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Group representations by bounded Lamperti operators in the spaces Lα(1 ≤ α < ∞)
form a wide class of representations, including representations by bounded positive 
operators and (when α �= 2) representations by isometric operators. The Dominated 
and the Pointwise Ergodic Theorems (DET and PET) for Cesàro averages for the 
bounded Lamperti representations of amenable σ-compact locally compact groups 
in Lα(1 < α < ∞) were proved by A. Tempelman in Proc. Amer. Math. Soc. 143 
(2015) 4989–5004. By using a completely different, functional-analytical method, 
developed by A. Shulman in his PhD thesis in 1988, we generalize this result to 
“weighted” averages of such representations and discuss various conditions on the 
“weights” under which the DET and the PET hold. We conclude with applications of 
the general results to the bounded Lamperti representations of groups of polynomial 
growth and of the groups Rm and Zm.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Introductory remarks

This paper is devoted to the study of the dominated and the pointwise ergodic theorems (DETs and 
PETs) for the bounded Lamperti Lα-representations of amenable σ-compact locally compact topologi-
cal groups (in short, we call them “amenable groups”). In this Subsection, we provide a short review of 
the DETs and the PETs for the representations and the actions of such groups. For a locally compact 
group, μ and ν denote its left and right Haar measures. Let (Ω, F , m) be a σ-finite measure space. For 

* Corresponding author at: 219 Oakley Dr., State College, PA 16803, USA.
E-mail address: axt12@psu.edu (A. Tempelman).

1 The views expressed in the article are those of the author and don’t necessarily reflect the position of the Wells Fargo & 
Company.
https://doi.org/10.1016/j.jmaa.2019.01.013
0022-247X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2019.01.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:axt12@psu.edu
https://doi.org/10.1016/j.jmaa.2019.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2019.01.013&domain=pdf


24 A. Tempelman, A. Shulman / J. Math. Anal. Appl. 474 (2019) 23–58
the wide class of bounded Lamperti operator representations T : x �→ Tx of X in Lα(Ω, F , m), and for all 
f ∈ Lα(Ω, F , m) with arbitrary fixed α > 1, we find conditions on a sequence {κn} of probability mea-
sures (“weights”) on X which guarantee the validity of the dominated inequalities involving the majorants 
f̂(ω) = supn≥1 | 

∫
X
Txf(ω)κn(dx)|, as well as conditions for m-almost everywhere convergence, as n → ∞, 

of averages f̃(ω) :=
∫
X
Txf(ω)κn(dx) to a T -invariant function f̂ ∈ Lα(Ω, F , m).

When κn are uniform distributions on measurable sets An of finite μ-measure, our averages become the 
Cesàro type averages: f̃n(ω) = 1

μ(An)
∫
An

Txf(ω)μ(dx), and the conditions of convergence of these averages 
are stated in terms of the sequence {An} (see also [47]).

An important class of the bounded Lamperti representations consists of the bounded representations by 
positive operators (including those induced by measure preserving actions τx of X on (Ω, F , m): the operators 
Tx are defined as Txf(ω) := f(τxω)) – see Proposition 3.1 in [28]. Also, when α �= 2, the representations by 
isometric operators in Lα are Lamperti (see [31]).

First we turn to the ergodic theorems for the representations by measure preserving transformations. 
Wiener [50] was the first to generalize the Birkhoff–Khinchin PET for the Cesàro averages over increasing 
balls in the groups Rm, m ≥ 2; he also proved the DET for these averages; this result was generalized to 
a more general class of Cesàro averages by Pitt [40]. Calderon [10] extended the DET and the PET for 
the measure preserving actions to a wide class of “ergodic” groups for averages over some subsequence 
of each family {At, t > 0} of symmetric compact neighborhoods of the identity satisfying the conditions 
AtAs ⊂ At+s for all s, t > 0 and supt>0

μ(A2t)
μ(At) < ∞; further generalizations were given by Cotlar [14]. 

Greenleaf and Emerson [23] proved the DET and the PET for the Cesàro averages over sequences of 
“semidirect rectangles” in connected solvable groups. Tempelman [44,45] and Emerson [20] proved the 
PET for functions f ∈ Lα(Ω, F , m), α ≥ 1, with averaging over increasing sequences of sets satisfying the 
“regularity” condition

sup
n

μ(A−1
n ·An)
μ(An) < ∞ (1.1)

and the Følner condition

lim
n→∞

μ(xAn	An)
An

= 0, x ∈ X; (1.2)

see also [46] and other references therein. In [41] Shulman replaced the monotonicity condition and condi-
tion (1.1) by the condition

sup
n

μ(Ã−1
n ·An)
μ(An) < ∞ (1.3)

where Ãn = ∪n
k=1Ak. In [48] Tempelman and Shulman extended the results of [44], [45] to some classes of 

non-amenable groups and symmetric homogeneous spaces (see Example 9.3, Ch. 6 in [46] for special cases).
It is well known that Følner sequences exist in every amenable σ-compact locally compact group X [22]. 

Tessera [49] and Breuillard [9] have constructed regular Følner sequences in the locally compact groups of 
polynomial growth. But there are solvable groups that do not possess regular sequences (see [33,34]). On 
the other hand, even in non-amenable groups there are always sequences of probability measures {κn} such 
that the averages 

∫
X
Txf(ω)κn(dx) converge m-a.e. to an invariant mean for any Tx induced by a measure 

preserving action on a σ-finite measure space (Ω, F , m) and f ∈ Lα(Ω, F , m), 1 ≤ α < ∞ (see [46], Theorem 
6.6.1).

In 1988 Shulman [41,42] extended the mentioned results due to Emerson and Tempelman to general 
σ-compact amenable locally compact groups and to functions f ∈ Lα(Ω, F , m)(1 < α < ∞) by replacing 
the regularity property (1.3) by the weaker condition
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sup
n

μ(Ã−1
n−1 ·An)
μ(An) < ∞. (1.4)

assuming that f ∈ Lα(Ω, F , m), 1 < α < ∞ (see also [46]). Sequences {An} satisfying (1.4) were later 
called “Shulman sequences” and “tempered sequences” by Lindenstrauss in [33] and [34], resp.; we also use 
the latter term. In fact, Shulman proved the Maximal Inequality and the PET for a more general class of 
sequences: “weakly tempered” sequences of sets defined in §2.

In 1999, Lindenstrauss [33] has proved that tempered Følner sequences of sets exist in all countable 
amenable groups and extended Shulman’s PET for Cesàro averages to all functions f ∈ L1(Ω, F , m) by 
using a totally different approach; in [34] he extended these results to arbitrary σ-compact locally compact 
amenable groups.

The mentioned results are discussed in an excellent review by Nevo [39].
In this paper we generalize the results due to Shulman [41] in two directions: we prove the DET and 

the PET with averaging by ergodic weakly tempered sequences of probability measures as “weights” for 
the bounded Lamperti representations in Lα(Ω, F , m) when α is fixed and 1 < α < ∞. It is known (see 
Chacon [11] and Ionescu Tulcea [26]) that the PET may fail for some positive invertible isometries in L1(Ω); 
therefore our restriction on α is quite natural. Also, as demonstrated by counterexamples due to Feder [21], 
Assani [4,5], and Cohen [12] it is quite natural to focus our study on the Lamperti representations.

Let us mention the main results related to DETs and PETs for operators and representations by operators 
in the spaces Lα.

In 1958, Dunford and Schwartz proved the PET for L1 − L∞ contractions (see [18], Ch. VIII). The 
first PET for operators acting in one space Lα(1 < α < ∞) was obtained by Ionescu Tulcea [25] who 
proved it for the positive invertible isometries. This was extended by Akcoglu [1] to the positive contrac-
tions in Lα(1 < α < ∞); Akcoglu’s result stimulated the study of the pointwise ergodic theorems for the 
power-bounded positive operators in Lα and for the bounded representations by positive operators in Lα. 
The multi-parameter version of Akcoglu’s theorem was obtained by McGrath [38]. Martin-Reyes and de la 
Torre [36,37] proved the DET and the PET for the powers of invertible positive operators with uniformly 
bounded averages. Duncan [17] discovered a link between the maximal inequality for a sequence of uniformly 
bounded operators in Lα, α > 1, and a simpler inequality for the sequence of the conjugate operators; us-
ing this result he proved the pointwise convergence for sequences of a fairly large class of operators. Kan 
[29] proved the DET and the PET for the powers of bounded operators (not necessarily invertible) with 
Lamperti conjugates (all invertible bounded Lamperti operators possess this property). Unfortunately, it is 
still unknown whether the DET and the PET are valid for arbitrary power-bounded positive operators (see 
[35]). Asmar, Berkson and Gillespie [2,3] have proved the DET and the PET for Lamperti representations 
with convolution powers of a probability measure as “weights” on the commutative groups. The first DET 
and PET for the Lamperti representations of general amenable groups in Lα(Ω, F , m), α > 1, are due 
to Lin and Wittmann [32] who considered the convolution powers of a symmetric probability measure as 
“weights”. In [13] Cohen, Cuny and Lin proved the DET and the PET for Lamperti representations with 
convolution powers for a wide class of the non-symmetric probability measures; see also [27] for the case of 
representations by measure preserving transformations.

The DET and the PET for Cesàro averages over tempered sequences of sets for bounded Lamperti 
representations of amenable groups in Lα(1 < α < ∞) were proved by Tempelman [47].

In this paper, by using a completely different method, we generalize the results of [47] to “weighted” 
averages of the bounded Lamperti representations. We discuss various conditions on the “weights” under 
which these theorems hold.

In the rest of this section we remind the reader the definitions and properties of some notions considered 
in this paper. In §2, we introduce the notions of regular, tempered, and ergodic sequences of “weights”. In 
§3 and §4, we prove the DET and the PET with such “weights” for all bounded Lamperti representations of 
amenable groups in Lα, α > 1. Some applications to bounded Lamperti representations of groups of polyno-
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mial growth and of groups Rm and Zm are considered in §5. In §6, the Appendix, we discuss some properties 
of Lamperti representations that are used in the main part of the paper; also, we include counterexamples 
emphasizing the difference between the notions introduced in §2.

1.2. Notation and abbreviations

We use the following notation: X is an amenable non-compact σ-compact locally compact group; B is the 
Borel σ-algebra on X; μ is the left Haar measure on B; A−1B := {z : z = a−1b, a ∈ A, b ∈ B}, A, B ⊂ X; 
e denotes the unit element in X.

(Ω, F , m) is a σ-finite measure space; for a fixed α, 1 ≤ α ≤ ∞, Lα(Ω, F , m) (or simply Lα(Ω)) is the 
Lebesgue space with the norm ||f ||α = (

∫
Ω |f |αdm) 1

α and Lα
+(Ω, F , m) (or Lα

+(Ω)) denotes the set of all 
non-negative functions in this space; 1Λ is the indicator of the set Λ ⊆ Ω; we write 1 instead of 1Ω.

Operator in a Banach space B = bounded linear operator in B. If T is an operator in B, T ∗ denotes the 
operator conjugate to T in B∗; if B and B′ are dual spaces, T ′ denotes the conjugate to T in B′; if B′ = B∗

we write T ∗ instead of T ′. L-operator=Lamperti type operator (see Subsect. 6.2).
Representation (of a locally compact group) = bounded measurable representation (see Subsects. 1.4

and 1.5).
N, Z and R are the sets of all positive integers, all integers, and all real numbers, respectively; R+ = [0, ∞).
Two real numbers α and β are said to be mutually conjugate if 1 < α < ∞, 1 < β < ∞ and α−1+β−1 = 1, 

or if one of them equals 1 and the other one equals ∞.
For a complex number z and for a b ∈ R+, we always consider the principal value of zb.
|F | denotes the cardinality of the set F ; if a set F is contained in a specified space Y then F c = Y \ F .
esup = essential supremum.
a.e. = almost everywhere, a.a. = almost all.

1.3. Densities

A (probability) density ϕ is a non-negative measurable function on X such that 
∫
X
ϕdμ = 1. The 

Radon–Nikodym derivative of an absolutely continuous probability measure with respect to the left Haar 
measure is a density. We denote by s(ϕ) the support of ϕ.

1.4. Group representations and actions

Let (Ω, F , m) be a σ-finite measure space.
A (bounded)operator T in a Lebesgue space Lα(Ω, F , m), 1 ≤ α < ∞, is called a Lamperti operator

if for f, g ∈ Lα, f · g = 0 m-a.e. implies Tf · Tg = 0 m-a.e. To any Lamperti operator T in Lα there 
corresponds its modulus |T |: a positive linear operator in Lα such that |T ||f | = |Tf | if f ∈ Lα; |T | is a 
Lamperti operator [28]. Some useful properties of Lamperti operators are summarized in Subsection 6.1 in 
the Appendix.

A mapping T : x �→ Tx on X is said to be a left (resp. right) Lα-representation of X if, for each 
x ∈ X, Tx is a bounded operator in Lα(Ω, F , m), Te is the identity operator, Txy = TxTy, x, y ∈ X (resp. 
Txy = TyTx, x, y ∈ X), and ||T ||α := supx∈X ||Tx||α < ∞. For the Tx-image of f ∈ Lα we use the notation 
Txf if T is a left representation and fTx if T is a right one. It is clear that if T : x �→ Tx is a left (right) 
representation then T ∗ : x �→ T ∗

x is a right (resp. left) one. We say that T is a Lamperti (resp. positive, 
resp. isometric) if it is a Lα-representation and all Tx have the corresponding property. If T : x �→ Tx is a 
Lamperti (resp. positive) representation in Lα(Ω), then the conjugate Lβ-representation T ∗ : x �→ T ∗

x has 
the corresponding property. When 1 ≤ α ≤ ∞, each positive Lα-representation is a Lamperti one (see [28]), 
and when α �= 2, each isometric Lα-representation is also Lamperti (see [31], [28]).

If T : x �→ Tx is a Lamperti Lα-representation then its modulus |T | : x �→ |Tx| is also a Lamperti 
Lα-representation.
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We say that representations T (α′) in Lα′(Ω, F , m) and T (α′′) in Lα′′(Ω, F , m) are compatible if T (α′)
x f =

T
(α′′)
x f for all f ∈ Lα′(Ω, F , m) ∩ Lα′′(Ω, F , m).
An L1 − L∞-representation of X is a family of pairwise compatible Lα-representations {T (α) : X �→

Lα, 1 ≤ α ≤ ∞}; by the Riesz convexity theorem, this implies ||T || := sup1≤α≤∞ ||T (α)||α < ∞. An 
L1 − L∞-representation is said to be positive, isometric or Lamperti if each component T (α) possesses the 
corresponding property.

We consider also Lamperti type representations (in short L-representations) by operators acting in some 
Banach spaces (see Subsect. 6.2).

We say that a point transformation σ of (Ω, F , m) is measurable if for any Λ ∈ F we have σ−1Λ ∈ F ; 
in this case we denote: mσ−1(Λ) := m(σ−1Λ), Λ ∈ F ; we call σ bounded (by a constant K < ∞) if 
m(σ−1Λ) ≤ Km(Λ), Λ ∈ B or, equivalently, if D(ω) := d(mσ−1)

dm (ω) ≤ K; we then denote: ||σ|| := ||D||∞.
A mapping τ : x �→ τx, x ∈ X is said to be a left (resp. right) action of X in (Ω, F , m) if all τx, x ∈ X

are measurable point transformations of Ω and τxτy = τxy (resp. τxτy = τyx); we denote the τx-image of 
ω ∈ Ω by τxω when τ is a left action and by ωτx when τ is a right one. An action τ in (Ω, F , m) is bounded
if ||τ || := sup ||τx|| < ∞, and τ is said to be measure preserving if m(τ−1

x Λ) = m(Λ), Λ ∈ F , x ∈ X (in this 
case ||τx|| = 1). With any bounded left action τ = {τx, x ∈ X} of X for each α, 1 ≤ α ≤ ∞, we associate 
a positive right Lamperti Lα representation T defined by x �→ Tx : fTx(ω) = f(τxω) (||T ||α = ||τ || 1

α ) 
(similarly, a bounded right action induces a left positive Lamperti Lα-representation T ); if τ is measure 
preserving then T is isometric.

1.5. Measurability and integration of representations and actions

We say that a representation T in a space Lα = Lα(Ω, F , m)(1 ≤ p < ∞) is measurable if for each f ∈ Lα

the function (ω, x) �→ Txf(ω) is B ×F-measurable; let us note that, for each x ∈ X, ‖Txf‖α ≤ ||T ||α||f ||α, 
and hence the function x �→ Txf(ω) is integrable m-a.e. with respect to each finite Borel measure κ on X.

An action τ is measurable if the associated representation x �→ f(τx·) in each Lα, 1 ≤ α ≤ ∞, is 
measurable; this is equivalent to the following property: {(ω, x) : τxω ∈ Λ} ∈ F × B for each set Λ ∈ F .

In this paper, along with a given Lamperti representation, we consider its conjugate representation and 
its modulus. If x �→ Tx is a measurable Lamperti representation in Lα(1 ≤ α ≤ ∞), then x �→ |Tx| is 
a measurable positive Lamperti representation. This follows from the construction of the operators |Tx|
(see [28]).

In Subsection 6.1 we prove (see Proposition 6.6) that measurability of a Lamperti representation T implies 
measurability of the conjugate representation T ∗.

From now on we assume that all representations under consideration are measurable and hence have 
measurable conjugates.

2. Tempered, regular and ergodic sequences of densities and sets

In this section we consider various classes of sequences of probability measures, densities and sets. We 
will use them as “weights” in the DET and in the PET we will prove in §3 and in §4. We start with the class 
based on the strongest (and most transparent) property and then turn to two wider classes of sequences 
possessing weaker properties.

2.1. Tempered and regular sequences of densities

Let Φ = {ϕn} be a sequence of densities on the group X. For each n ≥ 2 we denote: Sn := s(ϕn), 
S̃n := ∪ Si;
1≤i≤n
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ψn(x) := sup{ϕn(ux)|u ∈ S̃n−1} = sup{ϕn(z)|z ∈ S̃n−1x}. (2.1)

It is clear that s(ψn) = S̃−1
n−1Sn. In the sequel we assume that these sets are measurable. Moreover, we 

assume that the functions ψn are measurable, too (of course, this is the case when all Sn are compact the 
densities ϕn are continuous on their supports).

Definition 2.1. The quantity t(Φ) := supn≥2
∫
ψn(x)μ(dx) is called the tempering index of the sequence Φ. 

If t(Φ) < ∞ we say that the sequence Φ is tempered.

If we replace S̃n−1 with S̃n in the above definition, we come to the notion of regular sequences of functions 
and we consider the regularity index r(Φ) instead of t(Φ) (certainly, t(Φ) ≤ r(Φ) so each regular sequence 
is tempered). The notions of a tempered sequence and of a regular sequence of densities were introduced 
in [41].

It is easy to see that if Φ is a sequence of densities then t(Φ) ≥ 1 and r(Φ) ≥ 1.
The definitions of regular and tempered sequences imply the following statement.

Proposition 2.1. Let Φ = {ϕn} and Θ = {θn}. If there is a constant C such that ϕn(x) ≤ Cθn(x), 
x ∈ X,n ∈ N, then t(Φ) ≤ Ct(Θ) and r(Φ) ≤ Cr(Θ).

For any non-negative μ-measurable function ψ we denote: G(ψ) := ∪x∈s(ψ){(x, y) : 0 < y ≤ ψ(x)} ⊂
s(ψ) × R, the subgraph of ψ; it is clear that G(ψ) = ∪x∈s(ψ)Gx(ψ) where Gx(ψ) := ({x} × [0, ψ(x)]. If 
Φ = {ϕn} is a sequence of densities, we denote: Gn := G(ϕn). Let μ̃ be the left Haar measure in X × R, 
i.e. μ̃ = μ × l where l is the Lebesgue measure in R. The set G(ψ) is μ̃-measurable and μ̃(G(ψ)) =

∫
ψdμ. 

For each A ⊂ X × R, x ∈ X we put xA = (x, 0)A.
In Remark 2.1 we consider tempered sequences; changes needed for regular sequences are obvious.

Remark 2.1. Let ψn be the functions defined by (2.1). This formula implies: Gx(ψn) = ∪u∈S̃n−1
Gx(ϕn(ux)) =

∪u∈S̃n−1
u−1Gx(ϕn). Therefore G(ψn) = ∪u∈S̃n−1

u−1Gn = S̃−1
n−1Gn. Hence

t(Φ) = sup
n

μ̃(S̃−1
n−1Gn); (2.2)

similarly

r(Φ) = sup
n

μ̃(S̃−1
n Gn). (2.3)

The simple relation between sequences of the subgraphs of non-negative measurable functions and the 
indexes t and r of the sequences of the corresponding densities is covered by the following Remark.

Remark 2.2. If ϕn(x) := 1∫
gndμ

gn(x) where gn are non-negative measurable functions then

t(Φ) = sup
n

1∫
gndμ

μ̃(S̃−1
n−1G(gn)); r(Φ) = sup

n

1∫
gndμ

μ̃(S̃−1
n G(gn)). (2.4)

Choose 0 < an ≤ supx ϕn(x) and denote Mn,an
:= {x : ϕn(x) ≥ an}. It is clear that Mn,an

× [0, an] ⊂ Gn; 
therefore

anμ(S̃−1
n−1Mn,an

) ≤ t(Φ), n ∈ N; (2.5)

hence ϕn(xn)μ(S̃−1
n−1xn) ≤ t(Φ), n ∈ N, xn ∈ Mn,an

. Thus if Φ is tempered then the right Haar measure 
ν(Sn) < ∞, n ∈ N. The obvious relation Gn ⊂ Sn × [0, supx ϕn(x)] implies
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t(Φ) ≤ sup
n≥2

[sup
x

ϕn(x)μ(S̃−1
n−1Sn)], n ∈ N. (2.6)

Let {An} be a sequence of integrable sets; Ãn :=
n
∪
i=1

Ai and gn(x) := 1An
(x); then μ̃(S̃−1

n−1G(gn)) =
μ(Ã−1

n−1An) and μ̃(S̃−1
n G(gn)) = μ(Ã−1

n−1An); therefore Remark 2.2 implies the following statement.

Proposition 2.2. Let A = {An} be a sequence of measurable sets with 0 < μ(An) < ∞ and let the sets 
Ã−1

n−1An and Ã−1
n An be measurable. Put ϕA

n (x) := 1
μ(An)1An

(x), n = 1, 2, .... Then the functions ψn, 

defined by (2.1), are measurable and

t(ΦA) = sup
n≥2

μ(Ã−1
n−1An)

μ(An) , r(ΦA) = sup
n≥2

μ(Ã−1
n An)

μ(An) .

Definition 2.2. We say that a sequence A is tempered (resp. regular) if all sets An, Ã
−1
n−1An (resp. A−1

n An) 
are measurable, μ(An) > 0 for all n ≥ 2, and t(A) := t(ΦA) < ∞ (resp. r(A) := r(ΦA) < ∞).

Proposition 2.3. Let H be a normal subgroup of a connected locally compact group F , let K = F/H be 
compact, μK(K) = 1, let ı be the natural homomorphism F �→ H. Consider a sequence of densities Λ = {λn}
on H and let Φ = {ϕn = λn ◦ ı}. Then t(Φ) = t(K) and r(Φ) = r(K).

Proof. It is easy to check that ϕn are densities and it is clear that S̃Λ
n−1 = ı(SΦ

n−1) and GΦ
ı(h) = GΛ

h , h ∈ H; 
hence, by (2.2), t(Φ) = μ̃F ((SΦ

n−1)−1GΦ
n ) = μ̃H(S̃Λ

n−1)−1GΛ
n) = t(K); the proof of the second relation is 

quite similar. �
Relation (2.6) implies the following statement.

Proposition 2.4. Let Φ = {ϕn} be a sequence of bounded densities with integrable supports Sn. If 
supx∈X ϕn(x) ≤ c

μ(Sn) < ∞ for all n ∈ N and the sequence S = {Sn} is tempered (resp. regular) then 
Φ is tempered (resp. regular); t(Φ) ≤ c t(S) (resp. r(Φ) ≤ c r(S)).

Remark 2.3. Let {An} and {Bn} be sequences of integrable sets, An ⊂ Bn and let Bn be tempered (resp. 
regular); if s := supn

μ(Bn)
μ(An) < ∞ then {An} is tempered (resp. regular), too and t({An}) ≤ s t({Bn}) (resp. 

r({An}) ≤ s r({Bn}).

Remark 2.4. Let Φ = {ϕn} be a sequence of densities with integrable supports Sn on X. Remark 2.1 implies 
that if there is a sequence of positive numbers {cn} such that {G(cnϕn)} = {(e, cn)G(ϕn)} is a tempered 
(resp. regular) sequence of sets in the group X ×R then the sequence {ϕn} is tempered (resp. regular) and 
t(Φ) ≤ t({G(cnϕn)}) (resp. r(Φ) ≤ r({G(cnϕn)}).

2.2. Weakly tempered sequences of probability measures and densities

Let K = {κn} be a sequence of probability measures, k ∈ N. We often write 
∫
Xi

instead of 
∫
X

in order 
to emphasize that the integration is with respect to the variable xi.

Definition 2.3. We define the weakly tempering index of order k of the sequence K as

τk(K) := sup
nk:nk<∞

∫
Xk

max
nk−1:nk−1<nk

∫
Xk−1

... max
n2:n2<n3

∫
X2

max
n1:n1<n2

∫
X1

×

κnk
(x1x2 . . . xk−1dxk)κk−1(x1x2 . . . xk−2dxk−1)... κ2(x1dx2)κ1(dx1), (2.7)
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We say that the sequence K is weakly tempered if τk(K) < ∞.

This definition is rather formal. We provide an explicit step by step definition. Let A2, ..., Ak ∈ B, 
x1, ..., xk−1 ∈ X. Of course, for each fixed A2, ..., Ak the function

(x1, ..., xk−1) �→ κnk
(x1x2 . . . xk−1Ak)κnk−1(x1x2 . . . xk−2Ak−1)...κn2(x1A2)

is bounded and measurable, hence integrable with respect to every probability measure.

M (2)
n2

(A2, x2A3, x2x3A4, ...., x2...xk−1Ak) :=

max
nn1 :n1<n2

∫
X

κnk
(x1x2 . . . xk−1Ak)κnk−1(x1x2 . . . xk−2Ak−1)...κn2(x1A2)κn1(dx1).

It is easy to verify that, for each fixed x1, ..., xk−1, M (2)
n2 is a finite measure with respect to each set A2, ..., Ak. 

Define:

M (3)
n3

(A3, x3A4, ...., x3...xk−1Ak) :=

max
n2:n2<n3

∫
X

M (2)
n2

(dx2, x2A3, x2x3A4, ...., x2...xk−1Ak).

This is also a finite measure with respect to each set A3, ..., Ak. For each i, 4 ≤ i ≤ k − 1 we consider the 
measure

M (i+1)
ni+1

(Ai+1, xi+1Ai+2, ...., xi+1...xk−1Ak) :=

max
ni:ni<ni+1

∫
X

M (i)
ni

(dxi, xiAi+1, xixi+1Ai+2, ...., xi...xk−1Ak),

and at last

M (k)
nk

(Ak) := max
nk−1:nk−1<nk

∫
X

M (k−1)
nk−1

(dxk−1, xk−1Ak).

So the exact definition of the weakly tempering index of order k is

τk(K) := sup
nk:nk<∞

∫
X

M (k)
nk

(dxk).

The definition (2.7) can be written shorter by introducing the operations F i
ni+1

= supni:ni<ni+1

∫
Xi

:

τk(K) :=
k∏

i=1
F i
ni+1

k∏
j=1

κj(x1x2 . . . xj−1dxj) (2.8)

where nk+1 = ∞, x0 = e.
If all probability measures κn are absolutely continuous (with respect to the Haar measure μ), we consider 

the densities ϕn := dκn

dμ and denote Φ := {ϕn}. It is natural to define: τk(Φ) := τk(K). For the sake of 
references we specify the definition of τk(Φ).
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Definition 2.4. Let Φ be sequence of densities. The weakly tempering index of Φ of order k ≥ 2

τk(Φ) := sup
nk<∞

∫
X

μ(dxk) max
nk−1:nk−1<nk

∫
X

μ(dxk−1) . . . max
n2:n2<n3

∫
X

μ(dx2)×

max
n1:n1<n2

∫
X

μ(dx1)ϕn1(x1)ϕn2(x1x2) . . . ϕnk
(x1x2 . . . xk),

or, in short, considering (for a fixed n) operations f �→ maxs<n

∫
X
μ(dx)f(x) defined in the obvious way on 

measurable positive functions on X

τk(Φ) :=
k∏

i=1
[ sup
ni:ni<ni+1

∫
X

μ(dxi)]
k∏

j=1
ϕnj

(x1x2 . . . xj) (2.9)

where nk+1 = ∞. If τk(Φ) < ∞ we say that the sequence Φ is weakly tempered of order k.
If ϕn(x) = 1

μ(An)1An
(x), n ∈ N, is a sequence of densities on X, weakly tempered of order k, we say also 

that {An} has this property.

Remark 2.5. τ2(Φ) = supn2<∞
∫
X

maxn1:n1<n2 ϕ̃n2 ∗ϕn1(x)ν(dx) where ϕ̃n2(x) = ϕn2(x−1), ϕ̃n2 ∗ϕn1(x) =∫
X
ϕ̃n2(xy−1)ϕn1(y)μ(dy), the convolution of ϕ̃n2 and ϕn1 , and ν(A) = μ(A−1), A ∈ B (the right Haar 

measure on X). This remark simplifies the estimation of τ2(Φ) when the above convolutions are known (see, 
e.g., Remark 5.1).

Proposition 2.5. Any sequence K which is weakly tempered of order k is also weakly tempered of every lower 
order. More precisely,

τk(K) ≥ τk−1(K), k ≥ 2 and ρk(K) ≥ ρk−1(K), k ≥ 2,

hence ρk(K) ≥ τk(K) ≥ τ1(K) = 1.

Proof. We consider here the weakly tempering indexes; the proof for weakly regular sequences is quite 
similar. Let us note that, by the Fubini theorem,

F k
∞F k−1

nk
= sup

nk<∞

∫
Xk

max
nk−1:nk−1<nk

∫
Xk−1

≥

sup
nk<∞

max
nk−1:nk−1<nk

∫
Xk

∫
Xk−1

= sup
nk−1<∞

∫
Xk−1

∫
Xk

= F k−1
∞

∫
Xk

. (2.10)

Therefore, by (2.8)

τk(K) = F k
∞F k−1

nk

1∏
i=k−2

F i
ni+1

1∏
j=k

κj(x1x2 . . . xj−1dxj) ≥

F k−1
∞

∫
Xk

1∏
i=k−2

F i
ni+1

1∏
j=k

κj(x1x2 . . . xj−1dxj).
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Reasoning as in (2.10) we obtain: for each 1 ≤ i ≤ k − 2
∫
Xk

F i
ni+1

≥ F i
ni+1

∫
Xk

.

Applying this relation to i = k − 2, ..., 1 consecutively we obtain:

τk(K) ≥ F k−1
∞

1∏
i=k−2

F i
ni+1

∫
Xk

κk(x1x2 . . . xj−1dxk)
1∏

j=k−1

κj(x1x2 . . . xj−1dxj) =

F k−1
∞

1∏
i=k−2

F i
ni+1

1∏
j=k−1

κj(x1x2 . . . xj−1dxj) = τk−1(K). �

Proposition 2.6. τk(Φ) ≤ [t(Φ)]k for all k ∈ N; hence a tempered sequence of densities is weakly tempered of 
any order k.

Proof. Let k ≥ 2. The definition of ψk implies

ϕk(ux)ϕl(u) ≤ ψk(x)ϕl(u) for all x, u ∈ X, l < k. (2.11)

Therefore, for any increasing set of positive integers {ni, 1 ≤ i ≤ k}

k∏
i=1

ϕni
(x1 . . . xi) = ϕnk

(x1x2 . . . xk)ϕnk−1(x1x . . . xk−1)
k−2∏
i=1

ϕni
(x1x2 . . . xi) ≤

ψnk
(xk)

k−1∏
i=1

ϕni
(x1x2 . . . xi)) ≤ ... ≤

k∏
i=1

ψni
(xi).

Hence

τk(Φ) ≤ sup
nk

∫
X

μ(dxk)ψnk
(xk) max

nk−1<nk

∫
X

μ(dxk−1)ψnk−1(xk−1) . . .

max
n2<n3

∫
X

μ(dx2)ψn2(x2) max
n1<n2

∫
X

μ(dx1)ψn1(x1) ≤ [t(Φ)]k. �

Remark 2.6. If Φ = {ϕn} and Θ = {θn} are sequences of densities, ϕn ≤ Cψn, n ∈ N, with some constant 
C and Θ is weakly tempered then τk(Φ) ≤ Ckτk(Θ), so Φ is weakly tempered.

2.3. Ergodic and Følner sequences

Definition 2.5. We say that a sequence K = {κn} is (left) ergodic if for each x ∈ X the total variation 
var
A∈B

(κn(xA) − κn(A)) → 0 as n → ∞.

In the case when the measures νn posses densities ϕn the definition can be rewritten as follows.

Definition 2.6. A sequence of densities Φ = {ϕn} is said to be (left) ergodic if

lim
n→∞

∫
X

|ϕn(xy) − ϕn(y)|μ(dy) = 0, x ∈ X.
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If {An} is a sequence of μ-integrable sets in X, ϕn = 1
μ(An)1An

then ergodicity of {ϕn} is equivalent to 
the Følner property of the sequence {An}:

lim
n→∞

μ(An	xAn)
μ(An) = 0, x ∈ X. (2.12)

The next statement has been proved in [33,34].

Proposition 2.7. Each amenable σ-compact locally compact group X possesses Følner tempered sequences of 
compact sets.

Remark 2.7. It is clear that ergodicity of {ϕn} coincides with the following property of the subgraphs: 
limn→∞ μ̃(Gn	xGn) = 0, x ∈ X. Therefore, if for some positive sequence {cn} the sequence of subgraphs 
{G(cnϕn)} = {(e, cn)G(ϕn)} is a Følner sequence in the group X × R then the sequence {ϕn} is ergodic.

Remark 2.8. If Φ = {ϕn}, ϕn = ψn·χn, where {ψn} and {χn} are ergodic sequences and supn∈N ||ψn||∞ < ∞, 
supn∈N ||χn||∞ < ∞, then Φ is ergodic too.

§5 contains examples of sequences of sets, densities and measures possessing properties considered above 
(see also §7 in [47]), and in §6.3 we provide counterexamples emphasizing the distinction between these 
properties.

3. Dominated ergodic theorem

As before, X is an amenable σ-compact locally compact group; μ and ν are its left and right Haar 
measures.

3.1. Some Lamperti type representations in the “space–time” Banach spaces L̃α,γ

3.1.1. The spaces L̃α,γ and the representations T̃
We fix some mutually conjugate numbers α, β ∈ [1, ∞]. We denote Lγ := Lγ(X, B, ν), 1 ≤ γ ≤ ∞.
T is a right Lamperti representation of X in Lα(Ω, F , m), 1 ≤ α < ∞, or a right L-representation in 

L∞ (see Subsect. 6.2), S is the conjugate left Lamperti representation in Lβ(Ω, F , m) (see Proposition 6.2; 
for the case α = ∞ see Subsect. 6.2). For simplicity, we temporary assume that these representations 
are positive (we can arrive to the general case by considering the modulus |T | of the representation T ). 
We consider the positive linear right representation y �→ Ry and the left representation y �→ R′

y, in the 
linear space of all B-measurable functions M(X, B) where Ryf(x) := f(xy−1), R′

yf(x) := R−1
y f(x) =

Ry−1f(x) = f(xy), f ∈ M(X, B); it is clear that the restrictions of the operators Ry and R′
y to each 

space Lγ , 1 ≤ γ ≤ ∞, are isometries in this space. Let Ω̃ := Ω × X, F̃ := F × B, m̃ := m × ν. Let 
us consider the linear spaces L̃α,γ(Ω̃, F̃ , m̃) of all F̃-measurable functions f̃(ω, x) with the finite norm 
||f̃ ||L̃α,γ := ||||f̃ ||Lα(Ω)||Lγ , 1 ≤ γ ≤ ∞. Lemma 16(b) and Theorem 17 in [18], Ch. III, §11 imply that 
there is a natural isomorphism between the linear normed space L̃α,γ(Ω̃, F̃ , m̃) and the Banach space 
Lγ(X, B, ν; B) of B-valued functions where B := Lα(Ω, F , m); hence our space L̃α,γ(Ω̃, F̃ , m̃) is a Banach 
space. Note also that if f̃ ∈ L̃α,γ(Ω̃, F̃ , m̃) then f̃(·, x) ∈ Lα(Ω, F , m) for m-a.e. x ∈ X, and f̃(ω, ·) ∈ Lγ for 
m-a.e. ω in Ω. If f̃ ∈ L̃α,γ(Ω̃, F̃ , m̃) we define 

(
T̃yf̃

)
(ω, x) := TyRy f̃(ω, x) = RyTy f̃(ω, x) = Ty f̃(ω, xy−1). 

It is clear that T̃y is a linear operator in L̃α,γ(Ω̃, F̃ , m̃) and ||T̃y||L̃α,γ = ||Ty||Lα(Ω). If Ty = hyΨy is the 
canonical representation Ty, then T̃y = hyΨ̃y where Ψ̃y = ΨyRy; hence T̃y is a L-type operator. Of course, 
if f̃ ∈ Lα,γ , the function y �→ f̃ T̃y is measurable and bounded, hence integrable with respect to every 
probability measure on B.
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For each y ∈ X by isometry of Ry as an operator in Lα, 1 ≤ α < ∞, the linear isometric operator 
R′

y := R−1
y = Ry−1 acting in Lβ is the conjugate with respect to the operator Ry in Lβ(X, μ). The spaces 

L∞ and L1 also form a dual pair with respect to the bounded bilinear functional 〈f, g〉 :=
∫
Rm fḡν(dx), and 

〈Ryf, g〉 :=
∫
Rm f(xy−1)g(x)ν(dx) =

∫
Rm f(x)g(xy)ν(dx). Therefore R′

y = R−1
y = Ry−1 is the conjugate to 

Ry for this dual pair too (R′
y is the restriction of the conjugate operator in (L∞)′ to the invariant subspace 

L1 - see also Subsect. 6.2).
If (α, β) and (γ, δ) are pairs of mutually conjugate numbers, 1 ≤ α, β, γ, δ ≤ ∞, we also consider the du-

ality relation between Lα,γ and Lβ,δ specified by the bilinear functional 〈f̃ , ̃g〉 :=
∫
Ω̃[f̃(ω, x)g̃(ω, x)]m̃(dωdx)

where f̃ ∈ L̃α,γ(Ω̃, F̃ , m̃), g ∈ L̃β,δ(Ω̃, F̃ , m̃); this functional is bounded since the Hölder inequality implies 
that

〈f̃ , g̃〉 ≤ ||f̃ ||L̃α,γ ||g||L̃β,δ . (3.1)

Since

〈T̃y f̃ , g̃〉 = 〈TyRy f̃ , g̃〉 =
∫
Ω̃

TyRyf̃(ω, x) · g̃(ω, x)m̃(dωdx) =

∫
Ω̃

Ry f̃(ω, x) · g̃(ω, x)T ′
ym̃(dωdx) =

∫
Ω̃

f̃(ω, x) · g̃(ω, x)T ′
yR

−1
y m̃(dω)dx

the operator T̃ ′
y := T ′

yR
′
y = SyR

′
y is the conjugate operator with respect to T̃y; we denote it also by S̃y, so 

S̃′
y = T̃y. The mapping y �→ S̃y is a positive left L-type representation in L̃β,δ(Ω̃, F̃ , m̃) and ||S̃y||L̃β,δ =

||Ty||α (see Subsect. 6.2).
The construction of the auxiliary representation y �→ T̃y in the Banach space L̃α,γ(Ω̃, F̃ , m̃) has been 

an intermediate step in our construction of an appropriate L1 − L∞ Lamperti representation in another 
Banach space, which is needed for the proof of the DET. The idea of such “time–space” constructions 
and prototypes of Lemmas 3.1–3.4 below are due to Kan [29] who considered powers of (not necessarily 
invertible) operators with Lamperti conjugates. We assume 1 < α < ∞.

Lemma 3.1. Let ϕ(ω) > 0 a.e., ϕ ∈ Lβ(Ω, F , m) and let u(ω, x) := [Sx−1ϕ(ω)]β−1. Then
a) the function (ω, x) �→ u(ω, x) is measurable and u(·, x) > 0 m-a.e. for all x ∈ X; for each x ∈ X, 

u(·, x) ∈ Lα(Ω) and moreover 
∫
Ω(u(ω, x))αdm ≤ ‖T‖βα‖ϕ‖ββ;

b) uT̃y(ω, x) ≤ ||T ||βαu(ω, x) m−a.e. for all x, y ∈ X.

Proof. a) First, it is clear that u is measurable and, for each x ∈ X, u(ω, x) > 0 m-a.e., and the structure 
of the operators Sx (see Proposition 6.1) implies u(·, x) > 0 m-a.e. for all x ∈ X; 

∫
Ω(u(ω, x))αdm =∫

Ω[Sx−1ϕ(ω)](β−1)α dm =
∫
Ω[Sx−1ϕ(ω)]β dm ≤ ‖S‖ββ‖ϕ‖

β
β = ‖T‖βα‖ϕ‖ββ .

b) Fix x and y. Since S is a left Lamperti representation in Lβ(Ω, m), we have: (Syg)β−1S′
y ≤ ||Ty||βαgβ−1

if g ∈ Lβ
+ (see Property 3 in Proposition 6.5), and putting g = Sx−1ϕ we obtain:

uT̃y(ω, x) = [Sx−1ϕ(ω)]β−1T̃y =

S(xy−1)−1 [ϕ(ω)]β−1S′
y = [SySx−1ϕ(ω)]β−1S′

y ≤ ||Ty||βα(Sx−1ϕ(ω))β−1 = ||T ||βαu(ω, x). �
Note that, since (α− 1)(β − 1) = 1, we have

[u(ω, x)]α−1 = [u(ω, x)]
1

β−1 = Sx−1ϕ(ω). (3.2)

Lemma 3.2. If 1 < α < ∞, for each y ∈ X the function uα−1 is invariant with respect to T̃ ′
y = S̃y.
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Proof.
T̃ ′
y(u(ω, x)α−1) = Sy(u(ω, xy)α−1) = Sy(u(ω, xy)

1
β−1 ) = SyS(xy)−1ϕ(ω)

= SySy−1Sx−1ϕ(ω) = Sx−1ϕ(ω) = [u(ω, x)]
1

β−1 = uα−1(ω, x). �
3.1.2. The spaces L̃γ

u and the representations Ũγ

In what follows we consider the version of u defined in Lemma 3.1; we denote u−1 := 1
u .

We fix some α, 1 < α < ∞, and consider the measure m̃u(M) :=
∫
M

uαdm̃, M ∈ F × B. For each 
γ, 1 ≤ γ < ∞, we consider the space L̃γ

u(Ω̃) := L̃γ,∞(Ω̃, F̃ , m̃u) of all F × B-measurable functions f̃(ω, x)
with the finite norm

||f̃ ||L̃γ
u

= ||

⎡
⎣∫

Ω

|f̃(ω, ·)|γuα(ω, ·)m(dω)

⎤
⎦

1
γ

||L∞ , 1 ≤ γ < ∞, (3.3)

||f̃ ||L̃∞
u

= ||f̃ ||L̃∞ . (3.4)

Since the mapping iγ : f̃ �→ f̃u
α
γ is an isomorphism from the space L̃γ,∞(Ω̃, F̃ , uαdm̃u) onto 

L̃γ,∞(Ω̃, F̃ , m̃), our new space is also a Banach space.
For each x ∈ X we consider invertible positive “right” operators Ũy := iαT̃yi

−1
α defined on L̃α

u(Ω̃), i.e. if 
f̃ ∈ L̃α

u(Ω̃) we put
f̃ Ũy(ω, x) := u−1(ω, x)[u(ω, x)f̃(ω, x)]T̃y, y ∈ X. (3.5)

In the following statement we summarize some properties of the operators Ũy.

Lemma 3.3. For each x ∈ X the mapping Ũ : y �→ Ũy is a measurable bounded positive right L-representation 
of X in L̃α

u , and, moreover,

‖Ũy‖L̃α
u

= ‖T̃y‖L̃α = ‖Ty‖α. (3.6)

Proof. If fTy = hT
y fΨT

y is the canonical representation for Ty (see Subsect. 6.1) then f̃ Ũy = h̃y · f̃Ψ̃y

where h̃y(ω, x) := u−1(ω, x)hT
y (ω)(u(ω, x))ΨT

y Ry and Ψ̃y := ΨT
y Ry; Ψ̃y is a multiplicative operator with 

Property (3) of Theorem 6.1. Statement (3.6) is evident. �
We will consider the measures m̂y

u on F × B defined as follows: m̂y
u(Λ ×M) := (uα)Ψ̃ym̃(ΛΨy ×MRy).

One can easily check that, for each γ, 1 ≤ γ ≤ ∞, the linear manifold L̃α
u ∩ L̃γ

u is dense in L̃γ
u. The rest 

of this subsection is devoted to the possibility of extension of the operators Ũy from this set to (bounded) 
operators in the whole space L̃γ

u.

Lemma 3.4. 1. Each operator Ũy can be extended to an isometry in L̃1
u(Ω̃).

2. Each operator Ũy can be extended to bounded operator in L̃∞
u (Ω̃) and ‖Ũy‖L̃∞

u
≤ ‖T‖αα.

Proof. 1. By virtue of Lemmas 3.2 and 3.1, for each f ∈ L̃α
u(Ω̃) ∩ L̃1

u(Ω̃), f(ω) ≥ 0 m-a.e. we have:

||fŨy||L̃1
u

= ||
∫
Ω

fŨy(ω, x)u(ω, x)αdm||L∞ = ||
∫
Ω

u−1(uf)T̃y(ω, x)[u(ω, x)]αdm||L∞ =

||
∫
Ω

(uf)T̃yu
α−1dm||L∞ = ||

∫
Ω

ufT̃ ∗
y (uα−1)dm||L∞

= ||
∫
Ω

ufuα−1dm||L∞ = ||
∫
Ω

fuαdm||L∞ = ||f ||L̃1
u
.
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Hence ‖fŨy‖L̃1
u

= ||f ||L̃1
u
; since L̃α

u ∩ L̃1
u is dense in L̃1

u and the operator Ũy is invertible, Statement 1 is 
proved.

2. Let f ∈ L̃∞
u (Ω̃) ∩L̃α

u(Ω̃), f ≥ 0 m̃-a.e. Since the operators T̃y and Ũy are positive, by Lemma 3.1, fŨy =
u−1(uf)T̃y ≤ ‖f‖L̃∞

u
u−1(uT̃y) ≤ ‖f‖L∞

u
u−1‖T‖αα = ‖f‖L̃∞

u
‖T‖αα, hence ||fŨy||L̃∞

u
≤ ‖T‖αp ‖f‖L̃∞

u
. �

As in Lemma 3.3 we can easily verify that Ũ is an L-representation in L̃∞
u (Ω̃) and in L̃1

u(Ω̃).

Lemma 3.5. Let V be an invertible L-operator in L̃α
u that can be extended to L-operators in L̃1

u and L̃∞
u . 

Then for each γ, 1 ≤ γ ≤ ∞,

||V ||L̃γ
u
≤ ||V ||L̃∞

u
||V −1||

1
γ

L̃∞
u

||V ||
1
γ

L̃1
u

. (3.7)

Proof. Assume V and V −1 have the canonical representations: V = hΨ, V −1 = hV −1ΨV −1 . By Proposi-
tions 6.1–6.3, we have: ||V ||L̃∞

u
= |||h|||L̃∞

u
, ||V ||L̃γ

u
= ||Ψ−1|h| 

(
dm̃
dm

) 1
γ ||L̃∞

u
, 1 ≤ γ < ∞; Ψ = Ψ−1

V −1 and

h = (ΨhV −1)−1 =
(
Ψ−1

V −1hV −1
)−1

. (3.8)

The condition of the Lemma implies: when γ = 1

Ψ−1|h|
(
dm̃

dm

)
≤ ||V ||L̃1

u
, (3.9)

and when γ = ∞

Ψ−1|h| ≤ ||V ||L̃∞
u
,Ψ−1

V −1 |hV −1 | ≤ |V −1||L̃∞
u
. (3.10)

Relations (3.8) and (3.10) imply: |h| ≥ (||V −1||L̃∞
u

)−1. Since Ψ is a positive operator and Ψc = c, c ∈ R, we 
have Ψ−1|h| ≥ (||V −1||L̃∞

u
)−1, and by (3.9)

dm̃

dm
(ω, x) ≤ ||V ||L̃1

u
||V −1||L̃∞

u
. (3.11)

Therefore (3.7) holds. �
Lemmas 3.4 and 3.5 (with V = Ũy) imply the following statement.

Corollary 3.1. All operators Ũy are consistent with operators acting in L̃γ
u (denoted also Ũy) and ||Ũy||L̃γ

u
≤

‖T‖2α
α (1 ≤ γ ≤ ∞).

Proposition 3.1. For each x ∈ X the mapping Ũ : y �→ Ũy is a measurable bounded positive right L̃1
u − L̃∞

u

representation of X and, moreover,

C1 := sup
1≤γ≤∞

‖Ũ‖L̃γ
u
≤ ‖T‖2α

α . (3.12)

3.2. Space L̃δ,1
u and representation W̃ ′

As before, 1 < α < ∞. Consider the right representation Ũ acting in all spaces Lγ
u = Lγ,∞

u , 1 ≤ γ ≤ ∞, 
defined in the previous subsection. For each pair of mutually conjugate numbers γ, δ we consider two 
duality relations. The first one is between the Banach spaces L̃γ,∞

u and L̃δ,1
u established by the bilinear form 
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〈f, g〉u :=
∫
Ω̃ fḡuαdm̃. It is easy to check that |〈f, g〉u| ≤ ||f ||L̃γ,∞

u
||g||L̃δ,1

u
. We denote by Ũ ′

y the operator 
in L̃β,1

u,w conjugate to Ũy with respect to this bilinear form. By Proposition 3.1, Ũ ′ is a positive L̃1,1
u − L̃∞,1

u

representation.
Let us consider a strictly positive probability density w on X with respect to ν and the Banach spaces 

L̃γ,∞
u,w = L̃

(γ,∞)
u and the spaces L̃δ,1

u,w of all (F , B)-measurable functions with the finite norms: ||g||γ,1u,w :=∫
X

[
∫
Ω |g(ω, x)|γ(u(ω, x))αm(dω)]

1
γ ]w(x)ν(dx).

Our second dual pair is L̃α,∞
u = L̃α,∞

u,w , L̃β,1
u,w with respect to the bilinear form

〈f, g〉u,w :=
∫
Ω̃

fḡuαw(x)dm̃.

Note that the mapping iw : g �→ gw is a positive linear isometry from L̃α,∞
u,w onto L̃α,∞

u and from L̃β,1
u,w

onto L̃β,1
u . We denote W̃y := iwŨyi

−1
w (acting in L̃α,∞

u,w = L̃α,∞
u ) and W̃ ′

y := iwŨ
′
yi

−1
w ; these are right (resp. 

left) positive operators in L̃α,∞
u,w (resp. L̃β,1

u,w). The operator W̃ ′
y is the conjugate to W̃y.

It is easy to verify that Proposition 3.1 and the relation between the operators Ũy, Ũ ′
y and W̃ ′

y imply the 
following property of the representation W̃ ′.

Proposition 3.2. W̃ ′ : y �→ W̃ ′
y is a L̃1,1

u,w − L̃∞,1
u,w Lamperti positive representation of X, respectively, and

max
1≤γ≤∞1

{||W̃ ′||L̃γ,1
u,w

} = C1 ≤ ||T ||2αα .

3.3. Employing the conjugate representation W̃ ′

The following statement is a generalized version of a result due to Duncan [17]. Let 1 < α < ∞.

Lemma 3.6. Let K = {κn} be a sequence of probability measures on X. Assume that there is a constant K > 0
such that for each N ∈ N, N ≥ 1, and for each collection of mod m̃ pairwise disjoint sets Λ1, ..., ΛN ∈ F ×B
with

||
N∑

n=1

∫
X

(W̃ ′
y(1Λn

))(ω, x))κn(dy)||L̃β,1
u,w

≤ K. (3.13)

Then for any non-negative function f ∈ L̃α,∞
u∫

Ω̃

[ sup
n≤N

∫
X

f(ω, x)W̃y · κn(dy)](u(ω, x))αm(dω)w(x)ν(dx) ≤ K||f ||L̃α,∞
u

. (3.14)

Proof. By Lemma 3.1, 1 ∈ L̃β,1
u,w. Denote fVn(ω, x) :=

∫
X
f(ω, x)W̃yκn(dy). Then V ′

ng(ω, x) =∫
X
W̃ ′

yg(ω, x)κn(dy). Put Mk = {ω : sup
n≤N

fVn = fVk}, Λn = Mn \ ∪k<nMk, (n ≤ N). Then sup
n≤N

fVn =∑N
n=1 fVn · 1Λn

, and∫
Ω̃

sup
n≤N

fVn(u(ω, x))αw(x)dm̃ =
∫
Ω̃

N∑
n=1

fVn1Λn
(u(ω, x))αw(x)dm̃ =

N∑
n=1

〈fVn, 1Λn
〉u,w =

N∑
n=1

〈f, V ′
n1Λn

〉u,w = 〈f,
N∑

n=1
V ′
n1Λn

〉u,w ≤

||f ||L̃α,∞
u

||
N∑

n=1
V ′
n1Λn

||L̃β,1
u,w

≤ K‖f‖L̃α,∞
u,w

. �
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We denote dm̃u,w := uαwdm dν.

Lemma 3.7. Let l be a natural number, k ≥ 1, si > 0, i = 1, ..., l, 
∑l

i=1 si = β and let f f1, . . . , fl be 
non-negative functions in L̃1,1

u,w. Then
(i) for the non-negative values of fsk

k we have fs1
1 · . . . · fsl

l ∈ L̃β,1
u,w(Ω̃);

(ii) for each y ∈ X∫
Ω̃

l∏
i

[W̃ ′
yfi]sim̃u,w ≤ ||W̃ ′

y||βL̃β,1
u,w

∫
Ω̃

l∏
i

fsi
i dm̃u,w ≤ Cβ

1

∫
Ω̃

l∏
i

fsi
i dm̃u,w.

Proof. Statement (i) follows readily from the Hölder inequality.
Proof of Statement (ii). By Lemma 3.1, y �→ W̃ ′

y is a Lamperti left representation; let W̃ ′
yf = hy · Ψyf

be its canonical representation. We have: 
∏l

i=1 W̃
′
yf

si
i =

∏l
i=1(hy · Ψyfi)si = hβ

∏l
i=1 Ψyf

si
i . Hence, if we 

denote f = (
∏l

i=1 f
si
i )

1
β , we have for μ-a.e. x ∈ X:∫

Ω̃

l∏
i

[W̃ ′
yfi]sidm̃u,w =

∫
Ω̃

hβ
l∏

i=1
Ψyf

si
i dm̃u,w =

∫
Ω̃

hβΨyf
βdm̃u,w =

∫
Ω̃

[W̃ ′
yf ]βdm̃u,w ≤ ||W̃ ′

y||βLβ,1
u,w

∫
Ω̃

fβdm̃u,w = ||W̃ ′
y||βLβ,1

u,w

∫
Ω̃

l∏
i

fsi
i dm̃u,w. �

The following key Lemma is a generalization and a refinement of a statement proved for measure pre-
serving actions by Shulman [41,42] (see also [46] for the case α = 2).

Lemma 3.8. Let 1 < β < ∞, k ∈ N, k ≥ β. Let {Λn} be a sequence of disjoint F × B-measurable subsets of 
Ω and let K = {κn} be a weakly tempered sequence of order k on X. Then for any N ∈ N

||
N∑

n=1

∫
X

W̃ ′
y(1Λn

(ω, x))κn(dy)||L̃β,∞
u,w

≤ (kkτk(K))
1
β ‖T‖2αk+1

α ‖ϕ‖β . (3.15)

Proof. For ci > 0 and k ≥ β we have 
∑

n cn ≤ (
∑

n c
β
k
n )

k
β (see, e.g. Ch. I, §16 in [6]) and thus

(
∑
n

cn)β ≤ (
∑
n

c
β
k
n )k; (3.16)

Let a1 ≥ 0, ..., aN ≥ 0. We have[
N∑

n=1
an

]k

=
k∑

l=1

∑
∑l

i=1 si=k

si>0

k!
s1! . . . sl!

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n3−1∑
n2=2

n2−1∑
n1=1

l∏
i=1

asini
.

We use inequality (3.16) and the latter equality with an = c
β
k
n where c1 > 0, . . . , cN > 0, and obtain:

[
N∑

n=1
cn

]β

≤
k∑

l=1

∑
∑l

i=1 si=k

si>0

k!
s1! . . . sl!

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n3−1∑
n2=2

n2−1∑
n1=1

l∏
i=1

cti(si)ni
, (3.17)

where ti(si) := siβ (in what follows we usually drop the argument si). Note that 
∑k

ti = β.
k i=1
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Recall that dm̃u,w = uαwdm dν, W ′ is a left representation in L̃β,1
u,w; see also Proposition 3.2. We denote 

vi := 1Λi
. By virtue of (3.17) we obtain:

||
N∑
i=1

∫
X

W̃ ′
y(1Λi

(ω, x))κn(dy)||β
L̃β,1

u,w
=

∫
Ω̃

[
N∑
i=1

∫
X

W̃ ′
yvi(ω, x)κn(dy)]βm̃u,w(dωdx) ≤

∫
Ω̃

k∑
l=1

∑
∑l

i=1 si=k

si>0

k!
s1! . . . sl!

N∑
nl=l

nk−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

×

l∏
i=1

{
∫
X

[W̃ ′
yi
vni

(ω, x)]κni
(dyi)}ti(si)m̃u,w(dωdx) =

k∑
l=1

∑
∑l

i=1 si=k

si>0

k!
s1! . . . sl!

Dl,t1(s1),...,tl(sl) (3.18)

where

Dl,t1,...,tl :=
N∑

nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

∫
Ω̃

l∏
i=1

[
∫
X

W̃ ′
yi
vni

(ω, x)κni
(dyi)]tim̃u,w(dωdx),

1 ≤ l ≤ k (when si is fixed we write ti instead of ti(si)). By Hölder’s inequality

Dl,t1,...,tl ≤
N∑

nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

∫
Ω̃

{
l∏

i=1

∫
X

[W̃ ′
yi
vni

(ω, x)]tiκni
(dyi)}m̃u,w(dωdx).

Below we put X1 = X2 = ... = Xl = X and denote:

l∏
i=1

∫
Xi

f(dzα, ..., dzl) =
∫
Xl

(...(
∫
X1

f(dz1, ..., dzl))...).

Using the Fubini theorem we obtain:

Dl,t1,...,tl ≤
N∑

nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

∫
Ω̃

{
l∏

i=1

∫
Xi

l∏
j=1

[W̃ ′
yj
vnj

(ω, x)]tjκni
(dyi)}m̃u,w(dωdx) =

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

l∏
i=1

∫
Xi

{
∫
Ω̃

l∏
j=1

[W̃ ′
yj
vnj

(ω, x)]tjm̃u,w(dωdx)}κni
(dyi).

We introduce new variables z1, z2, ..., zN : z1 = y1, zi = y−1
i−1 · yi, 1 < i ≤ N , i.e.

yi = z1 . . . zi−1zi, i = 2, ..., N.
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We obtain:

Dl,t1,...,tl ≤
N∑

nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

l∏
i=1

∫
Xi

{
∫
Ω̃

l∏
j=1

[
W̃ ′

z1...zj−1zjvnj

]tj
m̃u,w(dωdx)}κni

(z1 . . . zi−1dzi).

We have 
∑n

l=1 vl ≤ 1, n ∈ N, because the sets Λl are mutually disjoint. Let’s fix a natural number 
l ≤ min{k,N} and apply Lemma 3.7 and the well-known the property of the norm in the following evalua-
tions:

Dl,t1,...,tl ≤
N∑

nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

l∏
i=2

×

∫
Xi

∫
X1

{
∫
Ω̃

[W̃ ′
z1vn1 ]t1

l∏
j=2

[
W ′

z1W̃
′
z2...zj−1zjvnj

]tj
m̃u,w(dω du)}κni

(z1 . . . zi−1dzi) ≤

Cβ
1

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n2−1∑
n1=1

l∏
i=2

∫
Xi

∫
X1

{
∫
Ω̃

[vn1 ]t1
l∏

j=2

[
W̃ ′

z2...zj−1zjvnj

]tj
m̃u,w(dω dx)}×

l∏
r=1

κnr
(z1 . . . zr−1dzr) ≤

Cβ
1

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n3−1∑
n2=2

l∏
i=2

∫
Xi

{
∫
Ω̃

n2−1∑
n1=1

vn1

l∏
j=2

[
Ûz2...zj−1zjvnj

]tj
m̃u,w(dω dx)×

max
n1:n1<n2

∫
X1

l∏
r=1

κnr
(z1 . . . zr−1dzr)

(the constant C1 was defined in Lemma 3.1). Since 
∑n2−1

n1=1 vn1 ≤ 1 we have

Dl,t1,...,tl ≤

Cβ
1

N∑
nl=l

nl−1∑
nl−1=l−1

. . .

n3−1∑
n2=1

l∏
i=2

∫
Xi

{
∫
Ω̃

l∏
j=2

[
Ûz2...zj−1zjvnj

]tj
m̃u,w(dω dx)}×

max
n1:n1<n2

∫
X1

l∏
r=1

κnr
(z1 . . . zr−1zr)}.

We took the first step of our proof getting rid of the factors Ûz1 . Let us proceed this way and eliminate the 
factor Ûzi in each i-th step in which Lemma 3.7(1) is used for L

∑l
j=i ti(Ω̃, F × B, m̃u,w). After l − 1 steps 

we obtain

Dl,t1,...,tl ≤ C
β(l−1)
1

N∑
nl=l

∫
Xl

∫
Ω̃

[
Ûzlvnl

]tl
m̃u,w(dω dx)×

{ max
nl−1:nl−1<nl

∫
... max

n1:n1<n2

∫ l∏
r=1

κnr
(z1 . . . zr−1dzr)}.
Xl−1 X1
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At last, we perform the lth step: using the previous estimate, Lemma 3.7 one more time and Lemma 3.1
obtain:

Dl,t1,...,tl ≤ Cβl
1

∫
Ω̃

N∑
nl=1

1Λnl
m̃u,w(dω dx) max

nl:nl≤N

∫
X

max
nl−1:nl−1<nl

∫
X

...

max
n1:n1<n2

∫
X

l∏
i=1

κni
(z1 . . . zi−1dzi) ≤

Cβl
1 rk(K)

∫
Ω̃

m̃u,w(dω dx) ≤ Cβk
1 τk(K)‖T‖βα‖ϕ‖ββ .

By virtue of (3.18), this implies our statement since

k∑
l=1

∑
∑l

i=1 si=k

si>0

k!
s1! . . . sl!

≤ kk. �

Recall that W̃ = Ṽ . By virtue of Lemmas 3.6 and 3.8 we obtain the following statement.

Lemma 3.9. Let 1 < α < ∞, β = α
α−1 , k ∈ N, k ≥ β. Let K = {κn} be a weakly tempered sequence of order 

k on X. Then for any non-negative function g̃ ∈ L̃α,∞
u∫

Ω

∫
X

sup
n≥k

∫
X

(g̃Ũy)(ω, x)κn(dy)(u(ω, x))αw(x)ν(dx)m(dω)

≤ ||T ||2αk+1
α [kkτk(K)]

1
β ‖ϕ‖β ||g||L̃α

u
. (3.19)

3.4. Back from the “space–time” Ω̃ to the space Ω

One can readily rewrite inequality (3.19) in terms of T̃ and f̃(ω, x) ∈ L̃α,∞
u . For each f̃ ∈ L̃α,∞

u we 
choose g̃ = u−1f̃ . Recall that g̃W̃y = (ug̃)T̃yu

−1 = f̃ T̃yu
−1. And then we put f̃(ω, x) = f(ω)1X(x); now 

||g||L̃α
u

= ||f ||α and f̃ T̃y(ω, x) = fTy(ω). Recall: (u(ω, x))α−1 = Sx−1ϕ.

Proposition 3.3. For any f ∈ Lα(Ω, F , m), f ≥ 0,
∫
Ω

|
∫
X

Sx−1ϕ(ω)w(x)ν(dx) · sup
n≥k

[
∫
X

]fTy(ω)κn(dy)]m(dω)| ≤

[kkrk(K]
1
β ‖T‖2αk+1

α ‖ϕ‖β ||||f ||α.

Proof.
∫
Ω

∫
X

sup
n≥k

∫
X

(g̃Ũy)(ω, x)κn(dy)(u(ω, x))αw(x)ν(dx)m(dω) =

∫
Ω

∫
X

[sup
n≥k

∫
X

fTy(ω)κn(dy)](u(ω, x))α−1ν(dx)w(x)m(dω) =

∫
Ω

[
∫
X

Sx−1ϕ(ω)w(x)ν(dx)]sup
n≥k

[
∫
X

fTy(ω)κn(dy)]m(dω). �
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In order to derive the DET we have to eliminate the disturbing factor 
∫
X
Sx−1ϕ(ω)w(x)ν(dx). We start 

with a rather weak version of the “local” PET.

Lemma 3.10. Let β ≥ 1 and let S be a left Lβ-representation of X, ϕ ∈ Lβ(Ω, F , m). There is a sequence 
of densities {wi} with support X such that

lim
i→∞

∫
X

Sx−1ϕ(ω)wi(x)ν(dx) = ϕ(ω) m−a.e. (3.20)

Proof. a) Construction of a sequence wi with compact supports. If X is discrete we may simply choose 
wi(x) = 1 if x = e and wi(x) = 0 elsewhere (i = 1, 2, ...). So let us assume that X is non-discrete. 
Equation (3.20) is equivalent to limi→∞

∫
X
Sxϕ(ω)ŵi(x)μ(dx) = ϕ(ω) m−a.e. where ŵi(x) = wi(x−1)

and μ is the left Haar measure. Let v ∈ L1(m), ||v||1 = 1, 0 < v(ω) ≤ C < ∞ for all ω ∈ Ω. Denote 
mv(Λ) :=

∫
Λ v dm. Evidently mv(X) = 1, mv ∼ m, Sxϕ ∈ Lβ

mv
. To simplify the notation, in this proof we 

write || · ||β instead of || · ||Lβ
mv

. Let U, V be bounded symmetric neighborhoods of the identity e with closures 
[U ], [V ] and V 2 ⊂ U ; g(x) = 1[U ](x)||Sxϕ − ϕ||β . It is clear that g ∈ L1(X B, μ).

For each density λ
∫
X
g(xy)λ(x)μ(dx) =

∫
X

1[U ](xy)||Sxyϕ − ϕ||βλ(x)μ(dx). By Theorem 20.12 in [24], 
there is a decreasing sequence of symmetric neighborhoods Ui ⊂ V such that for each sequence {λi} of 
symmetric densities supported by [Ui] we have

(L1(μ)) lim
i→∞

∫
X

g(xy)λi(x)μ(dx) = 0,

hence there is a subsequence {ηi} of {λi} such that

lim
i→∞

∫
X

1[U ](xy)||Sxyϕ− ϕ||βηi(x)μ(dx) = 0 μ−a.e.

Note that xy ∈ U , if x, y ∈ V . Let y0 ∈ V be such that

lim
i→∞

∫
X

||Sxy0ϕ− ϕ||βηi(x)μ(dx) = 0.

By changing the argument and replacing the densities ηi by σi(x) = ηi(xy−1
0 ) we obtain

lim
i→∞

∫
X

||Sxϕ− ϕ||βσi(x)μ(dx) = 0

b) Construction of a sequence {wi} of densities supported by X. Denote supp(σi) = Uiy0 by Ûi. Let χi be a 
sequence of strictly positive measurable functions on X such that 

∫
Ûc

i
χidμ = 1

i . We have: 
∫
Ûc

i
χi(x)||Sxϕ −

ϕ||βμ(dx) ≤ 1
i (||S||β + 1)‖|ϕ||β → 0 as i → ∞. It is clear that the sequence of densities πi = 1(Ûi)cχi +

(1 − 1
i )1(Ûi)σi has the property:

lim
i→∞

∫
X

[
∫
Ω

|Sxϕ− ϕ|βdmv]
1
β πi(x)μ(dx) = 0.

By the Fubini theorem and the Hölder inequality
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∫
Ω

∫
X

|Sxϕ− ϕ|πi(x)μ(dx)dmv ≤
∫
X

(
∫
Ω

|Sxϕ− ϕ|βdmv)
1
β πi(x)μ(dx)

It follows from the last two relations that limi→∞
∫
Ω
∫
X
|Sxϕ − ϕ|πi(x)μ(dx)dmv = 0, hence for some 

subsequence {ŵl} of the sequence {πi} we have limi→∞
∫
X
Sxϕŵl(x)μ(dx) = ϕ m-a.e., so the sequence 

wl = ŵl(x−1) meets the required property (3.20). �
Recall that |fT | = |f ||T | for each f ∈ Lα

u . The Fatou lemma, relation (3.20), and Proposition 3.3 bring 
us to the following result.

Theorem 3.1. Let 1 < α < ∞, let K = {κn} be a sequence of probability measures on X, weakly tempered of 
order k ≥ β := α

α−1 . Assume that T : x �→ Tx is a Lamperti right Lα-representation. Then

∫
Ω

sup
n≥1

[
∫
X

|fTy(ω)|κn(dy)]ϕ(ω)m(dω) ≤ (kkτk(K))
1
β ‖T‖2αk+1

α ||ϕ||β ||f ||α. (3.21)

Let us remind that ϕ is an arbitrary strictly positive function in Lβ(Ω), and functions g ∈ Lβ(Ω), g �= 0
a.e., form a dense subset of this space. Let us consider the functional l(g) =

∫
Ω sup

n≥1
[
∫
X
|fTy)(ω)|κn(dy)]g(ω)

m(dω), g ∈ Lβ(Ω). We have:

||l||β = ||sup
n≥1

[
∫
X

|fTy)(ω)|κn(dy)||α.

On the other hand, by (3.21),

||l||β = | sup
g∈Lβ ,||g||β≤1

∫
Ω

sup
n≥1

[
∫
X

|fTy)(ω)|κn(dy))]g(ω)m(dω)| ≤

sup
||g||β≤1

∫
Ω

sup
n≥1

[
∫
X

|fTy)(ω)|κn(dy)]|g(ω)|m(dω) ≤ (kkτk(κ))
1
β ‖T ||2αk+1

α ||f ||α.

So, at last, we have arrived to the Dominated Ergodic Theorem.

Theorem 3.2. Let 1 < α < ∞, let K = {κn} be a sequence of probability measures on X, weakly tempered of 
order k ≥ β := α

α−1 . Assume that T : x �→ Tx is a Lamperti right Lα-representation, f ∈ Lα. Then

∫
Ω

⎛
⎝sup

n≥1
[
∫
X

|fTy(ω)|κn(dy)]

⎞
⎠

α

m(dω) ≤ (kkτk(K))α−1‖T ||α(2αk+1)
α ||f ||αα. (3.22)

Fix γ > 1. Consider a Lamperti right Lα-representation T . We apply Theorem 3.2 with γ instead of α
to the representation T (α

γ ) of X in Lγ(Ω), defined in Subsect. 6.2.2, and to the function f
α
γ ∈ Lγ(Ω) (recall 

that ||f α
γ ||γγ = ||f ||αα and ||T (α

γ )||γγ = ||T ||αα).
We obtain the following generalized version of Theorem 3.2.

Theorem 3.3. Let α > 1, γ > 1, let K = {κn} be a sequence of probability measures on X, weakly tempered 
of order k ≥ γ

γ−1 . Assume that T : x �→ Tx is a Lamperti right Lα-representation, f ∈ Lα. Then

∫
Ω

(
sup
n≥1

[
∫
X

|fTy(ω)|αγ κn(y)μ(dy)]
)γ

m(dω) ≤ (kkτk(K))γ−1‖T ||α(2γk+1)
α ||f ||αα. (3.23)
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Remark 3.1. When γ > α, (3.23) with a different upper bound follows from Theorem 3.2 and the Hölder 
inequality.

Remark 3.2. If we choose γ ≥ 2 then γ
γ−1 ≤ 2 and (3.23) holds for all α > 1 when K is a weakly tempered 

sequence of order 2.

Corollary 3.2. Let α > 1, γ > 1, let K = {κn} be a sequence of probability measures on X, weakly tem-
pered of order k ≥ γ

γ−1 . Assume that T : x �→ Tx is a Lamperti right Lα-representation, f ∈ Lα. Then 

sup
n≥1

∫
X
|fTy(ω)|αγ κn(dy) < ∞ m-a.e.

Remark 3.3. Relation (3.21) remains true if K is a “piecewise weakly tempered sequence”: κn :=∑∞
i=1 aiκ

i
n, n = 1, 2, ..., where ai ≥ 0, i = 1, 2, ..., 

∑∞
i=1 ai = 1, and τ(K) :=

∑∞
i=1 aiτ(Ki) < ∞. Of course, 

Theorems 3.2, 3.3 and Corollary 3.2 hold, too.

4. Pointwise ergodic theorems

Let us fix a right representation T in Lα(Ω, F , m), 1 < α < ∞. For any simple function g and each 
x ∈ X we denote gx := gTx−1 − g. Let Dα

0 be the linear manifold generated by such functions and let Dα

be its closure in Lα. We denote by Iα the set of all T -invariant functions. Both spaces, Dα and Iα are 
Tx-invariant (x ∈ X). By reflexivity of Lα, the “ergodic decomposition” holds: Lα(Ω, F , m) = Dα ⊕ Iα

(see [46], Theorem 1.5.9 and Proposition 1.3.7). The projection of f onto Iα (along Dα), denoted by 
fM(α), is called the mean value of the orbit {fTx, x ∈ X}. Of course, the mean value is Tx invariant: 
fM(α)Tx = fM(α) for all x ∈ X, f ∈ Lα. For each f ∈ Lα the ergodic decomposition can be written as

f = f0 + fM(α) where f0 ∈ Dα. (4.1)

Theorem 4.1. Fix α, 1 < α < ∞, and let K = {κn} be weakly tempered of order k > α
α−1 and ergodic. If 

T : x �→ Tx is a Lamperti right Lα–representation then for each f ∈ Lα(Ω, F , m)

lim
n→∞

∫
X

fTxκn(dx) = fM(α) m−a.e. (4.2)

Proof. We denote fMn :=
∫
X
fTxκn(dx). It is clear that Mn are bounded linear operators in Lα(Ω, F , m). 

As above, for any simple function g on Ω and any y ∈ X consider gy := gTy−1 − g. We will prove that for 
each y and each simple g

lim
n→∞

gyMn = 0 m−a.e. (4.3)

We have: gTy−1Mn =
∫
G
gTy−1Txκn(dx) =

∫
G
gTy−1xκn(dx) =

∫
G
gTzκn(ydz) and gyMn =

∫
X
gTx(ω)

(κn(ydx) −κn(dx)). Since k > α
α−1 and hence α > k

k−1 , we may chose some γ ∈ [ k
k−1 , α); then k ≥ βγ := γ

γ−1 . 
Let b := α

γ (note: b > 1). Using Hölder’s inequality we obtain:

|gyMn|b ≤ (
∫
X

|gTx(ω)|var(κn(ydx) − κn(dx)))b ≤

∫
X

|gTx(ω)|bvar(κn(ydx) − κn(dx))[
∫
X

var(κn(ydx) − κn(dx))]b−1 ≤

∫
X

|gTx(ω)|b(κn(ydx) + κn(dx))[
∫
X

var(κn(ydx) − κn(dx))]b−1.
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Corollary 3.2 (applied to the functions g and gTy−1) shows that, in the last term of the above relation, the 
first factors form an m-a.e. bounded sequence, while the second factors tend to 0 since {κn} is ergodic. 
This implies (4.2) for each f ∈ Dα

0 (note that fM(α) = 0 if f ∈ Dα). Now, by Corollary 3.2 with γ = α, 
supn<∞ |fMn(ω)| < ∞ m-a.e. for each f ∈ Lα. By virtue of the Banach convergence principle (see, e.g., 
[18]) we obtain: limn→∞ fMn = 0 for any f ∈ Dα. Since (fM(α))Mn = fM(α), f ∈ Lα, it remains to 
employ the ergodic decomposition (4.1). �
Remark 4.1. In the above theorem, if T acts also in L∞ (e.g., if T is generated by a bounded left action τ), 
then (4.2) holds when K = {κn} is weakly tempered of order k ≥ α

α−1 and is ergodic. Indeed, in this case 
for each g ∈ L∞ for m-almost all ω ∈ Ω

|gyMn(ω)| ≤
∫
X

|gTx(ω)|var[κn(ydx) − κn(dx)| ≤

||T ||∞||g||∞
∫
X

var(κn(ydx) − κn(dx)),

which implies (4.3); the rest of the proof is the same as in Theorem 4.2.

Remark 4.2. If 1 < α < ∞ the Mean Ergodic Theorem: (Lα) limn→∞
∫
X
fTxκn(x)μ(dx) = fM(α) holds for 

every right Lα-representation T , every f ∈ Lα, and each ergodic sequence of probability measures K (see 
Theorem 1.5.9 and Corollary 3.1.2 in [46]).

Corollary 4.1. [47] Fix 1 < α < ∞, and let A = {An} be Følner and tempered. If T : x �→ Tx is a Lamperti 
right Lα-representation then for each f ∈ Lα(Ω, F , m)

lim
n→∞

1
μ(An)

∫
An

fTxμ(dx) = fM(α) m−a.e. (4.4)

Remark 4.1 implies the following statement.

Corollary 4.2. If the sequence of probability measures K = {κn} is ergodic and weakly tempered of order 
k ≥ α

α−1 , then for each bounded left action x �→ τx of X in (Ω, F , m) and for each f ∈ Lα(Ω, F , m) with 
1 < α < ∞

lim
n→∞

∫
X

f(τxω)κn(dx) = M(f) m−a.e. (4.5)

In the case when α = k
k−1 , k ∈ N, k > 1, the following statement has been proved by Shulman [41] (see 

also [46]) using a method based on Dunkan’s “dual space” approach (see Dunkan [17]).

Corollary 4.3. If {An} is a Følner weakly tempered sequence of order k ≥ α
α−1 then for each measure 

preserving left action x �→ τx of X in (Ω, F , m) and f ∈ Lα(Ω, F , m) with 1 < α < ∞

lim
n→∞

1
μ(An)

∫
An

f(τxω)μ(dx) = M(f) m−a.e.

Remark 4.3. Using the “coverage” method Lindenstrauss [33,34] extended Shulman’s theorem to the case 
α = 1 (Shulman’s “dual space” approach cannot work if α = 1 since it leads to the PET for general Lamperti 
representations which fails when α = 1).
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Corollary 4.4. Fix 1 < α < ∞ and let K = {κn} be ergodic and weakly tempered of order k > α
α−1 . Let 

T : x �→ Tx be a positive right Lα–representation. Then for each f ∈ Lα(Ω, F , m) relation (4.2) holds.

Corollary 4.5. Fix 1 < α < ∞, α �= 2, and let K = {κn} be ergodic and weakly tempered of order k > α
α−1 . 

Let T : x �→ Tx be an isometric right Lα–representation. Then for each f ∈ Lα(Ω, F , m) relation (4.2) holds.

Remark 4.4. Theorem 4.1 and Corollary 4.2 show that the “left” notions of weakly tempered and of ergodic 
and of tempered sequences introduced in §2 are sufficient for averaging of right representations and left 
group actions; for left representations and right group actions the obvious “right” versions of these notions 
should be considered.

Remark 4.5. Theorem 4.1 remains true if K is an ergodic piecewise weakly tempered sequence of measures 
(see Remark 3.3).

Theorem 4.1 implies generalized versions of PETs for cocycles proved in [47].
In [44,45] simple counterexamples are provided which show that Theorem 4.1 and other results of this 

section may fail for a sequence of compact sets if the Følner condition or the regularity condition is not 
fulfilled (see also §6.3.2 in [46]).

5. Some classes of pointwise averaging sequences

We say that a sequence of densities Φ = {ϕn} is pointwise averaging if for each α, 1 < α < ∞, for each 
Lamperti representation T in Lα and each f ∈ Lα we have:

lim
n→∞

∫
X

fTxϕn(dx) = fM(α) m−a.e. (5.1)

Similarly, we can define pointwise averaging sequences of integrable sets.
In this section we consider examples of Følner regular sequences of sets, ergodic regular sequences of 

densities, and ergodic weakly tempered (of each order) sequences of densities: all such sequences are pointwise 
averaging by Section 4 (some of these examples are well-known (see [45,46])).

5.1. Pointwise averaging in groups of polynomial growth

We remind that a compactly generated locally compact group X is said to be of polynomial growth if 
there is a compact generating set U and constants C, d > 0 such that μ(Un) ≤ Cnd, n ∈ N. Tessera [49] has 
proved that in such a group, if U is a symmetric compact generating set, then the sequence {Un} is both 
regular and Følner ; a similar result for an increasing sequence of balls Brn of radii r, r → ∞ (with respect 
to a periodic quasi-metric) was obtained by Breuillard [9].

From these results and from the PET in Tempelman [44,45], they deduced the PETs with {Un} and 
{Brn} for measure preserving actions. Corollary 4.1 shows that these sequences are pointwise averaging for 
all Lamperti representations.

5.2. Sequences of bounded convex bodies in Rm and in Zm

Each increasing sequence of bounded convex bodies {An} in Rm is regular (see [46] and the references 
therein). Let dn denote the intrinsic diameters of the sets An; if dn → ∞, {An} is also ergodic (see [15]).

Let En := An ∩ Z
m, n = 1, 2, . . . . We will show that the sequence {En} possesses the same properties 

in Z
m.
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Let Br be the ball of radius r centered at 0. Without loss of generality we may assume that 0 ∈ An

and that Bdn/2 ∈ Ān; we also assume that dn > 2m 1
2 . Denote K := [−1

2 , 
1
2 ]m; of course, K ⊂ B 1

2
√
m; 

[En] := En +K. By Lemma 4 in [15], An +B 1
2
√
m ⊆ dn+m

1
2

dn
An. Applying this Lemma one more time with 

dn−m
1
2

dn
An instead of An we obtain: dn−m

1
2

dn
An +B 1

2
√
m ⊆ An. Let us note that for each x ∈ dn−m

1
2

dn
An there 

is a z ∈ Z
m such that z ∈ x +K; by the above inclusion, z ∈ An; hence z ∈ En and x ∈ z+K ⊂ [En]. Thus

dn − 2m 1
2

dn
An ⊂ [En] � dn + m

1
2

dn
An, (5.2)

and, certainly,

dn − 2m 1
2

dn
An ⊂ An � dn + m

1
2

dn
An;

hence

μ(An	[En])
μ(An) → 0, μ((An + x)	([En] + x))

μ(An) → 0, μ([En])
μ(An) → 1.

Assume dn → ∞. Since {An} is Følner this implies that {[En]} is Følner, too. If z ∈ Z
m then ([En] + z)

	[En] = [(En + z)	En], and 
|(En + z)	En|

|En|
= μ(([En] + z)	[En])

μ([En] → 0. So {En} is Følner in Zm.

Now we will prove that {En} is regular. Note that An −An are convex bodies. Therefore (5.2) implies:

|En| = μ([En]) > (dn − 2m 1
2

dn
)mμ(An)

and

|En −En| = μ([En − En]) ≤
(
d(An −An) + m

1
2

d(An −An)

)m

μ(An −An)

where d(An −An) is the intrinsic diameter of An −An. Hence {En} is regular in Zm.

5.3. Sequences of concave densities on Rm

Let {ϕn} be a sequence of densities on Rm concave on their supports Sn. Then Sn are compact and 
convex. Assume that the sequence {Sn} is increasing and the intrinsic diameters d(Sn) → ∞. Put bk :=
max

x∈Sk−1

ϕk−1(x)
ϕk(x) , k = 2, 3..., cn = 2n

∏n
k=2 bk. Then the sequence {cnϕn} is increasing and max

x∈Rm
[cnϕn(x)] → ∞. 

Section 5.2 and Remarks 2.4 and 2.7 show that the sequence {ϕn} is ergodic and regular.

5.4. Averaging over sequences of homothetic sets and of rescaled densities

In this subsection we consider sequences Φ of “rescaled densities”, i.e. sequences of densities of the form 
ϕn(x) := t−m

n ϕ(t−1
n x), where ϕ is a density on Rm, t1, t2, ... are positive numbers, and tn ↑ ∞.

Example 5.1. Let A be an integrable set with positive measure. If ϕ := 1
μ(A)1A then μ(A)ϕ(t−1

n x) are 

indicators of homothetic sets An = tnA, and ϕn(x) = 1 1An
(x).
μ(An)
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Theorem 4.1 claims that the combination of ergodicity and weak tempering is sufficient for pointwise av-
eraging (of course weak tempering can be substituted by any stronger condition: weak regularity, regularity, 
or tempering). The following statement shows that for rescaled sequences ergodicity holds.

Proposition 5.1. Each sequence {ϕn} of rescaled densities Φ is ergodic and, in particular, a sequence of 
homothetic sets {An} is Følner.

Proof. For each y ∈ R
m

lim
n→∞

t−m
n

∫
Rm

|ϕ(t−1
n (x + y) − ϕ(t−1

n x)|dx = lim
n→∞

∫
Rm

|ϕ(x + t−1
n y) − ϕ(x)|dx = 0,

since the mapping z �→ f(z + ·) from Rm into L1(Rm, B, μ) is continuous (see, e.g., Ch. 5, Theorem 20.4 
in [24]). �
5.4.1. Averaging by homothetic sets

Let A be a measurable set in Rm with finite non-zero Lebesgue measure lm(A) > 0, Â := {x = λy, 0 ≤
λ ≤ 1, y ∈ A} (the “star-shaped hull” of A). The sequence of homothetic sets A = {tnA} is ergodic by 

Proposition 5.1; if, moreover, A is compact, then r(A) ≤ lm(A−Â)
lm(A) ; indeed r(A) ≤ supn

lm(tnA−tnÂ)
lm(tnA) =

supn
lm(tn(A−Â))

lm(tnA) = μ(A−Â)
μ(A) (see also Example 5.2.9 in [46]) so {tnA} is regular (note that r(A) = 2m if A

is convex and symmetric about 0).

5.4.2. Averaging over sequences of rescaled densities on Rm

Proposition 5.2. If ϕ is a bounded density on Rm with compact support S, then the sequence ϕn(x) :=
t−m
n ϕ(t−1

n x) is ergodic and regular, hence pointwise averaging.

Proof. Let Sn and S be the supports of ϕn and ϕ, resp. Note that Sn = tnS. Therefore the sequence {ϕn}
is regular by Subsect. 5.4.1 and Proposition 2.4; it is ergodic by Proposition 5.1. �

Our next statements show that, under some conditions, the DET and PET hold for a sequence of rescaled 
densities with unbounded supports (of course such sequences are not tempered; the proof is somewhat more 
tedious then the one of Proposition 5.2).

Let || · || be an arbitrary norm in Rm.

Proposition 5.3. Let ϕ(0) = max
x∈Rm

ϕ(x) < ∞. Assume that there is a non-negative function ϕ̃ on R+ such 

that
1. ϕ(x) ≡ ϕ̃(||x||), x ∈ R

m,
2. ϕ̃ is non-increasing in [0, ∞),
3. ϕ̃(u) convex on some interval [a, ∞), a > 0.
Let ϕn(x) := t−m

n ϕ(t−1
n x) x ∈ R

m.
Then Ak := supnk<∞

∫
dxk . . .

∫
dx2 supn1:n1≤n2

∫
dx1

∏k
i=1 ϕni

(
∑i

j=1 xj) < ∞ for each k ≥ 2. Thus the 
sequence {ϕn} is weakly tempered of every order, and therefore, by Proposition 5.1, it is pointwise averaging.

The step-by-step proof of Proposition 5.3 is performed in the following lemmas where it is assumed that 
ϕ is a density on Rm satisfying the conditions of the Proposition 5.3.

Lemma 5.1. For each x with ||x|| ≤ a and each y ∈ R
m ϕ(y) ≤ cϕ(x) (c := ϕ(0)

ϕ̃(a) ).
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Proof. For each pair x, y satisfying the above conditions ϕ(y) < ϕ(0) = ϕ(0)
ϕ̃(||x||)ϕ(x) ≤ ϕ(0)

ϕ̃(a)ϕ(x). �
Lemma 5.2. ϕ(y + αx) ≤ cϕ(y) + cϕ(y + x) for all x, y ∈ R

m, 0 ≤ α ≤ 1.

Proof. It follows from Lemma 5.1 that
if ||y|| < a then ϕ(y + αx) ≤ cϕ(y);
if ||y + x|| < a then ϕ(y + αx) ≤ cϕ(y + x).
Let’s both ||y|| ≥ a and ||y + x|| ≥ a. Then using convexity of ϕ̃

ϕ(y + αx) = ϕ ((1 − α)y + α(y + x)) ≤ (1 − α)ϕ(y) + αϕ(y + x).

In all cases ϕ(y + αx) ≤ cϕ(y) + cϕ(y + x). �
Lemma 5.3. Let s1 ≤ s2 ≤ ... ≤ si. For each i ∈ N

ϕ(
i∑

j=1
s−1
i sjxj) ≤ ci−1

∑
b∈{0,1}i−1

ϕ(xi +
i−1∑
j=1

bjxj). (5.3)

Proof. If i = 2 then, by Lemma 5.2, ϕ(x2 + s−1
2 s1x1) ≤ cϕ(x2) + cϕ(x2 + x1).

Let inequality (5.3) hold for i − 1. By Lemma 5.2 with x = x1, y =
∑i

j=2 s
−1
i sjxj , α = s−1

i s1,

ϕ(
i∑

j=1
s−1
i sjxj) ≤ cϕ(

i∑
j=2

s−1
i sjxj) + cϕ(x1 +

i∑
j=2

s−1
i sjxj).

Using this inequality and inequality (5.3) for i − 1 we get:

ϕ(
i∑

j=1
s−1
i sjxj) ≤ c · ci−2

∑
b∈{0,1}i−2

ϕ(xi +
i−1∑
j=2

bjxj)+

c · ci−2
∑

b∈{0,1}i−2

ϕ(xi + x1 +
i−1∑
j=2

bjxj) = ci−1
∑

b∈{0,1}i−1

ϕ(xi +
i−1∑
j=1

bjxj). �

Define Bk := {0, 1} ×{0, 1}2×... ×{0, 1}k, i.e. if b ∈ Bk, then b = (b(1), b(2), ..., b(k)) where b(i) ∈ {0, 1}i; b(i)j

denotes the j-th coordinate of b(i), j = 1, 2, ..., i.

Lemma 5.4. Let s1 ≤ s2 ≤ ... ≤ sk. Then

k∏
i=1

ϕ(
i∑

j=1
s−1
i sjxj) ≤ c

(k−1)k
2

∑
b∈Bk

k∏
i=1

ϕ(xi +
i−1∑
j=1

b
(i)
j xj).

Proof. Lemma 5.3 implies

k∏
i=1

ϕ(
i∑

j=1
s−1
i sjxj) ≤

k∏
i=1

[ci−1
∑

b∈{0,1}i−1

ϕ(xi +
i−1∑
j=1

b
(i)
j xj)] =

c
(k−1)k

2
∑
b∈Bk

k∏
i=1

ϕ(xi +
i−1∑
j=1

b
(i)
j xj). �
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Lemma 5.5. Ak ≤ (2c)
(k−1)k

2 .

Proof. We put sl = tnl
, l = 1, ..., k, in Lemma 5.4. By using this Lemma and the definition of Ak we readily 

get:

Ak ≤ c
(k−1)k

2
∑
b∈Bk

k∏
i=1

∫
Rm

ϕ(xi +
i−1∑
j=1

b
(i)
j xj)dxi.

Put yi = xi +
∑i−1

j=1 b
(i)
j xj in the integral. We have:

Ak ≤ c
(k−1)k

2
∑
b∈Bk

k∏
i=1

∫
Rm

ϕ(yi)dyi = c
(k−1)k

2 |Bk|.

It remains to note that |Bk| =
∏k

i=1 2i−1 = 2
(k−1)k

2 . �
Example 5.2. a) The Cauchy density on Rm

ψ(x) :=
Γ(m+1

2 )
π

m+1
2

(
[
1 + ||x||2)

]−m+1
2 (5.4)

satisfies the conditions of Proposition 5.3 with a = (2 + m)− 1
2 , the inflection point of ϕ̃.

b) Let V be a non-degenerate positive definite symmetric “covariance” matrix and ||x|| =
(
〈V −1x, x〉

) 1
2 ). 

The normal density

θV (x) := 1
(2π det(V ))m

2
exp[−1

2 〈V
−1x, x〉] (5.5)

satisfies the conditions of Proposition 5.3 with a = 1, the inflection point of ϕ̃.
c) Let α > 0. The density τ(x) := Γ(m+α)

Γ(α)Γ(m])(1 + ||x||)−(m+α), x ∈ R
m, also satisfies the conditions of 

Proposition 5.3 (the function ϕ̃ is convex on R+).
So the rescaled sequences {ψn}, {θn} and {τn} are weakly tempered of any order, hence they are pointwise 

averaging.

Proposition 5.3 and Remark 2.6 imply the following, more general statement.

Corollary 5.1. Let ϕ(x) ≤ Cϕ̃(||x||) for all x ∈ R
m, where C is a constant, ϕ̃ possesses properties 2) 

and 3) stated in Proposition 5.3, and 
∫∞
0 um−1ϕ̃(u)du < ∞. Then the rescaled sequence {ϕn} is pointwise 

averaging. In particular, this is the case when

ϕ(x) ≤ C

(1 + ||x||)m+α
, x ∈ R

m (5.6)

with some α > 0.

Not that the above densities ψ and θV satisfy condition (5.6).
We state another application of Proposition 5.3 and Remark 2.6.

Corollary 5.2. Assume that there is a sequence tn > 0, tn ↑ ∞ such that ϕn(x) ≤ Ctαn
(tn+||x||)m+α , x ∈ R

m, n ∈ N, 
where α > 0. Then {ϕn} is weakly tempered of every order.
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5.5. Averaging by sequences of convolution powers of densities

In this Subsection we put G = R
m, m ≥ 1. If ϕ be a probability density on Rm we put ϕn := ϕ∗n, the 

nth power ϕ with respect to the convolution. First let us quote the following result (see [30]).

Proposition 5.4. A sequence {κ∗n} of convolution powers of a probability measure κ on a commutative group 
X is ergodic if and only if κ is strictly aperiodic, i.e. the support s(κ) is not contained in a coset of a proper 
normal subgroup of X.

Let ϕ be the density of a symmetric stable distribution with parameter α̂ (0 < α̂ ≤ 2); this means 
that ϕ∗n(x) = n−m

α̂ ϕ(n− 1
α̂x). Simple examples of stable densities are the Cauchy density ψ (see (5.4)) with 

α̃ = 1 and the normal density θV (see (5.5)) with α̃ = 2.
By Proposition 5.3, the densities ψ and θV are pointwise averaging.

Proposition 5.5. Let ϕ be a stable density with parameter 0 < α̂ ≤ 2; assume ϕ satisfies the conditions 
of Proposition 5.3 and Φ := {ϕ∗n}. Then it is weakly tempered of each order and ergodic, and thus it is 
pointwise averaging.

Remark 5.1. Let ϕ be a stable density constant on spheres, 0 < α̂ ≤ 2. It is easy to prove that sequence Φ
is weakly tempered of order 2 and the index ρ2(Φ) < 2m

α̂ . Indeed, ϕ(x) = ϕ̂(||x||) where ϕ̂ is a decreasing 

function on [0, ∞), and ϕn(x) = n−m
α̂ ϕ 

(
||x||/n 1

α̂

)
, 
∫
Rm ϕn1(y)ϕn2(y + x)dy = ϕn1 ∗ ϕn2(x) = ϕn1+n2(x), 

and therefore

r2(Φ) =
∫
Rm

max
n1≤n2

∫
Rm

ϕn1(y)ϕn2(y + x)dydx =
∫
Rm

max
n1≤n2

ϕn1+n2(x)dx =

∫
Rm

max
n1≤n2

1
(n1 + n2)

m
α̂
ϕ
(
||x||/(n1 + n2)

1
α̂

)
dx <

∫
Rm

1
(n2)

m
α̂
ϕ
(
||x||/(2n2)

1
α̂

)
dx = 2m

α̂ .

Remark 5.2. Proposition 5.5 is a special case of Proposition 3.5 in [32] where it was proved, in particular, 
that if a density ϕ on a commutative group is symmetric and strictly aperiodic and ϕn := ϕ∗n then the 
conclusion of Proposition 5.2 holds; we include Proposition 5.5 and Remark 5.1 as simple applications of 
our general results.

We turn now to averaging by convolutions of nonsymmetric densities.

Proposition 5.6. Let 1 < α < ∞. Assume that ϕ is a density on Rm such that
1) its characteristic function belongs Lα(Rm) for some α ≥ 1 (this is the case when the density ϕ is 

bounded),
2) 

∫
Rm ||x||m+1ϕ(x)dx < ∞, 

∫
Rm xϕ(x)dx = 0, and

3) its covariance matrix V (i.e. the matrix with the components Vij =
∫
xixjϕ(x1, . . . , xm)dx, i, j =

1, ...m) is non-degenerate.
Then the sequence {ϕ∗n} is ergodic and weakly tempered of each order, hence pointwise averaging.

Proof. Our sequence is ergodic by Example 5.4. We will prove that it is weakly tempered of any order k. 
Along with the m-dimensional Cauchy density ψ and the normal density θV , we will consider the functions 
λn(x) := n−m

2
∑m−1

r=1 n− r
2Qr(n− 1

2x)θV (n− 1
2x) where Qr, r ≥ 1 are polynomials of degree d ≤ m + 1 which 

does not depend on n and, up to a constant, are specified in [8]. We apply Proposition 19.2 in [8] with 
s = m + 1 if m ≥ 2; in the case when m = 1 we apply a theorem in [43] (see also the Note in §19 in [8]). 
For each m ≥ 1 we have:
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|ϕ∗n(x) − θ∗nV (x) − λn(x)| = o(n−m−1
2 )ψ∗n(x), x ∈ R

m. (5.7)

It is clear θ∗nV (x) ≤ Cψ∗n(x) and, if γ > 1,

λn(x) < Dn− 1
2n−m

2 θγV (n−1/2x) < Fn− 1
2ψ∗n(x) (5.8)

where C, D, F are positive constants. Therefore formula (5.7) implies for all x ∈ R
m:

ϕ∗n(x) ≤ Gψ∗n(x),

and Remark 2.6 and Proposition 5.5 show that {ϕ∗n} is weakly tempered of any order k. By virtue of 
relations (5.7) and (5.8), we have:

∫
Rm

|ϕ∗n(x) − θ∗nV (x)| dx = o(1). (5.9)

By Proposition 5.5 the sequence {θ∗n} is ergodic, and (5.9) readily implies that {ϕ∗n} possesses this property 
too. It remains to use Proposition 4.1. �

In [7] the following theorem was proved: let ϕ be a strictly aperiodic density on Z such that ∑∞
z=1 z

2ϕ(z) < ∞, 
∑∞

z=1 zϕ(z) = 0; then for each invertible measure preserving transformation τ of a 
σ-finite measure space (Ω, F , m) the sequence 

∑∞
z=−∞ f(τzω)ϕ∗n(z) converges m-almost everywhere for 

each f ∈ Lα(Ω, F , m), p > 1. The following statement provides a generalization of this theorem in several 
directions.

Proposition 5.7. Assume that ϕ is a strictly aperiodic density on Zm, m ≥ 1, 
∑

z∈Rm ||z||m+1ϕ(z) < ∞, ∑
z∈Rm zϕ(z) = 0. The sequence {ϕ∗n} is pointwise averaging.

Proof. The proof is similar to that in Proposition 5.6: Corollary 22.3 in [8] presents an analog of for-
mula (5.7), and this gives us analogs of formulas (5.5) and (5.9). �
Remark 5.3. Theorems 5.6 and 5.7 follow from Proposition 5.2 and Theorem 5.7 in [13] and Theorem 1.2 
in [19]. Our goal was to provide two more examples of weakly tempered, but not regular, sequences.

6. Appendix

6.1. Some properties of invertible Lamperti operators and Lamperti group representations

6.1.1. Basic properties of Lamperti operators in Lα, 1 ≤ α < ∞
Let α, β be mutually conjugate numbers, 1 ≤ α ≤ ∞, Lα = Lα(Ω, F , m), and let M(Ω, F) denote the 

linear space of all F-measurable functions on Ω. An operator Ψ in M(Ω, F) is said to be strictly positive
if Tf > 0 a.e. whenever f > 0 a.e. In this section the term “invertible Lamperti operator” means that the 
operator and its inverse are Lamperti operators.

Definition 6.1. A mapping Ψ in F is called a σ-automorphism if (1) it maps F onto F and is invertible, (2) 
Ψ(∪∞

n=1Λn) = ∪∞
n=1ΨΛn if Λn are disjoint, (3) Ψ(Λc) = (ΨΛ)c for each Λ ∈ F , (4) m(ΨΛ) = 0 if and only 

if m(Λ) = 0.
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Proposition 6.1. Each invertible Lamperti operator T in Lα, 1 ≤ α < ∞, has the following form:

Tf(ω) = h(ω)Ψf(ω); (6.1)

here 1Λh ∈ Lα(Ω, F , m) when m(Λ) < ∞, h �= 0 m-a.e., and Ψ is an invertible strictly positive linear 
transformation in M(Ω, F) with the following properties:

(1) For each Λ ∈ F , Ψ1Λ is an indicator of a set in F , denoted ΨL; the mapping Λ �→ ΨΛ is an 
σ-automorphism of the σ-field F (hence Ψ1 = 1 and Λ �→ m̂(Λ) := m(ΨΛ) is a measure on F equivalent to 
m).

(2) |Ψf | = Ψ(|f |), f ∈ M(Ω, F).
(3) (Ψf)γ = Ψfγ , γ ∈ R+, f ∈ M(Ω, F).
(4) Ψ(f · g) = Ψf · Ψg, f, g ∈ M(Ω, F).
(5) If f, g ∈ M(Ω, F) and gΨf ∈ L1(Ω, F , m), then 

∫
Ω g · Ψfdm =

∫
Ω Ψ−1g · f dm̂

dmdm; in particular, if 
Ψf ∈ L1(Ω, F , m) then 

∫
Ω Ψfdm =

∫
Ω f dm̂

dmdm.

(6) Ψdm̂Ψ
dm =

(
dm̂Ψ−1

dm

)−1
m-a.e.

Moreover,
(7) ||T ||α = ||Ψ−1(|h|)(dm̂dm ) 1

α ||∞ < ∞.
Vice versa, each operator T of the form (6.1), where h(ω) �= 0 m-a.e. and Ψ is an invertible strictly 

positive operator in M(Ω) with the above properties (1)–(6), is an invertible Lamperti operator in Lα.

Proof. Properties (1)–(4) are well-known (see [28]).
Property (5) follows from the “leading” special case when f = 1Λ, g = 1Γ, Λ, Γ ∈ F , m(Λ) < ∞, m(Γ) <

∞: 
∫
Ω 1Γ · Ψ1Λdm = m(Γ ∩ ΨΛ) = m(Ψ(Ψ−1Γ ∩ Λ)) = m̂(Ψ−1Γ ∩ Λ) =

∫
Ω Ψ−11Γ · 1Λ

dm̂
dmdm.

Let us prove Statement (6). Using Property (5) with Ψ−1 instead of Ψ we obtain: for each Λ ∈ F we 
have:

m(Λ) = m(ΨΨ−1Λ) = m̂Ψ(Ψ−1Λ) =
∫
Ω

dm̂Ψ

dm
· Ψ−11Λdm =

∫
Ω

Ψdm̂Ψ

dm
· 1Λ · dm̂Ψ−1

dm
dm

which implies Statement (6).
Property (7): ||T ||αα = sup

f :||fα||1≤1
| 
∫
Ω |Tfα|dm|; on the other hand, by Property (5), 

∫
Ω Tfαdm =∫

Ω hαΨ(fα)dm =
∫
Ω Ψ−1hα dm̂

dmfαdm =: l(fα) where l(u) is a linear functional on L1; hence
esupx[Ψ−1|h|α dm̂

dm ] = ||l||1 = ||T ||αα. �
Definition 6.2. We will refer to formula (6.1) as the canonical representation of the Lamperti operator T .

Proposition 6.2. (1) If T1, T2 are invertible Lamperti operators then T1T2 is also an invertible Lamperti 
operator and hT1T2 = hT1 · ΨT1hT2 , ΨT1T2 = ΨT1ΨT2 . Hence ΨT−1 = Ψ−1

T , hT−1 = (Ψ−1
T h)−1.

(2) An invertible Lamperti operator is positive if and only if h > 0 m-a.e., so each positive invertible 
Lamperti operator is strictly positive.

(3) The modulus of an invertible Lamperti operator T is defined as follows: |T |f(ω) = |h(ω)|Ψf(ω). It 
is clear that |T | is an invertible strictly positive operator, |Tf | = |T ||f |, f ∈ Lα(Ω, F , m), |T1T2| = |T1| · |T2|
and |T−1| = |T |−1.

(4) If T is an invertible Lamperti operator in Lα(1 ≤ α < ∞) then the conjugate operator T ∗ is an 
invertible Lamperti operator in Lβ. Moreover T ∗g = Ψ−1h̄ · dm̂

dm · Ψ−1g, g ∈ Lβ; hence ΨT∗ = Ψ−1; hT∗ =
Ψ−1h̄ · dm̂ .
dm
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Proof. 1. Follows from (6.1).
2–3. Each of these statements readily follows from the previous ones.
4. See Proposition 3.1 in [28].
5. If f ∈ Lα, g ∈ Lβ , then by Proposition 6.1(5), 〈Tf, g〉 =

∫
Ω Tf · ḡ dm =

∫
Ω Ψf · h̄ḡdm =

∫
Ω f · Ψ−1h ·

Ψ−1g · dm̂
dmdm = 〈f, Ψ−1h · Ψ−1g · dm̂

dm 〉. �
6.2. Lamperti type operators (L-operators) and Lamperti type representations in Banach function spaces

Let (Ω, F , m) be a σ-finite measure space, B a Banach space contained in M(Ω, F).

Definition 6.3. An operator in B is an invertible Lamperti type operator, or in short an invertible L-operator, 
if it has a representation (6.1) where 1) h �= 0 m-a.e., 2) Ψ is an invertible strictly positive linear trans-
formation in M(Ω, F) 3) for each Λ ∈ F , Ψ1Λ is an indicator of a set in F denoted ΨΛ; 4) the mapping 
Λ �→ ΨΛ is an σ-automorphism of the σ-field F , hence Ψ1 = 1 and Λ �→ m̂(Λ) := m(ΨΛ) is a measure on 
F equivalent to m.

Of course Statements (1)–(6) of Proposition 6.1 and Proposition 6.2 are fulfilled.

Example 6.1. Let T be an operator in L∞(Ω, F , m) “preserving support separation”: Tf · Tg = 0 whenever 
f · g = 0 and f, g ∈ L∞(Ω, F , m). Then it has the canonical representation (6.1) where Ψ is a positive 
linear transformation in set SM(Ω, F) of all measurable simple functions on Ω and the mapping Λ �→
Ψ(Λ) := ΨT (1Λ) is an automorphism of the field F (see, e.g. [28]). In general, Ψ does not need to be a 
σ-automorphism, so in this case T is not a L-type operator. But, of course Tf = h ·Ryf is a L-type operator 
in L∞(X, B, ν) if h ∈ M(X, B) and h �= 0 ν-a.e., and R is the right shift: Ryf(x) = f(xy−1).

Proposition 6.3. Let T be an invertible L-operator in L∞(Ω, F , m). Then
(1) Ψ is an invertible linear isometry in L∞(Ω, F , m);
(2) ||T ||∞ = ||h||∞ = ||Ψ−1h||∞, so Proposition 6.1(7) is valid here too if we assume 1

∞ = 0.

Proof. 1) Since Ψ(c) = c, c ∈ R, and Ψ is positive, |f(ω)| ≤ ||f ||∞ m-a.e. implies Ψ|f(ω)| ≤ Ψ||f ||∞ =
||f ||∞, f ∈ L∞(Ω, F , m). But T−1 is also a L-operator in L∞(Ω, F , m) and ΨT−1 = Ψ−1, so we have: 
Ψ−1|g(ω)| ≤ ||g||∞, g ∈ L∞(Ω, F , m). Put g = Ψf in the last inequality. We obtain: Ψ−1Ψf(ω)| = |f | ≤
||Ψf ||∞. Thus ||Ψf ||∞ = ||f ||∞, f ∈ L∞(Ω, F , m).

2) ||T ||∞ = sup
f :||f ||∞≤1

||hΨf ||∞ ≤ ||h||∞ sup
f :||f ||∞≤1

||f ||∞ = ||h||∞ and ||T1||∞ = ||h||∞. �

Definition 6.4. Consider a dual pair of Banach spaces B and B′ with respect to a bilinear form 〈f, g〉, 
f ∈ B, g ∈ B′ such for a finite constant C we have: |〈f, g〉| ≤ C||f ||B ||g||B′ , f ∈ B, g ∈ B′. Assume T is an 
operator in B, and for some g ∈ B′ there is a point g′ ∈ B′ such that 〈Tf, g〉 = 〈f, g′〉, f ∈ B; in this case 
we say that this is the value of the conjugate linear transformation at g ∈ B′ and denote T ′g := g′.

It is clear that the domain D of T ′ is a linear manifold in B′.

Remark 6.1. Let T ∗ be the conjugate to T in B∗. If D = B′ then it is a T ∗-invariant subset of B∗ and T ′

coincides with the restriction of T ∗ onto B′; T ′′ = T .

Proposition 6.4. Let B and B′ are Banach spaces contained in M(Ω, F) and | 
∫
Ω fḡdm| ≤ C||f ||B ||g||B′ , 

f ∈ B, g ∈ B′ where C < ∞. If B, B′ is a dual pair of Banach spaces with respect to the bilinear 
form 〈f, g〉 =

∫
fḡdm on B × B′, and T is an invertible L-operator in B, then its conjugate T ′ is also 
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an invertible L-operator in B′, and, as in Proposition 6.2(5), T ′g = Ψ−1h̄ · dm̂
dm · Ψ−1g, g ∈ B′, i.e. 

ΨT ′ = Ψ−1; hT ′ = Ψ−1h̄ · dm̂
dm .

Example 6.2. L∞(Ω, F , m) and L1(Ω, F , m) form a dual pair with respect to 〈f, g〉 =
∫
fḡdm. Therefore for 

each L-operator T in L∞(Ω, F , m) the conjugate L-operator T ′ is well defined in L1(Ω, F , m).

Lamperti-type representations in Banach function spaces are representation by Lamperti type operators; 
in §3 such representations are generated by Lamperti representations in the spaces Lα where 1 ≤ α < ∞.

6.2.1. Some properties of Lamperti group representations
Propositions 6.1 and 6.2 imply useful properties of Lamperti representations.
If Ψx, x ∈ X, are invertible strictly positive linear operators in M(Ω) each satisfying Property (1) of 

Proposition 6.1, we consider the measures m̂x(Λ) := m(ΨxΛ), Λ ∈ F , equivalent to our basic measure m.

Proposition 6.5. (1) Let Tx, x ∈ X be a collection of operators in Lα. T : x �→ Tx is a Lamperti right 
representation if and only if

fTx(ω) = hx(ω) · fΨx(ω), x ∈ X (6.2)

where all operators Ψx in M(Ω) are invertible, strictly positive, and possess properties (1)–(6) stated in 
Proposition 6.1, Ψ : x �→ Ψx is a right representation of X in M(Ω) and (ω, x) �→ hx(ω) is a multiplicative 
right cocycle with respect to the right representation Ψ, i.e. for each x, x1, x2 ∈ X we have: m-a.e. he(ω) = 1, 
hx1x2(ω) = hx1Ψx2(ω) · hx2(ω).

(2) If T is a Lamperti right representation of X in Lα then the mapping T ∗ : x �→ T ∗
x is a Lamperti left 

representation of X in Lβ.
(3) Let T be a positive right representation of X in Lα. Then for each f ∈ Lα

+ we have: T ∗
x (fTx)α−1 ≤

||Tx||ααfα−1.

Proof. 1. See Propositions 6.1 and 6.2(2).
2. T ∗

xT
∗
y = (TyTx)∗ = T ∗

xy, so T ∗ is a left representation. By Proposition 6.2(7), the operators T ∗
x are 

Lamperti.
3. By (6.2) and Proposition 6.1(5,6), for each g ∈ Lβ

∫
Ω

g · T ∗
x (fTx)α−1dm =

∫
Ω

gTx · (fTx)α−1dm =
∫
Ω

hx · gΨx · [hx · fΨx]α−1dm =

∫
Ω

hα
x · (gfα−1)Ψxdm =

∫
Ω

gfα−1 · Ψ−1
x hα

x · dm̂x

dm
dm.

Since g is an arbitrary function in Lβ, T ∗
x (fTx)α−1 = fα−1 · Ψ−1

x hα
x · dm̂x

dm ≤ ||T ||ααfα−1. �
Proposition 6.6. Let T be a measurable invertible Lamperti right representation.

(1) The representation Ψ and the functions (ω, x) �→ hx(ω), (ω, x) �→ Ψ−1
x hx(ω) and (ω, x) �→ dm̂x

dm (ω)
are measurable.

(2) The representation |T | is measurable.
(3) The representation T ∗ is measurable.

Proof. 1. a) For each x and Λ ∈ F we have 1ΛΨx = 1{ω:1ΛTx(ω)>0}, so {(ω, x) : 1ΛΨx(ω) = 1} = {(ω, x) :
1ΛTx(ω) > 0} ∈ F × B and {(ω, x) : 1ΛΨx(ω) = 0} ∈ F × B. This implies that for all simple functions 
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f : (ω, x) �→ fΨx(ω) is measurable. Since Ψx is a positive operator, fn → f in measure implies fnΨx → fΨx

in measure, so the function (ω, x) → fΨx is measurable for each f ∈ M(Ω, F).
b) If m(Ω) < ∞, then hx = 1ΩTx, and if m(Ω) = ∞ then hx =

∑∞
i=1 IΛi

Tx where {Λi} is a cover of Ω
by disjoint sets of finite measure; hence (x, ω) �→ hx(ω) is measurable.

c) By Proposition 6.2(3), Ψ−1
x hx = (hx−1)−1, so (x, ω) �→ Ψ−1

x hx(ω) is measurable, too.
d) Let {L(i)

n , n ∈ N}∞i=1 be a sequence of refining covers of Ω by sets of finite measure m and let the 
collection of sets ∪i.n∈NL

(i)
n generate the σ-field F ; put

g(i)(ω, x) :=
∞∑

n=1

m̂x(Λ(i)
n )

m(Λ(i)
n )

1Λ(i)
n

(ω).

Then 
dm̂x

dm
(ω) = limi→∞ g(i)(ω) m-a.e. (cf. [16], §VII.8), so (ω, x) → dm̂x

dm
(ω), is measurable.

2. The definition of |T | and Statement (1) imply that T is measurable.

3. Since fTx = hx·fΨx we have, by Proposition 6.2(7), T ∗
x g = Ψ−1

x hx·
dm̂x

dm
·Ψx−1g where g ∈ Lβ(Ω, F , m); 

thus, by Statement (1), T ∗ is measurable. �
6.2.2. Lamperti representations T (b)

Let 1 ≤ α < ∞, 0 < b < α, and let T be a Lamperti right representation of X in Lα. We will consider 
“right” operators T (b)

x in L
α
b defined for each f ∈ Lα as follows: f bT

(b)
x (ω) = (fTx(ω))b.

The following proposition clarifies and justifies this definition.

Proposition 6.7. Let 1 < α < ∞, 0 < b < α, γ := α
b (so 1 < γ < ∞).

(1) f ∈ Lα(Ω, F , m) if and only if f b ∈ Lγ(Ω, F , m); moreover, ‖f b‖γγ = ‖f‖αα, i.e. the mapping ι : f �→ f b

is an isometric mapping from Lα onto Lγ.
(2) Let T be a measurable invertible Lamperti right representation in Lα and let

f bT (b)
x (·) := (fTx(·))b where f ∈ Lα. (6.3)

Then T (b) : x �→ T
(b)
x is a measurable invertible Lamperti right representation in Lγ and ‖T (b)

x ‖γγ =
‖Tx‖αα, x ∈ X.

Proof. (1) ‖f b‖γγ =
(∫

Ω(|f |b)γdm
)

=
(∫

Ω |f |αdm
)

= ‖f‖αα.
(2) Let fTx(·) = hx(·) ·fΨx(·) be canonical representation of the operator Tx (see Proposition 6.5). Then

f bT (b)
x = hb

x · (fΨx)b = hb
x · f bΨx (6.4)

is canonical representation for the operator T (b)
x . It is clear that T (b)

x is an invertible linear Lamperti operator 
in Lγ , x ∈ X. We have T (b)

x = ιTxι
−1, and hence ‖T (b)

x ‖γγ = ‖Tx‖αα. The equivalence of the operators T (b)
x

and Tx also implies that T (b) : x �→ T
(b)
x is an invertible Lamperti representation in Lγ . Measurability of 

T (b) follows from (6.4) and Proposition 6.6(1). �
6.3. Examples: distinctions between properties of sequences defined in §2

6.3.1. A regular but not Følner sequence of sets in R2

Example 6.3. The sequence of rectangles An := [0, n] × [0, 1] is regular but not Følner.



A. Tempelman, A. Shulman / J. Math. Anal. Appl. 474 (2019) 23–58 57
6.3.2. A Følner and tempered but non-regular sequence of sets in R2

Example 6.4. Let {an} and {bn} be increasing sequences of positive numbers such that bn < an, bn → ∞, 
sup an

bn
= ∞. Let An := [−an, an] × [−bn, bn] ∪ [−bn, bn] × [−an, an]. Then [−an, an] × [−an, an] ⊂ An −An, 

supn[μ(An)]−1μ(An −An) > supn(8anbn)−1(4a2
n) = supn

an

2bn = ∞, so the sequence {An} is not regular. In 
addition to the previous assumptions, let an−1 = bn, n > 1. Then

An −An−1 ⊂ ([−(an + an−1), an + an−1] × [−(bn + an−1), bn + an−1])

∪α ([−(bn + an−1), bn + an−1] × [−(an−1 + an), an−1 + an])

and

[μ(An)]−1μ[An −An−1) ≤ (8anbn − b2n)−18(an + an−1)(bn + an−1) =

16 · an + bn
8an − bn

→ 2.

Hence the sequence {An} is tempered; it easy to verify that it is Følner.

6.3.3. A Følner and weakly tempered but non-tempered sequence of densities with bounded supports on R

Example 6.5. Let ϕ be a bounded density on R with 
∫∞
−∞ xϕ(x)dx = 0, 

∫∞
−∞ x2ϕ(x)dx = σ2 < ∞ and let 

s(ϕ) contain an interval (−a, a), a > 0. Put ϕn := ϕ∗n. By the local central limit theorem (see [43]) for each 
0 < ε < 1 and each y ∈ R

ϕ∗n(y) ≥ 1√
2πnσ

e−
y2

2σ2n − ε√
2πnσ

=: ξn(y)

if n is large enough. Thus if n is large and −a(n −1) < x < a(n −1), we have: 0 ∈ (−a(n −1) +x, a(n −1) +x); 
therefore

ψn(x) = sup{ϕ∗n(y), y ∈ [−an, an] ∩ (−a(n− 1) + x, a(n− 1) + x)} >

ξn(0) ≥ 1 − ε√
2πnσ

.

Hence, if n is large, 
∫
ψn(x)dx ≥

∫ a(n−1)
−a(n−1) ψn(x)dx ≥ 1 − ε√

2πnσ
2a(n − 1), and the sequence {ϕ∗n} is not 

tempered. But, by virtue of Proposition 5.6, it is weakly tempered of each order k ≥ 1 and ergodic.
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