ is assumed to satisfy the constitutive equation

σ := Bε + P[m, ε] + νεt − β(θ − θref) and ε := ux, (2.2)

where B is a constant hardening modulus, ε is the ε11 component of the strain tensor, θ(x, t) > 0 is the 
absolute temperature which is one of the unknowns of the problem, ν is the viscosity modulus, β is the 
thermal expansion coefficient, θref is a given referential temperature, m(x, t) ≥ 0 is a scalar time and space 
dependent parameter describing the accumulation of fatigue, where m = 0 corresponds to zero fatigue and 
P [m, ε] is a fatigue dependent Prandtl–Ishlinskii constitutive operator of elasto-plasticity defined below (see 
also (H6) below for the assumptions on the parameters).

The Prandtl–Ishlinskii model is constructed as a linear combination of basic stop operators sr[ε](t) with 
all possible yield points r > 0. Given a measurable function ϕ : [0, ∞) ×(0, ∞) → [0, ∞) satisfying Hypothesis 
(H1) below, we define the fatigue dependent Prandtl–Ishlinskii operator P : (W 1,1(0, T ))2 → W 1,1(0, T ) by 
the integral

P [m, ε](t) =
∞∫
0

ϕ(m(t), r) sr[ε](t) dr . (2.3)

Let us recall the definition of the stop operator sr[ε](t).

Definition 2.1. Let ε ∈ W 1,1(0, T ) and r > 0 be given. The variational inequality

ε(t) = σ(t) + ξ(t), ∀t ∈ [0, T ],

|σ(t)| ≤ r, ∀t ∈ [0, T ],

ξ̇(t)(σ(t) − z) ≥ 0, a.e. ∀|z| ≤ r ,

σ(0) = Qr(ε(0)),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.4)

where Qr is the projection of R onto the interval [−r, r], defines the stop and play operators sr and pr by 
the formula

σ(t) = sr[ε](t) , ξ(t) = pr[ε](t) . (2.5)
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The stop and play operators were introduced in [27]. The parameter r is the memory variable, and for 
each given time t0, the functions r �→ pr[ε](t0), r �→ sr[ε](t0) represent the memory state of the system.

Let us list here some basic properties of the play and stop operators. The proofs are elementary and can 
be found e.g. in [28].

Proposition 2.2. Let ε1, ε2 ∈ W 1,1(0, T ), r > 0 and data σ0
1 , σ

0
2 ∈ [−r, r] be given, σi = sr[εi], ξi = εi − σi =

pr[εi], i = 1, 2. Then

(i) (σ1(t) − σ2(t))(ε̇1(t) − ε̇2(t)) ≥ 1
2

d
dt (σ1(t) − σ2(t))2 a.e. in [0, T ];

(ii) |ξ̇1(t) − ξ̇2(t)| +
d
dt |σ1(t) − σ2(t)| ≤ |ε̇1(t) − ε̇2(t)| a.e. in [0, T ];

(iii) |σ1(t) − σ2(t)| ≤ |σ0
1 − σ0

2 | + 2 max
0≤τ≤t

|ε1(τ) − ε2(τ)| ∀t ∈ [0, T ];

(iv) ξ̇i(t)ε̇i(t) = ξ̇i(t)2 a.e. in [0, T ].

We can rewrite (2.4) equivalently in “energetic” form

ε̇(t)σr(t) = d
dt

(
1
2σ

2
r(t)
)

+ r|ξ̇(t)|. (2.6)

Indeed, ε̇(t)σr(t) is the power supplied to the system, part of it is used for the increase of the potential 
1
2σ

2
r(t), and the rest r|ξ̇(t)| is dissipated.
We extend Prandtl–Ishlinskii operator (2.3) for space dependent inputs in the following way

P [m, ε](x, t) := P [m(x, ·), ε(x, ·)]

and similarly for the other operators we will deal with later.
Equation (2.6) enables us to establish the energy balance for the Prandtl–Ishlinskii operator (2.3). Indeed, 

if we define the Prandtl–Ishlinskii potential

V [m, ε](t) = 1
2

∞∫
0

ϕ(m, r)s2r[ε](t) dr , (2.7)

and the dissipation operator

D[m, ε](t) =
∞∫
0

rϕ(m, r)|pr[ε]t(t)|dr , (2.8)

we can write the Prandtl–Ishlinskii energy balance in the form

εt(t)P [m, ε](t) = V [m, ε]t(t) + D[m, ε](t) − 1
2mt

∞∫
0

ϕm(m, r)s2r[ε](t) dr a.e. in Ω. (2.9)

As a consequence of Proposition 2.2 (iv), we have

D[m, ε](t) ≤ |εt(t)|
∞∫
rϕ(m, r) dr a.e. in Ω. (2.10)
0
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The analysis of the so-called rainflow method of cyclic fatigue accumulation in elasto-plastic materials 
carried out in [11] has shown a close relation between accumulated fatigue and dissipated energy, similarly 
as in [24]. Mathematically, this is expressed in terms of the evolution equation for the fatigue variable m

mt(x, t) =
L∫

0

λ(x− y)D[m, ε](y, t) dy, (2.11)

where λ is a nonnegative smooth function with (small) compact support and D[m, ε] is the fatigue dependent 
dissipation operator, see (2.8).

The meaning of (2.11) is simple: the fatigue at a point x increases proportionally to the energy dissipated 
in a neighborhood of the point x; this is our main assumption.

We define the free energy F associated with the constitutive law (2.2) in the form

F := F [θ, ε,m] := cθ

(
1 − log

(
θ

θref

))
+ B

2 ε2 + V [m, ε] − β(θ − θref)ε, (2.12)

where the specific heat capacity c is assumed to be constant (see (H6) below). The corresponding entropy 
S and internal energy U are then given by the following formulas

S = S [θ, ε] = − ∂

∂θ
F [θ, ε] = c log

(
θ

θref

)
+ βε, (2.13)

U = U [θ, ε.m] = F [θ, ε,m] + θS [θ, ε] = cθ + B

2 ε2 + V [m, ε] + βθrefε. (2.14)

We require the first and the second principle of thermodynamics to hold in the form

U [θ, ε,m]t + qx = σεt (energy conservation), (2.15)

S [θ, ε]t +
(q
θ

)
x
≥ 0 (Clausius–Duhem inequality), (2.16)

where q is the heat flux that is assumed to be in the form of Fourier law

q = −κθx, (2.17)

with a constant heat conductivity κ (see (H6) below).
In terms of the variables θ, ε and m the energy balance (2.15) then reads

cθt − κθxx = νε2
t + D[m, ε] − βθεt −

1
2mt

∞∫
0

ϕm(m, r)s2r[ε] dr, (2.18)

where we also used (2.9).
On the other hand, we note that (2.16) formally follows from (2.13), (2.17), (2.18): indeed we have

S [θ, ε]t +
(q
θ

)
x

= κθ2
x

θ2 + νε2
t

θ
+ 1

θ

⎛⎝D[m, ε](t) − 1
2mt

∞∫
0

ϕm(m, r)s2r[ε](t) dr

⎞⎠ ≥ 0,

provided Hypothesis (H1) given in Section 3 for ϕm and (2.11) hold, and we check that the absolute 
temperature θ stays positive. Concerning this last point, we will find below a positive lower bound for the 
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discrete approximations of the temperature, independent of the discretization parameter, which therefore 
is preserved in the limit and implies the positivity of the temperature.

We prescribe Cauchy initial data

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x), m(x, 0) = 0 (2.19)

and boundary conditions at x = 0 and x = L, t > 0, given by

σ(0, t) = −p(t) and σ(L, t) = −f [u(L, ·)](t), (2.20)

κθx(0, t) = 0 and κθx(L, t) = α(θext − θ(L, t)) + cbdyθt(L, t) − |d[u(L, ·)]t(t)|, (2.21)

with constants (see (H6) below) α (a boundary heat transfer coefficient), cbdy (specific heat capacity of the 
boundary), and θext (external temperature); moreover p(t) is a given time dependent external force and f
is a boundary contact hysteresis operator satisfying an energy balance equation analogous to (2.6), namely 
(3.2). For the contact boundary operator f we will assume moreover that Hypotheses (H2)–(H4) below are 
satisfied. As an example, we may consider, similarly to [30], an operator f in the form f [u] = g(S[u]), where 
S is the solution operator S : u �→ w = S[u] to the variational inequality⎧⎪⎪⎨⎪⎪⎩

w(t) − au(t) ≤ ĉ for every t ∈ [0, T ],
w(0) = min{au(0) + ĉ, bu(0)},
(but(t) − wt(t))(w(t) − au(t) − z) ≥ 0 a.e. for every z ≤ ĉ,

(2.22)

with constants a > b > 0, ĉ > 0; here a is the elasticity modulus of the obstacle, b is its hardening modulus, 
ĉ is its yield point, and g is a twice continuously differentiable nondecreasing function with uniformly 
bounded derivative vanishing for negative arguments. It is shown in [30] that for this operator the Hypothesis 
(H2)–(H4) hold. In particular, see [30], the energy balance (3.2) holds provided we choose

e[u] := 1
b

(
G(w) + b− a

a
G

(
a

b− a
(bu− w)

))
,

d[u] := b− a

ab

(
G

(
a

b− a
(bu− w) + bĉ

b− a

)
−G

(
a

b− a
(bu− w)

))
,

where G(z) :=
∫ z

0 g(s) ds. Identity (3.2) can be easily checked by a straightforward differentiation, taking 
into account the fact that but − vt ≥ 0 almost everywhere, and if but − vt > 0, then w = au + ĉ. The 
boundary condition (2.21) for x = L has to be understood as follows: the terms α(θext − θ(L, t)) and 
|d[u(L, ·)]t| represent heat sources. They partially contribute to the inflow −q of heat, and partially to the 
boundary temperature increase cbdyθt(L, t).

We consider the problem in the following weak form

1∫
0

(ρuttφ + σφx) dx = −f [u(L, ·)](t)φ(L) + p(t)φ(0), ∀φ ∈ W 1,2(Ω), (2.23)

1∫
0

(cθtψ + κθxψx) dx =
1∫

0

⎛⎝νε2
t + D[m, ε] − βθεt −

1
2mt

∞∫
0

ϕm(m, r)s2r[ε](t) dr

⎞⎠ψ dx (2.24)

+ |d[u(L, ·)]t(t)|ψ(L) + (α(θext − θ(L, t)) − cbdyθt(L, t))ψ(L), ∀ψ ∈ W 1,2(Ω),

together with (2.11). The value of L is not relevant for the subsequent mathematical analysis, therefore we 
assume from now on that L = 1.
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3. Existence and uniqueness results

We begin this section by introducing some hypotheses on the data f , ϕ, e and d as well as obvious 
consequences following from these hypotheses, which we will use later on in this work.

(H1) The Prandtl–Ishlinskii density function ϕ satisfies the following assumptions:
ϕ is a measurable distribution function: ϕ : [0, ∞) × (0, ∞) → [0, ∞), locally Lipschitz continuous in 
the first variable, and there exist ϕ̃, ϕ∗ ∈ L1(0, ∞) such that ϕ(m, r) ≤ ϕ̃(r), 0 ≤ −ϕm(m, r) ≤ ϕ∗(r), 
|ϕmm(m, r)| ≤ ϕ∗(r) a.e., and M̃ :=

∫∞
0 rϕ̃(r) dr < ∞, M :=

∫∞
0 r2ϕ∗(r) dr < ∞.

(H2) The operator f : C0([0, T ]) → C0([0, T ]) is Lipschitz continuous in the following sense

|f [u1] − f [u2]|(t) ≤ Lf |u1 − u2|[0,t] , (3.1)

for every t ∈ [0, T ] and every u1, u2 ∈ C0([0, T ]), where Lf is a positive constant and where we denote 
with |w|[0,t] := max{|w(t)| : t ∈ [0, t]} the norm of w ∈ C0([0, T ]).

(H3) The operator f maps W 1,1(0, T ) into W 1,1(0, T ), and there exist a potential energy operator 
e : W 1,1(0, T ) → W 1,1(0, T ) and a dissipation operator d : W 1,1(0, T ) → W 1,1(0, T ), both locally 
Lipschitz continuous, such that for all u ∈ W 1,1(0, T ) we have

e[u](t) ≥ c0|f [u](t)|2, e[u](0) ≤ c1|u(0)|2,

|d[u]t(t)| ≤ c1|ut(t)|,

for all t ∈ [0, T ], with constants c0, c1 > 0, and the identity

ω̇f [ω] − e[ω]t = |d[ω]t| a.e. in [0, T ], (3.2)

holds for almost every t ∈ (0, T ), for every absolutely continuous input ω, with potential energy 
operator e[ω] and dissipation operator d[ω].

(H4) For u ∈ W 2,1(0, T ) we have f [u] ∈ W 1,∞(0, T ), and the “second order energy inequality”

t∫
0

f [u]tutt dt ≥ −c2|ut(0)|2 − c3

t∫
0

|ut|3 dt (3.3)

holds for all t ∈ [0, T ] with some constants ci > 0, i = 2, 3.
(H5) The data have the regularity p ∈ W 2,2(0, T ), u0 ∈ W 2,2(Ω), v0 ∈ W 2,2(Ω), θ0 ∈ W 1,2(Ω), and there 

exists a constant θ∗ > 0 such that θ0(x) ≥ θ∗ almost everywhere. Furthermore, the compatibility 
conditions

p(0) = β(θ0(0) − θref) −Bu0
x(0) − P̂ (u0

x(0)) − νv0
x(0), (3.4)

f̂(u0(1)) = β(θ0(1) − θext) −Bu0
x(1) − P̂ (u0

x(1)) − νv0
x(1), (3.5)

hold, where P̂ and f̂ are the initial value mappings f [u](0) = f̂(u(0)) and P[m, ε](0) = P̂ (ε(0)). (Note 
that m satisfies the zero initial condition, (2.19).)

(H6) ρ, B, β, ν, c, κ, α, θref, θext and cbdy are given positive constants.
(H7) λ : R → [0, ∞) is a C1 function with compact support, Λ := max{λ(x) + |λ′(x)|, x ∈ R}.

Remark 3.1. The assumption that ϕ(m, r) decreases with increasing m corresponds to the observation 
that the stress of the material decreases with increasing fatigue m. Moreover, it follows from (3.1) and 
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Proposition 2.2 part (iii), that the initial value functions f̂ , P̂ : R → R are well defined and Lipschitz 
continuous.

For simplicity we set from now on

K[m, ε](x, t) := −1
2

∞∫
0

ϕm(m, r)s2r[ε](x, t) dr. (3.6)

We denote here and in the sequel the set Qt := (0, 1) × (0, t), for t ∈ [0, T ].
The main result of this paper reads as follows.

Theorem 3.2. Assume that (H1)–(H7) hold. Then the system (2.2), (2.23)–(2.24) and (2.11) with L = 1
has a unique solution (u, θ, m) such that u, ux, uxt, θ, mt ∈ C0(QT ), uxxt, θx ∈ L∞(0, T ; L2(0, 1)), uxtt, θt ∈
L2(QT ), and θt(1, ·) ∈ L2(0, T ).

4. Proof of Theorem 3.2: existence

4.1. Strategy of the proof: novelties and main difficulties

The strategy of the existence proof is classical (see for instance [37]): discretization, a priori estimates 
and passage to the limit by compactness. The presence of the beam equation suggests to use a space 
discretization scheme which turns to be more convenient to deal with space derivatives instead of other 
kinds of discretization schemes (like e.g. [49, Chapter IX]).

The main goal when dealing with hysteresis problems is to get enough regularity to pass to the limit 
in the discrete equations, in particular with respect to the nonlinear terms. We recall indeed that non-
differentiability and non-locality in time of hysteresis operators entail a loss of compactness, so standard 
techniques for the derivation of a priori estimates do not apply, and for limit processes with hysteresis 
nonlinearities the usual approach using weak convergence in Lp spaces does not work; instead, uniform 
convergence with respect to the time variable is mandatory. As a consequence, new techniques have to be 
designed to recover the compactness necessary for the existence proofs, which is a challenging mathematical 
task (see for instance [27], [12], [28], [49]).

In the particular case of the present paper, we need to retrieve uniform convergence both in the fa-
tigue and in the strain terms. The strong convergence in the fatigue term (4.66) constitutes the main 
novelty (and also the principal difficulty) of the paper; it is performed through a complicated proce-
dure based essentially on the properties of the fatigue equation (see Section 4.5). Concerning the strain 
terms, higher order estimates (4.54)–(4.55) are required; it turns out indeed that the energy estimate (4.25)
(which is important because it allows us to deduce that u̇k and θk remain globally bounded, so that the 
existence of solutions in the whole interval [0, T ] can be deduced) is not enough to perform the limit pro-
cedure.

Note the role of the temperature: a key estimate is (4.48), but to be able to test the equation for the 
temperature by θ̇k, it is necessary to achieve more regularity than the one obtained by the energy estimate 
(which gives only L1-estimate in the space variable). Here the Dafermos estimate (see Section 4.4.2) comes 
into play and gives more regularity in the space variable; more in details (4.28) provides space regularity in 
a Lq space with an exponent sufficiently large (i.e. q > 2). It is worth noticing that the Dafermos estimate is 
a useful trick that can be applied because the model is one-dimensional. In other situations where the model 
studied was multi-dimensional, more complicated procedures have been performed to achieve the necessary 
regularity for the temperature (see for instance [21]).
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Let us note that compared to the computations performed in [31], we have to deal here with additional 
terms coming from the presence of fatigue in the model, and we use Hypothesis (H1) and (H6) to estimate 
these terms.

4.2. Discretization

We fix a discretization parameter n ∈ N and consider the following system

ρ ük = n(σk − σk−1), k = 1, . . . , n, (4.1)

c θ̇k = n2κ(θk+1 − 2θk + θk−1) + ν ε̇2
k + ṁk Kk + Dk − βθk ε̇k , k = 1, . . . , n− 1, (4.2)

σk = Bεk + P[mk, εk] + ν ε̇k − β(θk − θref) , k = 1, . . . , n− 1, (4.3)

εk = n(uk+1 − uk), k = 1, . . . , n− 1, (4.4)

mk =
t∫

0

D∗
k(τ) dτ, (4.5)

where

P[mk, εk](t) =
∞∫
0

ϕ(mk(t), r)sr[εk](t) dr,

Kk[mk, εk](t) = −1
2

∞∫
0

ϕm(mk(t), r)s2r[εk](t) dr ∈
[
0, M2

]
,

Dk[mk, εk](t) =
∞∫
0

ϕ(mk(t), r) sr[εk](t)(εk − sr[εk])t(t) dr ≥ 0,

D∗
k(t) = 1

n

n−1∑
j=1

λk−jDj(t) ≥ 0 λi = λ(i/n),

with “boundary conditions”

σ0(t) = −p(t) and σn(t) = −f [un](t), (4.6)

θ0(t) = θ1(t) and nκ(θn(t) − θn−1(t)) = α(θext − θn(t)) − cbdyθ̇n(t) + |d[un]t(t)|, (4.7)

as a discrete counterpart of (2.20)–(2.21). The second equation in (4.7) is the definition of θn as a solution 
of the differential equation

cbdy

α + nκ
θ̇n + θn = 1

α + nκ
(nκθn−1 + αθext + |d[un]t|) . (4.8)

Furthermore, we define ε0(t) and εn(t) as solutions to the differential equation (4.3) for k = 0 and k = n, 
with σ0, σn, θ0, θn, m0, mn given by (4.5)–(4.7), and with initial conditions ε0(0) = u0

x(0) and εn(0) = u0
x(1).

Observe that (4.1)–(4.5) is a system of ordinary differential equations with a locally Lipschitz continuous 
right hand side. Hence, for every choice of initial conditions

uk(0) = u0
k , u̇k(0) = v0

k , θk(0) = θ0
k, mk(0) = 0, for k = 1, . . . , n, (4.9)
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it admits a unique absolutely continuous solution on a maximal interval [0, Tn), Tn ≤ T . In view of (2.19), 
we choose the initial data (k = 1, . . . , n − 1) as

u0
k = n

k/n∫
(k−1)/n

u0(x) dx, v0
k = n

k/n∫
(k−1)/n

v0(x) dx, θ0
k = n

k/n∫
(k−1)/n

θ0(x) dx. (4.10)

Using the summation by parts formulas for arbitrary test sequences φ1, . . . , φn and ψ1, . . . , ψn,

n∑
k=1

(σk − σk−1)φk = σnφn − σ0φ1 −
n−1∑
k=1

(φk+1 − φk)σk, (4.11)

n−1∑
k=1

(θk+1 − 2θk + θk−1)ψk = (θn − θn−1)ψn − (θ1 − θ0)ψ1 −
n−1∑
k=1

(θk+1 − θk)(ψk+1 − ψk), (4.12)

taking into account (4.6)–(4.7), we may rewrite (4.1)–(4.2) in a variational form as

ρ

n

n∑
k=1

ükφk +
n−1∑
k=1

(φk+1 − φk)σk + f [un]φn = pφ1 , (4.13)

c

n

n−1∑
k=1

θ̇kψk + nκ
n−1∑
k=1

(θk+1 − θk)(ψk+1 − ψk) (4.14)

= 1
n

n−1∑
k=1

(
νε̇2

k + ṁk Kk + Dk − βθkε̇k
)
ψk +

(
α(θext − θn) − cbdyθ̇n + |d[un]t|

)
ψn,

with σk εk and mk defined by (4.3)–(4.5).

4.3. Positivity of the temperature

We first check that on [0, Tn), all θk remain strictly positive. To prove this, we first choose in (4.14) all 
ψk nonnegative. Then it easily follows from the Hypotheses that the right hand side of (4.14) is bounded 
from below by

−γ
1
n

n−1∑
k=1

θ2
kψk + (α(θext − θn) − cbdyθ̇n)ψn (4.15)

with γ = β2/(4ν). This is the essential estimate and the rest of the proof of the positivity of the temperature 
follows the lines of [31] and we can show that for the solution v : [0, ∞) → (0, ∞) to the differential equation

{
cv̇(t) = −γv2(t),
v(0) = min{θ∗, θext}

(4.16)

we get

d
dt

(
c

n

n−1∑
(v − θk)+ + cbdy(v − θn)+

)
≤ −γ

1
n

n−1∑
(v − θk)+(v + θk) − α(v − θn)+, (4.17)
k=1 k=1
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where r+ := max(r, 0). According to Hypothesis (H5) and (4.10), we may infer that there exists tn ∈ (0, Tn)
such that θk(t) > 0 for t ∈ [0, tn). Let us set

tn := inf{t ∈ [0, Tn) : ∃k : θk(t) ≤ 0} ≥ tn.

By (4.17), we have d
dt
(
c
n

∑n
k=1(v − θk)+

)
≤ 0 for almost every t ∈ (0, tn) and θk(0) ≥ v(0) for all k, hence 

θk(tn) ≥ v(tn) > 0 for all k, which is a contradiction. We conclude that

θk(t) ≥ v(t) > 0 for all k = 1, . . . , n in (0, Tn). (4.18)

4.4. A priori estimates

Here we denote by C > 0 suitable constants depending on the data and independent of n.

4.4.1. Estimate 1: energy estimate
We derive now the first energy estimate similarly as in [31], we additionally have to deal with the terms 

entering the equation in connection with fatigue. On the one hand, we test (4.13) with φk = u̇k and we use 
(4.3) and (4.4) to get

ρ

n

n∑
k=1

üku̇k + 1
n

n−1∑
k=1

(Bεk + P[mk, εk] + νε̇k − β(θk − θref))ε̇k + f [un]u̇n = p u̇1,

which, by employing (2.9) and (3.2), gives

d
dt

(
ρ

2n

n∑
k=1

|u̇k|2 + 1
n

n−1∑
k=1

(
Bε2

k + V [mk, εk] + βθrefεk
)

+ e[un]
)

+ 1
n

n−1∑
k=1

(ν|ε̇t|2 + Dk + ṁkKk + |d[un]t| = p u̇1 + 1
n

n−1∑
k=1

βθkε̇k.

(4.19)

On the other hand, we test (4.14) with ψk = 1 and we find

d
dt

(
c

n

n−1∑
k=1

θk + cbdyθn

)
= 1

n

n−1∑
k=1

(ν|ε̇k|2 + Dk + ṁkKk) + α(θext − θn) + |d[un]t| −
1
n

n−1∑
k=1

βθkε̇k. (4.20)

Therefore, adding (4.19) and (4.20) some terms cancel out and we obtain

d
dt

(
ρ

2n

n∑
k=1

|u̇k|2 + 1
n

n−1∑
k=1

(
Bε2

k + V [mk, εk] + βθrefεk + cθk
)

+ e[un] + cbdyθn

)
+ α(θn − θext) = pu̇1.

(4.21)

Notice that the term

En(t) := ρ

2n

n∑
k=1

|u̇k(t)|2 + 1
n

n−1∑
k=1

(
Bε2

k(t) + V [mk, εk](t) + βθrefεk(t) + cθk(t)
)
+ e[un](t)+ cbdyθn(t) (4.22)

under the time derivative in (4.21) represents the total energy of the system; we also observe that we 
already know that all θk are positive. Hence, by using Hypothesis (H1) (and in particular its consequence 
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that V [mk, εk](t) ≥ 0 for all t ∈ [0, Tn]), (H3) and (2.7) it follows that En(t) is bounded from below by a 
constant.

At this point, we integrate (4.21) over (0, t) and after integration by parts, we get (recall that Tn ≤ T )

∀t ∈ [0, Tn) : En(t) ≤ En(0) + Tαθext + |p(t)u1(t) − p(0)u1(0)| +
t∫

0

|pt(τ)||u1(τ)|dτ. (4.23)

By virtue of Hypotheses (H1), (H3), (H5) and Proposition 2.2 (iii), using the same idea as in [31] for the 
bound of the term u1(0), we estimate the initial energy as

En(0) ≤ C

(
1 + 1

n

n∑
k=1

|u̇k(0)|2 + 1
n

n−1∑
k=1

|εk(0)|2 + ‖θ0‖L∞(0,1)

)

≤ C
(
1 + ‖v0‖2

L2(0,1) + ‖u0
x‖2

L2(0,1) + ‖θ0‖L∞(0,1)

)
,

(4.24)

and we obtain from (4.23), (4.24), the discrete Hölder inequality and the discrete Gronwall’s lemma that

∀t ∈ [0, Tn) : 1
n

n∑
k=1

|u̇k(t)|2 + 1
n

n−1∑
k=1

(
|εk(t)|2 + θk(t)

)
+ e[un](t) + θn(t) ≤ C. (4.25)

As a consequence of (4.25), u̇k and θk for each k remain globally bounded in (0, Tn), and we can extend it 
to the whole interval [0, T ] by classical results of ODEs theory. The final bound is independent of n and the 
system (4.1)–(4.7) with initial conditions (4.9) admits for an arbitrary n ∈ N a unique absolutely continuous 
solution in the whole interval [0, T ].

4.4.2. Estimate 2: the Dafermos estimate
Following the idea developed in [14], we take in (4.14) ψk = −θ

−1/3
k and similarly as in [31] we obtain 

for all t ∈ [0, T ], after integrating over (0, t), and estimating the non-positive terms by 0 from above, the 
following inequality

t∫
0

(
ν

n

n−1∑
k=1

θ
−1/3
k (τ)ε̇2

k(τ) + 3nκ
n−1∑
k=1

|θ1/3
k+1(τ) − θ

1/3
k (τ)|2

)
dτ

≤
t∫

0

β

n

n−1∑
k=1

θ
2/3
k (τ)|ε̇k(τ)|dτ + 3c

2n

n−1∑
k=1

θ
2/3
k (t) + α

τ∫
0

θ2/3
n (τ) dτ + cbdyθ2/3

n (t).

(4.26)

On the other hand, we may deduce from (4.25) that the last three terms on the right hand side of (4.26) are 
bounded by a constant. Using the Hölder’s inequality, (A.4) applied to the particular case where vk = θ

1/3
k

for k = 1, . . . , n − 1, with the choice s = 3, p = 2 and q = 5 and consequently by (A.1) with γ = 4/25, we 
deduce (for more details see [31])

t∫
0

(
1
n

n−1∑
k=1

θ
−1/3
k (τ)|ε̇k(τ)|2 + n

n−1∑
k=1

|θ1/3
k+1(τ) − θ

1/3
k (τ)|2

)
dτ ≤ C. (4.27)

Using once again (A.4) for vk = θ
1/3
k for k = 1, . . . , n − 1, with the choice s = 3, p = 2 and q = 8, and 

consequently by (A.1) γ = 1/4, we may deduce that



M. Eleuteri, J. Kopfová / J. Math. Anal. Appl. 459 (2018) 82–111 95
t∫
0

1
n

n−1∑
k=1

θ
8/3
k (τ) dτ ≤ C. (4.28)

On the other hand, we integrate (4.19) over (0, t) and thanks to assumptions (H1), (H3) and (2.7), we find 
that

t∫
0

1
n

n−1∑
k=1

ν|ε̇k(τ)|2 dτ ≤ C + |β|

⎛⎝ t∫
0

1
n

n−1∑
k=1

θ
7/3
k (τ) dτ

⎞⎠1/2⎛⎝ t∫
0

1
n

n−1∑
k=1

θ
−1/3
k (τ)|ε̇k(τ)|2 dτ

⎞⎠1/2

,

which according to (4.27) and (4.28) leads to

t∫
0

1
n

n−1∑
k=1

|ε̇k(τ)|2 dτ ≤ C. (4.29)

4.4.3. Estimate 3: higher order estimates

• First higher order estimate: First of all we differentiate (4.1) with respect to time and consider the 
corresponding variational formulation,

ρ

n

n∑
k=1

...
u kφk +

n−1∑
k=1

(φk+1 − φk)σ̇k + f [un]tφn = ṗφ1, (4.30)

where we used (4.4) and the formula of summation by parts (4.11). We take φk = ük, use (4.3) and we 
obtain

ρ

n

n∑
k=1

...
u kük + 1

n

n−1∑
k=1

ε̈k(Bε̇k + P[mk, εk]t + νε̈k − βθ̇k) + f [un]tün = (ṗ u̇1)t − p̈ u̇1. (4.31)

We integrate now (4.31) over (0, t) and using Hypotheses (H1), (H3), (H4) and (H5) we obtain

1
n

n∑
k=1

|ük(t)|2 + 1
n

n−1∑
k=1

|ε̇k(t)|2 + 1
n

n−1∑
k=1

t∫
0

|ε̈k(τ)|2 dτ ≤ C

(
1 + 1

n

n∑
k=1

|ük(0)|2

+ |u̇1(t)| +
t∫

0

(|u̇1(τ)|2 + |u̇n(τ)|3) dτ + 1
n

n−1∑
k=1

t∫
0

|θ̇k(τ)|2 dτ
)
.

(4.32)

Notice that we used here the direct estimate for P [mk, εk]t.
The initial acceleration term 1

n

∑n
k=1|ük(0)|2 is estimated by using the compatibility conditions 

(3.4)–(3.5). We distinguish two situations: the case k = 2, . . . , n − 1 and the cases k = 1, k = n.

� Estimate of the initial acceleration term for k = 2, . . . , n − 1: To this aim, we first observe that (4.1) and 
(4.3) imply

|ük(0)| ≤ C n (|εk(0) − εk−1(0)| + |ε̇k(0) − ε̇k−1(0)| + |θk(0) − θk−1(0)|) (4.33)

for all k = 2, . . . , n −1. Indeed, to estimate the term P[mk, εk](0) −P[mk−1, εk−1](0), we used the following 
estimate, which we evaluate at t = 0
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|P[mk, εk](t) − P[mk−1, εk−1](t)| (4.34)

=

∣∣∣∣∣∣
∞∫
0

ϕ(mk, r)sr[εk] − ϕ(mk−1, r)sr[εk−1] dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

(ϕ(mk, r) − ϕ(mk−1, r))sr[εk] dr +
∞∫
0

ϕ(mk−1, r)(sr[εk] − sr[εk−1]) dr

∣∣∣∣∣∣
≤ C

∞∫
0

|mk −mk−1|(t) r dr +
(
|εk(0) − εk−1(0)| + C max

k
|εk − εk−1|

) ∞∫
0

ϕ̃(r) dr

and we use the fact that, from (4.9), mk(0) = 0 for k = 1, . . . , n. At this point, we deduce from (4.4), (4.9), 
(4.10) and from the Cauchy–Schwarz inequality that

|εk(0) − εk−1(0)| = n2

∣∣∣∣∣∣∣
k/n∫

(k−1)/n

u0
(
x + 1

n

)
− 2u0(x) + u0

(
x− 1

n

)
dx

∣∣∣∣∣∣∣
≤ C√

n

⎛⎜⎝ (k+1)/n∫
(k−2)/n

|u0
xx|2 dx

⎞⎟⎠
1/2

for all k = 2, . . . , n − 1. Hence, it follows that

n

n−1∑
k=2

|εk(0) − εk−1(0)|2 ≤ C

1∫
0

|u0
xx|2 dx. (4.35)

The other terms in (4.33) are treated similarly, so we may conclude that

1
n

n−1∑
k=2

|ük(0)|2 ≤ C

⎛⎝ 1∫
0

(
|u0

xx|2 + |v0
xx|2 + |θ0

x|2
)

dx

⎞⎠ . (4.36)

� Estimate of the initial acceleration term for k = 1 and k = n: On the other hand, (4.1), (4.3), (4.6)
together with (3.4)–(3.5) give

ρü1(0) = n
(
B(ε1(0) − u0

x(0)) + P̂ (ε1(0)) − P̂ (u0
x(0)) + ν(ε̇1(0) − v0

x(0)) − β(θ1(0) − θ0(0))
)
, (4.37)

ρün(0) = − n
(
B(εn−1(0) − u0

x(1)) + P̂ (εn−1(0)) − P̂ (u0
x(1)) + ν(ε̇n−1(0) − v0

x(1))

− β(θn−1(0) − θ0(1)) + f̂(un−1(0)) − f̂(u0(1))
)
. (4.38)

We may observe that, by virtue of Proposition 2.2 (iii) and (2.19),

n|P̂ (εn−1(0)) − P̂ (u0
x(1))| ≤ Cn|εn−1(0) − u0

x(1)|.

Once again using (4.4), (4.9), (4.10) and the Cauchy–Schwarz inequality, it comes that (for more details, 
see [31])
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n|εn−1(0) − u0
x(1)| ≤ 2

√
2n

⎛⎜⎝ 1∫
1−(2/n)

|u0
xx(z)|2 dz

⎞⎟⎠
1/2

.

All the other differences appearing in (4.37)–(4.38) are treated similarly, and in combination with (4.36), 
we find

1
n

n∑
k=1

|ük(0)|2 ≤ C

⎛⎝ 1∫
0

|u0
xx|2 + |v0

xx|2 + |θ0
x|2 dx

⎞⎠ ≤ C. (4.39)

� Estimate of the boundary terms: We estimate the boundary terms in (4.32) involving u̇1 and u̇n using 
(A.4) with q = ∞, p = s = 2. Then γ = 1/2 and we see by virtue of (4.25) that they are absorbed by the 
left hand side. We may conclude that

1
n

n∑
k=1

|ük(t)|2 + 1
n

n−1∑
k=1

|ε̇k(t)|2 + 1
n

n−1∑
k=1

t∫
0

|ε̈k(τ)|2 dτ ≤ C

⎛⎝1 + 1
n

n−1∑
k=1

t∫
0

|θ̇k(τ)|2 dτ

⎞⎠ . (4.40)

• Second higher order estimate: First of all we have by (4.3) that

|ε̇k − ε̇k−1| ≤
1
ν

(B(εk − εk−1) + |P[mk, εk] − P[mk−1, εk−1]| + |β||θk − θk−1| + |σk − σk−1|) .

We square this inequality, sum over k and substitute from (4.1) to obtain for all t ∈ [0, T ] that

n

n∑
k=1

|ε̇k − ε̇k−1|2(t) (4.41)

≤ C

n

n∑
k=1

(
|ük|2 + n2(εk − εk−1)2 + n2|P[mk, εk] − P[mk−1, εk−1]|2 + n2|θk − θk−1|2

)
(t).

We estimate now the right hand side. The following estimate holds because of (4.5), (2.10) and (4.29)

|mk −mk−1|(t) ≤ C

t∫
0

⎛⎝ 1
n

n∑
j=1

|λk−j − λk−j−1|Dj(τ)

⎞⎠ dτ

≤ C

t∫
0

⎛⎝ 1
n

n∑
j=1

|ε̇j(τ)||λk−j − λk−j−1|

⎞⎠ dτ

≤ C

⎛⎝ 1
n2

t∫
0

n∑
j=1

|ε̇j(τ)|dτ

⎞⎠ ≤ C

n
. (4.42)

Note that by (4.34) and (4.42) we have

|P[mk, εk](t) − P[mk−1, εk−1](t)|2 ≤ C

⎛⎝ 1
n2 + |εk(0) − εk−1(0)|2 +

t∫
0

|ε̇k(τ) − ε̇k−1(τ)|2 dτ

⎞⎠ . (4.43)

Therefore using (4.43) in (4.41), we find
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n
n∑

k=1

|ε̇k(t) − ε̇k−1(t)|2 ≤ C

(
1 + n

n∑
k=1

|εk(0) − εk−1(0)|2 + 1
n

n∑
k=1

|ük(t)|2

+ n
n∑

k=1

|θk(t) − θk−1(t)|2 +
t∫

0

n
n∑

k=1

|ε̇k(τ) − ε̇k−1(τ)|2 dτ
)
.

(4.44)

We deal now with the last term on the right hand side of (4.44). To this aim, let us introduce

w(t) :=
t∫

0

n

n∑
k=1

|ε̇k(τ) − ε̇k−1(τ)|2 dτ

and

g(t) := 1 + n

n∑
k=1

|εk(0) − εk−1(0)|2 + 1
n

n∑
k=1

|ük(t)|2 + n

n∑
k=1

|θk(t) − θk−1(t)|2.

Clearly with these notations, (4.44) can be rewritten as a differential inequality

ẇ(t) − Cw(t) ≤ Cg(t). (4.45)

Multiplying (4.45) by exp(−C t), we get

w(t) ≤
t∫

0

Cg(τ) exp(−C(t− τ)) dτ,

which gives, using (4.35),

t∫
0

n
n∑

k=1

|ε̇k(τ) − ε̇k−1(τ)|2 dτ ≤ C

⎛⎝1 +
t∫

0

(
1
n

n∑
k=1

|ük(τ)|2 + n
n∑

k=1

|θk(τ) − θk−1(τ)|2
)

dτ

⎞⎠ . (4.46)

We may conclude by combining (4.46) with (4.44) and (4.35) to get

n

n∑
k=1

|ε̇k(t) − ε̇k−1(t)|2 ≤ C

(
1 + 1

n

n∑
k=1

|ük(t)|2 + n

n∑
k=1

|θk(t) − θk−1(t)|2

+
t∫

0

(
1
n

n∑
k=1

|ük(τ)|2 + n

n∑
k=1

|θk(τ) − θk−1(τ)|2
)

dτ
)

≤ C

(
1 + n

n∑
k=1

|θk(t) − θk−1(t)|2 +
t∫

0

(
1
n

n−1∑
k=1

|θ̇k(τ)|2 + n
n∑

k=1

|θk(τ) − θk−1(τ)|2
)

dτ
)
,

(4.47)

where in the last line we used (4.40).

• Estimate for the temperature: We take ψk = θ̇k in (4.14). The right hand side is estimated via Hölder’s 
inequality, we integrate the equation over (0, t), note that the last term on the right hand side is bounded 
after integration by virtue of (H3) and (4.29) and we get
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t∫
0

(
1
n

n−1∑
k=1

|θ̇k(τ)|2 + |θ̇n(τ)|2
)

dτ + n
n−1∑
k=1

|θk+1(t) − θk(t)|2

≤ C

⎛⎝1 + 1
n

t∫
0

n−1∑
k=1

(|ε̇k(τ)|4 + |θk(τ)|4)

⎞⎠ dτ.

(4.48)

• Final estimates and conclusions: For later purposes we define for a generic sequence {ϕk : k = 0, 1, . . . , n}
with the notations Δkϕ = n(ϕk − ϕk−1), and Δ2

kϕ = n2(ϕk+1 − 2ϕk + ϕk−1), piecewise constant and 
piecewise linear interpolations

ϕ(n)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕk for x ∈

[
k − 1
n

,
k

n

)
, k = 1, . . . , n− 1 ,

ϕn−1 for x ∈
[
n− 1
n

, 1
]
,

(4.49)

ϕ(n)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕk−1 for x ∈

[
k − 1
n

,
k

n

)
, k = 1, . . . , n− 1 ,

ϕn−1 for x ∈
[
n− 1
n

, 1
]
,

(4.50)

ϕ̂(n)(x) = ϕk−1 +
(
x− k − 1

n

)
Δkϕ for x ∈

[
k − 1
n

,
k

n

)
, k = 1, . . . , n . (4.51)

We also define

λ(n)(x, y) = λk−j for (x, y) ∈
[
k − 1
n

,
k

n

)
×
[
j − 1
n

,
j

n

)
. (4.52)

At this point, we consider piecewise linear interpolations û(n)(x, t), ε̂(n)(x, t) and θ̂(n)(x, t) constructed from 
the sequences uk, εk and θk by the formula (4.51). We conclude in the same way as in [31] that

‖ε̂(n)
t ‖2

W 1,P(QT ) + ‖θ̂(n)‖2
W 1,P(QT ) +

T∫
0

|θ̂(n)
t (1, t)|2 dt ≤ C, (4.53)

or, in terms of series, we have for all t ∈ [0, T ] that

1
n

n∑
k=1

|ük(t)|2 + 1
n

n∑
k=0

|ε̇k(t)|2 + n

n∑
k=1

|ε̇k(t)−ε̇k−1(t)|2 + n

n∑
k=1

|θk(t)−θk−1(t)|2 ≤ C, (4.54)

t∫
0

(
1
n

n−1∑
k=1

|θ̇k(τ)|2 + |θ̇n(τ)|2 + 1
n

n∑
k=0

|ε̈k(τ)|2
)

dτ ≤ C. (4.55)

We also get as a consequence of (4.5) and the above estimates together with (A.12) that

max
t∈[0,T ]

max
i=1,...,n

|ṁi(t)| ≤ C. (4.56)
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4.5. Passage to the limit

With the notation introduced in (4.49)–(4.51), passing to a subsequence, if necessary, we find functions 
ε, θ, u such that εt, θ ∈ W 1,P(QT ), θt(1, ·) ∈ L2(0, T ), utt ∈ L2(QT ) and such that

û
(n)
tt ⇀ utt, ε̂

(n)
xt ⇀ εxt, θ̂(n)

x ⇀ θx weakly* in L∞((0, T ), L2(0, 1)), (4.57a)

ε̂
(n)
tt ⇀ εtt, θ̂

(n)
t ⇀ θt weakly in L2(QT ), (4.57b)

ε̂
(n)
t → εt, θ̂(n) → θ uniformly in C0(QT ), (4.57c)

θ̂
(n)
t (1, ·) ⇀ θt(1, ·) weakly in L2(0, T ). (4.57d)

We have for x ∈ [(k − 1)/n, k/n)

|ε(n)
t (x, t) − ε̂

(n)
t (x, t)|2 ≤ |εk,t(t) − εk−1,t(t)|2 ≤ 1

n

(
n

n∑
k=1

|εk,t(t) − εk−1,t(t)|2
)

≤ C

n
, (4.58)

with some suitable C > 0. Hence ε(n)
t → εt uniformly in L∞(QT ), and similarly ε(n) → ε, ε(n)

t → εt, 
ε(n) → ε, θ(n) → θ, θ(n) → θ uniformly in L∞(QT ). We have indeed û(n)

x = ε(n) and û(n)
xt = ε

(n)
t , hence 

û
(n)
x → ε = ux, û(n)

xt → εt = uxt uniformly in L∞(QT ).
To check that the limit functions satisfy the initial conditions we proceed in the same way as in [31].
To prove the existence of solutions, we check that the limit functions satisfy (2.23)–(2.24). Let φ ∈

W 1,2(0, 1) be an arbitrary test function, and let us define

δn(t) :=
1∫

0

(u(n)
tt (t)φ(x) + σ(n)(t)φx(x)) dx + f [u(n)(1, ·)](t)φ(1) − p(t)φ(0).

We now use (4.1) and (4.6) to rewrite δn in the form

δn(t) =
n∑

k=1

ük(t)
k/n∫

(k−1)/n

φ(x) dx +
n∑

k=1

σk−1(t)(φ(k/n) − φ((k−1)/n))

+ f [un](t)φ(1) − p(t)φ(0)

=
n∑

k=1

ük(t)
k/n∫

(k−1)/n

φ(x) dx−
n∑

k=1

(σk − σk−1)φ(k/n)

=
n∑

k=1

ük(t)
k/n∫

(k−1)/n

(φ(x) − φ(k/n)) dx.

(4.59)

Clearly, there exists C > 0 such that

|δn(t)| ≤
(

1
n

n∑
k=1

|ük(t)|2
)1/2

⎛⎜⎝ 1
n2

n∑
k=1

k/n∫
|φx(x)|2 dx

⎞⎟⎠
1/2

≤ C

n
|φx|2.
(k−1)/n
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In the identity

0 =
1∫

0

(u(n)
tt φ + σ(n)φx)(x, t) dx + f [u(n)(1, ·)](t)φ(1) − p(t)φ(0) − δn(t) (4.60)

we now pass to the limit as n → ∞. First of all we have for all x ∈ (0, 1) by Proposition 2.2 (ii) that

t∫
0

∣∣∣m(n)
t −m

(l)
t

∣∣∣ (x, τ) dτ (4.61)

≤ C

t∫
0

1∫
0

∞∫
0

∣∣∣λ(n)(x, y)ϕ(m(n), r)δ(n)(y, τ, r) − λ(l)(x, y)ϕ(m(l), r)δ(l)(y, τ, r)
∣∣∣ dr dy dτ,

where we denote

δ(n) = δ(n)(y, t, r) = sr[ε(n)](ε(n) − sr[ε(n)])t(y, t)= r|pr[ε(n)]t(y, t)|.

By Proposition 2.2 (ii) we have (note that ||a| − |b|| ≤ |a − b| for a, b ∈ R)

t∫
0

|δ(n) − δ(l)|(y, τ) dτ ≤ r

t∫
0

|ε(n)
t − ε

(l)
t |(y, τ) dτ,

hence, by Hypothesis (H1) and (H7)

t∫
0

1∫
0

∞∫
0

λ(n)(x, y)ϕ(m(n), r)|δ(n) − δ(l)| dr dy dτ ≤ C

t∫
0

1∫
0

|ε(n)
t − ε

(l)
t |(y, τ) dy dτ. (4.62)

Similarly, by Hypothesis (H1),

t∫
0

1∫
0

∞∫
0

δ(l)λ(n)(x, y)|ϕ(m(n), r) − ϕ(m(l), r)|dr dy dτ

≤ C

t∫
0

⎛⎝ 1∫
0

|ε(l)
t (y, τ)|dy

⎞⎠ max
x∈(0,1)

|m(n)(x, τ) −m(l)(x, τ)|dτ. (4.63)

Finally, we have the pointwise bound

|λ(n)(x, y) − λ(l)(x, y)| ≤ 4Λ
min{n, l} , (4.64)

where Λ has been introduced in (H7). Combining (4.61)–(4.64) gives the estimate
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max
x∈(0,1)

|m(n) −m(l)|(x, t) ≤ max
x∈(0,1)

t∫
0

∣∣∣m(n)
t −m

(l)
t

∣∣∣ (x, τ) dτ

≤ qnl + C

t∫
0

⎛⎝ 1∫
0

|ε(l)
t (y, τ)|dy

⎞⎠ max
x∈(0,1)

|m(n) −m(l)|(x, τ) dτ, (4.65)

with

qnl = C

(
1

min{n, l} + ‖ε(n)
t − ε

(l)
t ‖1

)
.

Inequality (4.65) can be interpreted as an inequality of the form

q(t) ≤ qnl +
t∫

0

s(l)(τ)q(τ) dτ,

with q(t) = maxx∈(0,1) |m(n) − m(l)|(x, t), s(l)(t) = C
∫ 1
0 |ε(l)

t (y, t)| dy, with s(l) uniformly bounded in 
L1(0, T ). We obtain using Gronwall’s lemma that

q(t) ≤ qnle
∫ t
0 s(l)(τ) dτ ≤ Cqnl.

The convergences established at the beginning of this section imply that qnl is small if n, l are large. Hence, 
m(n) is a Cauchy sequence, so that

m(n) → m strongly in L∞(QT ), (4.66)

and, by (4.65),

m
(n)
t → mt strongly in L∞(0, 1;L1(0, T )).

Furthermore, by virtue of (4.56) m
(n)
t are uniformly bounded in L∞(QT ), hence m(n)

t → mt in L∞(QT )
weakly star. Using the convergences established at the beginning of this section and Proposition 2.2, we 

conclude that D(n)(x, ·), K(n)(x, ·) converge for all x ∈ (0, 1) to D[m, ε](x, ·), K[m, ε](x, ·), respectively, 
strongly in L∞(0, T ).

By continuity of the operator P[m, ε], we have that σ(n) converge to σ = Bε + P[m, ε] + νεt − β(θ −
θref) uniformly in L∞(QT ). Similarly, the boundary term f [u(n)(1, ·)] converges uniformly in C0([0, T ]) to 
f [u(1, ·)]. The sequence u(n)

tt converges weakly in L2(QT ) and δn converge uniformly to 0, hence the limit 
functions satisfy (2.2) and (2.23).

Similarly, with the intention to prove that (2.24) holds, we consider now an arbitrary test function 
ψ ∈ W 1,2(0, 1) and define the quantity

Δn(t) :=
1∫

0

(cθ(n)
t (x, t)ψ(x) + κθ̂(n)

x (x, t)ψx(x) − |ν(ε(n)
t (x, t)|2 + m

(n)
t (x, t)K(n)(x, t) + D

(n)(x, t)

− βθ
(n)(x, t)ε(n)

t (x, t))ψ(x)) dx− (|d[û(n)(1, ·)]t(t)| + α(θref − θ̂(n)(1, t)) − cbdyθ̂
(n)
t (1, t))ψ(1),

(4.67)

where
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m(n)(x, t) =
t∫

0

⎛⎝ 1∫
0

λ(n)(x, y)D(n)(y, τ) dy

⎞⎠ dτ, (4.68)

D
(n)(x, t) =

∞∫
0

ϕ(m(n), r) sr[ε(n)](ε(n) − sr[ε(n)])t(x, t) dr, (4.69)

K
(n)(x, t) = −1

2

∞∫
0

ϕm(m(n), r)s2r[ε(n)](x, t) dr. (4.70)

Notice that we have

1∫
0

θ̂(n)
x ψx dx = n

n∑
k=1

(θk(t) − θk−1(t))(ψ(k/n) − ψ((k − 1)/n))

= n

n−1∑
k=1

(θk+1(t) − θk(t))(ψ((k + 1)/n) − ψ(k/n)).

We use (4.14) with ψk = ψ(k/n) to obtain

Δn(t) =
n∑

k=1

(
cθ̇k(t) − ν|ε̇k(t)|2 − ṁk Kk −Dk + βθk(t)ε̇k(t)

) k/n∫
(k−1)/n

ψ(x) dx

+ κn
n−1∑
k=1

(θk+1(t) − θk(t))(ψ((k + 1)/n) − ψ(k/n))

− (|d[un]t| + α(θext − θn) − cbdyθ̇n)(t)ψ(1)

=
n∑

k=1

(
cθ̇k − νε̇2

k − ṁk Kk −Dk + βθkε̇k
)
(t)

k/n∫
(k−1)/n

(ψ(x) − ψ(k/n)) dx,

hence, arguing as in the estimate of δn, we may infer that there exists C > 0 such that

|Δn(t)| ≤ C

n

⎛⎜⎝ n∑
k=1

k/n∫
(k−1)/n

ψ2
x(x) dx

⎞⎟⎠
1/2(

1
n

n∑
k=1

(θ̇2
k + ε̇4

k + θ4
k)(t)

)1/2

,

hence Δn converge to 0 strongly in L2(0, T ). Passing to the weak limit in L2(0, T ) in (4.67) we check that 
(2.24) holds, so that (u, θ, m) is a desired solution from Theorem 3.2.

5. Proof of Theorem 3.2: uniqueness

It remains to prove uniqueness. Instead, we prove here a stronger continuous data dependence result 
which implies uniqueness if the data coincide. Here we follow the ideas from [31], but we have to face 
additionally many technical difficulties caused with the presence of fatigue.
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Theorem 5.1. Let pi, u0
i , v

0
i , θ

0
i and θext

i , i = 1, 2, be sets of data satisfying Hypotheses (H5) and (H6) (recall 
that, by (2.19) m(x, 0) = 0 a.e. in (0, 1)), and let (ui, θi, mi), i = 1, 2, be the corresponding solutions as in 
Theorem 3.2. Set p∗ := p1 − p2, u0∗ := u0

1 − u0
2, v0∗ := v0

1 − v0
2, θ0∗ := θ0

1 − θ0
2, u∗ := u1 − u2, θ∗ := θ1 − θ2, 

m∗ := m1 −m2 and θext∗ := θext
1 − θext

2 . Then there exists C > 0 depending only on the norms of the data 
in their respective spaces such that for all t ∈ [0, T ], the following inequality holds

1∫
0

|u∗
t (x, t)|2 dx +

∫
Qt

(|u∗
xt(x, τ)|2 + |θ∗(x, τ)|2) dx dτ +

t∫
0

|θ∗(1, τ)|2 dτ

≤ C

⎛⎝|θ0∗(1)|2 + |θext∗|2 +
t∫

0

|p∗(τ)|2 dτ +
1∫

0

(|u0∗|2 + |u0∗
x |2 + |v0∗|2 + |θ0∗|2)(x) dx

⎞⎠ .

Proof. First of all, integrating the difference of (2.24) for the two solutions in time from 0 to t, for all 
t ∈ [0, T ], for all ψ ∈ W 1,2(0, 1), we obtain

1∫
0

c(θ∗(x, t) − θ0∗(x))ψ(x) dx + κ

∫
Qt

θ∗x(x, τ)ψx(x) dx dτ + cbdy(θ∗(1, t) − θ0∗(1))ψ(1)

= ν

∫
Qt

(ε2
1,t − ε2

2,t)(x, τ)ψ(x) dx dτ +
∫
Qt

(D[m1, ε1](x, τ) −D[m2, ε2](x, τ))ψ(x) dx dτ

− β

∫
Qt

(θ1ε1,t − θ2ε2,t)(x, τ)ψ(x) dx dτ −
∫
Qt

(m1,tK[m1, ε1](x, τ) −m2,tK[m2, ε2](x, τ))ψ(x) dx dτ

+
t∫

0

(|d[u1(1, ·)]t(τ)| − |d[u2(1, ·)]t(τ)|)ψ(1) dτ + α

t∫
0

(θext∗ − θ∗(1, τ))ψ(1) dτ.

We test now by ψ(x) = θ∗(x, t). We observe that εi,t, ui,t, θi and mi are bounded in L∞(QT ), i = 1, 2, 
and the dissipation operators are Lipschitz continuous in W 1,1(0, T ) by Proposition 2.2 (ii) and Hypothesis 
(H2) that is,

t∫
0

|(D[m1, ε1] −D[m2, ε2)(x, τ)]| dτ ≤ C

⎛⎝|u0∗
x (x)| +

t∫
0

(|(m1 −m2)(x, τ)||ε1,t(x, τ)| + |ε∗t (x, τ)|) dτ

⎞⎠ ,

(5.1)
t∫

0

(|d[u1(1, ·)]t(τ)| − |d[u2(1, ·)]t(τ)|) dτ ≤ C

⎛⎝|u0∗(1)| +
t∫

0

|u∗
t (1, τ)|dτ

⎞⎠ , (5.2)

for all x ∈ (0, 1) and t ∈ [0, T ], with some C > 0. The fatigue term is estimated using (H1) as

t∫
0

|(m1,tK[m1, ε1] −m2,tK[m2, ε2])(x, τ)|dτ (5.3)

≤ C

t∫ ⎛⎝|(m1,t −m2,t)(x, τ)| + |m1,t(x, τ)|

⎛⎝|(m1 −m2)(x, τ)| + |u0∗
x (x)| +

τ∫
|ε∗t (y, τ)|dy

⎞⎠⎞⎠ dτ.

0 0
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Now, |m1,t(x, t)| ≤ C by the existence part of Theorem 3.2, and

t∫
0

|m1,t −m2,t|(x, τ) dτ ≤ C

t∫
0

1∫
0

|u0∗
x (y)|2 dy dτ (5.4)

+ C

t∫
0

⎛⎝ 1∫
0

⎛⎝|m1 −m2||ε1,t| +
τ∫

0

|ε∗t | ds

⎞⎠ (y, τ) dy

⎞⎠ dτ

by Proposition 2.2 (ii), together with (2.11) and (5.2); moreover

t∫
0

1∫
0

(|m1 −m2| |ε1,t|)(y, τ) dy dτ ≤ C

t∫
0

⎛⎝ 1∫
0

|m1 −m2|2(y, τ) dy

⎞⎠1/2

dτ (5.5)

by (4.54). On the other hand,

|m1 −m2|(x, t) ≤
t∫

0

|m1,t −m2,t|(x, τ) dτ

for almost every x, hence, using (5.4) and (5.5) we have

|m1 −m2|2(x, t) ≤ C

( 1∫
0

|u0∗
x (x)|2 dx +

t∫
0

1∫
0

(|m1 −m2|2 + |ε∗t |2)(y, t) dy dτ
)
.

Integrating in space and using Gronwall’s argument, we obtain from (5.4) that

t∫
0

|m1,t −m2,t|(x, τ) dτ ≤ C

⎛⎜⎝
⎛⎝ 1∫

0

|u0∗
x (x)|2 dx

⎞⎠1/2

+

⎛⎝ t∫
0

1∫
0

|ε∗t (y, τ)|2 dy dτ

⎞⎠1/2⎞⎟⎠ . (5.6)

Using the L∞ bounds for θi and εi,t and the inequalities (5.2)–(5.2), we may infer that there exists C > 0
such that

1∫
0

c θ∗(x, t)(θ∗(x, t) − θ0∗(x)) dx + κ

2
d
dt

1∫
0

⎛⎝ t∫
0

θ∗x(x, s) ds

⎞⎠2

dx + cbdyθ∗(1, t)(θ∗(1, t) − θ0∗(1))

≤ C

⎛⎜⎝ 1∫
0

|θ∗(x, t)|

⎛⎜⎝|u0∗
x (x)| +

t∫
0

(|ε∗t (x, s)| + |θ∗(x, s)|) ds +

⎛⎝ 1∫
0

|u0∗
x (x)|2 dx

⎞⎠1/2

+

⎛⎝ t∫
0

1∫
0

|ε∗t |2(y, s) dy ds

⎞⎠1/2⎞⎟⎠ dx + |θ∗(1, t)|

⎛⎝|u0∗(1)| + |θext∗| +
t∫

0

(|θ∗(1, s)| + |u∗
t (1, s)|) ds

⎞⎠
⎞⎟⎠ .

Hence, also by virtue of (5.15), it follows that there exist constants C, κ∗ > 0 such that
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1∫
0

|θ∗(x, τ)|2 dx + κ∗ d
dt

1∫
0

⎛⎝ t∫
0

θ∗x(x, s) ds

⎞⎠2

dx + |θ∗(1, t)|2

≤ C

(
|θext*|2 + |θ0∗(1)|2 +

1∫
0

(|u0∗|2 + |u0∗
x |2 + |θ0∗|2)(x) dx

+
∫
Qt

(|u∗
t |2 + |ε∗t |2 + |θ∗|2)(x, s) dx ds +

t∫
0

|θ∗(1, s)|2 ds
)
.

(5.7)

Integrating (5.7) in time over (0, t) we obtain that

∫
Qt

|θ∗(x, τ)|2 dx dτ +
t∫

0

|θ∗(1, τ)|2 dτ

≤ C T

⎛⎝|θext*|2 + |θ0∗(1)|2 +
1∫

0

(|u0∗|2 + |u0∗
x |2 + |θ0∗|2)(x) dx

⎞⎠
+ C

⎛⎝ t∫
0

∫
Qt

(|u∗
t |2 + |ε∗t |2 + |θ∗|2)(x, t) dx ds dτ +

t∫
0

τ∫
0

|θ∗(1, s)|2 ds dτ

⎞⎠ .

(5.8)

We now consider the difference of (2.23) taken for the two solutions (u1, θ1, m1), (u2, θ2, m2), tested by 
φ = u∗

t , then we use (2.2) and finally we integrate this expression over (0, t) to get

ρ

2

1∫
0

|u∗
t (x, t)|2 dx + ν

∫
Qt

|ε∗t (x, τ)|2 dx dτ = ρ

2

1∫
0

|v0∗(x)|2 dx

+ β

∫
Qt

θ∗(x, τ)ε∗t (x, t) dx dτ −
∫
Qt

(Bε∗(x, τ) + P[m1, ε1](x, τ) − P[m2, ε2](x, τ))ε∗t (x, τ) dx dτ

−
t∫

0

(f [u1](1, τ) − f [u2](1, τ))u∗
t (1, τ) dτ +

t∫
0

p∗(τ)u∗
t (0, τ) dτ.

(5.9)

The terms on the right hand side of (5.9) will be estimated using a suitable constant μ > 0 that will be 
specified later. We have

β

∫
Qt

θ∗(x, τ)ε∗t (x, τ) dx dτ ≤ β2

2μ

∫
Qt

|θ∗(x, τ)|2 dx dτ + μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ, (5.10)

−
∫
Qt

Bε∗(x, τ) ε∗t (x, τ) dx dτ ≤ B2

2μ

∫
Qt

|ε∗(x, τ)|2 dx dτ + μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ, (5.11)

−
∫
Qt

(P[m1, ε1](x, τ) − P[m2, ε2](x, τ))ε∗t (x, τ) dx dτ (5.12)

≤ 1
2μ

∫
Qt

|P[m1, ε1](x, τ) − P[m2, ε2](x, τ)|2 dx dτ + μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ,
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−
t∫

0

(f [u1](1, τ) − f [u2](1, τ))u∗
t (1, τ) dτ (5.13)

≤ 1
2μ

t∫
0

|f [u1](1, τ) − f [u2](1, τ)|2 dτ + μ

2

t∫
0

|u∗
t (1, τ)|2 dτ,

t∫
0

p∗(τ)u∗
t (0, τ) dτ ≤ 1

2μ

t∫
0

|p∗|2(τ) dτ + μ

2

t∫
0

|u∗
t (0, τ)|2 dτ. (5.14)

By (A.2) for r = s = p = 2 we have for all (y, τ) ∈ QT that

|u∗
t (y, τ)|2 ≤

1∫
0

|u∗
t (x, τ)|2 dx +

√
2

⎛⎝ 1∫
0

|u∗
t (x, τ)|2 dx

⎞⎠1/2⎛⎝ 1∫
0

|ε∗t (x, τ)|2 dx

⎞⎠1/2

,

hence, by Hölder’s inequality,

t∫
0

|u∗
t (y, τ)|2 dτ ≤ 3

2

∫
Qt

|u∗
t (x, τ)|2 dx dτ +

∫
Qt

|ε∗t (x, τ)|2 dx dτ. (5.15)

Furthermore,

∫
Qt

|P[m1, ε1](x, τ) − P[m2, ε2](x, τ)|2 dx dτ ≤ C

⎛⎝ 1∫
0

|u∗0
x (x)|2 dx+

t∫
0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ

⎞⎠ , (5.16)

t∫
0

|f [u1](1, τ) − f [u2](1, τ)|2 dτ ≤ 2L2
f

⎛⎝|u∗0(1)|2 +
t∫

0

τ∫
0

|u∗
t (1, s)|2 ds dτ

⎞⎠ (5.17)

≤ 2L2
f

(
|u∗0(1)|2 + 3T

2

∫
Qt

|u∗
t (x, t)|2 dt +

t∫
0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
.

Similarly we have

∫
Qt

|ε∗(x, τ)|2 dx dτ ≤ C

⎛⎝ 1∫
0

|u∗0
x (x)|2 dx+

t∫
0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ

⎞⎠ . (5.18)

Choosing now μ = ν/4 and inserting the estimates (5.10)–(5.17) into (5.9), we conclude that there exists a 
constant C∗ > 0 depending only on the physical constants of the problem such that

1∫
0

|u∗
t (x, t)|2 dx +

∫
Qt

|ε∗t (x, τ)|2 dx dτ ≤ C∗

( 1∫
0

(
|v0∗|2 + |u0∗|2 + |u0∗

x |2
)
(x) dx

+
t∫

0

|p∗(τ)|2 dτ +
∫
Qt

|θ∗(x, τ)|2 dx dτ +
∫
Qt

|u∗
t (x, τ)|2 dx dτ +

t∫
0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
. (5.19)
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We now multiply (5.8) by 2C∗ and add the result to (5.19), apply the Gronwall’s argument and complete 
the proof in the same way as in [31]. �
Appendix A. Sobolev interpolation inequalities

Let p, q, s ∈ [1, ∞] be such that q > s, and let | · |p denote the norm in Lp(0, 1). The Gagliardo–Nirenberg 
inequality states that there exists a constant CGN > 0 such that for every v ∈ W 1,p(0, 1) we have

|v|q ≤ CGN (|v|s + |v|1−γ
s |v′|γp

)
) with γ :=

1
s − 1

q

1 + 1
s − 1

p

. (A.1)

Note that (A.1) is straightforward. Indeed if we introduce an auxiliary parameter r := 1 + s(1 − 1
p ) and use 

the chain rule d
dx |v(x)|r ≤ r|v(x)|r−1|v′(x)| almost everywhere, we obtain from Hölder’s inequality that

|v|∞ ≤ |v|r + C|v|1−(1/r)
s |v′|1/rp with C := r1/r. (A.2)

Combined with the obvious interpolation inequality |v|h ≤ |v|1−(s/h)
∞ |v|s/hs for h = q if r ≥ s, and for both 

h = q and h = r if r > s, this yields (A.1).
Let now v := (v0, v1, . . . , vn)T be a vector, and let us denote

|v|p :=
(

1
n

n∑
k=0

|vk|p
)1/p

and |Dv|p :=
(
np−1

n∑
k=1

|vk − vk−1|p
)1/p

. (A.3)

The discrete counterpart of (A.1) reads

|v|q ≤ CGND (|v|s + |v|1−γ
s |Dv|γp

)
, (A.4)

where CGND > 0 is a constant depending on the data and independent of n.
Let us recall here the following embedding formula for anisotropic Sobolev spaces from [29, Theorem A.1]. 

For a vector p := (p1, . . . , pN )T, 1 ≤ pi < ∞, we define the space Lp(RN ) as the subspace of L1(RN ) of 
functions v such that the norm

‖v‖p :=

⎛⎜⎜⎝∫
R

⎛⎜⎝ . . .

∫
R

⎛⎝∫
R

|v(x)|p1 dx1

⎞⎠p2/p1

dx2 . . .

⎞⎟⎠
pN/pN−1

dxN

⎞⎟⎟⎠
1/pN

(A.5)

is finite, with obvious modifications if pi = ∞. If p1 = p2 = · · · = pN , we write simply ‖v‖p. For a matrix 
P := (Pij)Ni,j=1 with Pij := 1/pij , 1 ≤ pij ≤ ∞, we define the anisotropic Sobolev space

W 1,P(RN ) :=
{
v ∈ L1(RN ) : ∂v

∂xi
∈ Lpi(RN ), i = 1, . . . , N

}
, (A.6)

where pi := (pi1, . . . , piN ). The proof in [29] is carried out explicitly only for pij < ∞ using the methods 
of [3], but the case pij = ∞ works exactly in the same way.

We denote by I the identity N ×N matrix, and by 1 the vector 1 := (1, 1, . . . , 1)T. The spectral radius 
�(P) of P is defined as

�(P) := max{|λ| : λ ∈ C, det(P − λI) = 0} = lim sup
n→∞

|Pn|1/n. (A.7)
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Theorem A.1. Let �(P) < 1, and let

(I − P)−11 := b := (b1, . . . , bN ). (A.8)

Then W 1,P(RN ) is embedded in L∞(RN ), and there exists a constant CP > 0 such that each v ∈ W 1,P(RN )
has for all x, z ∈ R

N the Hölder property

|v(z) − v(x)| ≤ CP‖v‖W 1,P(RN )

N∑
i=1

|zi − xi|1/bi , (A.9)

and putting |b| :=
∑N

i=1 bi, we have for every δ ∈ (0, 1] and every q ∈ [1, ∞) that

∀x ∈ R
N : |v(x)| ≤ CP

(
δ−|b|/q‖v‖q + δ‖v‖W 1,P(RN )

)
. (A.10)

Corollary A.2. In the situation of the previous Theorem for r > q the following interpolation inequality 
holds:

‖v‖r ≤ CP
(
‖v‖q + ‖v‖1−γ∗

q ‖v‖γ
∗

W 1,P(RN )

)
, (A.11)

with γ∗ := |b|(1 − (q/r))/(q + |b|).

For a detailed proof see [31]. This result will be applied to our situation in the following particular case.

Corollary A.3. Let P be the matrix

P :=
(

1/2 0
1/2 1/2

)
. (A.12)

Then the space W 1,P(QT ) defined as in (A.6) with x1 = x and x2 = t, is compactly embedded in C0(QT ).
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[3] O.V. Besov, V.P. Il’in, S.M. Nikol’skĭı, Integral Representations of Functions and Imbedding Theorems, Scripta Ser. in 

Math., Halsted Press (John Wiley & Sons), New York–Toronto, Ont.–London, 1978 (vol. I), 1979 (vol. II); Russian version: 
Nauka, Moscow, 1975.

[4] E. Bonetti, G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials, Ann. Inst. Henri 
Poincaré 25 (2008) 1187–1208.

[5] E. Bonetti, G. Bonfanti, R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion, Indiana 
Univ. Math. J. 56 (2007) 2787–2820.

[6] E. Bonetti, G. Bonfanti, R. Rossi, Thermal effects in adhesive contact: modelling and analysis, Nonlinearity 22 (2009) 
2697–2731.

[7] E. Bonetti, G. Bonfanti, R. Rossi, Analysis of a unilateral contact problem taking into account adhesion and friction, 
J. Differential Equations 253 (2012) 438–462.

[8] E. Bonetti, G. Schimperna, Local existence for Frémond’s model of damage in elastic materials, Contin. Mech. Thermodyn. 
16 (4) (2004) 319–335.

[9] E. Bonetti, G. Schimperna, A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, 
J. Differential Equations 218 (2005) 91–116.

[10] S. Bosia, M. Eleuteri, J. Kopfová, P. Krejčí, Fatigue and phase in an oscillating plate, in: Proceedings of the 9th International 
Symposium on Hysteresis Modeling and Micromagnetics, Phys. B: Condens. Matter 435 (2014) 1–3.

[11] M. Brokate, K. Dreßler, P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Eur. 
J. Mech. A Solids 15 (1996) 705–735.

http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4150s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42533833s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42533833s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib62696Es1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib62696Es1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib62696Es1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42423038s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42423038s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523037s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523037s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523039s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523039s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523132s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4242523132s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42533034s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42533034s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4253533035s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib4253533035s1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42454B4Bs1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib42454B4Bs1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib62646Bs1
http://refhub.elsevier.com/S0022-247X(17)30981-2/bib62646Bs1


110 M. Eleuteri, J. Kopfová / J. Math. Anal. Appl. 459 (2018) 82–111
[12] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Appl. Math. Sci., vol. 121, Springer-Verlag, New York, 1996.
[13] F. Dabaghi, A. Petrov, J. Pousin, Y. Renard, Convergence of mass redistribution method for the wave equation with a 

unilateral constraint at the boundary, Math. Model. Numer. Anal. 48 (2014) 1147–1169.
[14] C.M. Dafermos, Global smooth solutions to the initial–boundary value problem for the equations of one-dimensional 

thermoviscoelasticity, SIAM J. Math. Anal. 13 (1982) 397–408.
[15] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin, 

1976, translated from the French by C.W. John.
[16] Ch. Eck, J. Jarušek, M. Krbec, Unilateral Contact Problems. Variational Methods and Existence Theorems, Chapman & 

Hall/CRC, Boca Raton, 2005.
[17] M. Eleuteri, J. Kopfová, On a new model for fatigue and phase transition in an oscillating elastoplastic plate, submitted 

for publication.
[18] M. Eleuteri, J. Kopfová, P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, in: Proceedings of 

the 8th International Symposium on Hysteresis Modeling and Micromagnetics, Phys. B: Condens. Matter 407 (9) (2012) 
1415–1416.

[19] M. Eleuteri, J. Kopfová, P. Krejčí, Fatigue accumulation in an oscillating plate, Discrete Contin. Dyn. Syst. Ser. S 6 (4) 
(2013) 909–923.

[20] M. Eleuteri, J. Kopfová, P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam, Commun. Pure Appl. 
Anal. 12 (6) (2013) 2973–2996.

[21] M. Eleuteri, J. Kopfová, P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate, Discrete Contin. Dyn. Syst. 
Ser. B 19 (7) (2014) 2091–2109.

[22] M. Eleuteri, J. Kopfová, P. Krejčí, A new phase field model for material fatigue in oscillating elastoplastic beam, Discrete 
Contin. Dyn. Syst. 35 (6) (2015) 2465–2495.

[23] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti 
Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. Ia 7 (8) (1963–1964) 91–140.

[24] A. Flatten, Lokale und nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für 
metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen, BAM-Dissertationsreihe, Berlin, 2008.

[25] J.U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations 14 (8–9) (1989) 
1011–1026.

[26] D. Knees, R. Rossi, C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods 
Appl. Sci. (M3AS) 23 (4) (2013) 565–616.

[27] M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1989.
[28] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 8, 
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