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In this paper, we study the existence of sign-changing (nodal) and nontrivial 
solutions for the nonlinear Kirchhoff-type equation

{
−

(
a + b

∫
Ω |∇u|2dx

)
Δu = αu + βu3 in Ω,

u = 0 on ∂Ω,

where α, β ∈ R are two real parameters. With the help of nodal Nehari set, we first 
provide a description of a two-dimensional set in the (α, β) plane, which corresponds 
to the nonexistence and existence of sign-changing solutions for the above Kirchhoff-
type equation. And then, we establish the existence result of nontrivial solutions via 
the minimax methods.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this article, we discuss the existence of sign-changing and nontrivial solutions for the following 
Kirchhoff-type problem

{
−
(
a + b

∫
Ω |∇u|2dx

)
Δu = αu + βu3 in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N = 1, 2, 3) is a bounded domain with smooth boundary ∂Ω, a > 0, b > 0, and α, β ∈ R are 
two real parameters.

Let Lp(Ω)(1 ≤ p < +∞) be the Lebesgue space with the norm |u|p = (
∫
Ω |u|pdt)1/p and H1

0 (Ω) be the 
usual Hilbert space with the norm ‖u‖ = (

∫
Ω |∇u|2dt)1/2. From the Sobolev and Rellich embedding theorem, 
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the embedding H1
0 (Ω) ↪→ Lp(Ω) is continuous for any 1 ≤ p ≤ 2∗ and is compact for any 1 ≤ p < 2∗, where 

2∗ := +∞ if N = 1, 2 and 2∗ := 2N
N−2 = 6 if N = 3. And then, there is a positive constant τ > 0 such that

|u|2 ≤ τ‖u‖, |u|4 ≤ τ‖u‖ for any u ∈ H1
0 (Ω). (1.2)

Problem (1.1) can be seen as a special form of the following Kirchhoff problem

{
−
(
a + b

∫
Ω |∇u|2dx

)
Δu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

which is the stationary case of a nonlinear wave equation

utt −

⎛
⎝a + b

∫
Ω

|∇u|2dx

⎞
⎠Δu = f(x, u), (1.4)

proposed by Kirchhoff [8] in 1883. (1.4) is an extension of the classical D’Alembert’s wave equation by 
considering the effects of the changes in the length of the string during the vibrations. The parameters in 
(1.4) have practical physical meaning: u denotes the displacement, f is the external force, b represents the 
initial tension, and a is related to the intrinsic properties of the string. Some early works related to problem 
(1.4) are [9,10,13,15].

In recent years, more and more researchers began to pay attention to the existence of the sign-changing 
solutions of Kirchhoff problem in bounded domain, see [1,4,7,11,12,14,16,18–20,23]. Specially, for the case 
that the nonlinearity f satisfies super-3-linear growth condition, Mao and Zhang [14], Shuai [18], Cheng 
and Tang [20] studied the existence of sign-changing solutions for problem (1.3). For the case that the 
nonlinearity f satisfies asymptotically 3-linear growth condition, Zhang and Perera [22], Mao and Luan [12]
obtained the existence of sign-changing solutions for problem (1.3) via variational methods and invariant 
sets of descent flow. And in 2017, by the non-Nehari manifold method, Cheng and Tang [4] showed that if 
f(x, t) = r(x, t) + βt3 satisfies

(f1) f(x, t) = o(t) as |t| → 0 uniformly in x ∈ Ω;
(f2) (i) β > bμ0 and r(x, t) = o(t3) as |t| → ∞ uniformly in x ∈ Ω, and

(ii) there exists a θ0 ∈ (0, 1) such that for any t > 0 and τ ∈ R\{0}
[
r(τ)
τ3 − r(tτ)

(tτ)3

]
sign(1 − t) + aθ0λ1|1 − t2|

(tτ)2 ≥ 0,

where λ1 is the first eigenvalue of (−Δ, H1
0 (Ω)) and μ0 := inf{max{‖u+‖4, ‖u−‖4} : |u±|44 = 1, u ∈ H1

0 (Ω)}, 
then problem (1.3) has a sign-changing solution with positive energy and precisely two sign-changing do-
mains. We must point out that the condition (f2) implies r(x, t)t ≤ aθ0λ1t

2 < aλ1t
2 for any (x, t) ∈ Ω ×R. 

Especially, in the same year, Zhong and Tang (see [23]) studied the non-existence and existence of sign-
changing solution for problem (1.1) and obtained the following result: there is a constant Λ ≥ 2μ2

1 such 
that

(i) for any α < aλ1 and 0 < β ≤ bΛ, problem (1.1) has no sign-changing solutions,
(ii) for any α < aλ1 and β > bΛ, problem (1.1) has at least a sign-changing solution with two sign-changing 

domains, where μ1 > 0 is the first eigenvalue of the following eigenvalue problem
{

−
∫
Ω |∇u|2dxΔu = μu3 in Ω,

u = 0 on ∂Ω,
(1.5)
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and can be defined as follows:

μ1 = inf
u∈H1

0 (Ω)\{0}

‖u‖4

|u|44
.

In [4] and [23], the methods of finding sign-changing solutions depended heavily on the conditions 
r(x, t)t < aλ1t

2 and α < aλ1, respectively. So an interesting question is whether these conditions can 
be relaxed to obtain a sign-changing solution for problem (1.1).

We first present some facts about the eigenvalue problem (1.5). According to [17], the eigenvalues of 
problem (1.5) can be defined as

μk := inf
h∈Σk

max
z∈Sk−1

‖h(z)‖4, (1.6)

where Sk−1 denotes the unit sphere in Rk, Σk := {h ∈ C(Sk−1, H) : h is odd} and H = {u ∈ H1
0 (Ω) :

|u|44 = 1}, and we have 0 < μ1 ≤ μ2 ≤ · · · ≤ μk ≤ · · · and μk → +∞ as n → ∞. Moreover, according to 
[22], μ1 has a normalized eigenfunction ψ1 > 0 in Ω, but we do not know whether μ1 is simple and isolated. 
Finally, we denote by σ(−‖ · ‖2Δ) the set of eigenvalues of problem (1.5) defined by (1.6) and Bμ the set of 
solutions for a given μ. With regard to the eigenvalues of problem (1.5), we want to mention [16]. Using the 
Yang index, Perera and Zhang also constructed an unbounded sequence of minimax eigenvalues of problem 
(1.5), denoted by 0 < γ1 ≤ γ2 ≤ · · · ≤ γk ≤ · · · and γk → ∞ as k → ∞. But it is not clear whether the 
sequences {γk} and {μk} are coincident expect for k = 1.

Before stating our main results, for convenience, let us first give some notations. Define the C1 energy 
functional Eα,β: H1

0 (Ω) → R as follows:

Eα,β(u) = 1
2Hα(u) + 1

4Gβ(u) for all u ∈ H1
0 (Ω),

where

Hα(u) := a‖u‖2 − α|u|22, Gβ(u) := b‖u‖4 − β|u|44.

For any u, v ∈ H1
0 (Ω), we have

〈E′
α,β(u), v〉 =

(
a + b‖u‖2) ∫

Ω

∇u∇vdx− α

∫
Ω

uvdx− β

∫
Ω

u3vdx,

where 〈·, ·〉 denotes the usual duality between H−1(Ω) and H1
0 (Ω), and from the variational view of point, 

the weak solutions of problem (1.1) correspond to the critical points of the functional Eα,β. Furthermore, 
if u ∈ H1

0 (Ω) is a solution of problem (1.1) and u± �≡ 0, then u is a nodal solution of problem (1.1), where 
u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}. By a simple calculation, we can obtain

Hα(u) = Hα(u+) + Hα(u−), Gβ(u) = Gβ(u+) + Gβ(u−) + 2b‖u+‖2‖u−‖2,

Eα,β(u) = Eα,β(u+) + Eα,β(u−) + b

2‖u
+‖2‖u−‖2,

〈E′
α,β(u), u+〉 = Hα(u+) + Gβ(u+) + b‖u+‖2‖u−‖2,

〈E′
α,β(u), u−〉 = Hα(u−) + Gβ(u−) + b‖u+‖2‖u−‖2.

Set

Mα,β =
{
u ∈ H1

0 (Ω) : u± �≡ 0, 〈E′
α,β(u), u+〉 = 〈E′

α,β(u), u−〉 = 0
}
,
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evidently, Mα,β contains all the sign-changing solutions of problem (1.1), and Mα,β is a subset of Nehari 
manifold Nα,β related with the functional Eα,β:

Nα,β =
{
u ∈ H1

0 (Ω) : 〈E′
α,β(u), u〉 = Hα(u) + Gβ(u) = 0

}
.

If u ∈ Nα,β , we have

Eα,β(u) = 1
4Hα(u) = −1

4Gβ(u).

Now we are ready to state our main results. We begin with the nonexistence of sign-changing solutions 
for problem (1.1). We need to introduce the following infimum:

μ∗ : = inf
{

max
{
‖u+‖4 + ‖u+‖2‖u−‖2

|u+|44
,
‖u−‖4 + ‖u+‖2‖u−‖2

|u−|44

}
: u ∈ H1

0 (Ω), u± �≡ 0
}

= inf
{

max
{
‖u‖2‖u+‖2

|u+|44
,
‖u‖2‖u−‖2

|u−|44

}
: u ∈ H1

0 (Ω), u± �≡ 0
}
.

Theorem 1.1. If (α, β) ∈ (−∞, aλ2] ×(−∞, bμ1) ∪(−∞, aλ1] ×(−∞, bμ∗], problem (1.1) has no sign-changing 
solutions.

Remark 1.1. If μ1 is simple, (−∞, aλ2] × (−∞, bμ1) of Theorem 1.1 may be replaced with (−∞, aλ2] ×
(−∞, bμ1]. We will show that μ1 ≤ μ∗ < +∞ in Lemma 2.1. If μ1 = μ∗, we have (−∞, aλ1] × (−∞, bμ∗] ⊂
(−∞, aλ2] × (−∞, bμ1], but if μ1 < μ∗, (−∞, aλ1] × (−∞, bμ∗] and (−∞, aλ2] × (−∞, bμ1] are different. 
But, Zhong and Tang in [23] considered the nonexistence of sign-changing solutions for problem (1.1) with 
only for the case α < aλ1 and 0 < β ≤ bΛ. Hence, Theorem 1.1 extends and supplements the result of 
Zhong and Tang in [23].

In order to find sign-changing solution with positive energy of problem (1.1), we need to divide Mα,β
into the following three sets:

M1
α,β =

{
u ∈ Mα,β : Gβ(u±) + b‖u+‖2‖u−‖2 < 0

}
,

M2
α,β =

{
u ∈ Mα,β : Gβ(u±) + b‖u+‖2‖u−‖2 > 0

}
,

M3
α,β =

{
u ∈ Mα,β :

(
Gβ(u+) + b‖u+‖2‖u−‖2) (

Gβ(u−) + b‖u+‖2‖u−‖2) < 0
}
.

We will minimize the energy functional Eα,β restricted to M1
α,β , instead of Mα,β . Let

AL(β) =
{
u ∈ H1

0 (Ω) : u± �≡ 0, Gβ(u±) + b‖u+‖2‖u−‖2 ≤ 0
}
,

we define

αL(β) = inf
{

min
{
‖u+‖2

|u+|22
,
‖u−‖2

|u−|22

}
: u ∈ AL(β)

}
,

and we assume that αL(β) = +∞ if AL(β) = ∅. Our main result is the following theorem:

Theorem 1.2. Assume that (α, β) ∈ (−∞, aαL(β)) × (bμ∗, +∞), then problem (1.1) possesses at least a 
sign-changing solution uα,β with positive energy.
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Remark 1.2. Comparing the definitions of αL(β) and λ1, we obtain λ1 < αL(β) for any β > bμ∗ in 
Lemma 2.4. In addition, a couple of main properties of the function αL(β) are collected in Lemma 2.4
below, although some of them are not directly related to the proof of Theorem 1.2, they can help us 
understand the graph of the function αL(β) more intuitively.

We obtain the existence of sign-changing solution for problem (1.1) when α < aαL(β) and β > bμ∗, while 
Zhong and Tang [23] only considered the case for α < aλ1 and β > bΛ. Theorem 1.2 expands the scope of 
the existence of sign-changing solution for problem (1.1), and hence, Theorem 1.2 can be regarded as the 
extension and supplementary work of Zhong and Tang. It is easy to see that the nonlinearity αt + βt3 does 
not satisfy the condition (f1) of [4]. Therefore, our result is new and interesting.

Finally, we will consider the existence of nontrivial solution for problem (1.1) with negative energy. Let 
{λk} be the eigenvalues of (−Δ, H1

0 (Ω)), and let β ∈ R, define

α∗(β) := sup
{
‖u‖2

|u|22
: u ∈ Bβ/b\{0}

}
,

where Bμ is the set of solutions for problem (1.5) for a given μ, and we assume that α∗(β) = −∞ if 
Bβ/b = {0}. Let μk+1 be the (k + 1)th eigenvalue of problem (1.5), define

kβ := min{k ∈ N : β < bμk+1}.

The third result of this paper is stated in the following theorem:

Theorem 1.3. Suppose that β
b ∈ R/σ(−‖ · ‖2Δ), for any α

a > max{α∗(β), λkβ+1}, problem (1.1) possesses 
at least a nontrivial solution u with Eα,β(u) < 0.

Remark 1.3. As far as we know, Theorem 1.3 is the first result on the existence of nontrivial solution for 
problem (1.1) with negative energy.

We organize this paper as follows. For the rest of this section, we recall a variant of the deformation lemma 
(see [21], Theorem 2.3) which is very important for proving Theorem 1.2 and Theorem 1.3. In Section 2, 
we will be devoted to completing the proofs of Theorem 1.1 and Theorem 1.2. In Section 3, we present the 
proof of Theorem 1.3 via minimax method.

Lemma 1.1. Let I be a C1-functional on a Banach space X, S ⊂ X, c ∈ R, ε, δ > 0 such that

‖I ′(u)‖ ≥ 8ε
δ

for any u ∈ I−1([c− 2ε, c + 2ε]) ∩ S2δ.

Then there exists a deformation η ∈ C([0, 1] ×X, X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ I−1([c − 2ε, c + 2ε]) ∩ S2δ;
(ii) η(1, Ic+ε ∩ S) ⊂ Ic−ε;
(iii) I(η(t, u)) is non increasing with respect to t for any u ∈ X;
(iv) I(η(t, u)) < c for any u ∈ Ic ∩ S2δ and t ∈ [0, 1],
(v) if I is even, then η(t, ·) is odd for any t ∈ [0, 1].



6 B. Chen, Z.-Q. Ou / J. Math. Anal. Appl. 481 (2020) 123476
2. The proofs of Theorem 1.1 and Theorem 1.2

In this section, we will first pay attention to the proof of Theorem 1.1. From the definition of Mα,β, to 
prove Theorem 1.1, we just need 〈E′

α,β(u), u+〉 �= 0 or 〈E′
α,β(u), u−〉 �= 0 for any u ∈ H1

0 (Ω) with u± �≡ 0. 
In order to achieve this goal, we need to discuss the property of μ∗ defined in Section 1.

Lemma 2.1. μ1 ≤ μ∗ < +∞. A1(β) �= ∅ if and only if β > bμ∗, where

A1(β) =
{
u ∈ H1

0 (Ω) : u± �≡ 0, Gβ(u±) + b‖u+‖2‖u−‖2 < 0
}
.

Proof. From the definitions of μ∗ and μ1, we first have

μ∗ = inf
{

max
{
‖u+‖4 + ‖u+‖2‖u−‖2

|u+|44
,
‖u−‖4 + ‖u+‖2‖u−‖2

|u−|44

}
: u ∈ H1

0 (Ω), u± �≡ 0
}

≥ inf
{
‖u+‖4 + ‖u+‖2‖u−‖2

|u+|44
: u ∈ H1

0 (Ω), u± �≡ 0
}

≥ inf
{
‖u+‖4

|u+|44
: u ∈ H1

0 (Ω), u± �≡ 0
}

≥ inf
{
‖u‖4

|u|44
: u ∈ H1

0 (Ω) \ {0}
}

= μ1.

Let β > bμ∗, from the definition of μ∗, there is a u0 ∈ H1
0 (Ω) with u±

0 �≡ 0 such that

β

b
> max

{
‖u+

0 ‖4 + ‖u+
0 ‖2‖u−

0 ‖2

|u+
0 |44

,
‖u−

0 ‖4 + ‖u+
0 ‖2‖u−

0 ‖2

|u−
0 |44

}
≥ μ∗,

which shows that b‖u±
0 ‖4 + b‖u+

0 ‖2‖u−
0 ‖2 − β|u±

0 |44 < 0. Hence u0 ∈ A1(β).
On the other hand, if A1(β) �= ∅, there exists a u0 ∈ H1

0 (Ω) with u±
0 �≡ 0 such that

b‖u±
0 ‖4 + b‖u+

0 ‖2‖u−
0 ‖2 − β|u±

0 |44 < 0.

Therefore, we have

max
{
‖u+

0 ‖4 + ‖u+
0 ‖2‖u−

0 ‖2

|u+
0 |44

,
‖u−

0 ‖4 + ‖u+
0 ‖2‖u−

0 ‖2

|u−
0 |44

}
<

β

b
,

and by the definition of μ∗, one has μ∗ < β
b , that is β > bμ∗. �

It follows from the proof of the above lemma that if β ≤ bμ∗, then A1(β) = ∅, that is, Gβ(u+) +
b‖u+‖2‖u−‖2 ≥ 0 or Gβ(u−) + b‖u+‖2‖u−‖2 ≥ 0 for any u ∈ H1

0 (Ω) with u± �≡ 0.

Proof of Theorem 1.1. (i) α ≤ aλ2, β < bμ1. According to [2], the second eigenvalue λ2 of the operator −Δ
in H1

0 (Ω) can be characterized as

λ2 = inf
{

max
{
‖u+‖2

|u+|22
,
‖u−‖2

|u−|22

}
: u ∈ H1

0 (Ω), u �≡ 0
}
,

hence for any u ∈ H1
0 (Ω) with u± �≡ 0, it holds
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λ2 ≤ ‖u+‖2

|u+|22
or λ2 ≤ ‖u−‖2

|u−|22
.

Let α ≤ aλ2, for any u ∈ H1
0 (Ω) with u± �≡ 0, we obtain

Hα(u+) = a‖u+‖2 − α|u+|22 ≥ a(‖u+‖2 − λ2|u+|22) ≥ 0

or

Hα(u−) = a‖u−‖2 − α|u−|22 ≥ a(‖u−‖2 − λ2|u−|22) ≥ 0.

If β < bμ1, from the definition of μ1, we have

Gβ(u±) = b‖u±‖4 − β|u±|44 > b(‖u±‖4 − μ1|u±|44) ≥ 0

for any u ∈ H1
0 (Ω) with u± �≡ 0. Therefore, if (α, β) ∈ (−∞, aλ2] × (−∞, bμ1), we obtain that either

〈E′
α,β(u), u+〉 �= 0 or 〈E′

α,β(u), u−〉 �= 0,

that is, Mα,β = ∅.
(ii) α ≤ aλ1, β ≤ bμ∗. Let β ≤ bμ∗, from Lemma 2.1, we obtain for any u ∈ H1

0 (Ω) with u± �≡ 0, it holds

Gβ(u+) + b‖u+‖2‖u−‖2 ≥ 0 or Gβ(u−) + b‖u+‖2‖u−‖2 ≥ 0.

And if α ≤ aλ1, it follows that

Hα(u±) = a‖u±‖2 − α|u±|22 ≥ a(‖u±‖2 − λ1|u±|22) > 0

for any u ∈ H1
0 (Ω) with u± �≡ 0. Hence, if (α, β) ∈ (−∞, aλ1] × (−∞, bμ∗], we can also see that either

〈E′
α,β(u), u+〉 �= 0 or 〈E′

α,β(u), u−〉 �= 0,

namely, Mα,β = ∅. �
In the next part of this section, our purpose is to prove theorem 1.2 by means of considering the mini-

mization problem on M1
α,β. It follows from Lemma 2.1 that A1(β) �= ∅ when β > bμ∗. Next, we will first 

prove that the set M1
α,β = A1(β) ∩Mα,β �= ∅ if (α, β) lies in a suitable set of R2. And then, we present 

the properties of αL(β). Finally, the infimum mα,β := inf
u∈M1

α,β

Eα,β(u) can be achieved by some u ∈ M1
α,β

for any α < aαL(β) and β > bμ∗.

Lemma 2.2. For every u ∈ A1(β) with Hα(u±) > 0, there exists a unique pair (su, tu) ∈ R+ ×R+ such that 
suu

+ + tuu
− ∈ M1

α,β and Eα,β(suu+ + tuu
−) = max

s,t>0
Eα,β(su+ + tu−). Moreover, if 〈E′

α,β(u), u±〉 ≤ 0, 
then (su, tu) ∈ (0, 1] × (0, 1].

Proof. First of all, from the definition of M1
α,β, it is easy to see that suu+ + tuu

− ∈ M1
α,β = A1(β) ∩Mα,β

if and only if (su, tu) is a unique solution of the following system:
⎧⎪⎨
⎪⎩

s4Gβ(u+) + bs2t2‖u+‖2‖u−‖2 = −s2Hα(u+),

t4G (u−) + bs2t2‖u+‖2‖u−‖2 = −t2H (u−).
β α
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Therefore, it is sufficient to prove that the following system has a unique pair positive solution:

⎧⎪⎨
⎪⎩

SGβ(u+) + bT‖u+‖2‖u−‖2 = −Hα(u+),

Sb‖u+‖2‖u−‖2 + TGβ(u−) = −Hα(u−).
(2.1)

For any u ∈ A1(β), that is Gβ(u±) + b‖u+‖2‖u−‖2 < 0, with Hα(u±) > 0, we have

D =

∣∣∣∣∣
Gβ(u+) b‖u+‖2‖u−‖2

b‖u+‖2‖u−‖2 Gβ(u−)

∣∣∣∣∣ = Gβ(u+) Gβ(u−) − (b‖u+‖2 ‖u−‖2)2 > 0,

DS =

∣∣∣∣∣
−Hα(u+) b‖u+‖2‖u−‖2

−Hα(u−) Gβ(u−)

∣∣∣∣∣ = −Hα(u+)Gβ(u−) + b‖u+‖2‖u−‖2Hα(u−) > 0,

DT =

∣∣∣∣∣
Gβ(u+) −Hα(u+)

b‖u+‖2‖u−‖2 −Hα(u−)

∣∣∣∣∣ = −Hα(u−)Gβ(u+) + b‖u+‖2‖u−‖2Hα(u+) > 0.

Hence, let S = DS

D and T = DT

D , (S, T ) is the unique solution of system (2.1). Consequently, let su = S
1
2

and tu = T
1
2 , we conclude that suu+ + tuu

− ∈ M1
α,β .

Moreover, since suu+ + tuu
− ∈ M1

α,β ⊂ Mα,β and Gβ(u±) < 0, by a direct computation, we obtain

A = ∂2Eα,β(su+ + tu−)
∂s2

∣∣∣∣
(su,tu)

= Hα(u+) + 3s2
uGβ(u+) + bt2u‖u+‖2‖u−‖2

= 2s2
uGβ(u+) < 0, (2.2)

C = ∂2Eα,β(su+ + tu−)
∂t2

∣∣∣∣
(su,tu)

= Hα(u−) + 3t2uGβ(u−) + bs2
u‖u+‖2‖u−‖2

= 2t2uGβ(u−) < 0, (2.3)

B = ∂2Eα,β(su+ + tu−)
∂s∂t

∣∣∣∣
(su,tu)

= 2bsutu‖u+‖2‖u−‖2 > 0, (2.4)

B2 −AC < 0. (2.5)

Hence by (2.2)-(2.5), we have Eα,β(suu+ + tuu
−) = max

s,t>0
Eα,β(su+ + tu−).

Finally, if Hα(u±) + Gβ(u±) + b‖u+‖2‖u−‖2 = 〈E′
α,β(u), u±〉 ≤ 0, thus Hα(u±) ≤ −Gβ(u±) −

b‖u+‖2‖u−‖2. Notice that Gβ(u±) < 0 and Hα(u±) > 0, one has

DS = −Hα(u+)Gβ(u−) + b‖u+‖2‖u−‖2Hα(u−)

≤
(
Gβ(u+) + b‖u+‖2‖u−‖2) Gβ(u−)

−b‖u+‖2‖u−‖2 (
Gβ(u−) + b‖u+‖2‖u−‖2)

= Gβ(u+)Gβ(u−) − b2‖u+‖4‖u−‖4

= D.

Similarly, we can see that DT ≤ D. Hence, (su, tu) ∈ (0, 1] × (0, 1]. �
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Lemma 2.3. M1
α,β �= ∅ for any (α, β) ∈ (−∞, aα1(β)) × (bμ∗, +∞), where

α1(β) = sup
{

min
{
‖u+‖2

|u+|22
,
‖u+‖2

|u−|22

}
: u ∈ A1(β)

}
.

Proof. Let β > bμ∗, it follows from Lemma 2.1 that A1(β) �= ∅, hence α1(β) > −∞. Suppose that 
α < aα1(β), from the definition of α1(β), there is a u0 ∈ A1(β) such that

α

a
< min

{
‖u+

0 ‖2

|u+
0 |22

,
‖u+

0 ‖2

|u−
0 |22

}
≤ α1(β).

Therefore, we conclude that u0 ∈ A1(β) and Hα(u±
0 ) > 0. Combining with Lemma 2.2, we have u0 ∈

M1
α,β . �
In the following, let us recall the definition of αL(β), and then we will discuss the main properties of 

αL(β). Let

AL(β) =
{
u ∈ H1

0 (Ω) : u± �≡ 0, Gβ(u±) + b‖u+‖2‖u−‖2 ≤ 0
}
,

we define

αL(β) = inf
{

min
{
‖u+‖2

|u+|22
,
‖u−‖2

|u−|22

}
: u ∈ AL(β)

}
.

We assume that αL(β) = +∞ if AL(β) = ∅. Notice that A1(β) ⊂ AL(β), we have αL(β) ≤ α1(β). The 
following lemma contains the main properties of αL(β).

Lemma 2.4. The following assertions hold:

(i) αL(β) = +∞ for any β < bμ∗, and λ1 < αL(β) for any β > bμ∗;
(ii) αL(β) is decreasing for any β > bμ∗;
(iii) αL(β) is right-continuous for any β > bμ∗;
(iv) Let Kα,β = AL(β) ∩

{
u ∈ H1

0 (Ω) : Hα(u+) ≤ 0
}
, if Kα,β �= ∅, then α ≥ aαL(β) and β ≥ bμ∗.

Proof. (i) Similar to the proof of Lemma 2.1, it is easy to obtain that AL(β) = ∅ for any β < bμ∗, and 
thus αL(β) = +∞.

If β > bμ∗, then ∅ �= A1(β) ⊂ AL(β). From the definition of λ1, for any sign-changing function u ∈
H1

0 (Ω), we have min
{

‖u+‖2

|u+|22
, ‖u−‖2

|u−|22

}
> λ1. Hence, in order to prove λ1 < αL(β), it is sufficient to show 

that for any β > bμ∗, there exists a minimizer uβ ∈ AL(β) of αL(β). Set {un} ⊂ AL(β) be a minimizing 
sequence for αL(β), namely

αL(β) = lim inf
n→∞

min
{
‖u+

n ‖2

|u+
n |22

,
‖u−

n ‖2

|u−
n |22

}
.

Denoted by vn := u+
n

‖un‖ −
u−
n

‖un‖ , therefore {vn} is bounded, and then there is a subsequence, still denoted by 
{vn}, and v0, w1, w2 ∈ H1

0 (Ω) such that

vn ⇀ v0, v+
n ⇀ w1, v−n ⇀ w2 in H1

0 (Ω), (2.6)

vn → v0, v+
n → w1, v−n → w2 in L2(Ω) and L4(Ω). (2.7)
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Since the maps u → u+ and u → u− are continuous from Lp(Ω) to Lp(Ω) (see [3], Lemma 2.3), we have 
v+
0 = w1 ≥ 0 and v−0 = w2 ≤ 0 in Ω. Since {un} ⊂ AL(β), one has

b‖u±
n ‖4 − β|u±

n |44 + b‖u+
n ‖2‖u−

n ‖2 = b‖un‖2‖u±
n ‖2 − β|u±

n |44 ≤ 0. (2.8)

Hence, from the weak lower semicontinuity of norm, (2.6) and (2.7), we obtain

Gβ(v±0 ) + b‖v+
0 ‖2‖v−0 ‖2 ≤ lim inf

n→∞

(
Gβ(v±n ) + b‖v+

n ‖2‖v−n ‖2)
= lim inf

n→∞
1

‖un‖4 (b‖u±
n ‖4 − β|u±

n |44 + b‖u+
n ‖2‖u−

n ‖2) ≤ 0.
(2.9)

From (1.2), (2.8) and v±n �≡ 0, for any n, we have

b‖v±n ‖2 = b‖un‖2‖u±
n ‖2

‖un‖4 ≤ β|u±
n |44

‖un‖4 = β|v±n |44 ≤ βτ4‖v±n ‖4,

which implies that ‖v±n ‖2 ≥ b
βτ4 , and then |v±n |44 ≥ b2

β2τ4 for any n. Combining with (2.7), we obtain v±0 �≡ 0. 
Hence together with (2.9), we have v0 ∈ AL(β).

On the other hand, from the weak lower semicontinuity of norm, (2.6) and (2.7) again, we have

αL(β) = lim inf
n→∞

min
{
‖u+

n ‖2

|u+
n |22

,
‖u−

n ‖2

|u−
n |22

}

= lim inf
n→∞

min
{
‖u+

n ‖2/‖un‖2

|u+
n |22/‖un‖2 ,

‖u−
n ‖2/‖un‖2

|u−
n |22/‖un‖2

}

= lim inf
n→∞

min
{
‖v+

n ‖2

|v+
n |22

,
‖v−n ‖2

|v−n |22

}

≥min
{
‖v+

0 ‖2

|v+
0 |22

,
‖v−0 ‖2

|v−0 |22

}
≥ αL(β).

(2.10)

By v0 ∈ AL(β) and (2.10), one gets that uβ := v0 is a minimizer of the function αL(β). Consequently, we 

have αL(β) = min
{

‖u+
β ‖2

|u+
β |22

,
‖u−

β ‖2

|u−
β |22

}
> λ1 for any β > bμ∗.

(ii) Set bμ∗ < β1 ≤ β2, then AL(β1) ⊂ AL(β2), which implies αL(β2) ≤ αL(β1), that is, αL(β) is 
decreasing for any β > bμ∗.

(iii) Since αL(β) is decreasing for any β > bμ∗, it is sufficient to show that αL(β0) ≤ lim
β→β0+0

αL(β) for 

any β0 > bμ∗. Due to the function αL(β) is monotone and bounded in some right neighborhood of β0, we 
have lim

n→∞
αL(βn) = lim

β→β0+0
αL(β) for any decreasing sequence {βn} with βn → β0 + 0 as n → ∞. By the 

proof of assertion (i), there exists a minimizer uβn
∈ AL(βn) of αL(βn) for any n ∈ N+, that is,

lim
n→∞

min
{
‖u+

βn
‖2

|u+
βn
|22

,
‖u−

βn
‖2

|u−
βn
|22

}
= lim

n→∞
αL(βn) = lim

β→β0+0
αL(β). (2.11)

Moreover, without loss of generality, we suppose that ‖u±
βn
‖ = 1, then passing to an appropriate subsequence 

if necessary, uβn
⇀ u∗ in H1

0 (Ω) and uβn
→ u∗ in L2(Ω) and L4(Ω). Now let’s prove that u∗ ∈ AL(β0). First 

of all, since {u±
βn
} converges to u±

∗ strongly in L4(Ω) and 2b − βn|u±
βn
|44 = Gβn

(u±
βn

) + b‖u+
βn
‖2‖u−

βn
‖2 ≤ 0, 

we have u±
∗ �≡ 0. Moreover, by the weak lower semicontinuity of norm, it holds

Gβ0(u±
∗ ) + b‖u+

∗ ‖2‖u−
∗ ‖2 ≤ lim inf(Gβn

(u±
β ) + b‖u+

β ‖2‖u−
β ‖2) ≤ 0.
n→∞ n n n
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Therefore, u∗ ∈ AL(β0). Moreover, we have

αL(β0) ≤ min
{
‖u+

∗ ‖2

|u+
∗ |22

,
‖u−

∗ ‖2

|u−
∗ |22

}
≤ lim inf

n→∞
min

{
‖u+

βn
‖2

|u+
βn
|22

,
‖u−

βn
‖2

|u−
βn
|22

}
. (2.12)

Hence, it follows from (2.11), (2.12) that αL(β0) ≤ lim
β→β0+0

αL(β).

(iv) In fact, by the proof of Lemma 2.1 and ∅ �= Kα,β ⊂ AL(β), we obtain β ≥ bμ∗. Suppose that 
u ∈ Kα,β , then u ∈ AL(β) and ‖u

+‖2

|u+|22
≤ α

a , and from the definition of αL(β), we obtain αL(β) ≤ ‖u+‖2

|u+|22
, thus 

α ≥ aαL(β) and β ≥ bμ∗. �
Lemma 2.5. For any α < aαL(β) and β > bμ∗, there is u0 ∈ M1

α,β such that

Eα,β(u0) = mα,β = inf
u∈M1

α,β

Eα,β(u) and mα,β > 0.

Proof. It follows from Lemma 2.3 and α1(β) ≥ αL(β) that M1
α,β �= ∅ for any (α, β) ∈ (−∞, aαL(β)) ×

(bμ∗, +∞). Let {un} ⊂ M1
α,β be a minimizing sequence for the functional Eα,β, namely Eα,β(un) → mα,β

as n → ∞. From the definition of αL(β), we have

‖u±‖2 ≥ αL(β)|u±|22 for any u ∈ M1
α,β .

Hence, we get

Eα,β(un) = 1
4Hα(un) = 1

4(a‖u+
n ‖2 − α

αL(β)αL(β)|u+
n |22)

+ 1
4(a‖u−

n ‖2 − α

αL(β)αL(β)|u−
n |22)

≥1
4(a‖u+

n ‖2 − α

αL(β)‖u
+
n ‖2) + 1

4(a‖u−
n ‖2 − α

αL(β)‖u
−
n ‖2)

= aαL(β) − α

4αL(β) ‖un‖2,

which implies that {un} is bounded from α < aαL(β). Hence, we can assume that, up to subsequences, 
there exists u0 ∈ H1

0 (Ω) such that

u±
n ⇀ u±

0 in H1
0 (Ω), u±

n → u±
0 in L2(Ω) and L4(Ω)

We first claim u±
0 �≡ 0. Indeed, by (1.2), the definitions of M1

α,β and αL(β), we have

a‖u±
n ‖2 < a‖u±

n ‖2 + b‖u±
n ‖4 + b‖u+

n ‖2‖u−
n ‖2

= α|u±
n |22 + β|u±

n |44 < t0aαL(β)|u±
n |22 + β|u±

n |44
≤ at0‖u±

n ‖2 + β|u±
n |44 ≤ at0‖u±

n ‖2 + βτ4‖u±
n ‖4,

(2.13)

where t0 ∈ (0, 1) satisfies α < t0aαL(β) < aαL(β), which implies that ‖u±
n ‖2 ≥ a−at0

βτ4 > 0. From (2.13), we 
have

β|u±
n |44 ≥ a(1 − t0)‖u±

n ‖2 ≥ a2(1 − t0)2
4 ,
βτ
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which implies that u±
0 �≡ 0 by u±

n → u±
0 strongly in L4(Ω).

Using the weak lower semicontinuity of norm and {un} ⊂ M1
α,β ⊂ A1(β), we obtain

Gβ(u±
0 ) + b‖u+

0 ‖2‖u−
0 ‖2 ≤ lim inf

n→∞

(
Gβ(u±

n ) + b‖u+
n ‖2‖u−

n ‖2) ≤ 0,

and hence u0 ∈ AL(β). We now claim that Hα(u±
0 ) > 0. It follows from (iii) of Lemma 2.4 that AL(β) ∩{

u ∈ H1
0 (Ω) : Hα(u+) ≤ 0

}
= Kα,β = ∅ for any α < aαL(β), and hence Hα(u+

0 ) > 0. Similarly, Hα(u−
0 ) >

0 due to α < aαL(β) and −u0 ∈ AL(β). The claim is proved.
Moreover, from the weak lower semicontinuity of norm again, one has

Hα(u±
0 ) + Gβ(u±

0 ) + b‖u+
0 ‖2‖u−

0 ‖2

≤ lim inf
n→∞

(
Hα(u±

n ) + Gβ(u±
n ) + b‖u+

n ‖2‖u−
n ‖2) ≤ 0.

(2.14)

Then, together with Hα(u±
0 ) > 0, we obtain

Gβ(u±
0 ) + b‖u+

0 ‖2‖u−
0 ‖2 < 0. (2.15)

(2.14) together with (2.15) shows u0 ∈ A1(β) and 〈E′
α,β(u0), u±

0 〉 ≤ 0.
Consequently, from Lemma 2.2, it follows that there exists a unique pair (su0 , tu0) ∈ (0, 1] × (0, 1] such 

that su0u
+
0 + tu0u

−
0 ∈ M1

α,β . We have

mα,β ≤ Eα,β(su0u
+
0 + tu0u

−
0 )

= Eα,β(su0u
+
0 + tu0u

−
0 ) − 1

4 〈E
′
α,β(su0u

+
0 + tu0u

−
0 ), su0u

+
0 + tu0u

−
0 〉

= 1
4
(
a‖su0u

+
0 + tu0u

−
0 ‖2 − α|su0u

+
0 + tu0u

−
0 |22

)
= 1

4s
2
u0

(a‖u+
0 ‖2 − α|u+

0 |22) + 1
4 t

2
u0

(a‖u−
0 ‖2 − α|u−

0 |22)

≤ 1
4(a‖u+

0 ‖2 − α|u+
0 |22) + 1

4(a‖u−
0 ‖2 − α|u−

0 |22)

= 1
4(a‖u0‖2 − α|u0|22)

≤ lim inf
n→∞

(
Eα,β(un) − 1

4 〈E
′
α,β(un), un〉

)
= mα,β ,

which leads to (su0 , tu0) = (1, 1). Hence, u0 = u+
0 + u−

0 ∈ M1
α,β and Eα,β(u0) = mα,β . Finally, notice that 

Hα(u±
0 ) > 0, we have

mα,β = inf
u∈M1

α,β

Eα,β(u) = Eα,β(u0) = 1
4Hα(u0) > 0.

Therefore, we complete the proof. �
Proof of Theorem 1.2. Let α < aαL(β) and β > bμ∗. Assume that u0 ∈ M1

α,β is the minimizer obtained in 
Lemma 2.5, we now prove that u0 is a critical point of the functional Eα,β, namely E′

α,β(u0) = 0. The main 
idea of the proof comes from [2].

First of all, since Eα,β(u0) = maxs,t>0 Eα,β(su+
0 + tu−

0 ) > 0 and Hα(u±
0 ) > 0, from the continuities of 

Eα,β(su+
0 + tu−

0 ) and Hα(tu±
0 ) with respect to s and t, there is a constant 0 < σ < 1 such that
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min
t∈[1−σ,1+σ]

Hα(tu±
0 ) > 0 and 0 < m := max

∂D
Eα,β(su+

0 + tu−
0 ) < mα,β , (2.16)

where D = (1 − σ, 1 + σ) × (1 − σ, 1 + σ). For convenience, define the function g : D → H1
0 (Ω) by 

g(s, t) = su+
0 + tu−

0 for any (s, t) ∈ D.
Let us suppose now that E′

α,β(u0) �= 0, there exist δ > 0 and � > 0 such that

‖E′
α,β(u)‖ ≥ � for all u ∈ H1

0 (Ω) and ‖u− u0‖ < 3δ.

Let us take ε = min{mα,β−m
3 , 	δ8 } and Sδ = {u ∈ H1

0 (Ω) : ‖u − u0‖ ≤ 2δ}, Lemma 1.1 implies that there 
exists a deformation η ∈ C([0, 1] ×H1

0 (Ω), H1
0 (Ω)) such that

(i) η(r, v) = v if r = 0 or if Eα,β(v) < mα,β − 2ε;
(ii) Eα,β(η(r, v)) ≤ Eα,β(v) for all v ∈ H1

0 (Ω) and r ∈ [0, 1];
(iii) Eα,β(η(r, v)) < mα,β for any v ∈ Sδ with Eα,β(v) ≤ mα,β and r ∈ [0, 1].
From Lemma 2.2 and (ii), one has

max
{(s,t)∈D:g(s,t)/∈Sδ}

Eα,β(η(r, g(s, t))) ≤ max
{(s,t)∈D:g(s,t)/∈Sδ}

Eα,β(g(s, t)) < mα,β ,

and Lemma 2.2, (iii) and (su0 , tu0) = (1, 1) implies that

max
{(s,t)∈D:g(s,t)∈Sδ}

Eα,β (η(r, g(s, t))) < mα,β .

Therefore, we have

max
(s,t)∈D

Eα,β(η(r, g(s, t))) < mα,β . (2.17)

From the continuities of η and Hα and (2.16), there is a constant r0 ∈ (0, 1] such that

Hα(η±(r0, g(s, t))) > 0 for any (s, t) ∈ D. (2.18)

We now show that η(r0, g(D)) ∩M1
α,β �= ∅. Let us define ϕ0, ϕ1 : D → R2 as follows:

ϕ0(s, t) =
(
〈E′

α,β(su+
0 + tu−

0 ), su+
0 〉, 〈E′

α,β(su+
0 + tu−

0 ), tu−
0 〉

)
,

ϕ1(s, t) =
(
〈E′

α,β(η(r0, g(s, t))), η+(r0, g(s, t))〉, 〈E′
α,β(η(r0, g(s, t))), η−(r0, g(s, t))〉

)
.

From η(0, g(s, t)) = g(s, t) = su+
0 + tu−

0 for any (s, t) ∈ D and u0 ∈ M1
α,β , Lemma 2.2 and the degree theory 

now yields deg(ϕ0, D, 0) = 1. On the other hand, since ε ≤ mα,β−m
3 , m < mα,β − 2ε. Hence, from (i), for 

any r ∈ [0, 1] and (s, t) ∈ ∂D, we have η(r, g(s, t)) = g(s, t), and it follows that

ϕ0(s, t) = ϕ1(s, t) for any (s, t) ∈ ∂D.

From the homotopy invariance property of the degree, we have deg(ϕ1, D, 0) = deg(ϕ0, D, 0) = 1, that is, 
there exists (s0, t0) ∈ D such that ϕ1(s0, t0) = 0. Moreover, from (2.18), we have η±(r0, g(s0, t0)) �≡ 0, which 
implies that η(r0, g(s0, t0)) ∈ M1

α,β .
Finally, from (2.17), we have

Eα,β(η(r0, g(s0, t0))) < mα,β = inf
u∈M1

α,β

Eα,β(u),

which is a contradiction. Hence, we have E′
α,β(u0) = 0. �
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3. The proof of Theorem 1.3

In this section, our purpose is to prove Theorem 1.3 with the aid of minimax method and Lemma 1.1, 
here we need the functional Eα,β satisfies the (PS)c condition, that is, if any sequence {un} ⊂ H1

0 (Ω) such 
that Eα,β(un) → c ∈ R, E′

α,β(un) → 0 as n → ∞, {un} has a convergent subsequence. Let Sk
+ denote the 

closed unit upper hemisphere in Rk+1 with the boundary Sk−1 and

Λk+1 = {u ∈ H1
0 (Ω) : ‖u‖4 ≥ μk+1|u|44}.

We have the following useful fact:

Lemma 3.1. h(Sk
+) ∩ Λk+1 �= ∅ for any h ∈ {h ∈ C(Sk

+, H
1
0 (Ω)) : h|Sk−1 is odd}.

Proof. Let h ∈ {h ∈ C(Sk
+, H

1
0 (Ω)) : h|Sk−1 is odd}, if there exists u0 ∈ h(Sk

+) such that |u0|4 = 0, we get 
u0 ∈ Λk+1. Without loss of generality, we suppose that |u|4 > 0 for any u ∈ h(Sk

+). Define h̄ : Sk → H1
0 (Ω)

as

h̄(z) =
{

h(z)/|h(z)|4 if z ∈ Sk
+,

−h(−z)/|h(−z)|4 if z ∈ Sk
−,

it is not difficult to verify that h̄ ∈ Σk+1. Therefore, from the definition of μk+1, see (1.6), there is z0 ∈ Sk

such that ‖h̄(z0)‖4 ≥ μk+1|h̄(z0)|44 = μk+1. Since h̄(z) is odd, we can choose z0 ∈ Sk
+. Consequently, 

h(Sk
+) ∩ Λk+1 �= ∅. �

Lemma 3.2. Suppose that βb /∈ σ(−‖ ·‖2Δ), the functional Eα,β satisfies the (PS)c condition for every c ∈ R.

Proof. Assume that {un} is a Palais-Smale sequence at the level c, namely

Eα,β(un) → c, E′
α,β(un) → 0 as n → ∞.

We first show that {un} is bounded. Indeed if not, we suppose that ‖un‖ → ∞ as n → ∞. Let vn := un

‖un‖ , 
therefore ‖vn‖ = 1 and there is a subsequence, still denoted by {vn}, and v0 ∈ H1

0 (Ω) such that

vn ⇀ v0 in H1
0 (Ω), vn → v0 in L2(Ω) and L4(Ω).

This shows that

|〈E′
α,β (un), vn − v0〉|

‖un‖3 ≤
‖E′

α,β (un)‖(H1
0 (Ω))∗

‖un‖3 ‖vn − v0‖ ≤ C1
‖E′

α,β (un)‖(H1
0 (Ω))∗

‖un‖3 → 0

as n → ∞, where C1 is a positive constant, and we obtain

on(1) = 1
‖un‖3 〈E

′
α,β (un), vn − v0〉

= 1
‖un‖3

⎛
⎝(a + b‖un‖2)

∫
Ω

∇un∇(vn − v0)dx

−α

∫
un(vn − v0)dx− β

∫
u3
n(vn − v0)dx

⎞
⎠

Ω Ω
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= a

‖un‖2

∫
Ω

∇vn∇(vn − v0)dx + b

∫
Ω

∇vn∇(vn − v0)dx (3.1)

− α

‖un‖2

∫
Ω

vn(vn − v0)dx− β

∫
Ω

v3
n(vn − v0)dx

= b

∫
Ω

∇vn∇(vn − v0)dx + on(1)

= b〈−Δvn, vn − v0〉 + on(1)

as n → ∞, which implies lim sup
n→∞

〈−Δvn, vn − v0〉 ≤ 0. Due to the (S+) property for the operator −Δ (see 

[5, Theorem 10]) and ‖vn‖ = 1 for any n, we have vn → v0 �= 0 in H1
0 (Ω).

On the other hand, we have

on(1) = 〈E
′
α,β (un)
‖un‖3 , ξ〉 = on(1) + b‖vn‖2

∫
Ω

∇vn∇ξdx− β

∫
Ω

v3
nξdx (3.2)

for any ξ ∈ H1
0 (Ω), and hence letting n → ∞, we see that

b‖v0‖2
∫
Ω

∇v0∇ξdx− β

∫
Ω

v3
0ξdx = 0, (3.3)

which implies that βb ∈ σ(−‖ · ‖2Δ) and v0 is the associated eigenfunction corresponding to βb , and we reach 
a contradiction. Hence, {un} is bounded in H1

0 (Ω).
Next, we will show that {un} has a convergent subsequence. Since {un} is bounded in H1

0 (Ω), without 
loss of generality, we suppose that un ⇀ u0 in H1

0 (Ω) and un → u0 in L2(Ω) and L4(Ω). Therefore, from 
the Hölder’s inequality, we have

on(1) = 〈E′
α,β (un) − E′

α,β (u0), un − u0〉

= a

∫
Ω

∇un∇(un − u0)dx + b‖un‖2
∫
Ω

∇un∇(un − u0)dx

− a

∫
Ω

∇u0∇(un − u0)dx− b‖u0‖2
∫
Ω

∇u0∇(un − u0)dx + on(1)

≥ a‖un − u0‖2 + b‖un‖2(‖un‖2 − ‖un‖‖u0‖)
+ b‖u0‖2(‖u0‖2 − ‖un‖‖u0‖) + on(1)

= a‖un − u0‖2 + b(‖un‖ − ‖u0‖)(‖un‖3 − ‖u0‖3) + on(1),

(3.4)

which shows that un → u0 in H1
0 (Ω) as n → ∞. Hence the functional Eα,β satisfies the (PS)c condition. �

Proof of Theorem 1.3. The proof can be divided into two cases according to the value range of β.
Case βb /∈ σ(−‖ ·‖2Δ). First of all, from the definition of α∗(β), we have αa > λkβ+1 = max{α∗(β), λkβ+1}. 

According to [6], λk can be defined as

λk := inf
h∈Γ

sup ‖h(z)‖2,

k z∈Sk−1



16 B. Chen, Z.-Q. Ou / J. Math. Anal. Appl. 481 (2020) 123476
where Γk := {h ∈ C(Sk−1, S) : h is odd} and S := {u ∈ H1
0 (Ω) : |u|2 = 1}. There exist a ε0 > 0 and 

h0 ∈ Γkβ+1 ⊂ C(Skβ , H1
0 (Ω)) such that αa > λkβ+1 + ε0 and

max
z∈Skβ

‖h0(z)‖2 < λkβ+1 + ε0

2

via the definition of λkβ+1. Therefore we can choose t0 > 0 small enough such that

ρ = max
z∈Skβ

Eα,β(t0h0(z))

= max
z∈Skβ

(
1
2 t

2
0(a‖h0(z)‖2 − α) + 1

4 t
4
0(b‖h0(z)‖4 − β|h0(z)|44)

)

≤ at20
2 ( max

z∈Skβ

(‖h0(z)‖2 − α

a
) + t40

4 max
z∈Skβ

(b‖h0(z)‖4 − β|h0(z)|44)

≤ −aε0

4 t20 + t40
4 max

z∈Skβ

(b‖h0(z)‖4 − β|h0(z)|44) < 0.

(3.5)

On the other hand, using bμkβ+1 > β and the Hölder’s inequality, we get

δ := inf
u∈Λkβ+1

Eα,β(u) = inf
u∈Λkβ+1

(
1
2a‖u‖

2 − 1
2α|u|

2
2 + 1

4b‖u‖
4 − 1

4β|u|
4
4

)

≥ inf
u∈Λkβ+1

(
−α

2 |Ω| 12 |u|24 +
bμkβ+1 − β

4μkβ+1
‖u‖4

)

≥ inf
u∈Λkβ+1

(
−α

2 |Ω| 12μ
−1
2

1 ‖u‖2 +
bμkβ+1 − β

4μkβ+1
‖u‖4

)
> −∞.

(3.6)

From h0 ∈ Γkβ+1 and Lemma 3.1 with k = kβ , that is, h0(S
kβ

+ ) ∩ Λkβ+1 �= ∅, we have ρ ≥ δ.
Finally, we will show that the functional Eα,β has at least one critical value in [δ − 1, ρ]. Suppose that 

the conclusion is false, since the functional Eα,β satisfies the (PS)c condition for every c ∈ R, Lemma 1.1
shows that there exists a deformation η ∈ C([0, 1] ×H1

0 (Ω), H1
0 (Ω)) such that η(t, ·) is odd for any t ∈ [0, 1]

and

Eα,β(η(1, t0h0(z))) < δ − 1 for all z ∈ Skβ . (3.7)

But notice that h0(z) is odd in Skβ and η(1, u) is odd in H1
0 (Ω), we have η(1, t0h0(z)) is odd in Skβ . From 

Lemma 3.1 with k = kβ , it follows that η(1, t0h0(S
kβ

+ )) ∩Λkβ+1 �= ∅. Hence, there exists z1 ∈ Skβ such that 
η(1, (t0h0(z1))) ∈ Λkβ+1, whence δ ≤ Eα,β(η(1, t0h0(z1))) form (3.6), which is a contradiction with (3.7). 
Hence the hypothesis can not hold and the proof is completed.

Case β
b ∈ σ(−‖ · ‖2Δ). Set α

a > max{α∗(β), λkβ+1}, (3.5) holds, that is, there exist a t0 > 0 and 
h0 ∈ Γkβ+1 such that

ρ = max
z∈Skβ

Eα,β(t0h0(z)) < 0. (3.8)

Choose {βn

b } ⊂ R\σ(−‖ · ‖2Δ) with βn → β as n → ∞, by a simple calculation, we get

ρn : = max
z∈Skβ

Eα,βn
(t0h0(z))

= max
k

(
Eα,β(t0h0(z)) + 1

β|t0h0(z)|44 −
1
βn|t0h0(z)|44)

)

z∈S β 4 4
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≤ ρ + |β − βn|t40
4 max

z∈Skβ

|h0(z)|44 < 0 (3.9)

for large n. Notice that β < bμkβ+1, we have βn < bμkβ+1 for sufficiently large n ∈ N , and hence similar 
to the proof of the case β

b /∈ σ(−‖ · ‖2Δ), we see that there exists a critical point un of Eα,βn
in H1

0 (Ω)
with cn := Eα,βn

(un) ∈ [δn − 1, ρn], where δn := inf
u∈Λkβ+1

Eα,βn
(u) > −∞. From the Hölder’s inequality and 

(1.2), for any ξ ∈ H1
0 (Ω), we have

|〈E′
α,β(un), ξ〉| = |〈E′

α,β(un) −E′
α,βn

(un), ξ〉| =

∣∣∣∣∣∣(βn − β)
∫
Ω

u3
nξdx

∣∣∣∣∣∣
≤|βn − β| |un|34 |ξ|4 ≤ τ4|βn − β| ‖un‖3 ‖ξ‖,

(3.10)

which implies E
′
α,β(un)
‖un‖3 → 0 as n → ∞.

Next we will show that {un} converges strongly in H1
0 (Ω). It is sufficient to show that {un} is bounded 

in H1
0 (Ω). And then, combining (3.10) with the boundedness of {un}, we obtain that {un} is a Palais-Smale 

sequence for the functional Eα,β, thus {un} has a subsequence, still denoted by {un}, such that (3.4) holds 
and then un → u0 in H1

0 (Ω).
We now prove that {un} is bounded. Indeed, if ‖un‖ → ∞ as n → ∞, let vn := un

‖un‖ , from (3.1), (3.2)
and (3.3), we can assume vn → v0 ∈ Bβ/b\{0}. Since

δn − 1
‖un‖2 ≤ cn

‖un‖2 = Hα(vn) = 1
‖un‖2 (4Eα,βn

(un) − 〈E′
α,βn

(un), un〉) ≤
ρn

‖un‖2 < 0,

if {δn} is bounded, then Hα(vn) → Hα(v0) = 0 as n → ∞. But from αa > α∗(β) = sup{‖u‖2

|u|22
: u ∈ Bβ/b\{0}}, 

we see

Hα(u) = a‖u‖2 − α|u|22 < 0

for any u ∈ Bβ/b\{0}, and hence Hα(v0) < 0, which is a contradiction with Hα(v0) = 0. Consequently, 
un → u0 in H1

0 (Ω) and u0 is a critical point of Eα,β .
We now claim that {δn} is bounded. Taking β0 ∈ R such that βn < β0 < bμkβ+1 for sufficiently large 

n ∈ N , then (3.6) holds, that is, inf
u∈Λkβ+1

Eα,β0(u) > −∞. On the other hand, Eα,βn
(u) > Eα,β0(u) for any 

u ∈ H1
0 (Ω), hence {δn} is bounded.

Furthermore, from (3.8) and (3.9), we have

Eα,β(u0) = lim sup
n→∞

Eα,βn
(un) = lim sup

n→∞
cn ≤ lim sup

n→∞
ρn ≤ ρ + o(1) < 0,

which implies that u0 is nontrivial solution and its energy is negative, and the proof is completed. �
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