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We prove approximation results about sequences of Berezin transforms of finite 
sums of finite product of Toeplitz operators (and bounded linear maps, in general) 
in the spirit of Ramadanov and Skwarczyński Theorems that are about convergence 
of Bergman kernels.
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Let Ω be a domain in Cn and A2(Ω) denote the Bergman space, the set of square integrable holomorphic 
functions, of Ω. Since the Bergman space A2(Ω) is a closed subspace of L2(Ω), there exists a bounded 
orthogonal projection PΩ from L2(Ω) onto A2(Ω). This is called the Bergman projection for Ω. We denote 
the Bergman kernel of Ω by KΩ. The Berezin transform BΩT of a bounded linear operator T on A2(Ω) is 
defined as

BΩT (z) = 〈TkΩ
z , k

Ω
z 〉,

where kΩ
z (ξ) = KΩ(ξ, z)/

√
KΩ(z, z) is the normalized Bergman kernel of Ω and 〈., .〉 denotes the inner 

product on A2(Ω).
Berezin transform is an important notion in operator theory. For instance, it is used to characterize 

compactness of operators in the Toeplitz algebra on the unit disc and the unit ball (see [1,16]) and in a 
subalgebra on more general domains in Cn (see [4,5]). Berezin transform is also an important tool in the 
characterization of compactness of the Hankel operators in [2].

There are different notions for convergence of operators on A2(Ω). For instance, one can ask if a sequence 
of bounded operators defined on the same Bergman space converges to a bounded operator in the operator 
norm or in the weak sense. Now assume that, for each j, Tj is a bounded operator on A2(Ωj) and Ωj ⊂ Ω
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(or Ω ⊂ Ωj). Since the operators Tjs are defined on different spaces it does not make sense to talk about 
convergence of {Tj} in norm or weakly. However, we can compare Berezin transforms. That is, we can ask if 
{BΩj

Tj} converges to BΩT pointwise, locally uniformly, etc. This notion generalizes the weak convergence 
of operators because BΩTj → BΩT pointwise on Ω whenever Tjs are defined on A2(Ω) and Tj → T weakly.

Let {Ωj} be an increasing sequence of domains whose union is Ω. Ramadanov showed that (see [12,13]) 
the Bergman kernels {KΩj} converge to KΩ uniformly on compact subsets of Ω ×Ω. In this paper we prove 
results in the spirit of Ramadanov’s result for Berezin transforms of bounded operators on the Bergman 
space.

The plan of the paper is as follows: In the next section we will state our main results. The proofs will be 
presented in the following section.

1. Main results

To state our results we need to define the restriction operator. Let U ⊂ Ω be domain in Cn and RΩ
U :

A2(Ω) → A2(U) denote the restriction operator. That is, RΩ
Uf = f |U . Then the adjoint RΩ∗

U : A2(U) →
A2(Ω) of RΩ

U is a bounded linear map and one can show that (see, for example, [3])

RΩ∗
U f(z) =

∫
U

KΩ(z, w)f(w)dV (w),

where dV is the Lebesgue measure in Cn. We note that if U ⊂ Ω, then Montel’s Theorem implies that RΩ
U

is compact. Also R∗
UTRU is a bounded linear operator on A2(Ω) whenever T is a bounded linear map on 

A2(U).
Throughout this paper Ef denotes the extension of f onto Cn trivially by zero and RU will denote RΩ

U

when the domain Ω is clear from the context. Then the formula for RΩ∗
U above is RΩ∗

U = PΩE.
For z, w ∈ Ω, let KΩ

z (w) = KΩ(w, z). Notice that the normalized Bergman kernel kΩ
z is well- defined 

whenever KΩ(z, z) �= 0. In [8], Engliš observes that there are unbounded domains in Cn for which the zero 
set Z of the Bergman kernel on the diagonal KΩ(z, z) is not empty. Namely, we denote

Z =
{
z ∈ Ω : KΩ(z, z) = 0

}
.

Definition 1. A domain Ω in Cn is called a non-trivial Bergman domain if A2(Ω) �= {0}.

We note that Ω is a non-trivial Bergman domain if and only if Z �= Ω. If Ω is bounded, then Z is 
empty because the constant functions belong to A2(Ω) and KΩ(z, z) ≥ 1/‖1‖2 > 0 for all z ∈ Ω. Therefore, 
bounded domains are non-trivial Bergman domains as well. The set Z, if not empty and not equal to Ω, 
is a real-analytic variety in Ω with zero Lebesgue measure and it is a relatively closed subset of Ω. The 
normalized Bergman kernel kΩ

z is a well defined function in A2(Ω) for z ∈ Ω \Z. In this paper we will always 
assume that Ω is a non-trivial Bergman domain.

In the example given in [8], there exists a bounded function φ on an unbounded pseudoconvex complete 
Reinhardt domain Ω such that the Berezin transform BΩTφ of the (bounded) Toeplitz operator on Ω has a 
singularity at a point in Z. However, the map z 
→ kΩ

z is continuous from Ω\Z to L2(Ω) since

∥∥kΩ
z − kΩ

w

∥∥2
L2(Ω) = 2 − 2Re

〈
kΩ
z , k

Ω
w

〉
= 2 − 2Re KΩ(w, z)√

KΩ(z, z)
√

KΩ(w,w)
(1)

and both KΩ(w, z) and KΩ(w, w) converge to KΩ(z, z) as w converges to z in Ω\Z. Hence, the Berezin 
transform BΩT of a bounded operator T on A2(Ω) is always a well-defined, bounded and continuous function, 
on Ω\Z. This can be seen from the inequality |BΩT (z)| = |〈TkΩ

z , k
Ω
z 〉| ≤ ‖T‖ and
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|BΩT (z) −BΩT (w)| ≤
∣∣〈Tkz, kΩ

z − kΩ
w〉
∣∣+ ∣∣〈T (kΩ

z − kΩ
w), kΩ

w〉
∣∣

≤‖T‖
∥∥kΩ

z − kΩ
w

∥∥
L2(Ω) +

∥∥T (kΩ
z − kΩ

w)
∥∥
L2(Ω)

for every z, w ∈ Ω\Z.
Our first two results below can be seen as analogues of Ramadanov’s and Skwarczyński’s Theorems.

Theorem 1. Let {Ωj} be a sequence of domains in Cn such that Ωj ⊂ Ωj+1 for all j and Ω = ∪∞
j=1Ωj

be a non-trivial Bergman domain. Let T be a bounded linear map on A2(Ω). Then BΩj
RΩj

TR∗
Ωj

→ BΩT

uniformly on compact subsets of Ω\Z as j → ∞. Furthermore, if Ω is bounded, then EBΩj
RΩj

TR∗
Ωj

→ BΩT

in Lp(Ω) as j → ∞ for all 0 < p < ∞.

Theorem 2. Let Ω be a non-trivial Bergman domain and {Ωj} be a sequence of domains in Cn such that 
Ω ⊂ Ωj+1 ⊂ Ωj for all j. Assume KΩj (z, z) → KΩ(z, z) as j → ∞ for every z ∈ Ω. Let T be a bounded 
linear map on A2(Ω). Then BΩj

(RΩj

Ω )∗TRΩj

Ω → BΩT uniformly on compact subsets of Ω\Z as j → ∞. 
Furthermore, if Ω is bounded, then BΩj

(RΩj

Ω )∗TRΩj

Ω → BΩT in Lp(Ω) as j → ∞ for all 0 < p < ∞.

The next result describes the convergence of the Berezin transforms when the symbols of Toeplitz op-
erators are restricted onto the subdomains. To clarify the notation below, φ|U denotes the restriction of φ
onto U, RUφ.

Theorem 3. Let {Ωj} be a sequence of domains in Cn such that Ωj ⊂ Ωj+1 for all j and Ω = ∪∞
j=1Ωj be 

a non-trivial Bergman domain. Assume that T =
∑l

m=1 Tφm,1 · · ·Tφm,km
is a finite sum of finite products 

of Toeplitz operators with bounded symbols on Ω and TΩj =
∑l

m=1 Tφm,1|Ωj
· · ·Tφm,km |Ωj

for each j. Then 

BΩj
TΩj → BΩT uniformly on compact subsets of Ω\Z as j → ∞. Furthermore, if Ω is bounded, then 

EBΩj
TΩj → BΩT in Lp(Ω) as j → ∞ for all 0 < p < ∞.

Remark 1. We note that the TΩj in the theorem above depends on the symbols and hence representation 
of T . However, representation of products of Toeplitz operators is not unique. For instance, Çelik and 
Zeytuncu in [6] showed that there exists a Reinhardt domain Ω in C2 such that there exists non-trivial 
nilpotent Toeplitz operators on A2(Ω). Hence the zero operator has multiple representations. However, since 
the Berezin transform of T is independent of its representation, the Berezin transforms of TΩj converge to 
the same limit for any representation of T .

For a function φ ∈ Lq(Ω), assuming the Toeplitz operator Tφ is bounded on A2(Ω), we define the Berezin 
transform BΩφ of φ as BΩφ(z) = BΩTφ(z) for z ∈ Ω. Hence

BΩφ(z) = 〈Tφk
Ω
z , k

Ω
z 〉 = 〈PΩφk

Ω
z , k

Ω
z 〉 = 〈φkΩ

z , k
Ω
z 〉 =

∫
Ω

φ(w)|kΩ
z (w)|2dV (w).

As a consequence of Theorem 3 and Dini’s Theorem we have the following corollary.

Corollary 1. Let {Ωj} be a sequence of domains in Cn such that Ωj ⊂ Ωj+1 for all j and Ω = ∪∞
j=1Ωj be a 

non-trivial Bergman domain. Assume that φ ∈ Lq(Ω) for some 0 < q < ∞ so that Tφ is bounded on A2(Ω). 
Then there exists a subsequence {jk} and functions φk ∈ L∞(Ωjk) such that BΩjk

φk → BΩφ uniformly on 
compact subsets of Ω\Z. If Ω is bounded, then EBΩjk

φk → BΩφ in Lp(Ω) as k → ∞ for all 0 < p < ∞.

We note that, as Proposition 2 below shows, φk in the corollary above might have to be different from 
RΩk

φ.
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Remark 2. If the domain Ω is not bounded, then the Berezin transform BΩTφ of the Toeplitz operator of 
a bounded symbol φ does not have to be in Lp(Ω). For instance, let φ(z) = Re(z) and Ω = {z ∈ C : 0 <
Re(z) < 1}. We note that KΩ(z, z) �= 0 for any z ∈ Ω as (z + 1)−1 is square integrable on Ω. Since φ is 
bounded and harmonic, we conclude that BΩTφ = φ which is not in Lp(Ω) for any 0 < p < ∞.

In the following proposition we compute the asymptotics of the Berezin transform of log |z| on annuli 
that converge to the punctured disc. Also it shows that the first conclusion in Theorem 3 is not true if we 
drop the assumption that the symbol is bounded. The function log |z| ∈ Lp(D \ {0}) for all 0 < p < ∞ and, 
Lemma 6 implies that,

BD\{0} log |z| = BD log |z| = 1
2(|z|2 − 1).

Proposition 1. Let Ar = {z ∈ C : r < |z| < 1} and φ(z) = log |z|. Then

BAr
φ(z) → |z|2

4 − 1
4|z|2

uniformly on compact subsets of D \ {0} as r → 0+.

The following proposition shows that the last statement in Theorem 3 is not true in general for operators 
in the Toeplitz algebra. One can argue as follows. Let φ(z) = log |z| be a symbol on D∗ = D \ {0}. One can 
show that Tφ is compact on A2(D∗) (as A2(D∗) = A2(D) and φ = 0 on the unit circle). However, compact 
operators are in the Toeplitz algebra (see [7, Theorem 6]). Hence, Tφ is in the Toeplitz algebra; yet, by 
Proposition 2 below, {BAr

TAr

φ } does not converge to BD∗Tφ in Lp.

Proposition 2. Let Ar = {z ∈ C : r < |z| < 1}, D∗ = D\{0}, and φ(z) = log |z|. Then Tφ is a compact 
operator on A2(D∗) and

lim
r→0+

‖EBAr
TAr

φ ‖Lp(D∗) = ∞,

while ‖BD∗Tφ‖Lp(D∗) < ∞ for all 1 ≤ p ≤ ∞.

2. Proofs of Theorems 1, 2, 3 and Corollary 1

We start with a simple lemma.

Lemma 1. Let Ω be a non-trivial Bergman domain in Cn and U ⊂ Ω be a subdomain. Then R∗
UK

U
z = KΩ

z

for z ∈ U .

Proof. For z ∈ U and f ∈ A2(Ω) we have

f(z) = 〈RUf,K
U
z 〉U = 〈f,R∗

UK
U
z 〉Ω.

Because of the uniqueness of the Bergman kernel, we conclude that R∗
UK

U
z = KΩ

z . �
We will need the following results of Ramadanov and Skwarczyński (see [11, Theorem 12.1.23 and The-

orem 12.1.24] and also [12,13,10,15]).

Theorem 4 (Ramadanov). Let Ωj be an increasing sequence of domains in Cn such that Ω = ∪∞
j=1Ωj. Then, 

KΩj → KΩ as j → ∞ locally uniformly on Ω × Ω.



N.G. Göğüş, S. Şahutoğlu / J. Math. Anal. Appl. 491 (2020) 124295 5
Theorem 5 (Skwarczyński). Let {Ωj} be a sequence of domains in Cn such that Ω ⊂ Ωj+1 ⊂ Ωj. Then, 
KΩj → KΩ as j → ∞ locally uniformly on Ω × Ω if and only if KΩj (w, w) → KΩ(w, w) as j → ∞ for all 
w ∈ Ω.

Let U be a subdomain of a domain Ω. Since

KΩ(z, z) = sup{|f(z)|2 : f ∈ A2(Ω) and ‖f‖ = 1},

we have 0 ≤ KΩ(z, z) ≤ KU (z, z) for every z ∈ U . Hence, if KΩ(z, z) �= 0, then KU (z, z) �= 0.

Lemma 2. Let {Ωj} be a sequence of domains in Cn such that Ωj ⊂ Ωj+1 for all j and Ω = ∪∞
j=1Ωj be a 

non-trivial Bergman domain. Then for each compact set K ⊂ Ω\Z, we have

lim
j→∞

sup
z∈K

‖R∗
Ωj
kΩj
z − kΩ

z ‖L2(Ω) = 0.

Proof. First we note that 0 ≤ KΩ(z, z) ≤ KΩj (z, z) for all j and z ∈ K. So since K ⊂ Ω \ Z we have 
KΩj (z, z) �= 0 for all j so that K ⊂ Ωj . Let j0 be chosen such that K ⊂ Ωj0 . Lemma 1 implies that 
R∗

Ωj
k

Ωj
z = KΩ

z /
√
KΩj (z, z) for j ≥ j0. Then for z ∈ K and j ≥ j0 we have

‖R∗
Ωj
kΩj
z − kΩ

z ‖L2(Ω) =

∥∥∥∥∥ KΩ
z√

KΩj (z, z)
− KΩ

z√
KΩ(z, z)

∥∥∥∥∥
L2(Ω)

=
∥∥∥∥kΩ

z

(
1 −
√

KΩ(z, z)/
√
KΩj (z, z)

)∥∥∥∥
L2(Ω)

=
∣∣∣∣1 −

√
KΩ(z, z)/

√
KΩj (z, z)

∣∣∣∣ .
Ramadanov’s Theorem (Theorem 4) implies that KΩ(z, z)/KΩj (z, z) → 1 uniformly on K as j → ∞. 
Therefore, supz∈K ‖R∗

Ωj
k

Ωj
z − kΩ

z ‖L2(Ω) → 0 as j → ∞. �
The following Lemma, which is used in the proof of Theorem 1, might be of interest on its own right.

Lemma 3. Let Ω be a non-trivial Bergman domain in Cn and U ⊂ Ω be a subdomain. Let T be a bounded 
operator on A2(Ω). Then

BΩT (z)
BU (RUTR∗

U )(z) = KU (z, z)
KΩ(z, z)

for z ∈ U\Z.

Proof. For z ∈ U\Z, we use Lemma 1 to get

BU (RUTR
∗
U )(z) =〈TR∗

Uk
U
z , R

∗
Uk

U
z 〉Ω

= 〈TKΩ
z ,K

Ω
z 〉Ω

KU (z, z)

=KΩ(z, z)
KU (z, z)BΩT (z).

Hence the proof of Lemma 3 is complete. �



6 N.G. Göğüş, S. Şahutoğlu / J. Math. Anal. Appl. 491 (2020) 124295
Corollary 2. Let Ω be a non-trivial Bergman domain in Cn, U ⊂ Ω be a subdomain, and T be a bounded 
linear operator on A2(Ω). Assume that p ∈ U and 1 ≤ α < ∞ such that K

U (z,z)
KΩ(z,z) → α as z → p, z ∈ U\Z. 

Then BΩT is continuous at p if and only if BU (RUTR
∗
U ) is continuous at p.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. The proof of locally uniform convergence is a result of Theorem 4 together with 
Lemma 3. Indeed, Theorem 4 implies that

KΩj (z, z)/KΩ(z, z) → 1

locally uniformly on Ω × Ω as j → ∞. Then Lemma 3 implies that

BΩj
RΩj

TR∗
Ωj

→ BΩT

locally uniformly on Ω as j → ∞.
To prove the second part we assume that Ω is bounded and 0 < p < ∞. From the first part of the proof, 

we know that BΩj
RΩj

TR∗
Ωj

→ BΩT uniformly on compact sets as j → ∞. Furthermore, |BΩT (z)| ≤ ‖T‖
and |EBΩj

RΩj
TR∗

Ωj
(z)| ≤ ‖T‖ for all z ∈ Ω and all j. Then, using the Lebesgue Dominated Convergence 

Theorem, we conclude that EBΩj
RΩj

TR∗
Ωj

→ BΩT in Lp(Ω) as j → ∞. �
Lemma 4. Let Ω be a non-trivial Bergman domain and {Ωj} be a sequence of domains in Cn such that 
Ω ⊂ Ωj+1 ⊂ Ωj for all j. Assume that KΩj

(z, z) → KΩ(z, z) as j → ∞ for every z ∈ Ω. Then for each 
compact set K ⊂ Ω\Z, we have

lim
j→∞

sup
z∈K

‖RΩj

Ω kΩj
z − kΩ

z ‖L2(Ω) = 0.

Proof. If KΩ(z, z) > 0 for some z ∈ Ω, then KΩj (z, z) > 0 for large j because KΩj (z, z) increases to KΩ(z, z)
as j → ∞. Furthermore, there exists an open neighborhood of z for which the normalized Bergman kernels 
kΩj and kΩ are well-defined for j large enough. Since K ⊂ Ω\Z is compact, all of the functions in the 
statement are well-defined for large j, and the limit makes sense.

Let 0 < ε < 1 be given. For each z ∈ K, we choose a compact Sz ⊂ Ω so that 
∥∥kΩ

z

∥∥
L2(Ω\Sz) < ε. Recall 

that the map z 
→ kΩ
z is continuous from Ω\Z to L2(Ω) (see (1)). For any z ∈ Ω \ Z we choose an open set 

Uz ⊂ Ω\Z so that z ∈ Uz and 
∥∥kΩ

z − kΩ
w

∥∥
L2(Ω) < ε when w ∈ Uz. Then

∥∥kΩ
w

∥∥
L2(Ω\Sz) < ε +

∥∥kΩ
z

∥∥
L2(Ω\Sz) < 2ε

for w ∈ Uz. Since K is compact, there exist z1, · · · , zm ∈ K so that K ⊂ ∪m
j=1Uzj . The set S = ∪m

j=1Szj ⊂ Ω
is compact as well and

sup
w∈K

∥∥kΩ
w

∥∥
L2(Ω\S) < 2ε.

Using Theorem 5, we have

sup
z∈K,w∈S

∣∣kΩj
z (w) − kΩ

z (w)
∣∣ < ε√

V ol(S) + 1
(2)

and
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sup
z∈K,w∈S

∣∣|kΩj
z (w)|2 − |kΩ

z (w)|2
∣∣ < ε2

V ol(S) + 1

for large enough j. Then by integrating the above inequality over S and using 
∥∥kΩ

z

∥∥
L2(Ω\S) < 2ε we get

‖kΩj
z ‖2

L2(S) ≥ ‖kΩ
z ‖2

L2(S) − ε2 > 1 − 4ε2 − ε2 = 1 − 5ε2,

which implies ‖kΩj
z ‖L2(Ω\S) <

√
5ε when j is large enough. Then using (2) we get

‖RΩj

Ω kΩj
z − kΩ

z ‖L2(Ω) ≤
∥∥kΩj

z − kΩ
z

∥∥
L2(S) + ‖kΩ

z ‖L2(Ω\S) + ‖kΩj
z ‖L2(Ω\S)

< (3 +
√

5)ε

for j large and z ∈ K. Hence,

lim
j→∞

sup
z∈K

‖RΩj

Ω kΩj
z − kΩ

z ‖L2(Ω) = 0.

The proof is finished. �
Proof of Theorem 2. For z ∈ Ω\Z, we define f(z) = BΩT (z) and

fj(z) =BΩj
(RΩj

Ω )∗TRΩj

Ω (z)

gj(z) =〈TRΩj

Ω kΩj
z , kΩ

z 〉L2(Ω)

for each j. Then

fj(z) = 〈(RΩj

Ω )∗TRΩj

Ω kΩj
z , kΩj

z 〉L2(Ωj) = 〈TRΩj

Ω kΩj
z , R

Ωj

Ω kΩj
z 〉L2(Ω).

Let K ⊂ Ω be a compact set. By Cauchy-Schwarz inequality we have

sup
z∈K

|gj(z) − f(z)| = sup
z∈K

∣∣∣〈TRΩj

Ω kΩj
z − TkΩ

z , k
Ω
z 〉
∣∣∣

≤ sup
z∈K

∥∥∥TRΩj

Ω kΩj
z − TkΩ

z

∥∥∥
L2(Ω)

≤‖T‖ sup
z∈K

∥∥∥RΩj

Ω kΩj
z − kΩ

z

∥∥∥
L2(Ω)

.

The last term above converges to zero by Lemma 4. Therefore, the sequence {gj} converges to f uniformly 
on K.

Using Cauchy-Schwarz inequality again we have

|fj(z) − gj(z)| =
∣∣∣〈TRΩj

Ω kΩj
z , R

Ωj

Ω kΩj
z − kΩ

z 〉
∣∣∣ ≤ ‖T‖‖RΩj

Ω kΩj
z − kΩ

z ‖L2(Ω).

Lemma 4 implies that the last term above converges to zero uniformly on K. Hence, |fj−gj | → 0 uniformly 
on K as j → ∞. Therefore, {fj} converges to f uniformly on K.

As in the proof of Theorem 1 we prove the second part as follows. We assume that Ω is bounded. From the 
previous part of this proof we know that {fj} converges to f uniformly on compact subset of Ω. Furthermore, 
‖fj‖L∞(Ω) ≤ ‖T‖ for all j. Then using the Lebesgue Dominated Convergence Theorem, we conclude that 
{fj} converges to f in Lp(Ω) as j → ∞ for all 0 < p < ∞. �
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. It is enough to prove the result for finite product of Toeplitz operators as it is easy 
to conclude the theorem for the finite sums of such operators. So let T = Tφm

· · ·Tφ1 where φ1, . . . , φm ∈
L∞(Ω). One can easily show that BΩT ∈ L∞(Ω) and BΩj

TΩj ∈ L∞(Ωj) for all j. Furthermore, one can 
show that

max{‖BΩj
TΩj‖L∞(Ωj), ‖BΩT‖L∞(Ω)} ≤ ‖φ1‖L∞(Ω) · · · ‖φm‖L∞(Ω).

Let fj(z) = |BΩT (z) − EBΩj
TΩj (z)| for z ∈ Ω. Then

‖fj‖L∞(Ω) ≤ 2‖φ1‖L∞(Ω) · · · ‖φm‖L∞(Ω) (3)

for all j.
We will use induction to prove that

sup{|TΩjkΩj
z (w) − TkΩ

z (w)| : z, w ∈ K} → 0

as j → ∞. So first let us assume that T = Tφ1 is a Toeplitz operator. Let K be a compact set in Ω\Z. As 
in the proof of Lemma 4 for a given ε > 0, there exists a compact set S ⊂ Ω and j0 ∈ N such that K � Ωj , 
‖kΩ

z ‖L2(Ω\S) < ε for all z ∈ K, and ‖kΩj
z ‖L2(Ωj\S) < ε for all z ∈ K and j ≥ j0. Let us consider the following 

equalities.

Tφ1k
Ω
z (w) − T

Ωj

φ1
kΩj
z (w) =〈φ1k

Ω
z ,K

Ω(., w)〉Ω − 〈φ1k
Ωj
z ,KΩj (., w)〉Ωj

=〈φ1k
Ω
z ,K

Ω(., w)〉S − 〈φ1k
Ωj
z ,KΩj (., w)〉S

+ 〈φ1k
Ω
z ,K

Ω(., w)〉Ω\S − 〈φ1k
Ωj
z ,KΩj (., w)〉Ωj\S .

There exists CK > 1 such that 1/CK ≤ KΩj (w, w) ≤ CK for all w ∈ K and all j ≥ j0 since by Theorem 4, 
the continuous functions {KΩj (w, w)} converges to KΩ(w, w) uniformly on K.

Without loss of generality we can assume that

‖kΩ
z ‖L2(Ω\S) <

ε√
KΩ(w,w)

,

‖kΩj
z ‖L2(Ωj\S) <

ε√
KΩj (w,w)

for j ≥ j0 and all z, w ∈ K. Then∣∣〈φ1k
Ω
z ,K

Ω(., w)〉Ω\S
∣∣+ ∣∣〈φ1k

Ωj
z ,KΩj (., w)〉Ωj\S

∣∣ ≤ 2ε‖φ1‖L∞(Ω)

for all z, w ∈ K. Also

sup
{∣∣〈φ1k

Ω
z ,K

Ω(., w)〉S − 〈φ1k
Ωj
z ,KΩj (., w)〉S

∣∣ : z, w ∈ K
}
→ 0

as j → ∞ (a consequence of Theorem 4). Then

lim sup
j→∞

sup
{∣∣∣Tφ1k

Ω
z (w) − T

Ωj

φ1
kΩj
z (w)

∣∣∣ : z, w ∈ K
}
≤ 2ε‖φ1‖L∞(Ω).

Since ε is arbitrary, we conclude that
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sup
{∣∣∣TΩ

φ1
kΩ
z (w) − T

Ωj

φ1
kΩj
z (w)

∣∣∣ : z, w ∈ K
}
→ 0

as j → ∞. We note that for z ∈ Ωj we have

∣∣∣BΩj
T

Ωj

φ1
(z) − BΩTφ1(z)| =

∣∣∣∣√ KΩ(z,z)
KΩj (z,z)

〈
T

Ωj

φ1
k

Ωj
z ,K

Ωj
z

〉
Ωj

−
〈
Tφ1k

Ω
z ,K

Ω
z

〉
Ω

∣∣∣∣√
KΩ(z, z)

= 1√
KΩ(z, z)

∣∣∣∣∣
√

KΩ(z, z)
KΩj (z, z)T

Ωj

φ1
kΩj
z (z) − Tφ1k

Ω
z (z)

∣∣∣∣∣ . (4)

Hence BΩj
T

Ωj

φ1
→ BΩTφ1 uniformly on compact subsets of Ω\Z as j → ∞.

Next we show the induction step. Let T̃ = Tφm−1 · · ·Tφ1 and T̃Ωj = Tφm−1|Ωj
· · ·Tφ1|Ωj

. As the induction 

hypothesis we assume that T̃Ωjk
Ωj
z → T̃ kΩ

z uniformly on compact subsets as j → ∞. Then

TkΩ
z (w) − TΩjkΩj

z (w) =〈φmT̃ kΩ
z ,K

Ω(., w)〉Ω − 〈φmT̃ΩjkΩj
z ,KΩj (., w)〉Ωj

=〈φmT̃ kΩ
z ,K

Ω(., w)〉S − 〈φmT̃ΩjkΩj
z ,KΩj (., w)〉S

+ 〈φmT̃ kΩ
z ,K

Ω(., w)〉Ω\S

− 〈φmT̃ΩjkΩj
z ,KΩj (., w)〉Ωj\S

As in the previous case, we have∣∣∣〈φmT̃ kΩ
z ,K

Ω(., w)〉Ω\S

∣∣∣ ≤‖φm‖L∞(Ω)‖T̃‖‖kΩ
z ‖L2(Ω\S)

√
KΩ(w,w)

≤ε‖φm‖L∞(Ω) · · · ‖φ1‖L∞(Ω)

and ∣∣∣〈φmT̃ΩjkΩj
z ,KΩj (., w)〉Ωj\S

∣∣∣ ≤‖φm‖L∞(Ω)‖T̃Ωj‖‖kΩj
z ‖L2(Ωj\S)

√
KΩj (w,w)

≤ε‖φm‖L∞(Ω) · · · ‖φ1‖L∞(Ω).

Then ∣∣∣〈φmT̃ kΩ
z ,K

Ω(., w)〉Ω\S

∣∣∣+ ∣∣∣〈φmT̃ΩjkΩj
z ,KΩj (., w)〉Ωj\S

∣∣∣
≤ 2ε‖φm‖L∞(Ω) · · · ‖φ1‖L∞(Ω)

for all z, w ∈ K. Furthermore, by induction hypothesis, we have

sup{|T̃ΩjkΩj
z (w) − T̃ kΩ

z (w)| : z, w ∈ K} → 0

as j → ∞. Then

sup
{
〈φmT̃ kΩ

z ,K
Ω(., w)〉S − 〈φmT̃ΩjkΩj

z ,KΩj (., w)〉S : z, w ∈ K
}
→ 0

as j → ∞. Hence,

sup{|TΩjkΩj
z (w) − TkΩ

z (w)| : z, w ∈ K} → 0
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as j → ∞. Similar to (4) one can show that

∣∣BΩj
TΩj (z) −BΩT (z)

∣∣ = 1√
KΩ(z, z)

∣∣∣∣∣
√

KΩ(z, z)
KΩj (z, z)T

ΩjkΩj
z (z) − TkΩ

z (z)

∣∣∣∣∣ .
Therefore, fj → 0 uniformly on K as j → ∞.

To prove the second part we assume that Ω is bounded. Then the Lebesgue Dominated Convergence 
Theorem together with (3) implies that 

∫
Ω |fj(z)|pdV (z) → 0 as j → ∞. Hence, EBΩj

TΩj → BΩT in Lp(Ω)
as j → ∞. �

Using very similar arguments as in the proof of Theorem 3 one can prove the following corollary.

Corollary 3. Let Ω be a non-trivial Bergman domain and {Ωj} be a sequence of domains in Cn such 
that Ω ⊂ Ωj+1 ⊂ Ωj for all j. Assume KΩj (z, z) → KΩ(z, z) as j → ∞ for every z ∈ Ω. Let 
T =

∑l
m=1 Tφm,1 · · ·Tφm,km

be a finite sum of finite products of Toeplitz operators with bounded symbols 
on Ω1 and TΩj =

∑l
m=1 Tφm,1|Ωj

· · ·Tφm,km |Ωj
for each j. Then BΩj

TΩj → BΩT uniformly on compact 
subsets of Ω \ Z as j → ∞. Furthermore, if Ω1 is bounded, then EBΩj

TΩj → BΩT in Lp(Ω) as j → ∞ for 
all 0 < p < ∞.

We finish this section with the proof of Corollary 1.

Proof of Corollary 1. Let φ ∈ Lq(Ω) and let K ⊂ Ω\Z be compact. First assume that φ is real valued and 
φ ≥ 0 on Ω. For each k ≥ 1 we define φk = min{φ, k}. Hence, φk ∈ L∞(Ω) and BΩφk(z) increases to BΩφ(z)
for each z ∈ Ω. By Dini’s Theorem, BΩφk converges uniformly to BΩφ on K. By Theorem 3, for each k ≥ 1
there exists jk so that

sup
z∈K

|EBΩjk
φk(z) −BΩφk(z)| ≤

1
k
.

This means that EBΩjk
φk converges uniformly to BΩφ on K. If Ω is bounded and p > 0, then by the last 

statement of Theorem 3, we can find jk so that ‖EBΩjk
φk −BΩφk‖Lp(Ω) ≤ 1/k. By Monotone Convergence 

Theorem, we conclude that ‖BΩφk − BΩφ‖Lp(Ω) → 0 as k → ∞. Therefore, ‖EBΩjk
φk − BΩφ‖Lp(Ω) → 0

as k → ∞. Now let φ ∈ Lq(Ω) be real valued. Then we write φ = φ+ − φ− where φ+, φ− ≥ 0 on Ω. Since 
BΩφ = BΩφ

+ −BΩφ
−, we can apply the first part of the proof to each term. Finally, if φ is complex valued 

then we can apply the previous part of the proof to the real and imaginary parts of φ. �
3. Proofs of Propositions 1 and 2

Let D = {z ∈ C : |z| < 1} be the unit disk in the complex plane. The Poisson kernel (see, for instance, 
[14, Definition 1.2.3]) on the unit disk is defined as

P (z, ζ) = Re
(
ζ + z

ζ − z

)
= 1 − |z|2

|ζ − z|2 ,

where z ∈ D, |ζ| = 1.

Lemma 5. Let 0 < s < 1 and z ∈ D. Then

1
2π

2π∫
(P (sz, eit))2dt = 1 + s2|z|2

1 − s2|z|2 .

0
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Proof. Let us fix z = ρeiθ. In (5), we use the property that

P (sρeiθ, eit) = P (sρeit, eiθ);

and in (6) we use the facts that P , the Poisson kernel, is the kernel of the integral operator that solves the 
Dirichlet problem and P (., eit) is harmonic on D (see [14]).

1
2π

2π∫
0

(
P (sz, eit)

)2
dt = 1

2π

2π∫
0

P (sz, eit)P (sz, eit)dt

= 1
2π

2π∫
0

P (sρeiθ, eit)P (sz, eit)dt

= 1
2π

2π∫
0

P (sρeit, eiθ)P (sz, eit)dt (5)

=P (s2ρz, eiθ) (6)

= 1 − s4|z|4
(1 − s2|z|2)2

=1 + s2|z|2
1 − s2|z|2 .

Hence, the proof of Lemma 5 is complete. �
A function u(z, w) in D2 is said to be separately subharmonic if when one of the variables is fixed in D, 

u is subharmonic in the other variable.

Lemma 6. Let Ga(z) = log
∣∣∣∣ a− z

1 − az

∣∣∣∣ be the Green’s function for D with pole at a ∈ D. Then

BDGa(z) = 1
2

(∣∣∣∣ a− z

1 − az

∣∣∣∣2 − 1
)

and the function u(z, a) = BDGa(z), defined for (z, a) ∈ D2, is separately subharmonic on D2.

Proof. First suppose that a = 0. Using Lemma 5 in the fourth equality below we get

BDG0(z) =(1 − |z|2)2
π

∫
D

log |w|
|1 − wz|4 dV (w)

=(1 − |z|2)2
π

1∫
0

s log s
2π∫
0

1
|1 − se−itz|4 dtds

=2(1 − |z|2)2
1∫

0

s log s
(1 − s2|z|2)2

1
2π

2π∫
0

(1 − s2|z|2)
|eit − sz|2

(1 − s2|z|2)
|eit − sz|2 dtds

=2(1 − |z|2)2
1∫

s log s
(1 − s2|z|2)2

1 + s2|z|2
(1 − s2|z|2)ds
0
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=2(1 − |z|2)2
1∫

0

s(1 + s2|z|2) log s
(1 − s2|z|2)3 ds.

One can show that ∫
x(1 + |z|2x2) log x

(1 − |z|2x2)3 dx = x2 log x
2(|z|2x2 − 1)2 + 1

4|z|2(|z|2x2 − 1) + C.

Therefore,

2(1 − |z|2)2
1∫

0

s(1 + s2|z|2) log s
(1 − s2|z|2)3 ds = 1

2(|z|2 − 1).

Let a ∈ D\{0}. Let ψa(w) = a− w

1 − aw
be the Möbius transform on the disk. Then, using [9, Chapter 2]

(see also [17, Section 6.3]) we have

BDGa(z) =
∫
D

Ga(ψz(w))dV (w)

=
∫
D

G0(ψa ◦ ψz(w))dV (w)

=
∫
D

G0(ψψa(z)(w))dV (w)

=BDG0(ψa(z)) = 1
2

(∣∣∣∣ a− z

1 − az

∣∣∣∣2 − 1
)
.

Hence, the proof of Lemma 6 is complete. �
Proof of Proposition 1. The Bergman kernel of the annulus Ar is (see [11, Example 12.1.7 (c)])

KAr(z, w) = − 1
2πzw log r + 1

πzw

∑
k �=0

kzkwk

1 − r2k .

Let K be a compact subset of D \ {0}. Then for small enough r > 0 the set K is a compact subset of Ar. 
Let us fix z0 ∈ K � Ar and let us break down the function KAr(z0, w) into four pieces as

KAr(z0, w) = ψ0
r,z0(w) + ψ1

r,z0(w) + ψ2
r,z0(w) + ψ3

r,z0(w)

where

ψ0
r,z0(w) = − 1

2πz0w log r ,

ψ1
r,z0(w) = r2

(1 − r2)πz2
0w

2 ,

ψ2
r,z0(w) = 1

πz2

∞∑ k

1 − r2k

(
r

z0

)k−1 ( r

w

)k+1
,

0 k=2
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ψ3
r,z0(w) = 1

πz0w

∞∑
k=1

kzk0w
k

1 − r2k .

One can check that the sup{|ψ1
r,z0(w)| : z0 ∈ K, w ∈ Ar} and sup{|ψ3

r,z0(w)| : z0 ∈ K, w ∈ Ar} stay bounded 
as r → 0+. Furthermore, sup{|ψ2

r,z0(w)| : z0 ∈ K, w ∈ Ar} converges to zero as r → 0+.
Now we will estimate the Berezin transform of φ(w) = log |w| on Ar at z0. First we can write |KAr(z0, w)|2

as

|KAr(z0, w)|2 =
∣∣ψ0

r,z0(w)
∣∣2 +

∣∣ψ3
r,z0(w)

∣∣2 + Ψr,z0(w)

where

Ψr,z0(w) =2Re

⎛⎝ψ0
r,z0(w)

3∑
j=1

ψj
r,z0(w) + ψ1

r,z0(w)
3∑

j=2
ψj
r,z0(w)

⎞⎠
+ 2Re

(
ψ2
r,z0(w)ψ3

r,z0(w)
)

+
∣∣ψ1

r,z0(w)
∣∣2 +

∣∣ψ2
r,z0(w)

∣∣2 .
Now we will show that sup

{∣∣∣∫Ar
φ(w)Ψr,z0(w)dV (w)

∣∣∣ : z0 ∈ K
}
→ 0 as r → 0+. Using polar coordinates 

we compute

∫
Ar

|φ(w)|
∣∣ψ0

r,z0(w)
∣∣ dV (w) = 1

|z0| log r

1∫
r

log ρdρ

=r − r log r − 1
|z0| log r → 0

uniformly on K as r → 0+. Hence using the fact that ψ1
r,z0 , ψ

2
r,z0 , ψ

3
r,z0 stay bounded uniformly on Ar for 

all z0 ∈ K we conclude that

∫
Ar

φ(w)ψ0
r,z0(w)

3∑
j=1

ψj
r,z0(w)dV (w) → 0

uniformly on K as r → 0+. Similarly, we conclude that∫
Ar

φ(w)
∣∣ψ1

r,z0(w)
∣∣2 dV (w) → 0

and ∫
Ar

φ(w)ψ1
r,z0(w)

3∑
j=2

ψj
r,z0(w)dV (w) → 0

uniformly on K as r → 0+ because ψ1
r,z0 , ψ

2
r,z0 , ψ

3
r,z0 stay bounded uniformly on Ar for all z0 ∈ K and

∫
Ar

|φ(w)|
∣∣ψ1

r,z0(w)
∣∣ dV (w) = − 2r2

(1 − r2)|z0|2

1∫
r

log ρ
ρ

dρ

= r2(log r)2

(1 − r2)|z0|2
→ 0
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uniformly on K as r → 0+. Finally, since ψ3
r,z0 stays bounded uniformly on Ar while sup{|ψ2

r,z0(w)| : z0 ∈
K, w ∈ Ar} → 0 as r → 0+ we get ∫

Ar

φ(w)
∣∣ψ2

r,z0(w)
∣∣2 dV (w) → 0

and ∫
Ar

φ(w)ψ2
r,z0(w)ψ3

r,z0(w)dV (w) → 0

uniformly on K as r → 0+. Therefore, we showed that

sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Ar

φ(w)Ψr,z0(w)dV (w)

∣∣∣∣∣∣ : z0 ∈ K

⎫⎬⎭→ 0 as r → 0+.

Now we turn to 
∫
Ar

φ(w) 
∣∣ψ0

r,z0(w)
∣∣2 dV (w).

∫
Ar

φ(w)
∣∣ψ0

r,z0(w)
∣∣2 dV (w) = 1

2π|z0|2(log r)2

1∫
r

log ρ
ρ

dρ = − 1
4π|z0|2

.

Finally,

KAr(z0, z0) → KD(z0, z0) = 1
π(1 − |z0|2)2

uniformly for all z0 ∈ K as r → 0+ and

sup
{∣∣ψ3

r,z0(w)
∣∣2 − ∣∣∣KD(w, z0)

∣∣∣2 : z0 ∈ K,w ∈ D

}
→ 0

as r → 0+. Therefore, we have

BAr
φ(z0) =

∫
Ar

φ(w) |K
Ar(w, z0)|2

KAr(z0, z0)
dV (w)

=
∫
Ar

φ(w)
|ψ0

r,z0(w)|2
KAr(z0, z0)

dV (w) +
∫
Ar

φ(w)
|ψ3

r,z0(w)|2
KAr(z0, z0)

dV (w)

+
∫
Ar

φ(w) Ψr,z0(w)
KAr(z0, z0)

dV (w)

and

BAr
φ(z0) → − (|z0|2 − 1)2

4|z0|2
+ BDφ(z0) = |z0|2

4 − 1
4|z0|2

uniformly on K as r → 0+ because Lemma 6 implies that BDφ(z0) = 1
2 (|z0|2 − 1). Therefore, we showed 

that
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BAr
φ(z) → |z|2

4 − 1
4|z|2

uniformly on compact subsets of D \ {0} as r → 0+. �
Proof of Proposition 2. The functions {en : n = 0, 1, 2, . . .} form an orthonormal basis for A2(D∗) where 

en(z) =
√

n+1
π zn. Using integration by parts, we compute

Tφen(z) =

⎛⎝2(n + 1)
1∫

0

r2n+1 log rdr

⎞⎠ zn = − zn

2n + 2 = −
√
π

2(n + 1)3/2
en(z).

Hence, Tφ is a compact diagonal operator on A2(D∗) and by [7, Theorem 6] it is in the Toeplitz algebra.
Let f(z) = |z|2

4 − 1
4|z|2 . Proposition 1 implies that for any ε > 0 and any compact set K � D \ {0} we 

can choose r0 > 0 sufficiently small so that K � Ar and

‖EBAr
TAr

φ ‖pLp(D∗) =
∫
Ar

|BAr
φ(z)|pdV (z) ≥

∫
K

|BAr
φ(z)|pdV (z)

≥
∫
K

|f(z)|pdV (z) − ε

for all 0 < r ≤ r0. Then

lim inf
r→0+

‖EBAr
TAr

φ ‖pLp(D∗) ≥ ‖f‖pLp(K) − ε.

Since K and ε are arbitrary, we conclude that

lim inf
r→0+

‖EBAr
TAr

φ ‖pLp(D∗) ≥ ‖f‖pLp(D∗).

Furthermore, one can show that ‖f‖Lp(D∗) = ∞ if and only if p ≥ 1. Therefore,

lim
r→0+

‖EBAr
TAr

φ ‖Lp(D∗) = ∞.

Finally, ‖BD∗Tφ‖Lp(D∗) < ∞ for all 1 ≤ p ≤ ∞ because Lemma 6 implies that BD∗Tφ = (|z|2 − 1)/2. �
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