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1. Introduction

Optimal stopping problems attracted generations of mathematicians due to both their interesting math-
ematical characteristics and their important applications. Early work was developed by Dynkin [12], 
Grigelionis and Shiryaev [19], Dynkin and Yushkevich [13]. A general theory can be found in books by 
Shiryaev [36] and Peskir and Shiryaev [31]. Several methods have been developed to deal with this type of 
problems.

Methods based on excessive functions date back to the pioneer work of Dynkin [12], and have been 
used by, among others, Dynkin and Yushkevich [13], Fakeev [14], Thompson [37], Shiryaev [36], Salminen 
[34], Alvarez [1], Dayanik and Karatzas [11], Lamberton and Zervos [24], among others. These methods are 
tightly connected with the concavity and monotonicity properties of the value function.

An alternative approach based on variational methods and inequalities was pioneered by Grigelionis and 
Shiryaev [19], and Bensoussan and Lions [8]. It was used in many works, namely Nagai [27], Friedman 
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[16], Krylov [22], Bensoussan and Lions [9] Øksendal [28], Lamberton [23], Lamberton and Zervos [24], 
Rüschendorf and Urusov [33], Belomestny, Rüschendorf and Urusov [7], among others. Usually this approach 
requires some regularity assumptions on the problem’s data and on the value function. Progress has been 
made in relaxing these assumptions, showing that the value function satisfies the appropriate variational 
inequality in various weak senses (see, for example, Friedman [16], Nagai [27], Zabczyk [39], Øksendal and 
Reikvam [29], Bassan and Ceci [4], Bensoussan and Lions [9], Lamberton [23], Lamberton and Zervos [24]). 
The variational approach allows for the development of some effective numerical methods (see, for example, 
Glowinski, Lions and Trémolières [17], or Zhang [40]).

A third approach, based on change of measure techniques and martingale theory, was introduced by 
Beibel and Lerche [5,6], and was further developed by several authors, namely Alvarez [1–3], Lerche and 
Urusov [26], Lempa [25], Christensen and Irle [10]. This approach proved successful in characterizing the 
optimal strategy at any given point of the state space.

In this paper we consider the optimal stopping problem of a general diffusion when the optimality criterion 
is an integral functional. More precisely, we seek the stopping time τ̂ maximizing the expected outcome

J(x, τ) = Ex

⎡
⎣ τ∫

0

e−ρsΠ(Xs)ds

⎤
⎦ , (1)

where

ρt =
t∫

0

r(Xs)ds 0 ≤ t < τI , (2)

and X solves the stochastic differential equation

dXt = α(Xt)dt + σ(Xt)dWt (3)

up to the explosion time τI (possibly infinite). Ex means expected value conditional on X0 = x, W is a 
standard Brownian motion and r, α, σ and Π are measurable real functions, satisfying minimal assumptions 
discussed in Section 2 below. In particular, the functions r, α, σ and Π may be discontinuous. As usual, τ
is an admissible stopping time if and only if it is a stopping time with respect to the filtration generated by 
the process X and τ ≤ τI almost certainly.

This class of optimal stopping problems has received little attention compared with optimal stopping 
problems where the functional being maximized is of type

J̃(x, τ) = Ex

[
e−ρτ Π(Xτ )χτ<τI

]
. (4)

This is understandable, since the functional (4) arises naturally in many applications, particularly in the 
theory of American Options in mathematical finance. However, the problem (1)–(2)–(3) also has important 
applications, among others, in the theories of Asian Options and Real Options. Further, some known prob-
lems in the literature of optimal stopping and stochastic control can be reduced to the form (1)–(2)–(3) (see 
for example, Graversen, Peskir and Shiryaev [18], and Karatzas and Ocone [20]). It is known that, under 
an integrability assumption (see Remark 2.1 below), Problem (1)–(2)–(3) can be reduced to an equivalent 
problem of the form (4)–(2)–(3). We do not assume such integrability condition and therefore reduction of 
(1)–(2)–(3) to (4)–(2)–(3) is, in general, not possible. Similarly, it is common to assume that the instan-
taneous discount rate r(·) in (2) is non-negative (see e.g. Alvarez [3], Beibel and Lerche[6], Belomestny, 
Rüschendorf and Urusov [7], Christensen and Irle [10], Dayanik and Karatzas [11], Fakeev [14], Graversen, 
Peskir and Shiryaev [18], Grigelionis and Shiryaev [19], Lamberton [23], Lamberton and Zervos [24], Lempa 
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[25], Oksendal and Reikvam [29], Peskir [30], Ruschendorf and Urusov [33], Samee [35], Zabczyk [39]), but 
in this work we do not put any constraint in the sign of r, requiring it to satisfy only a local integrability 
condition.

Our approach is closely related to the works of Rüschendorf and Urusov [33], and Belomestny, Rüschendorf 
and Urusov [7]. We show that the value function solves a variational inequality in the Carathéodory sense. 
Thus, it is a continuously differentiable function with absolutely continuous first derivative, and it is not 
necessary to consider further weak solutions. The free boundary is fixed by a C1 fit condition, coupled with 
a global non-negativity condition. Notice that the necessity (or not) of a smooth fit principle is a topic of 
current literature. For instance, works by Dayanik and Karatzas [11] (section 7), Villeneuve [38], Rüschendorf 
and Urusov [33], Belomestny, Rüschendorf and Urusov [7], and Lamberton and Zervos [24], prove that in 
certain cases, the smooth fit principle holds. This contrasts with works by Salminen [34], Peskir [30], and 
Samee [35], which find examples where the smooth fit principle fails.

Rüschendorf and Urusov [33] and Belomestny, Rüschendorf and Urusov [7] deal with the problem 
(1)–(2)–(3) assuming that the function Π is of so-called “two-sided form”. The corresponding variational 
inequality is solved assuming a priori that the value function coincides on its support with the solution 
of an ordinary differential equation with two-sided zero boundary condition. Therefore, the method does 
not provide any information in cases when the value function is of some other form (e.g., a solution of the 
differential equation with only one-sided zero boundary condition), even if Π belongs to the restricted class 
of functions of “two-sided form”. In this paper, we solve the variational inequality without assuming any 
particular behavior for Π or the value function, obtaining a characterization of the value function in terms 
of Π and the fundamental solution of a system of linear differential equations. As can be expected with 
this generality, the value function can assume many different forms, but it can always be found, at least 
on a given compact interval, by solving a finite-dimensional system of nonlinear equations. In particular, 
we address the issues raised in the remarks after Theorem 2.2 and in the remarks after Theorem 2.3 of 
Rüschendorf and Urusov [33], as well as in the remarks after Theorem 2.2 of Belomestny, Rüschendorf and 
Urusov [7].

Lamberton and Zervos [24] show that the value function for the problem (4)–(2)–(3) is the difference 
between two convex functions. Every function with absolutely continuous first derivative can be represented 
as the difference between two convex functions, but the converse is not true, since the derivative of a convex 
function can have countably many points of discontinuity. Thus our results show that the value function for 
the problem (1)–(2)–(3) is somewhat more regular than the solutions in [24].

Contrary to the results above, we do not assume any bound on the growth of the value function. This 
reflects the fact that in our approach the value function can be constructed as the upper envelope of a 
family of fundamental solutions, rather than as a lower envelope, as in the superhamonic characterization
used in Dayanik and Karatzas [11], and Lamberton and Zervos [24]. Also, our proof is considerably shorter 
and much simpler, using only the Itō-Tanaka and occupation times formulae and some basic theory of linear 
ordinary differential equations. Our characterization of the value function reduces to some finite-dimensional 
equations, which is quite convenient for applications.

This paper is organized as follows. Section 2 contains the complete definition of problem (1)–(2)–(3), with 
the formulation of our working assumptions. Section 3 contains an outline of some elementary background 
material and sets some notation not introduced in Section 2. Section 4 contains the main results in the 
paper and some discussion on their usage to solve problems of type (1)–(2)–(3). Proofs of these results are 
postponed to Section 6. Section 5 contains some examples of solutions of optimal stopping problems.

2. Problem setting

Let α, r, Π : I �→ R, σ : I �→]0, +∞[ be Borel-measurable functions, where I =]m, M [ is an open interval 
with −∞ ≤ m < M ≤ +∞. I = I ∪ {∞} denotes the one-point (Aleksandrov) compactification of I.
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Assumption 2.1. The functions 1
σ2 , α

σ2 are locally integrable with respect to the Lebesgue measure in I.

By Theorem 5.15 in Chapter 5 of Karatzas and Shreve [21], Assumption 2.1 guarantees existence and 
uniqueness (in law) of a weak solution for the stochastic differential equation (3), up to explosion time. In 
all the following, (Ω, F , {Ft}t≥0, P, X, W ) denotes a given weak solution up to explosion time of equation 
(3). τI denotes the explosion time, and the process X is extended to the time interval [0, +∞[ by setting 
Xt = ∞ for t ≥ τI . For every t ≥ 0, FX

t is the σ-algebra generated by {Xs}0≤s≤t, augmented with all the 
P -null events. Due to continuity of X, the filtration {Ft}t≥0 is right-continuous. We denote by T the set of 
all stopping times τ adapted with respect to the filtration {FX

t }t≥0 such that τ ≤ τI . The optimal stopping 
problem considered in this paper consists of finding the maximizers of (1) over the set T .

For any real-valued function f , we set

f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0).

Besides Assumption 2.1, we take the following assumptions concerning the functional (1):

Assumption 2.2. The function r
σ2 is locally integrable with respect to the Lebesgue measure in I.

Assumption 2.3. The function Π
σ2 is locally integrable with respect to the Lebesgue measure in I, the sets 

{x ∈ I : Π(x) > 0} and {x ∈ I : Π(x) < 0} have both positive Lebesgue measure, and

Ex

⎡
⎣ τI∫

0

e−ρtΠ+(Xt)dt

⎤
⎦ < +∞ ∀x ∈ I. (5)

Remark 2.1. If (5) is replaced by the stronger

Ex

⎡
⎣ τI∫

0

e−ρt |Π(Xt)| dt

⎤
⎦ < +∞ ∀x ∈ I,

then Problem (1)–(2)–(3) can be reduced to a problem of type (4)–(2)–(3). However, such reduction is not, 
in general, possible under condition (5).

It turns out (see Proposition 6.2) that Assumption 2.3 is equivalent to the apparently weaker:

Assumption 2.4. The function Π
σ2 is locally integrable with respect to the Lebesgue measure in I, the sets 

{x ∈ I : Π(x) > 0} and {x ∈ I : Π(x) < 0} have both positive Lebesgue measure, and there is some x ∈ I

such that

Ex

⎡
⎣ τI∫

0

e−ρtΠ+(Xt)dt

⎤
⎦ < +∞.

We will see in Section 3 that local integrability of α
σ2 , r

σ2 and Π
σ2 is necessary and sufficient for existence of 

solution for Equation (8) and therefore, it is necessary for existence of solution of the variational inequality 
(7). Further, if the set {x ∈ I : Π(x) > 0} is negligible, then τ ≡ 0 is trivially optimal. Conversely, when 
the set {x ∈ I : Π(x) < 0} is negligible, then τI is trivially optimal. Taking into account the equivalence 
between Assumptions 2.3 and 2.4, if Ex

[∫ τI
0 e−ρtΠ+(Xt)dt

]
= +∞ and Ex

[∫ τI
0 e−ρtΠ−(Xt)dt

]
< +∞ then 

τI is trivially optimal. If Ex

[∫ τI e−ρtΠ+(Xt)dt
]

= Ex

[∫ τI e−ρtΠ−(Xt)dt
]

= +∞ then, the functional (1) is 
0 0
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not well defined at least for some stopping times τ ∈ T . Thus, Assumption 2.3 excludes some trivial cases 
and cases where optimization cannot be carried over the set T .

In Rüschendorf and Urusov [33], a similar problem is considered without requiring Ex

[∫ τI
0 e−ρtΠ+(Xt)dt

]
<

∞, opting instead to optimize (1) over the set of all stopping times τ ≤ τI such that Ex

[∫ τ

0 e−ρtΠ(Xt)dt
]

is well defined. It is shown that such formulation includes cases where the value function

V (x) = sup
τ∈T

Ex

⎡
⎣ τ∫

0

e−ρsΠ(Xs)ds

⎤
⎦ . (6)

is well defined and finite but there is no optimal stopping time. We will show below (Theorem 4.1) that 
Assumptions 2.1, 2.2 and 2.3 exclude the occurrence of such phenomena: an optimal stopping time always 
exists of the form

τ = inf {t ≥ 0 : V (Xt) = 0} ∧ τI .

3. Background and notation

Taking into account the general results relating variational inequalities with optimal stopping (see, e.g. 
Peskir and Shiryaev [31] or Krylov [22]), it is expected that the value function (6) satisfies the Hamilton-
Jacobi-Bellman equation

min
{
r(x)v(x) − α(x)v′(x) − σ(x)2

2 v′′(x) − Π(x), v(x)
}

= 0. (7)

Often, similar variational inequalities are presented in slightly different forms, as free boundary problems, 
as in Grigelionis and Shiryaev [19]. Obviously any solution v of (7) must coincide with a solution of the 
ordinary differential equation

r(x)v(x) − α(x)v′(x) − σ(x)2

2 v′′(x) − Π(x) = 0, (8)

in any interval where v(x) > 0. Equation (8) is equivalent to the system of first-order differential equations

w′(x) = A(x)w(x) + b(x), (9)

where

w(x) =
(
v(x)
v′(x)

)
, b(x) =

( 0
−2Π(x)

σ(x)2

)
and A(x) =

( 0 1
2r(x)
σ(x)2 −2α(x)

σ(x)2

)
.

Solutions for the system (9) are understood in the Carathéodory sense, that is, w : I �→ R2 is said to be a 
solution of (9) if it is absolutely continuous and satisfies

w(x) = w(a) +
x∫

a

(A(z)w(z) + b(z)) dz ∀x ∈ I,

where a is an arbitrary point of I. Thus, the solutions of equation (8) are continuously differentiable 
functions with absolutely continuous first derivatives. Similarly, we say that a function v is a solution of the 
Hamilton-Jacobi-Bellman equation (7) if and only if v is continuously differentiable, its first derivative is 
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absolutely continuous, and v satisfies (7) almost everywhere with respect to the Lebesgue measure. In other 
words, any solution v of equations (7) or (8) can be written as the difference between two convex functions 
with absolutely continuous derivatives. This class of functions is a subset of the class used in Lamberton 
and Zervos [24], but we do not use this fact in this paper.

Let

Φ(x, y) =
(
φ11(x, y) φ12(x, y)
φ21(x, y) φ22(x, y)

)

be the fundamental solution of the homogeneous system w′ = Aw. That is, Φ the unique solution of the 
matrix differential equation

∂

∂y
Φ(x, y) = A(y)Φ(x, y), Φ(x, x) = Id

where Id represents the identity matrix.
Local integrability of α

σ2 and r
σ2 , as required in Assumptions 2.1 and 2.2, is necessary and sufficient for 

existence and uniqueness of Φ(x, y) for every x, y ∈ I (see e.g. Theorem 1.3 in Filippov [15]). The additional 
Assumption 2.3 guarantees existence of one unique solution for the non-homogeneous system (9) defined in 
the whole interval I, for every initial condition v(a) = v̂1, v′(a) = v̂2 with a ∈ I, v̂1, ̂v2 ∈ R. Any solution of 
(9) can be written in the form

w(x) = Φ(a, x)

⎛
⎝w(a) +

x∫
a

Φ(a, z)−1b(z)dz

⎞
⎠ = Φ(a, x)w(a) +

x∫
a

Φ(z, x)b(z)dz, (10)

where a is an arbitrary point of I. That is, any solution of (8) can be written in the form

v(x) = v(a)φ11(a, x) + v′(a)φ12(a, x) −
x∫

a

2Π(z)
σ(z)2 φ12(z, x)dz, ∀x ∈ I. (11)

For any a, b ∈ I, with a < b, and any d ∈ R, we introduce the functions

va,d(x) = dφ12(a, x) −
x∫

a

2Π(z)
σ(z)2 φ12(z, x)dz x ∈ I, (12)

v[a,b](x) =
∫ b

a
2Π(z)
σ(z)2 φ12(z, b)dz
φ12(a, b)

φ12(a, x) −
x∫

a

2Π(z)
σ(z)2 φ12(z, x)dz x ∈ I. (13)

These functions are, respectively, the solution of (8) with initial conditions v(a) = 0, v′(a) = d, and the 
solution of (8) with boundary conditions v(a) = v(b) = 0. We will show below (Proposition 6.1) that 
Assumption 2.3 implies φ12(a, b) > 0 for every m < a < b < M and hence v[a,b] is well defined and is 
the unique solution of the corresponding boundary value problem. Belomestny, Rüschendorf and Urusov [7]
proved a similar result using the probabilistic representation of such equation (8). We provide a shorter and 
more general proof using classical arguments from the theory of ordinary differential equations.

If a = m or b = M (or both), then we can pick monotonic sequences an, bn ∈]a, b[ such that lim
n→∞

an = a

and lim
n→∞

bn = b. If there is a function v :]a, b[ �→ R such that

lim v[an,bn](x) = v(x)

n→∞



M. Guerra et al. / J. Math. Anal. Appl. 481 (2020) 123473 7
for every x ∈]a, b[ and every sequences an, bn as above, then we denote that function by v[a,b]. Existence of 
v[m,b], v[a,M ], v[m,M ] defined in this way is not in general guaranteed. Proposition 4.1(c) below shows that 
they exist in important cases. Notice that in the case a = m (resp., b = M), the definition above does not 
imply that lim

x→a
v[a,b](x) = 0 (resp., lim

x→b
v[a,b](x) = 0). We will be specially interested in intervals such that

a < b and v[a,b](x) > 0 ∀x ∈]a, b[. (14)

Thus, we introduce the following definition.

Definition 3.1. We say that an interval ]a, b[ with m < a < b < M , is maximal for condition (14) if it satisfies 
(14) and is not a proper subset of any other such interval.

If a = m or b = M (or both), we say that ]a, b[ is maximal for condition (14) if there is a monotonically 
increasing sequence ]an, bn[ with m < an < bn < M , such that every ]an, bn[ satisfies (14), ]a, b[=

⋃
n∈N

]an, bn[, 

and ]a, b[ is not a proper subset of any other such interval.

In the following, L+ denotes the set of all Lebesgue points of the function x �→ Π(x)
σ(x)2 such that Π(x) > 0. 

L− denotes the set of all Lebesgue points of the function x �→ Π(x)
σ(x)2 such that Π(x) < 0.

4. Main results

In this section we state our main results without proofs. Full proofs are postponed to Section 6.
Throughout this section, Assumptions 2.1, 2.2 and 2.3 are supposed to hold.
Our characterization of the value function (Theorem 4.1) relies on maximal intervals for (14) and the 

corresponding functions v[a,b]. Before stating the main result of the section, we give the following properties 
of maximal intervals.

Proposition 4.1. The following statements hold true:

a) Different maximal intervals for (14) have empty intersection.
b) Every x ∈ L+ lies in some maximal interval for condition (14). Conversely, if ]a, b[ is maximal for (14), 

then ]a, b[∩L+ 
= ∅.
c) If ]a, b[ is maximal for (14), then v[a,b] is well defined even if a = m and/or b = M , and v[a,b](x) ≥ 0

for every x ∈ I. Conversely, if v is a solution of (8) such that v(x) ≥ 0 for every x ∈ I, and a < b are 
two consecutive zeroes of v, then ]a, b[ is maximal for (14).

By definition, maximal intervals have positive length. Since they are pairwise disjoint, this implies that 
there are at most countably many different maximal intervals for condition (14). Consequently, we have the 
following characterization of the value function.

Theorem 4.1. Let {]ak, bk[, k = 1, 2, . . .} be the collection of all maximal intervals for condition (14).
The value function (6) is

V (x) =
{

v[ak,bk](x) for x ∈]ak, bk[, k = 1, 2, . . . ,
0 for x ∈ I \

⋃
k

]ak, bk[. (15)

The random time τ = inf {t ≥ 0 : V (Xt) = 0} ∧ τI is an optimal stopping time.
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Theorem 4.1 begs for some practical way to identify the maximal intervals for (14). Proposition 4.1 gives 
some important information. We complete it with the following:

Proposition 4.2. For any a ∈ I, b ∈]a, M ], ]a, b[ is maximal for (14) if and only if:

a) va,0(x) ≥ 0 for every x ∈ I, and
b) there is a sequence an ∈]a, M [∩L− such that {x > an : van,0(x) ≤ 0} 
= ∅ for every n and

lim
n→∞

an = a, and lim
n→∞

(inf {x > an : van,0(x) ≤ 0}) = b.

In that case, v[a,b] = va,0.
For any b ∈ I, a ∈ [m, b[, ]a, b[ is maximal for (14) if and only if:

c) vb,0(x) ≥ 0 for every x ∈ I, and
d) there is a sequence bn ∈]m, b[∩L− such that {x < bn : vbn,0(x) ≤ 0} 
= ∅ for every n and

lim
n→∞

bn = b, and lim
n→∞

(sup {x < bn : vbn,0(x) ≤ 0}) = a.

In that case, v[a,b] = vb,0.

Fix a interval ]a, b[ with m < a < b < M , maximal for (14). Due to the propositions above, we have 
v[a,b] = va,0 = vb,0. By (12), v′a,0(x) = − 

∫ x

a
2Π(z)
σ(z)2 φ22(z, x)dz. Hence, the points a, b solve the following set 

of nonlinear equations

b∫
a

Π(z)
σ(z)2φ12(z, b)dz = 0,

b∫
a

Π(z)
σ(z)2φ22(z, b)dz = 0, a < b. (16)

If ]a, M [ is maximal for (14) and a ∈ I, then for any sequence {bn ∈ I}n∈N converging to M , a solves the 
equation:

lim
n→∞

bn∫
a

Π(z)
σ(z)2φ12(z, bn)dz = 0. (17)

Similarly, if ]m, b[ is maximal for (14) and b ∈ I, then for any sequence {an ∈ I}n∈N converging to m, b
solves the equation:

lim
n→∞

b∫
an

Π(z)
σ(z)2φ12(z, an) = 0. (18)

In Section 5 we will see that equations (16), (17), (18) simplify considerably when X is a geometric Brownian 
motion.

Theoretically, the value function can be found through the following steps:

(I) Find the solutions of (16). Discard any solutions (a, b) such that 
∫ x

a
Π(z)
σ(z)2φ12(z, x)dz > 0 for some 

x ∈ I.
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This yields at most countably many solutions (ak, bk), k = 1, 2, . . ., and the collection of all the intervals 
between consecutive zeroes of some vak,0 is the collection of all maximal intervals for (14), with a > m

and b < M .
(II) If there is some a ∈ I such that va,0(x) ≥ 0 for every x ∈ I, then find

â = inf {a ∈ I : va,0(x) ≥ 0 for every x ∈ I} , b̂ = sup {b ∈ I : vb,0(x) ≥ 0 for every x ∈ I} .

If â > m, then ]m, ̂a[ is maximal for (14). If b̂ < M , then ]b̂, M [ is maximal for (14).
This yields all maximal intervals of type ]m, a[ or ]b, M [, if such intervals exist.

(III) If for every a ∈ I there is some x ∈ I such that va,0(x) < 0, then I is maximal for (14).

5. Examples

Rüschendorf and Urusov [33], and Belomestny, Rüschendorf and Urusov [7] characterize the value function 
(6) as the solution of a free boundary problem, assuming that the function Π is of “two sided form” and the 
support of the value function is an interval [a, b], with m < a < b < M . The results in the previous section 
do not require any particular structure neither for Π nor for the value function.

In Example 1 we discuss a case where Π is of “two sided form” but the value function may fail to satisfy 
the assumption in [33,7], depending on parameters. Example 2 deals with a simple case where Π is not of 
“two sided form”. In both Examples, we assume that the process X is a geometric Brownian motion and 
the discount rate is constant. This means that α(x) = αx, σ(x) = σx, r(x) = r, with α, σ, r constants 
and I =]0, +∞[. Moreover, Px{τI = +∞} = 1, for every x ∈]0, +∞[, where Px denotes the conditional 
probability in X0 = x. The matrix A(x) is

A(x) =
(

0 1
2r

σ2x2 − 2α
σ2x

)
.

Before presenting the examples, we will discuss the fundamental solution Φ associated with this matrix.
The ordinary differential equation (8) takes the form

rv(x) − αxv′(x) − σ2

2 x2v′′(x) − Π(x) = 0. (19)

Using the change of variable x = ez and y(z) = v(ez), this reduces to the equation with constant coefficients:

ry(z) −
(
α− σ2

2

)
y′(z) − σ2

2 y′′(z) − Π(ez) = 0. (20)

The fundamental matrix Φ is characterized by the roots of the characteristic polynomial of (20)

P (d) = −σ2

2 d2 −
(
α− σ2

2

)
d + r.

Let d1 and d2 be the roots of P . The model’s data, (r, α, σ) may be parametrized by (d1, d2, σ) through the 
relations

α = σ2

2 (1 − d1 − d2) and r = −σ2

2 d1d2.

Three different cases must be considered: (i) d1 = d2 ∈ C \ R, (ii) d1 = d2 ∈ R and (iii) d1, d2 ∈ R with 
d1 
= d2.
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Case (i): Let d1 = a + ib, d2 = a − ib. The fundamental matrix associated to Equation (19) is

Φ(x, y) =
(y
x

)a⎛⎝ b cos
(
b log

(
y
x

))
−a sin

(
b log

(
y
x

))
b

x sin
(
b log

(
y
x

))
b

−
(
a2+b2

)
sin
(
b log

(
y
x

))
by

x
y

b cos
(
b log

(
y
x

))
+a sin

(
b log

(
y
x

))
b

⎞
⎠ .

Thus, the function y → φ1,2(x, y) has infinitely many zeroes. Therefore, in light of Proposition 6.1

Ex

⎡
⎣ +∞∫

0

e−rtΠ+(Xt)dt

⎤
⎦ = +∞ (21)

for every x ∈]0, +∞[ and every measurable Π such that the set {x > 0 : Π(x) > 0} has strictly positive 
Lebesgue measure. Thus, Assumption 2.3/2.4 fails.

Case (ii): Let d = d1 = d2. In this case, the fundamental matrix is

Φ(x, y) =
(y
x

)d( (1 − d log
(
y
x

))
x log

(
y
x

)
−d2

y log
(
y
x

)
x
y

(
1 + d log

(
y
x

))
)
.

For every x ∈]0, +∞[, the function y �→ φ12(x, y) has one unique zero. However, a tedious but trivial 
computation shows that

lim
n→+∞

v[ 1
n ,n](x) = +∞ for every x > 0

whenever Π is non-negative and the set {x > 0 : Π(x) > 0} has strictly positive Lebesgue measure. Thus, 
(21) holds also in this case.

Case (iii): Without loss of generality, we assume that d1 < d2. The fundamental matrix is

Φ(x, y) =

⎛
⎝ d2

(
y
x

)d1−d1
(
y
x

)d2

d2−d1
x
(
y
x

)d2−
(
y
x

)d1

d2−d1

d1d2

(
y
x

)d1−1−
(
y
x

)d2−1

(d2−d1)x
d2
(
y
x

)d2−1−d1
(
y
x

)d1−1

d2−d1

⎞
⎠ . (22)

Like in case (ii), for every x > 0 the function y �→ φ12(x, y) has one unique zero. Thus, the discussion 
above leaves this as the only interesting case. For this reason, in both examples below we will assume that 
d1, d2 ∈ R, with d1 < d2.

Notice that in case (iii), substitution of (22) in (12), yields

va,0(x) = −2
(d2 − d1)σ2

x∫
a

(
x
z

)d2 −
(
x
z

)d1

z
Π(z)dz. (23)

Equations (16) reduce to

b∫
a

z−d2−1Π(z)dz = 0,
b∫

a

z−d1−1Π(z)dz = 0, a < b, (24)

and Equations (17), (18) become

+∞∫
z−d2−1Π(z)dz = 0,

b∫
z−d1−1Π(z)dz = 0, (25)
a 0
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respectively. Notice that (23)–(24)–(25) show that the inverse volatility 1
σ2 acts as multiplicative parameter 

in the value function.

Example 1. Fix 0 < x1 < x2 < +∞, and let Π be the piecewise constant function

Π(x) = 2χ[x1,x2](x) − 1, for all x > 0.

This function is of “two sided form” in the sense of Belomestny, Rüschendorf and Urusov [7].
Due to Proposition 4.1, ]0, +∞[ contains one unique maximal interval for (14), and it contains the interval 

]x1, x2[. Due to (23), for any a ∈]0, x1[,

va,0(x) = 2
(d2 − d1)σ2

(
xd1G1(x) − xd2G2(x)

)
with

Gi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1
di

(
a−di − x−di

)
for x < x1

−1
di

(
a−di − 2x−di

1 + x−di

)
for x1 ≤ x ≤ x2

−1
di

(
a−di − 2x−di

1 + 2x−di
2 − x−di

)
for x > x2, i = 1, 2.

From this, it can be checked that if d2 > 0, then for every sufficiently small a > 0 we have va,0(x) > 0
for every x 
= a. Therefore, the interval ]0, x1] is not contained in the maximal interval for (14). A similar 
argument applied to the function vb,0 with b > x2 shows that if d1 < 0 then the interval [x2, +∞[ is not 
contained in the maximal interval for (14). Therefore, for any d1 < d2, ]0, +∞[ cannot be the maximal 
interval. If d1 < 0 < d2 then the maximal interval ]a, b[ must be such that 0 < a < x1 < x2 < b < +∞.

To see that in the case d1 < d2 < 0 the maximal interval can be either ]a, b[ with 0 < a < x1 < x2 < b <
+∞ or ]0, b[ with x2 < b < +∞, we consider the case d1 = −2, d2 = −1, where explicit computations are 
trivial. Notice that for Π of “two sided form” and for 0 < a < b < +∞, ]a, b[ is maximal if and only if (a, b)
solves (24). For d1 = −2, d2 = −1, it is easy to check that (24) admits a solution with 0 < a < b < +∞ if 
and only if x1 > x2

3 , and in that case

a = 3x1 − x2

2 , b = 3x2 − x1

2 .

If x1 < x2
3 , the maximal interval is ]0, b[, with b satisfying the second equality in (25), that is

b =
√

2 (x2
2 − x2

1).

Therefore, the value function is

V (x) =
{

va,0(x) = vb,0(x), for x ∈ [a, b]
0, for x /∈ [a, b]

if x1 >
x2

3 ,

V (x) =
{

vb,0(x), for x ≤ b

0, for x > b
if x1 ≤ x2

3 ,

with a, b given by the expressions above. In the second case, the value function is not supported in a compact 
subinterval of ]0, +∞[. Thus, this is an example of a problem that is not solved by the results in [33,7]. 
Graphs of the value function for both cases are shown in Fig. 1. Notice that the case d1 < d2 < 0 corresponds 
to a negative discount rate and the value function is unbounded.
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Fig. 1. Value functions for Example 1. The gray lines represent the functions Π. The black lines represent the value functions V . 
The dashed lines represent the functions vb,0. Left-hand picture: x1 = 1, x2 = 2. Right-hand picture: x1 = 19

30 , x2 = 2. In both 
cases, σ = 1, d1 = −2, d2 = −1. Figures drawn to the same scale.

Similar examples with 0 < d1 < d2 showing that the maximal interval can be either ]a, b[, with 0 < a <
x1 < x2 < b < +∞, or ]a, +∞[, with 0 < a < x1 can easily be constructed.

Example 2. Fix 0 < x1 < x2 < x3 < x4 < +∞, and let Π be the piecewise constant function

Π(x) = 2χ[x1,x2](x) + 2χ[x3,x4](x) − 1.

Thus, Π is positive in two separate intervals. This is the case discussed in the remarks following Theorem 2.3 
of Rüschendorf and Urusov [33], and Theorem 2.2 of Belomestny, Rüschendorf and Urusov [7]. To discuss 
this case, we introduce the functions

Π1(x) = 2χ[x1,x2](x) − 1, Π2(x) = 2χ[x3,x4](x) − 1.

Let V , V1, V2 be the value functions corresponding to Π, Π1, Π2, respectively, and let va,0, v1
a,0, v2

a,0 be the 
corresponding functions defined by (23).

In [33,7] it is remarked that if the support of V1 is an interval [a, b] with 0 < a < b < +∞, then V1
solves both the free-boundary problem corresponding to Π1 and the free-boundary problem corresponding 
to Π, but V1 may coincide or not with V in [a, b]. We will show that the results in Section 4 above easily 
distinguish these cases.

Suppose that d2 > 0 (the case d1 < 0 is analogous). From Example 1, there are constants 0 < a1 < x1 <

x2 < b1 ≤ +∞ such that:

V1(x) =
{

v1
a1,0(x), for x ∈]a1, b1[,

0, for x /∈]a1, b1[.

Since ]a1, b1[ is maximal for (14) with respect to Π1, v1
a1,0 is non-negative in ]0, +∞[. It is easy to check 

that va1,0 coincides with v1
a1,0 in the interval ]0, x3] but these functions are distinct in the interval ]x3, +∞[. 

Thus, it may happen that va1,0(x) < 0 for some x > x3. In that case, Proposition 4.1 shows that ]a1, b1[ is 
not maximal with respect to Π and therefore va1,0 does not coincide with the value function V in [a1, b1]. 
The Fig. 2 shows an example of this configuration. Conversely, if va1,0(x) ≥ 0 for every x ∈]0, +∞[, then 
]a1, b1[ is maximal with respect to Π and V coincides with v1

a1,0 in the interval [a1, b1]. The right-hand 
picture in Fig. 3 shows an example of this configuration.

Another way to see the same phenomenon is as follows. Let ]a1, b1[, ]a2, b2[ be the maximal intervals with 
respect to Π1 and Π2, respectively (by Example 1, these intervals exist and are unique, with a1, a2 > 0). 
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Fig. 2. Example 2: Value functions for Π1 and Π. The gray line represents the function Π. The dashed line represents the function 
v1
a1,0. The dotted line represents the function va1,0. The black line represents the value function for Π. In its support, the value 

function coincides with a function va,0 with a < a1, but this is not apparent in the graph due to scale. Parameters: x1 = 1, x2 = 2, 
x3 = 3, x4 = 4, σ = 1

3 , d1 = −1, d2 = 1.

Fig. 3. Example 2: Value functions for Π1, Π2, and Π. Grey lines represent the function Π. Dashed lines represent the functions 
v1
a1,0. Dotted lines represent the functions v2

a2,0. Black lines represent the value function for Π. Left-hand picture: x1 = 1, x2 = 2, 
x3 = 2.5, x4 = 3.5, b1 ≈ 2.73 > a2 ≈ 2.12. Right-hand picture: x1 = 1, x2 = 2, x3 = 3.5, x4 = 4.5, b1 ≈ 2.73 < a2 ≈ 3.09. In both 
cases, σ = 1

3 , d1 = −1, d2 = 1. Figures drawn to the same scale.

If a2 < b1, then Proposition 4.1 states that these intervals cannot be maximal with respect to Π. Hence, 
the maximal interval for Π must be a larger interval ]a, b[ containing ]a1, b1[∪]a2, b2[. Conversely, if a2 ≥ b1, 
then ]a1, b1[, ]a2, b2[ are both maximal with respect to Π, and therefore the value function is

V (x) =

⎧⎪⎨
⎪⎩

v1
a1,0(x) = va1,0(x), for x ∈ [a1, b1],
v2
a2,0(x) = va2,0(x), for x ∈ [a2, b2],

0, for x /∈ [a1, b1] ∪ [a2, b2].

The Fig. 3 shows an example with a2 < b1 and an example with a2 > b1.

6. Proofs

6.1. Some preliminary results

The results in Section 4 depend critically on the following Proposition.

Proposition 6.1. Suppose Assumptions 2.1 and 2.2 hold. If there is some function Π satisfying Assump-
tion 2.3, then φ12(a, b) > 0 for every a, b ∈ I with a < b.

The proof of this Proposition requires several intermediate lemmata, which we formulate and prove below. 
As a corollary, we will prove the following.

Proposition 6.2. Under Assumptions 2.1 and 2.2, Assumptions 2.3 and 2.4 are equivalent.
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Another easy corollary of Proposition 6.1 is the following Lemma, that will be useful to several arguments 
in the next subsections.

Lemma 6.1. Suppose Assumptions 2.1, 2.2, and 2.3 hold. If u, v are solutions of (8), and there are two points 
a, b ∈ I such that

u(a) = v(a), u(b) = v(b), a 
= b

then u ≡ v.

Proof. Follows immediately from Proposition 6.1 and equality (11). �
To prove Proposition 6.1, we start with Lemmata 6.2 and 6.3, which contain some simple properties of 

the fundamental solution Φ.

Lemma 6.2. Under Assumptions 2.1, 2.2, the following statements are true for every a ∈ I:

a) There is some b ∈]a, M [ such that φ12(a, x) > 0 for every x ∈]a, b[.
b) If there is some x ∈]a, M [ such that φ12(a, x) = 0, then φ11(a, b) < 0 and φ22(a, b) < 0 for b =

min {x > a : φ12(a, x) = 0}.
c) If the function x �→ φ12(a, x) is strictly positive in the interval ]a, b[, then the function x �→ φ12(x, b) is 

strictly positive in the interval ]a, b[.

Proof. Statement (a) follows immediately from the fact that

∂

∂x
φ12(a, x) = φ22(a, x) ∀x ∈ I,

and φ12(a, a) = 0, φ22(a, a) = 1.
To prove statement (b), notice that φ22(a, b) = ∂

∂xφ1,2(a, b) ≤ 0. Since detΦ(a, x) > 0 for every x ∈ I, 
φ12(a, b) = 0 implies φ11(a, b)φ22(a, b) > 0, and the statement follows.

Finally, to prove statement (c), we start by recalling that Φ(a, b) = Φ(x, b)Φ(a, x). Therefore:

φ12(x, b) = 1
detΦ(a, x) (φ12(a, b)φ11(a, x) − φ11(a, b)φ12(a, x)) . (26)

If φ12(a, b) > 0, this reduces to

φ12(x, b) =φ12(a, b)φ12(a, x)
detΦ(a, x)

(
φ11(a, x)
φ12(a, x) − φ11(a, b)

φ12(a, b)

)
.

A simple computation shows that

∂

∂x

φ11(a, x)
φ12(a, x) = −detΦ(a, x)

φ12(a, x)2 < 0.

Hence, the function x �→ φ11(a,x)
φ12(a,x) is strictly decreasing in ]a, b] and therefore φ12(x, b) > 0 for every x ∈]a, b[. 

If φ12(a, b) = 0, then the equality (26) reduces to

φ12(x, b) = − φ11(a, b)φ12(a, x)
detΦ(a, x) .

By statement (b), φ11(a, b) < 0 and therefore, φ12(x, b) > 0 for every x ∈]a, b[. �
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Lemma 6.3. Let Assumptions 2.1, 2.2 hold, and suppose that there are some a, b ∈ I such that a < b and 
φ12(a, b) = 0. Then, for every a′ ∈]m, a[ there is some b′ ∈ [a, b[ such that φ12(a′, b′) = 0. Similarly, for 
every b′ ∈]b, M [ there is some a′ ∈]a, b] such that φ12(a′, b′) = 0.

Proof. Fix a, b ∈ I such that a < b and φ12(a, b) = 0. Without loss of generality, we may assume that 
φ12(a, x) > 0 for every x ∈]a, b[ (take a subinterval, if necessary).

Fix a′ < a. Since x ≥ a, Φ(a′, x) = Φ(a, x)Φ(a′, a), we have

φ12(a′, x) = φ11(a, x)φ12(a′, a) + φ12(a, x)φ22(a′, a) ∀x ∈]a, b[.

By statement (b) of Lemma 6.2, this must be negative for every x sufficiently close to b if φ12(a′, a) > 0. 
Thus, φ12(a′, x) must have a zero in [a, b[.

Now, fix b′ > b. Since Φ(a, b′) = Φ(b, b′)Φ(a, b), φ12(a, b) = 0 implies φ12(a, b′) = φ12(b, b′)φ22(a, b). By 
statement (b) of Lemma 6.2, this must be negative if φ12(b, b′) > 0. Hence the function x �→ φ12(x, b′) must 
have a zero in ]a, b]. �

Lemma 6.4 relates the sign of φ12 with the sign of solutions of equations of type (8). To prove Propo-
sition 6.1, we need to consider such equations with different functions instead of Π. That is, we consider 
variants of equation (8) of the type:

r(x)v(x) − α(x)v′(x) − σ(x)2

2 v′′(x) − g(x) = 0, (27)

where g : I �→ R is a measurable function such that g
σ2 is locally integrable in I with respect to the Lebesgue 

measure.

Lemma 6.4. Suppose Assumptions 2.1, 2.2 hold, and let g : I �→ [0, +∞[ be a measurable function such that 
g
σ2 is locally integrable, and 

∫ b

a
g(z)
σ(z)2 dz > 0. Equation (27) admits a non-negative solution in the interval 

[a, b] ⊂ I if and only if φ12(a, x) > 0 for every x ∈]a, b].

Proof. The function

v(x) = Kφ12(a, x) −
x∫

a

2g(z)
σ(z)2φ12(z, x)dz

is a solution of (27). For sufficiently large K ∈]0, +∞[, it is non-negative in [a, b], provided φ12 is strictly 
positive in ]a, b].

Now, suppose that there is some x0 ∈]a, b] such that φ12(a, x0) ≤ 0. Without loss of generality, we may 
assume that x0 = b = min{x > a : φ12(a, x) = 0} (take a subinterval on [a, b], if necessary). Fix v, a solution 
of (27). By (11),

v(b) = v(a)φ11(a, b) −
b∫

a

2g(z)
σ(z)2φ12(z, b)dz.

Lemma 6.2 states that φ11(a, b) < 0 and φ12(z, b) > 0 for every z ∈]a, b[. Therefore, v(b) < 0. �
For any a ∈ I, we define the stopping time

τa = inf {t ≥ 0 : Xt = a} ∧ τI .
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It is clear that τa in an admissible stopping time, as defined in Section 2.
The following Lemmata 6.5 and 6.6 relate the solutions of equation (27) with the value of a functional 

of type (1). The results and the arguments in the proofs are similar to several published results (see, 
e.g. Dayanik and Karatzas [11], Rüschendorf and Urusov [33], Belomestny, Rüschendorf and Urusov [7], 
Lamberton and Zervos [24], and references therein). However, since similar arguments are used to prove 
other results below, we outline the argument in the proof of Lemma 6.5.

Lemma 6.5. Suppose Assumptions 2.1, 2.2 hold, and let g : I �→ [0, +∞[ be a measurable function such that 
g
σ2 is locally integrable. Let v be a solution of equation (27), non-negative in a compact interval [a, b] ⊂ I. 
Then

Ex

⎡
⎣ τa∧τb∫

0

e−ρsg(Xs)ds

⎤
⎦ ≤ v(x) ∀x ∈]a, b[.

Proof. Consider the sequence of stopping times

θn = min

⎧⎨
⎩n, inf

⎧⎨
⎩t ≥ 0 :

t∫
0

σ2(Xs)ds = n or ρt = −n

⎫⎬
⎭
⎫⎬
⎭ .

Using the Itō-Tanaka formula and the occupation times formula (see for example theorem VI.1.5 and 
corollary VI.1.6 in Revuz and Yor [32]), we obtain

e−ρτa∧τb∧θn v(Xτa∧τb∧θn) =

=v(x) +
τa∧τb∧θn∫

0

e−ρs

(
−rv + αv′ + σ2

2 v′′
)
◦Xsds +

τa∧τb∧θn∫
0

e−ρs (σv′) ◦XsdWs =

=v(x) −
τa∧τb∧θn∫

0

e−ρsg(Xs)ds +
τa∧τb∧θn∫

0

e−ρs (σv′) ◦XsdWs.

It is easy to check that

Ex

⎡
⎣ τa∧τb∧θn∫

0

(
e−ρs(σv′) ◦Xs

)2
ds

⎤
⎦ ≤ ne2n max{v′(x)2 : x ∈ [a, b]} < ∞.

Therefore, Ex

[∫ τa∧τb∧θn
0 e−ρs (σv′) ◦XsdWs

]
= 0 and

0 ≤ Ex

[
e−ρτa∧τb∧θn v (Xτa∧τb∧θn)

]
= v(x) − Ex

⎡
⎣ τa∧τb∧θn∫

0

e−ρsg(Xs)ds

⎤
⎦ .

Making n → ∞, the result follows from the Lebesgue monotone convergence theorem. �
Lemma 6.6. Suppose Assumptions 2.1, 2.2 hold, and fix a compact interval [a, b] ⊂ I such that φ12(a, x) > 0
for every x ∈]a, b]. Let g : I �→ R be a measurable function such that g

σ2 is locally integrable with respect to 
the Lebesgue measure.
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There is one unique solution of equation (27) with boundary conditions v(a) = v(b) = 0. If v is such a 
solution, then

Ex

⎡
⎣ τa∧τb∫

0

e−ρsg(Xs)ds

⎤
⎦ = v(x) ∀x ∈]a, b[.

Proof. Existence and uniqueness of v follows directly from equality (11).
Fix [a, b] as above, and let θn be the sequence of stopping times introduced in the proof of Lemma 6.5. 

Thus,

Ex

[
e−ρτa∧τb∧θn v(Xτa∧τb∧θn)

]
=v(x) − Ex

⎡
⎣ τa∧τb∧θn∫

0

e−ρsg(Xs)ds

⎤
⎦ . (28)

For every stopping time θ ≤ τa ∧ τb, we have

0 ≤e−ρθ = 1 +
θ∫

0

−e−ρsr(Xs)ds = 1 +
θ∫

0

e−ρs
(
r−(Xs) − r+(Xs)

)
ds ≤ 1 +

τa∧τb∫
0

e−ρsr−(Xs)ds.

Substituting r− for g in Lemmata 6.4 and 6.5, we see that Ex

[∫ τa∧τb
0 e−ρsr−(Xs)ds

]
< +∞. Since v is 

bounded in [a, b] and v(Xτa∧τb) = 0, the Lebesgue dominated convergence theorem states that

lim
n→∞

Ex

[
e−ρτa∧τb∧θn v(Xτa∧τb∧θn)

]
= 0.

Using the Lebesgue monotone convergence theorem on the right-hand side of (28), we obtain the lemma in 
the case g ≥ 0. In the general case g : [a, b] �→ R, the lemma holds for the positive function |g|. Hence, we 
can apply the Lebesgue dominated convergence theorem to both sides of (28) to finish the proof. �

The result provided in the next lemma is already known and its proof can be found in Karatzas and 
Shereve [21], Chapter 5.5.C.

Lemma 6.7. Under Assumption 2.1, for every m < a < b < M and every x ∈]a, b[:

Px {τb < τa} =
∫ x

a
e−

∫ z1
a

2α
σ2 dz2dz1∫ b

a
e−

∫ z1
a

2α
σ2 dz2dz1

.

In particular, 0 < Px {τb < τa} < 1 for every x ∈]a, b[.

The preceding lemmas allow us to obtain Lemma 6.8, from which Proposition 6.1 follows.

Lemma 6.8. Let Assumptions 2.1, 2.2 hold, and fix a, b ∈ I such that a < b and φ12(a, b) = 0, then

Ex

⎡
⎣ τa′∧τb′∫

0

e−ρsg(Xs)ds

⎤
⎦ = +∞

for every a′ ∈]m, a], b′ ∈ [b, M [, x ∈]a′, b′[, and every measurable function g ≥ 0, such that 
{x ∈ [a′, b′] : g(x) > 0} has positive Lebesgue measure.
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Proof. Fix [a, b] as above. Without loss of generality, we may assume that φ12(a, x) > 0 for every x ∈]a, b[
(take a subinterval if necessary). Fix a′ ∈]m, a], b′ ∈ [b, M [, and a measurable function g ≥ 0 such 
that {x ∈ [a′, b′] : g(x) > 0} has positive Lebesgue measure. Due to Lemma 6.3, we may assume that 
{x ∈ [a, b] : g(x) > 0} has positive Lebesgue measure (shift the interval, if necessary).

For every constant ε ∈]0, b − a[, we have φ12(a, x) > 0 for every x ∈]a, b − ε[. By equality (11),

vε(x) =
∫ b−ε

a
2g(z)
σ(z)2φ12(z, b− ε)dz
φ12(a, b− ε) φ12(a, x) −

x∫
a

2g(z)
σ(z)2φ12(z, x)dz

is the unique solution of (27) with boundary conditions v(a) = v(b − ε) = 0. Since φ12 is continuous on 
both arguments, it follows that φ12(z, b − ε) converges to φ12(z, b) uniformly with respect to z ∈ [a, b] when 
ε → 0+. Therefore, it follows from statement (c) in Lemma 6.2 that lim

ε→0+
vε(x) = +∞ for every x ∈]a, b[. 

By Lemma 6.6, for every x ∈]a, b[ and every ε ∈]0, b − x[, we have

Ex

⎡
⎣ τa′∧τb′∫

0

e−ρsg(Xs)ds

⎤
⎦ ≥ Ex

⎡
⎣ τa∧τb−ε∫

0

e−ρsg(Xs)ds

⎤
⎦ = vε(x),

and therefore, Ex

[∫ τa′∧τb′
0 e−ρsg(Xs)ds

]
= +∞ for every x ∈]a, b[.

Now, fix c ∈]a, b[ and x ∈]a′, b′[\]a, b[. Assume that x ∈]a′, c[ (the case x ∈]c, b′[ is analogous), and let 
θn = inf{t ≥ 0 : ρt = n}. By Lemma 6.7, there is some n ∈ N such that Px {τc < τa′ ∧ θn} > 0. Therefore,

Ex

⎡
⎣ τa′∧τb′∫

0

e−ρsg(Xs)ds

⎤
⎦ ≥Ex

⎡
⎣ τa′∧τb′∫

τc

e−ρsg(Xs)dsχ{τc<τa′}

⎤
⎦

≥Ex

⎡
⎣ τa′∧τb′∫

τc

e−(ρs−ρτc )g(Xs)ds e−ρτcχ{τc<τa′∧θn}

⎤
⎦

≥Ec

⎡
⎣ τa′∧τb′∫

0

e−ρsg(Xs)ds

⎤
⎦ e−nPx{τc < τa′ ∧ θn} = +∞. �

Concerning the proof of Proposition 6.2, notice that the final argument in the proof of Lemma 6.8 shows 
that existence of some x ∈ I such that Ex

[∫ τI
0 e−ρtΠ+(Xt)dt

]
= ∞ implies that Ex

[∫ τI
0 e−ρtΠ+(Xt)dt

]
= ∞

for every x ∈ I.

6.2. Proof of Proposition 4.1

The following Lemma is an easy consequence of Proposition 6.1.

Lemma 6.9. Suppose Assumptions 2.1, 2.2, and 2.3 hold. For any point x0 ∈ I such that vx0,0(x) < 0 for 
some x ∈ I, there is a compact interval [a, b] ⊂ I satisfying (14) such that x0 ∈]a, b[. Conversely, if [a, b] ⊂ I

satisfies (14) and there is some x ∈ I such that v[a,b](x) < 0, then there is a compact interval [a′, b′] ⊂ I

satisfying (14) such that [a, b] ⊂]a′, b′[.

Proof. Due to Proposition 6.1, equality (12) implies that the mapping d �→ vx0,d(x1) is strictly increasing 
for fixed x0 < x1, and strictly decreasing for fixed x1 < x0.
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Fix x0, x1 ∈ I such that vx0,0(x1) < 0, with x0 < x1 (the case x1 < x0 is analogous). Fix d > 0 sufficiently 
small such that vx0,d(x1) < 0. Since d > 0, there is some ε > 0 such that vx0,d(x) > 0 for every x ∈]x0, x0+ε]
and vx0,d(x) < 0 for every x ∈ [x0 − ε, x0[. Set b = min {x > x0 : vx0,d(x) ≤ 0}. It is clear that b ∈]x0, x1[. 
Then, there is some d1 < v′x0,d

(b), such that vb,d1(x0 − ε) < 0. Let a = max {x ≤ x0 : vb,d1(x) ≤ 0}. Since 
vb,d1(x) > vx0,d(x) for every x < b, it follows that a ∈]x0 − ε, x0[. Thus, x0 ∈]a, b[ and ]a, b[ satisfies (14).

If there is some x ∈]b, M [ such that v[a,b](x) < 0, then, we can use the argument above taking va,d
with d >

(
v[a,b])′ (a). If there is some x ∈]m, a[ such that v[a,b](x) < 0, then, we can take vb,d with 

d <
(
v[a,b])′ (b). �

The argument used to prove Lemma 6.9 can be adapted to prove the following Lemma.

Lemma 6.10. Suppose Assumptions 2.1, 2.2, and 2.3 hold. For any compact intervals [a, b], [a′, b′] ⊂ I

satisfying condition (14), such that a < a′ < b < b′,

v[a,b′](x) > max
(
v[a,b](x), v[a′,b′](x)

)
∀x ∈]a, b′[.

Hence, [a, b′] satisfies (14).

Proof. Let

d̂ = max
{
d ≥ 0 : va,d(x) = v[a′,b′](x) for some x ∈ [a′, b′]

}
.

Notice that d̂ >
(
v[a,b])′ (a), and therefore va,d̂(x) > v[a,b](x) for every x > a.

By continuity, there is some x̂ ∈ [a′, b′] such that va,d̂(x̂) = v[a′,b′](x̂). If x̂ ∈]a′, b′[, then the maximality 

of d̂ implies that v′
a,d̂

(x̂) =
(
v[a′,b′]

)′
(x̂). Thus, by uniqueness of the solution of the ODE (8) with given 

initial value and derivative, va,d̂ = v[a′,b′]. Since this is a contradiction, we conclude that x̂ = b′ and 

v′
a,d̂

(b′) <
(
v[a′,b′]

)′
(b′). Therefore v[a,b′] = va,d̂ and va,d̂(x) > v[a′,b′](x) for every x < b′. �

Proposition 4.1 follows from the lemmata above.
Lemma 6.10 shows that if x̂ lies in some interval satisfying (14), then the union of all intervals containing 

x̂ and satisfying (14) is a maximal interval for (14). The fact that maximal intervals are pairwise disjoint is 
also an immediate consequence of Lemma 6.10.

Fix x̂ ∈ L+. Then, v′x̂,0(x) = − 
∫ x

x̂
2Π(z)
σ(z)2 φ22(z)dz < 0 for every x > x̂, sufficiently close to x̂. Therefore, 

vx̂,0(x) < 0 for every x > x̂, sufficiently close to x̂, and Lemma 6.9 shows that x̂ lies in some interval 
satisfying (14). Conversely, if [a, b] ⊂ I and v[a,b](x) > 0 for every x ∈]a, b[, then the equality (11) implies 
that 

∫ b

x
Π(z)
σ(z)2φ12(z, b)dz > 0 for some x ∈ [a, b[. Due to Proposition 6.1, this implies ]a, b[∩L+ 
= ∅.

If ]a, b[⊂ I is maximal for (14) then Lemma 6.9 states that v[a,b](x) ≥ 0 for every x ∈ I. Conversely, 
any [a, b] ⊂ I such that v[a,b](x) ≥ 0 for every x ∈ I must be maximal, since any non-negative v[a′,b′], with 
a′ ≤ a and b′ ≥ b, must coincide with v[a,b] in at least two points and therefore, by Lemma 6.1, it must 
coincide with v[a,b].

It only remains to prove that if ]a, b[ is maximal and a = m or b = M , then v[a,b] is well defined and 
non-negative. Let ]a, b[ be maximal for (14). For any compact intervals [a1, b1], [a2, b2] satisfying (14), such 
that [a1, b1] ⊂]a2, b2[ and [a2, b2] ⊂]a, b[, Lemma 6.1 implies that v[a1,b1](x) < v[a2,b2](x) for every x ∈]a1, b1[. 
Hence, for any monotonically increasing sequence of compact intervals [an, bn] ⊂]a, b[ satisfying (14), such 
that ]a, b[=

⋃
n∈N

[an, bn], the function v(x) = lim
n→∞

v[an,bn](x) is well defined, it is strictly positive in the 

interval ]a, b[ and does not depend on the particular sequence [an, bn]. Further, v[an,bn](x) and 
(
v[an,bn])′ (x)
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converge uniformly on compact intervals. Hence, v must be a solution of Equation (8) and v(x) ≥ 0 for 
every x ∈ I.

6.3. Proof of Theorem 4.1

Consider a compact interval I ′ = [m′, M ′] with m < m′ < M ′ < M . We will start by proving a version 
of Theorem 4.1 for the problem of maximizing (1) over the subset T ′ = {τ ∈ T : τ ≤ τm′ ∧ τM ′}.

Theorem 6.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. If v : [m′, M ′] �→ [0, ∞[ is a Carathéodory 
solution of the Hamilton-Jacobi-Bellman equation (7) with boundary conditions v(m′) = v(M ′) = 0, then v
coincides with the value function

VI′(x) = sup
τ∈T ′

Ex

⎡
⎣ τ∫

0

e−ρtΠ(Xs)ds

⎤
⎦ x ∈ I ′, (29)

and τ = inf {t ≥ 0 : v(Xt) = 0} ∧ τm′ ∧ τM ′ is a maximizer of (1) over the set T ′.

Proof. Let v : [m′, M ′] �→ [0, ∞[ be a Carathéodory solution of (7) such that v(m′) = v(M ′) = 0.
Fix θ ∈ T ′, and consider the sequence

θn = min

⎧⎨
⎩n, τI′ , inf

⎧⎨
⎩t ≥ 0 :

t∫
0

σ2(Xs)ds = n or ρt = −n

⎫⎬
⎭
⎫⎬
⎭

Notice that, due to Lemma 6.8, Assumption 2.3 implies φ12(m′, x) > 0 for every x ∈]m′, M ′]. Therefore, 
Lemmata 6.4, 6.5 imply that Ex

[∫ τm′∧τM′
0 e−ρs |Π(Xs)|ds

]
< ∞. Therefore, the argument used to prove 

Lemma 6.5 yields

Ex

[
e−ρθ∧θn v(Xθ∧θn)

]
= v(x) + Ex

⎡
⎣ θ∧θn∫

0

e−ρs

(
−rv + αv′ + σ2

2 v′′
)
◦Xsds

⎤
⎦ =

=v(x) − Ex

⎡
⎣ θ∧θn∫

0

e−ρs

(
rv − αv′ − σ2

2 v′′ − Π
)
◦Xsds

⎤
⎦− Ex

⎡
⎣ θ∧θn∫

0

e−ρsΠ(Xs)ds

⎤
⎦

for every x ∈ I ′. By assumption, rv − αv′ − σ2

2 v′′ − Π ≥ 0 and v ≥ 0. Hence,

0 ≤ Ex

[
e−ρθ∧θn v(Xτ∧θn)

]
≤ v(x) − Ex

⎡
⎣ θ∧θn∫

0

e−ρsΠ(Xs)ds

⎤
⎦ .

The Lebesgue monotone convergence theorem states that

lim
n→∞

Ex

⎡
⎣ θ∧θn∫

0

e−ρsΠ±(Xs)ds

⎤
⎦ = Ex

⎡
⎣ θ∫

0

e−ρsΠ±(Xs)ds

⎤
⎦ ,

and therefore
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Ex

⎡
⎣ θ∫

0

e−ρsΠ(Xs)ds

⎤
⎦ ≤ v(x).

Since θ is arbitrary, this proves that VI′ ≤ v.
The random variable inf{t ≥ 0 : v(Xt) = 0} is a stopping time, since it is the first hitting time of 

a closed set by a continuous process adapted to a complete filtration. Fix x such that v(x) > 0, and 
let a = max {y ∈ [m′, x[: v(y) = 0}, b = min {y ∈]x,M ′] : v(y) = 0}. Then, v coincides with a solution of 
equation (8) in the interval [a, b] and, since φ12(m′, y) > 0 for every y ∈]m′, M ′], Lemma 6.2 shows that 
φ12(a, y) > 0 for every y ∈]a, b]. Therefore, Lemma 6.6 states that

Ex

⎡
⎣ τ∫

0

e−ρsΠ(Xs)ds

⎤
⎦ = v(x),

and thus VI′ = v. �
The next theorem shows that under Assumptions 2.1, 2.2 and 2.3, a function v satisfying the assumptions 

of Theorem 6.1 exists.

Theorem 6.2. If Assumptions 2.1, 2.2 and 2.3 hold, then the Hamilton-Jacobi-Bellman equation (7) admits 
a solution with boundary conditions v(m′) = v(M ′) = 0. This solution is given by the right-hand side of 
(15), with I ′ instead of I.

Proof. Let {]ak, bk[⊂ I ′, k = 1, 2, . . .} be the collection of all maximal intervals for (14), and let v : I ′ �→
[0, +∞[ be the function defined by the right-hand side of (15).

It can be checked that v is continuously differentiable with absolutely continuous first derivative, and 
lim

x→m+
v(x) = lim

x→M−
v(x) = 0. For almost every z ∈

⋃
k

]ak, bk[, v satisfies the differential equation (8). By 

Proposition 4.1, L+ ⊂
⋃
k

]ak, bk[. Therefore, for almost every z ∈ I ′ \
⋃
k

]ak, bk[:

r(z)v(z) − α(z)v′(z) − σ(z)2

2 v′′(z) − Π(z) = −Π(z) ≥ 0.

Hence, v is a solution of the Hamilton-Jacobi-Bellman equation (7). �
Theorems 6.1 and 6.2 show that Theorem 4.1 holds for any compact interval I ′ ⊂ I. We now proceed to 

prove that it holds for I.
Suppose that Assumptions 2.1, 2.2 and 2.3 hold, pick a monotonically increasing sequence of compact 

intervals In = [an, bn] ⊂ I such that I =
⋃

n∈N
In, and let

Vn(x) = sup
τ∈Tn

Ex

⎡
⎣ τ∫

0

e−ρtΠ(Xt)dt

⎤
⎦ ,

where Tn = {τ ∈ T : τ ≤ τan
∧ τbn}.

Theorems 6.1 and 6.2 state that Vn is the Carathéodory solution of (7) with boundary conditions v(an) =
v(bn) = 0, and a corresponding optimal stopping time is

τn = inf {t ≥ 0 : Vn(Xt) = 0} ∧ τan
∧ τbn .
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Since Tn ⊂ Tn+1 ⊂ T , it is clear that

Vn(x) ≤ Vn+1(x) ≤ V (x), ∀x ∈ [an, bn], n ∈ N. (30)

For every stopping time θ ∈ T and every x ∈ I, the Lebesgue monotone convergence theorem states that

lim
n→∞

Ex

⎡
⎢⎣

θ∧τan∧τbn∫
0

e−ρtΠ−(Xt)dt

⎤
⎥⎦ = Ex

⎡
⎣ θ∫

0

e−ρtΠ−(Xt)dt

⎤
⎦ ,

lim
n→∞

Ex

⎡
⎢⎣

θ∧τan∧τbn∫
0

e−ρtΠ+(Xt)dt

⎤
⎥⎦ = Ex

⎡
⎣ θ∫

0

e−ρtΠ+(Xt)dt

⎤
⎦ .

Therefore,

Ex

⎡
⎣ θ∫

0

e−ρtΠ(Xt)dt

⎤
⎦ = limEx

⎡
⎢⎣

θ∧τan∧τbn∫
0

e−ρtΠ(Xt)dt

⎤
⎥⎦ ≤ limVn(x).

Since this inequality holds for every stopping time θ ∈ T and θ ∧ τan
∧ τbn ∈ Tn, it follows that

V (x) = lim
n→∞

Vn(x) ∀x ∈ I.

By Definition 3.1 and Theorems 6.1 and 6.2, it follows that the value function V satisfies (15).
From the considerations above and (30), it follows that the sequence τn is monotonically increasing and 

converges to τ = inf {t ≥ 0 : V (Xt) = 0}∧τI . Therefore, the Lebesgue monotone convergence theorem states 
that

lim
n→∞

Ex

⎡
⎣ τn∫

0

e−ρtΠ+(Xt)dt

⎤
⎦ = Ex

⎡
⎣ τ∫

0

e−ρtΠ+(Xt)dt

⎤
⎦ ,

lim
n→∞

Ex

⎡
⎣ τn∫

0

e−ρtΠ−(Xt)dt

⎤
⎦ = Ex

⎡
⎣ τ∫

0

e−ρtΠ−(Xt)dt

⎤
⎦ .

Hence,

V (x) = lim
n→∞

Vn(x) = lim
n→∞

Ex

⎡
⎣ τn∫

0

e−ρtΠ(Xt)dt

⎤
⎦ = Ex

⎡
⎣ τ∫

0

e−ρtΠ(Xt)dt

⎤
⎦ .

That is, τ is an optimal stopping time.

6.4. Proof of Proposition 4.2

Let Assumptions 2.1, 2.2, 2.3 hold.
Fix a ∈ I, b ∈]a, M ], and suppose that ]a, b[ is maximal for (14). By Proposition 4.1, v[a,b] ≥ 0. The 

proof of Proposition 4.1 shows that v[a,b] is a solution of the differential equation 8, even in the case b = M . 
Hence v[a,b] = va,0 and (a) holds. Fix [a1, b1] ⊂]a, b[, a compact interval satisfying (14). Then, there is an 
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interval ]a2, b1[, maximal for (14) when we consider the interval ]m, b1[ instead of I. By Proposition 4.1, 
v[a2,b1] must be non-negative in ]m, b1[. Hence, v[a2,b1] = va2,0. By the considerations preceding Theorem 6.1, 
va2,0(b1) = 0. Since va2,0(x) > 0 for every x > a2 sufficiently close to a2, it follows that there is some a3 ∈ L−

arbitrarily close to a2. Thus, (b) also holds.
Now, fix a ∈ I, b ∈]a, M ], and suppose that (a) and (b) hold. Let an be a sequence as in (b), and let 

bn = inf {x > an : van,0(x) ≤ 0}. Since ]a, b[=
⋃

n∈N
]an, bn[, Lemma 6.10 guarantees that ]a, b[ satisfies (14). 

Due to Lemma 6.1, non-negativity of va,0 implies that ]a, b[ is maximal for (14).
The proof for the case b ∈ I, a ∈ [m, b[ is analogous.
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