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The (L.2) supercongruence of Van Hamme was proved by Swisher recently. In this 
paper we provide a conjectural q-analogue of the (L.2) supercongruence of Van 
Hamme and prove a weaker form of it by using the q-WZ method. In the same way, 
we prove a complete q-analogue of the following congruence

n∑
k=0

(6k + 1)
(2k
k

)3
(−512)n−k ≡ 0 (mod 4(2n + 1)

(2n
n

)
),

which was conjectured by Z.-W. Sun and confirmed by B. He. We also provide a 
conjectural q-analogue of another congruence proved by Swisher.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1914, Ramanujan [18] discovered several infinite series for 1/π that enable us to compute π very 
accurately. The most impressive one might be

∞∑
k=0

(1/4)k(1/2)k(3/4)k
k!3 (1103 + 26390k)(1/99)4k+2 = 1

2
√

2π
, (1.1)

where (a)k = a(a + 1) · · · (a + k − 1).
In 1997, Van Hamme [24] observed that 13 Ramanujan’s or Ramanujan-like formulas for 1/π, such as
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∞∑
k=0

(−1)k(8k + 1)
(1
4)3k
k!3 = 2

√
2

π
, (1.4)

∞∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k = 2
√

2
π

, (1.5)

have very nice p-adic analogues:

p−1
2∑

k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 ≡ p

(
−1
p

)
(mod p3), (1.6)

p−1
3∑

k=0

(−1)k(6k + 1)
(1
3 )3k
k!3 ≡ p (mod p3), if p ≡ 1 (mod 3), (1.7)

p−1
4∑

k=0

(−1)k(8k + 1)
(1
4 )3k
k!3 ≡ p

(
−2
p

)
(mod p3), if p ≡ 1 (mod 4), (1.8)

p−1
2∑

k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ p

(
−2
p

)
(mod p3), (1.9)

where p is an odd prime and 
( ·
p

)
is the Legendre symbol modulo p. Supercongruences of this type are 

called Ramanujan-type supercongruences. All of the 13 supercongruences have now been confirmed by 
different authors (see [16,22]). The supercongruence (1.6) was first proved by Mortenson [15] using a 6F5

transformation and a technical evaluation of a quotient of Gamma functions, and later reproved by Zudilin 
[27] via the Wilf–Zeilberger method [25,26] (the WZ pair was borrowed from [3]) and by Long [14] using 
hypergeometric identities. Swisher [22] used Long’s method to prove 4 supercongruences of Van Hamme, 
including (1.7)–(1.9). Chen, Xie, and He [2] reproved (1.9) modulo p2 via the WZ method again. He [11]
has independently used Long’s method to give a generalization of (1.7) and (1.8). Moreover, it is worth 
mentioning that the last supercongruence of Van Hamme was proved by Osburn and Zudilin [16] in 2016.

Motivated by Zudilin’s work [27], the author [6,7] uses the q-WZ method to obtain q-analogues of 
(1.6)–(1.8): for any odd prime p,

p−1
2∑

k=0

(−1)kqk
2
[4k + 1] (q; q2)3k

(q2; q2)3k
≡ [p]q

(p−1)2
4 (−1)

p−1
2 (mod [p]3), (1.10)

p−1
3∑

k=0

(−1)kq
3k2+k

2 [6k + 1] (q; q3)3k
(q3; q3)3k

≡ [p]q
(p−1)(p−2)

6 (mod [p]3), if p ≡ 1 (mod 3), (1.11)

p−1
4∑

k=0

(−1)kq2k2+k[8k + 1] (q; q4)3k
(q4; q4)3k

≡ [p]q
(p−1)(p−3)

8

(
−2
p

)
(mod [p]3) if p ≡ 1 (mod 4), (1.12)

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n � 1 and (a; q)0 = 1, and [n] = [n]q = 1 + q + · · ·+ qn−1. 
Note that, for a polynomial h(q) and two rational functions f(q) and g(q), we say that f(q) is congruent to 
g(q) modulo h(q), denoted by f(q) ≡ g(q) (mod h(q)), if the numerator of the reduced form of f(q) − g(q)
is divisible by h(q). We point out that there are more general forms of (1.10)–(1.12) in [6,7], and some other 
interesting q-congruences can be found in [13,17,19,23].
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Recall that the n-th cyclotomic polynomial Φn(q) is defined as

Φn(q) :=
∏

1�k�n
gcd(k,n)=1

(q − e2πi k
n ),

where i is the imaginary unit. It is clear that Φp(q) = [p] for any prime p. This paper was motivated by the 
following conjectural q-analogue of (1.9) (i.e., the (L.2) supercongruence of Van Hamme [24]).

Conjecture 1.1. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)2), (1.13)

n−1∑
k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)2). (1.14)

Note that, when n = p is an odd prime, the congruences (1.13) and (1.14) are equivalent to each other, 
since (q;q2)k

(q4;q4)k ≡ 0 (mod [p]) for p+1
2 � k � p − 1. But they are not equivalent in general.

The first aim of this paper is to prove the following weaker form of Conjecture 1.1.

Theorem 1.2. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡ 0 (mod [n]). (1.15)

Moreover, if n is an odd prime power, then

n−1∑
k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡ [n](−q)−
(n−1)(n+5)

8 (mod [n]Φn(q)). (1.16)

Letting q → 1 in (1.16), we obtain

Corollary 1.3. Let p be an odd prime and r a positive integer. Then

pr−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ p

(
−2
p

)r

(mod pr+1).

On the other hand, Z.-W. Sun [20, Conjecture 5.1(i)] made the following conjecture

n∑
k=0

(6k + 1)
(

2k
k

)3

(−512)n−k ≡ 0 (mod 4(2n + 1)
(

2n
n

)
), (1.17)

which was later proved by He [11] using the WZ method. The second aim of this paper is to prove the 
following q-analogue of (1.17).

Theorem 1.4. Let n be a positive integer. Then

n∑
k=0

(−1)k[6k + 1]
[
2k
k

]3 (−q; q)6n(−q2; q2)3n
(−q; q)6k(−q2; q2)3k

≡ 0 (mod (1 + qn)2[2n + 1]
[
2n
n

]
), (1.18)
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where the q-binomial coefficients 
[
m
k

]
are defined by

[
m

k

]
=

[
m

k

]
q

=

⎧⎪⎨
⎪⎩

(q; q)m
(q; q)k(q; q)m−k

if 0 � k � m,

0 otherwise.

We shall prove Theorem 1.2 in Section 2 using some properties of q-factorials and a q-WZ pair. In Sec-
tion 3, we shall prove Theorem 1.4 using the same q-WZ pair and some properties of q-binomial coefficients. 
In section 4, we provide several related conjectures, including one on a q-analogue of Ramanujan’s series 
(1.5) and another one on a q-analogue of the congruence 2 p−1

2 ≡ (−1) p2−1
8 (mod p) for any odd prime p.

2. Proof of Theorem 1.2

We first require three preliminary results.

Lemma 2.1. If n is an odd prime power, then

(−q2; q2)(n−1)/2 ≡ (−1)
n2−1

8 q
n2−1

8 (mod Φn(q)). (2.1)

Proof. By the q-binomial theorem (see [1, p. 36, (3.3.6)]), for any odd positive integer n, we have

(−q2; q2)n−1 =
n−1∑
k=0

[
n− 1
k

]
q2
qk

2+k ≡
n−1∑
k=0

(−1)k = 1 (mod Φn(q)), (2.2)

since

[
n− 1
k

]
q2

=
k∏

j=1

1 − q2n−2j

1 − q2j ≡
k∏

j=1

1 − q−2j

1 − q2j = (−1)kq−k2−k (mod Φn(q)).

Note that

(−q2; q2)n−1 = (−q2; q2)(n−1)/2

n−1
2∏

k=1

(1 + q2n−2k) ≡ (−q2; q2)(n−1)/2

n−1
2∏

k=1

(1 + q−2k)

= (−q2; q2)2(n−1)/2q
1−n2

4 (mod Φn(q)). (2.3)

Combining (2.2) and (2.3), we obtain (−q2; q2)2(n−1)/2 ≡ q
n2−1

4 (mod Φn(q)). It follows that

(−q2; q2)(n−1)/2 ≡ ±q
n2−1

8 (mod Φn(q)). (2.4)

We now suppose that n = pr is an odd prime power. Then 2 pr−1
2 ≡ (−1)

(p2−1)r
8 = (−1) p2r−1

8 (mod p) since 

2 p−1
2 ≡

( 2
p

)
= (−1) p2−1

8 (mod p). Hence, letting q = 1 in (2.4) and noticing that Φpr(1) = p, we are led to 
(2.1). �
Lemma 2.2. Let n and k be positive integers with n odd. Then

(q; q2)(n−1)/2+k(q; q2)2(n+1)/2−k

(q2; q2)2(n−1)/2(q2; q2)(n+1)/2−k
≡ 0 (mod 1 − qn), (2.5)
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and for 1 � k � n with k �= n+1
2 we have

(q; q2)n+k−1(q; q2)2n−k

(q2; q2)2n−1(q2; q2)n−k
≡ 0 (mod (1 − qn)Φn(q)). (2.6)

Proof. It is well known that

qm − 1 =
∏
d|m

Φd(q),

and so

(q2; q2)m = (−1)m
(

m∏
d=1

Φ2d(q)�
m
d �

)(
m∏

d=1

Φ2d−1(q)�
m

2d−1 �

)
, (2.7)

(q; q2)m = (q; q)2m
(q2; q2)m

= (−1)m
m∏

d=1

Φ2d−1(q)�
2m

2d−1 �−� m
2d−1 �, (2.8)

where �x� denotes the greatest integer less than or equal to x. Therefore,

(q; q2)m+k(q; q2)2m−k+1
(q2; q2)2m(q2; q2)m−k+1

= −
m+k∏
d=1

Φ2d−1(q)�
2m+2k
2d−1 �+2� 2m−2k+2

2d−1 �−� m+k
2d−1 �−3�m−k+1

2d−1 �−2� m
2d−1 �

Φ2d(q)2�
m
d �+�m−k+1

d �
. (2.9)

Applying the following properties

�2x� + �2y� � �x� + �y� + �x + y�, �2y� � 2�y�, (2.10)

we see that the exponent of Φ2d−1(q) on the right-hand side of (2.9) is greater than or equal to
⌊

2m + 1
2d− 1

⌋
− 2

⌊
m

2d− 1

⌋
,

which is clearly non-negative.
If m = n−1

2 or m = n − 1, then for any d with 2d − 1|n, we have �2m+1
2d−1 � − 2� m

2d−1� = 1, which means 
that the congruences (2.5) and (2.6) hold modulo 1 − qn.

Furthermore, if m = n − 1 and 1 � k � n, then the exponent of Φn(q) on the right-hand side of (2.9) is 
equal to

⌊
2n + 2k − 2

n

⌋
+ 2

⌊
2n− 2k

n

⌋
−

⌊
n + k − 1

n

⌋
=

⎧⎨
⎩

3, if 1 � k � n−1
2 ,

2 if n+3
2 � k � n.

This proves (2.6). �
Lemma 2.3. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

=
n+1

2∑
k=1

(−1)n+1
2 +k(q; q2)(n−1)/2+k(q; q2)2(n+1)/2−k

(1 − q)(q4; q4)2(n−1)/2(q4; q4)(n+1)/2−k
, (2.11)

n−1∑
k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

=
n∑

k=1

(−1)n+k(q; q2)n+k−1(q; q2)2n−k

(1 − q)(q4; q4)2n−1(q4; q4)n−k
. (2.12)
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Proof. We define two rational functions in q:

F (n, k) = (−1)n+k [6n− 2k + 1](q; q2)n+k(q; q2)2n−k

(q4; q4)2n(q4; q4)n−k
,

G(n, k) =
(−1)n+k(q; q2)n+k−1(q; q2)2n−k

(1 − q)(q4; q4)2n−1(q4; q4)n−k
,

where we use the convention that 1/(q4; q4)m = 0 for m = −1, −2, . . .. The functions F (n, k) and G(n, k)
satisfy the relation

F (n, k − 1) − F (n, k) = G(n + 1, k) −G(n, k). (2.13)

Namely, they form a q-WZ pair. Indeed, we have the following expressions:

F (n, k − 1)
G(n, k) = − (1 − q6n−2k+3)(1 − q2n−2k+1)2

(1 − q4n−4k+4)(1 − q4n)2 ,

F (n, k)
G(n, k) = (1 − q6n−2k+1)(1 − q2n+2k−1)

(1 − q4n)2 ,

G(n + 1, k)
G(n, k) = − (1 − q2n+2k−1)(1 − q2n−2k+1)2

(1 − q4n)2(1 − q4n−4k+4) .

Then it is routine to verify the identity

− (1 − q6n−2k+3)(1 − q2n−2k+1)2

(1 − q4n−4k+4)(1 − q4n)2 − (1 − q6n−2k+1)(1 − q2n+2k−1)
(1 − q4n)2

= − (1 − q2n+2k−1)(1 − q2n−2k+1)2

(1 − q4n)2(1 − q4n−4k+4) − 1,

which is equivalent to (2.13) (dividing both sides by G(n, k)).
Let m be a positive odd integer. Summing (2.13) over n = 0, 1, . . . , m−1

2 , we obtain (via telescoping)

m−1
2∑

n=0
F (n, k − 1) −

m−1
2∑

n=0
F (n, k) = G

(
m + 1

2 , k

)
, (2.14)

where we have used G(0, k) = 0. Summing (2.14) over k = 1, 2, . . . , m+1
2 , we get

m−1
2∑

n=0
F (n, 0) =

m−1
2∑

n=0
F

(
n,

m + 1
2

)
+

m+1
2∑

k=1

G

(
m + 1

2 , k

)
=

m+1
2∑

k=1

G

(
m + 1

2 , k

)
,

where we have used F (n, k) = 0 for n < k because (q4; q4)n−k is in the denominator. This proves that (2.11)
holds for n = m.

Similarly, we have

m−1∑
n=0

F (n, 0) =
m∑

k=1

G (m, k) .

That is, the identity (2.12) is true for n = m. �
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Proof of Theorem 1.2. It is easy to see that

(q; q2)(n−1)/2+k(q; q2)2(n+1)/2−k

(1 − q)(q4; q4)2(n−1)/2(q4; q4)(n+1)/2−k

=
(q; q2)(n−1)/2+k(q; q2)2(n+1)/2−k

(1 − q)(q2; q2)2(n−1)/2(q2; q2)(n+1)/2−k

1
(−q2; q2)2(n−1)/2(−q2; q2)(n+1)/2−k

By Lemma 2.2, we have

(q; q2)(n−1)/2+k(q; q2)2(n+1)/2−k

(1 − q)(q2; q2)2(n−1)/2(q2; q2)(n+1)/2−k
≡ 0 (mod [n]). (2.15)

Moreover, we have gcd((−q2; q2)2(n−1)/2(−q2; q2)(n+1)/2−k, [n]) = 1, since (1 − qn, 1 + qm) = 1 holds for all 
positive integers m and n with n odd. The proof of (1.15) then follows from (2.11) and (2.15).

Similarly, by (2.6), for 1 � k � n with k �= n+1
2 we have

(q; q2)n+k−1(q; q2)2n−k

(1 − q)(q4; q4)2n−1(q4; q4)n−k
≡ 0 (mod [n]Φn(q)).

Therefore, modulo [n]Φn(q), the identity (2.12) reduces to

n−1∑
k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡
(−1)n+n+1

2 (q; q2)(3n−1)/2(q; q2)2(n−1)/2

(1 − q)(q4; q4)2n−1(q4; q4)(n−1)/2

=
(−1)n−1

2 (q; q2)(n−1)/2[n](qn+2; q2)n−1(q; q2)2(n−1)/2

(q4; q4)2n−1(q4; q4)(n−1)/2

≡
(−1)n−1

2 (q; q2)(n−1)/2[n](q2; q2)n−1(q; q2)2(n−1)/2

(q4; q4)2n−1(q4; q4)(n−1)/2

= (−1)n−1
2 [n]

(−q2; q2)2n−1(−q2; q2)(n−1)/2(−q; q)3n−1

[
n− 1
n−1

2

]2

q2

(mod [n]Φn(q)), (2.16)

where we have used the fact A1(q)[n]
B1(q) ≡ A2(q)[n]

B2(q) (mod [n]Φn(q)) if A1(q)
B1(q) ≡ A2(q)

B2(q) (mod Φn(q)) and the 

denominators of the reduced forms of A1(q)
B1(q) and A2(q)

B2(q) are both relatively prime to [n]. By the proof of (2.1), 

we have (−q; q)n−1 ≡ (−q2; q2)n−1 ≡ 1 (mod Φn(q)) and 
[n−1

n−1
2

]
q2

≡ (−1)n−1
2 q

1−n2
4 (mod Φn(q)). Thus, 

from (2.16) we obtain

n−1∑
k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

≡ (−1)n−1
2 [n]q 1−n2

2

(−q2; q2)(n−1)/2
(mod [n]Φn(q)), (2.17)

which means that the congruence (1.14) modulo [n] is true. If n is an odd prime power, then by Lemma 2.1
and noticing that q

3(1−n2)
8 ≡ q−

(n−1)(n+5)
8 (mod Φn(q)), the congruence (2.17) is equivalent to (1.16). �

3. Proof of Theorem 1.4

We need two divisibility results on q-binomial coefficients.
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Lemma 3.1 ([7, Lemma 4.1]). Let n be a positive integer. Then

(−q; q)3n
[
4n + 1

2n

]
≡ 0 (mod (1 + qn)2(−q; q)2n).

Lemma 3.2. Let n and k be positive integers with k � n + 1. Then

(q; q2)n+k(q; q2)2n−k+1(−q; q)6n
(1 − q)(q2; q2)2n(q2; q2)n−k+1

≡ 0 (mod (1 + qn)2[2n + 1]
[
2n
n

]
). (3.1)

Proof. Since

(1 + qn)2[2n + 1]
[
2n
n

]
= (1 + qn)2(q; q)2n+1

(1 − q)(q; q)2n
,

to prove (3.1), it is equivalent to prove that

(q; q2)n+k(q; q2)2n−k+1(−q; q)2n(−q; q)2n−1
(q2; q2)n−k+1(q; q)2n+1

(3.2)

is a polynomial in q with integer coefficients. Noticing (2.7), (2.8), and

(−q; q)n = (q2; q2)n
(q; q)n

=
n∏

d=1

Φ2d(q)�
n
d �−� n

2d �,

the expression (3.2) can be factorized into
(

n∏
d=1

Φ2d(q)2�
n
d �+2�n−1

d �−2� n
2d �−2�n−1

2d �−�n−k+1
d �−� 2n+1

2d �

)

×
(

n+k∏
d=2

Φ2d−1(q)�
2n+2k
2d−1 �+2� 2n−2k+2

2d−1 �−� n+k
2d−1 �−3�n−k+1

2d−1 �−� 2n+1
2d−1 �

)
.

It is clear that �n
d � − �n−k+1

d � � 0 (since k � 1), �2n+1
2d � = �n

d �, and
⌊
n− 1
d

⌋
−
⌊ n

2d

⌋
−

⌊
n− 1
2d

⌋
� 0.

So, the exponent of Φ2d(q) is non-negative. Moreover, by (2.10), we have
⌊

2n + 2k
2d− 1

⌋
+

⌊
2n− 2k + 2

2d− 1

⌋
�

⌊
n + k

2d− 1

⌋
+

⌊
n− k + 1

2d− 1

⌋
+

⌊
2n + 1
2d− 1

⌋
,

⌊
2n− 2k + 2

2d− 1

⌋
� 2

⌊
n− k + 1

2d− 1

⌋
.

This implies that the exponent of Φ2d−1(q) is also non-negative and therefore (3.2) is a product of cyclotomic 
polynomials. �

Similarly as before, summing (2.13) over n from 0 to N , we obtain

N∑
n=0

F (n, k − 1) −
N∑

n=0
F (n, k) = G (N + 1, k) . (3.3)
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Furthermore, summing (3.3) over k from 1 to N , we get

N∑
n=0

F (n, 0) −
N∑

n=0
F (n,N) =

N∑
k=1

G (N + 1, k) . (3.4)

Since

N∑
n=0

F (n,N) = F (N,N) = [4N + 1] (q; q
2)2N

(q4; q4)2N

= [4N + 1]
(−q2; q2)2N (−q; q)2N (−q; q)2N

[
4N
2N

][
2N
N

]
,

by Lemma 3.1 we have

(−q; q)6N (−q2; q2)3N
N∑

n=0
F (n,N) = (−q; q)4N (−q2; q2)N

[2N + 1]
(−q; q)2N

[
4N + 1

2N

][
2N
N

]

≡ 0 (mod (1 + qN )2[2N + 1]
[
2N
N

]
).

Additionally, by Lemma 3.2, for 1 � k � N , we have

(−q; q)6N (−q2; q2)3NG(N + 1, k) =
(q; q2)N+k(q; q2)2N−k+1(−q; q)6N
(1 − q)(q2; q2)2N (q2; q2)N−k+1

(−q2; q2)N
(−q2; q2)N−k+1

≡ 0 (mod (1 + qN )2[2N + 1]
[
2N
N

]
).

Therefore, from (3.4) we deduce that

(−q; q)6N (−q2; q2)3N
N∑

n=0
F (n, 0) ≡ 0 (mod (1 + qN )2[2N + 1]

[
2N
N

]
).

Namely, the congruence (1.18) holds for n = N by noticing that

(q; q2)k
(q4; q4)k

=
[
2k
k

]
1

(−q; q)2k(−q2; q2)k
. �

4. Concluding remarks and open problems

It seems that the condition “n is an odd prime power” in Lemma 2.1 is not necessary. Namely, we have 
the following conjecture.

Conjecture 4.1. The congruence (2.1) holds for all positive odd integers n.

Pan [17, (1.4)] has given a q-analogue of Fermat’s little theorem: (qm; qm)p−1/(q; q)p−1 ≡ 1 (mod [p]) for 
any prime p and positive integer m with gcd(p, m) = 1. More general, for all positive integers m and n with 
gcd(m, n) = 1, we have

(qm; qm)n−1

(q; q)n−1
=

n−1∏
j=1

1 − qmj

1 − qj
≡ 1 (mod Φn(q)).
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We now suppose that n is a positive odd integer. Similarly to the proof of (2.1), we can show that

(qm; qm)2(n−1)/2/(q; q)2(n−1)/2 ≡ q
(m−1)(n2−1)

8 (mod Φn(q)). (4.1)

We have a generalization of Conjecture 4.1 as follows.

Conjecture 4.2. Let m, n > 1 be positive integers with n odd and gcd(m, n) = 1. Then

(qm; qm)(n−1)/2

(q; q)(n−1)/2
≡

⎧⎪⎨
⎪⎩
(m
n

)
q

(m−1)(n2−1)
16 (mod Φn(q)), if 16 | (m− 1)(n2 − 1),(m

n

)
q

(m−1)(n2−1)+8n
16 (mod Φn(q)), if 16 � (m− 1)(n2 − 1),

(4.2)

where 
(
m
n

)
is the Jacobi symbol.

Similarly as Lemma 2.1, we can prove the following result.

Theorem 4.3. Conjecture 4.2 is true for all odd prime powers n.

Proof. It is clear that (4.1) is equivalent to

(qm; qm)2(n−1)/2/(q; q)2(n−1)/2 ≡ q
(m−1)(n2−1)

8 +n (mod Φn(q)). (4.3)

Moreover, if (m − 1)(n2 − 1)/8 is odd, then (m − 1)(n2 − 1)/8 +n is even. By (4.1) and (4.3), we know that

(qm; qm)(n−1)/2

(q; q)(n−1)/2
≡

⎧⎨
⎩
±q

(m−1)(n2−1)
16 (mod Φn(q)), if 16 | (m− 1)(n2 − 1),

±q
(m−1)(n2−1)+8n

16 (mod Φn(q)), if 16 � (m− 1)(n2 − 1).
(4.4)

It remains to determine the sign of the right-hand side of (4.4). We now assume that n = pr is an odd prime 
power. Then m

p−1
2 ≡

(
m
p

)
(mod p) and, by the binomial theorem, (pr − 1)/2 = (((p − 1) + 1)r − 1)/2 ≡

(p −1)r/2 (mod p −1). Since mp−1 ≡ 1 (mod p), we conclude that m pr−1
2 ≡ m

(p−1)r
2 =

(
m
p

)r =
(
m
pr

)
=

(
m
n

)
(mod p). Therefore, taking q = 1 in (4.4) and noticing that Φpr(1) = p, we deduce that the sign ± in (4.4)
must be 

(
m
n

)
. �

For any positive odd integer n, it is easy to see that Φn(q2) = Φn(q)Φn(−q). Replacing q by q2 in (4.2)
and noticing that qn ≡ 1 (mod Φn(q)), we obtain the following conjectural congruence:

(q2m; q2m)(n−1)/2

(q2; q2)(n−1)/2
≡

(m
n

)
q

(m−1)(n2−1)
8 (mod Φn(q)),

which reduces to (2.1) when m = 2.
Let us turn back to Swisher’s work [22, Corollary 1.4]. She proves the following interesting congruence:

p−1
2∑

k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k
k∑

j=1

(
1

(2j − 1)2 − 1
16j2

)
≡ 0 (mod p).

We provide a q-analogue of this congruence as follows.
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Conjecture 4.4. Let n be a positive odd integer. Then

n−1
2∑

k=0

(−1)k[6k + 1] (q; q2)3k
(q4; q4)3k

k∑
j=1

(
q2j−1

[2j − 1]2 − q4j

[4j]2

)
≡ 0 (mod Φn(q)).

Swisher [22] has made many interesting conjectural supercongruences on generalizations of Van Hamme’s 
13 Ramanujan-type supercongruences. For instance, She [22, (L.3)] conjectured that, for any odd prime p
and positive integer r,

pr−1
2∑

k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ (−1)
(p−1)(p+5)

8 p

pr−1−1
2∑

k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k (mod p3r). (4.5)

If the supercongruence (4.5) is true, then we can easily conclude that

pr−1
2∑

k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ (−1)
(p−1)(p+5)r

8 pr (mod pr+2),

which is the n = pr and q = 1 case of our conjectural congruence (1.13) by noticing that (−1)
(p−1)(p+5)r

8 =
(−1)

(pr−1)(pr+5)
8 . That is, the congruence (1.13) coincides with Swisher’s Conjecture (L.3).

If the conjectural congruence (1.14) is true, then

pr−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ (−1)
(p−1)(p+5)r

8 pr (mod pr+2). (4.6)

Motivated by Swisher’s Conjecture (L.3) and the conjectures of Z.-W. Sun [21], we would like to raise the 
following conjecture, which is a refinement of (4.6).

Conjecture 4.5. Let p be an odd prime and r a positive integer. Then

pr−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ (−1)
(p−1)(p+5)

8 p

pr−1−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k (mod p3r).

Moreover, since the supercongruences (1.6)–(1.9) have very nice q-analogues, it is natural to ask whether 
their original π series (1.2)–(1.5) have similar q-analogues or not. This is true for (1.2)–(1.4). In fact, letting 
n → ∞, a = b = c = q, and q → q2, q3, q4 in Jackson’s 6φ5 summation (see [4, Appendix (II.20)]):

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, d

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d

; q, aq

bcd

]
= (aq; q)∞(aq/bc; q)∞(aq/bd; q)∞(aq/cd; q)∞

(aq/b; q)∞(aq/c; q)∞(aq/d; q)∞(aq/bcd; q)∞
,

where (a; q)∞ = limn→∞(a; q)n and the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1
b1, b2, . . . , br

; q, z
]

=
∞∑
k=0

(a1; q)k(a2; q)k · · · (ar+1; q)kzk

(q; q)k(b1; q)k(b2; q)k · · · (br; q)k
,

we are led to the following q-series identities:
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∞∑
k=0

(−1)kqk
2
[4k + 1] (q; q2)3k

(q2; q2)3k
= (q; q2)∞(q3; q2)∞

(q2; q2)2∞
,

∞∑
k=0

(−1)kq
3k2+k

2 [6k + 1] (q; q3)3k
(q3; q3)3k

= (q2; q3)∞(q4; q3)∞
(q3; q3)2∞

,

∞∑
k=0

(−1)kq2k2+k[8k + 1] (q; q4)3k
(q4; q4)3k

= (q3; q4)∞(q5; q4)∞
(q4; q4)2∞

, (4.7)

which are q-analogues of (1.2)–(1.4), respectively.
We have the following conjectural q-analogue of (1.5).

Conjecture 4.6. For any complex number q with |q| < 1, there holds

∞∑
k=0

(−1)kq3k2
[6k + 1] (q; q2)3k

(q4; q4)3k
= (q3; q4)∞(q5; q4)∞

(q4; q4)2∞
. (4.8)

Note that the right-sides of (4.7) and (4.8) are the same. It is easy to see that the left-hand side of (4.8)
converges uniformly on the interval [0, 1), and so

lim
q→1−

∞∑
k=0

(−1)kq3k2
[6k + 1] (q; q2)3k

(q4; q4)3k
=

∞∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k .

On the other hand, the q-Gamma function Γq(x) is defined by

Γq(x) = (q; q)∞
(qx; q)∞

(1 − q)1−x, 0 < q < 1

(see [4, p. 20]), and we have

lim
q→1−

Γq(x) = Γ(x).

It follows that

lim
q→1−

(q3; q4)∞(q5; q4)∞
(q4; q4)2∞

= lim
q→1−

1
Γq4(3

4 )Γq4(5
4 )

= 1
Γ(3

4 )Γ(5
4 )

= 2
√

2
π

.

This means that (4.8) is indeed a q-analogue of (1.5).

Remark. Conjecture 1.1 has recently been confirmed by Guo and Zudilin [10, Theorem 4.4], and Conjec-
ture 4.6 has been proved by Guo and Liu [8], Hou, Krattenthaler, and Sun [12], and Guo and Zudilin [9]. 
It was pointed out by the editor that Conjecture 4.6 can also be deduced from the following terminating 
quadratic summation of Gessel and Stanton [5, (6.8)]:

n∑
k=0

(q−n; q)k(a; q
1
2 )k(aq/c; q

1
2 )k(c/aq

1
2 ; q 1

2 )k(1 − aq
3k
2 )

(aqn+ 1
2 ; q 1

2 )k(q; q)k(c; q)k(a2q
3
2 /c; q)k(1 − a)

qnk+ k2+k
4 ak = (aq 1

2 ; q 1
2 )2n

(c; q)n(a2q
3
2 /c; q)n

by letting n → ∞, q → q4, c → q4, and a → q.



V.J.W. Guo / J. Math. Anal. Appl. 466 (2018) 749–761 761
Acknowledgments

The author thanks the anonymous referee for many valuable comments and suggestions. This work was 
partially supported by the National Natural Science Foundation of China (grant 11771175).

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] Y. Chen, X. Xie, B. He, On some congruences of certain binomial sums, Ramanujan J. 40 (2016) 237–244.
[3] S.B. Ekhad, D. Zeilberger, A WZ proof of Ramanujan’s formula for π, in: J.M. Rassias (Ed.), Geometry, Analysis, and 

Mechanics, World Scientific, Singapore, 1994, pp. 107–108.
[4] G. Gasper, M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications, 

vol. 96, Cambridge University Press, Cambridge, 2004.
[5] I. Gessel, D. Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 

(1983) 173–201.
[6] V.J.W. Guo, q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J., https://doi .org /10 .

1007 /s11139 -018 -0021 -z.
[7] V.J.W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. 

Appl. 458 (2018) 590–600.
[8] V.J.W. Guo, J.-C. Liu, q-Analogues of two Ramanujan-type formulas for 1/π, J. Difference Equ. Appl. (2018), https://

doi .org /10 .1080 /10236198 .2018 .1485669.
[9] V.J.W. Guo, W. Zudilin, Ramanujan-type formulae for 1/π: q-analogues, Integral Transforms Spec. Funct. 29 (7) (2018) 

505–513.
[10] V.J.W. Guo, W. Zudilin, A q-microscope for supercongruences, preprint, arXiv :1803 .01830 [math .NT], March 2018, 24 pp.
[11] B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J. 43 (2017) 313–326.
[12] Q.-H. Hou, C. Krattenthaler, Z.-W. Sun, On q-analogues of some series for π and π2, preprint, arXiv :1802 .01506v2

[math .CO], February 2018, 11 pp.
[13] J. Liu, H. Pan, Y. Zhang, A generalization of Morley’s congruence, Adv. Difference Equ. 2015 (2015) 254.
[14] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011) 405–418.
[15] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc. 136 (2008) 4321–4328.
[16] R. Osburn, W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 433 (2016) 706–711.
[17] H. Pan, A q-analogue of Lehmer’s congruence, Acta Arith. 128 (2007) 303–318.
[18] S. Ramanujan, Modular equations and approximations to π, Q. J. Math. Oxford Ser. (2) 45 (1914) 350–372.
[19] A. Straub, A q-analog of Ljunggren’s binomial congruence, in: 23rd International Conference on Formal Power Series and 

Algebraic Combinatorics, FPSAC 2011, in: Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. 
Comput. Sci., Nancy, 2011, pp. 897–902.

[20] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011) 2509–2535.
[21] Z.-W. Sun, Supercongruences involving Lucas sequences, preprint, arXiv :1610 .03384v7, 2016.
[22] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015) 18.
[23] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013) 133–143.
[24] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional 

Analysis, Nijmegen, 1996, in: Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 223–236.
[25] H.S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, 

Invent. Math. 108 (1992) 575–633.
[26] H.S. Wilf, D. Zeilberger, Rational function certification of multisum/integral/“q” identities, Bull. Amer. Math. Soc. (N.S.) 

27 (1992) 148–153.
[27] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009) 1848–1857.

http://refhub.elsevier.com/S0022-247X(18)30514-6/bib416E64726577733938s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib435848s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib455As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib455As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4752s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4752s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4753s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4753s1
https://doi.org/10.1007/s11139-018-0021-z
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib47756F32303138s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib47756F32303138s1
https://doi.org/10.1080/10236198.2018.1485669
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib475As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib475As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib475A32s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4865s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib484B53s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib484B53s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4C505As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4C6F6E67s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4D6F7274656E736F6E34s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib4F5As1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib50616Es1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib52616D616E756A616Es1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib537472617562s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib537472617562s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib537472617562s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib53756E34s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib53756Es1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib53776973686572s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib5461757261736F32s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib48616D6D65s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib48616D6D65s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib575A31s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib575A31s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib575A32s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib575A32s1
http://refhub.elsevier.com/S0022-247X(18)30514-6/bib5A7564696C696Es1
https://doi.org/10.1007/s11139-018-0021-z
https://doi.org/10.1080/10236198.2018.1485669

	A q-analogue of the (L.2) supercongruence of Van Hamme
	1 Introduction
	2 Proof of Theorem 1.2
	3 Proof of Theorem 1.4
	4 Concluding remarks and open problems
	Acknowledgments
	References


