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In this paper we use the Riemann–Hilbert problem, with jumps supported on 
appropriate curves in the complex plane, for matrix biorthogonal polynomials 
and apply it to find Sylvester systems of differential equations for the orthogonal 
polynomials and its second kind functions as well. For this aim, Sylvester 
type differential Pearson equations for the matrix of weights are shown to be 
instrumental. Several applications are given, in order of increasing complexity. 
First, a general discussion of non-Abelian Hermite biorthogonal polynomials on 
the real line, understood as those whose matrix of weights is a solution of a 
Sylvester type Pearson equation with coefficients first degree matrix polynomials, 
is given. All of these are applied to the discussion of possible scenarios leading 
to eigenvalue problems for second order linear differential operators with matrix 
eigenvalues. Nonlinear matrix difference equations are discussed next. Firstly, for 
the general Hermite situation a general non linear relation (non trivial because 
of the non commutativity features of the setting) for the recursion coefficients is 
gotten. In the next case of higher difficulty, degree two polynomials are allowed 
in the Pearson equation, but the discussion is simplified by considering only a left 
Pearson equation. In the case, the support of the measure is on an appropriate 
branch of a hyperbola. The recursion coefficients are shown to fulfill a non-Abelian 
extension of the alternate discrete Painlevé I equation. Finally, a discussion is given 
for the case of degree three polynomials as coefficients in the left Pearson equation 
characterizing the matrix of weights. However, for simplicity only odd polynomials 
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are allowed. In this case, a new and more general matrix extension of the discrete 
Painlevé I equation is found.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Matrix extensions of real orthogonal polynomials were first discussed back in 1949 by Krein [50,51]
and thereafter were studied sporadically until the last decade of the XX century, being some relevant 
papers [7,12,41]. Then, in 1984, Aptekarev and Nikishin, for a kind of discrete Sturm–Liouville operators, 
solved the corresponding scattering problem in [7], and found that the polynomials that satisfy a relation 
of the form

xPk(x) = AkPk+1(x) + BkPk(x) + A∗
k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite measure; i.e., they derived a matrix version of Favard’s 
theorem.

In a period of 20 years, from 1990 to 2010, it was found that matrix orthogonal polynomials (MOP) 
satisfy, in some cases, properties as do the classical orthogonal polynomials. The first explicit (nontrivial) 
example of matrix-valued orthogonal polynomials satisfying a second-order differential equation was given 
by Grünbaum in [42] as a byproduct of [44–46]. Later, in a very different way, other examples were obtained 
in [33].

Let us mention, for example, that for matrix versions of Laguerre, Hermite and Jacobi polynomials, 
i.e., the scalar-type Rodrigues’ formula [34,35] and a second order differential equation [13,31,33] has been 
discussed. It also has been proven [32] that operators of the form D = ∂2F2(t) + ∂1F1(t) + ∂0F0 have as 
eigenfunctions different infinite families of MOP’s. A new family of MOP’s satisfying second order differential 
equations, whose three term recurrence relation coefficients do not behave asymptotically as the identity 
matrix, was found in [13]; see also [15]. We have studied [4,5] matrix extensions of the generalized polynomials 
studied in [1,2]. Recently, in [6], the Christoffel transformation to matrix orthogonal polynomials on the 
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real line (MOPRL) were extended to obtaining a new matrix Christoffel formula, and in [8,9] more general 
transformations —of Geronimus and Uvarov type— were also considered.

It was 26 years ago, in 1992, when Fokas, Its and Kitaev, in the context of 2D quantum gravity, discovered 
that certain Riemann–Hilbert problem was solved in terms of orthogonal polynomials on the real line 
(OPRL), [37]. Namely, it was found that the solution of a 2 × 2 Riemann–Hilbert problem can be expressed 
in terms of orthogonal polynomials on the real line and its Cauchy transforms. Later, Deift and Zhou 
combined these ideas with a non-linear steepest descent analysis in a series of papers [26,27,29,30] which 
was the seed for a large activity in the field. To mention just a few relevant results let us cite the study of 
strong asymptotic with applications in random matrix theory, [26,28], the analysis of determinantal point 
processes [23,24,52,53], orthogonal Laurent polynomials [56,57] and Painlevé equations [25,49].

The study of equations for the recursion coefficients for OPRL or orthogonal polynomials in the unit circle 
constitutes a subject of current interest. The question of how the form of the weight and its properties, for 
example to satisfy a Pearson type equation, translates to the recursion coefficients has been treated in 
several places, for a review see [63]. In 1976, Freud [38] studied weights in R of exponential variation 
w(x) = |x|ρ exp(−|x|m), ρ > −1 and m > 0. For m = 2, 4, 6 he constructed relations among them as well 
as determined its asymptotic behavior. However, Freud did not find the role of the discrete Painlevé I, 
that was discovered later by Magnus [55]. For the unit circle and a weight of the form w(θ) = exp(k cos θ), 
k ∈ R, Periwal and Shevitz [60,61], in the context of matrix models, found the discrete Painlevé II equation 
for the recursion relations of the corresponding orthogonal polynomials. This result was rediscovered later 
and connected with the Painlevé III equation [48]. In [10] the discrete Painlevé II was found using the 
Riemann–Hilbert problem given in [11], see also [62]. For a nice account of the relation of these discrete 
Painlevé equations and integrable systems see [22], and for a survey on the subject of differential and discrete 
Painlevé equations cf. [19]. We also mention the recent paper [20] where a discussion on the relationship 
between the recurrence coefficients of orthogonal polynomials with respect to a semiclassical Laguerre weight 
and classical solutions of the fourth Painlevé equation can be found. Also, in [21] the solution of the discrete 
alternate Painlevé equations is presented in terms of the Airy function.

In [16] the Riemann–Hilbert problem for this matrix situation and the appearance of non-Abelian discrete 
versions of Painlevé I were explored, showing singularity confinement [17]. The singularity analysis for 
a matrix discrete version of the Painlevé I equation was performed. It was found that the singularity 
confinement holds generically, i.e. in the whole space of parameters except possibly for algebraic subvarieties. 
The situation was considered in [18] for the matrix extension of the Szegő polynomials in the unit circle 
and corresponding non-Abelian versions discrete Painlevé II equations. For an alternative discussion of the 
use of Riemann–Hilbert problem for MOPRL see [47].

Let us mention that in [58,59] and [14] the MOP are expressed in terms of Schur complements that play 
the role of determinants in the standard scalar case. In [14] an study of matrix Szegő polynomials and the 
relation with a non Abelian Ablowitz–Ladik lattice is carried out, and in [3] the CMV ordering is applied 
to study orthogonal Laurent polynomials in the circle.

In this work we obtain Sylvester systems of differential equations for the orthogonal polynomials and 
its second kind functions, directly from a Riemann–Hilbert problem, with jumps supported on appropriate 
curves in the complex plane. The differential properties for the weight function are fundamental. In this case 
we consider a Sylvester type differential Pearson equation for the matrix of weights. We also study whenever 
the orthogonal polynomials and its second kind functions are solutions of a second order linear differential 
operator with matrix eigenvalues. This is done by stating an appropriate boundary value problem for the 
matrix of weights. In particular, special attention is paid to non-Abelian Hermite biorthogonal polynomials 
on the real line, understood as those whose matrix of weights is a solution of a Sylvester type Pearson 
equation with given first order matrix polynomial coefficients. In Theorem 5 we give conditions such that 
Hermite type matrix biorthogonal polynomials and corresponding second kind functions are eigenfunctions
of second order differential operators.
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Several applications are given, in order of increasing complexity, as well. First, we return to the non-
Abelian Hermite biorthogonal polynomials on the real line, and give nonlinear matrix difference equations 
for the recurrent coefficients of the non-Abelian Hermite biorthogonal polynomials. Next, we consider the 
orthogonal polynomials and functions of second kind associated with matrix of weights, that satisfy a 
differential matrix Pearson equation with degree two polynomials as coefficients. To simplify the discussion, 
only a left Pearson equation is considered. In this case, the support of the measure belongs to an appropriate 
branch of a hyperbola, and the recursion coefficients are shown to fulfill a non-Abelian extension of the scalar 
alternate discrete Painlevé I equation. Finally, a discussion is given for the case of degree three polynomials 
as coefficients in the left Pearson equation characterizing the matrix of weights. However, for simplicity only 
odd polynomials are allowed. In this case, a new and more general matrix extension of the discrete Painlevé 
equation is found. To end this study we present a comparison with the results already obtained by several 
authors in the scalar and matrix cases.

The layout of the paper is as follows. In § 2 we introduce the basic objects and results fundamental to the 
rest of the work. Then, § 3 is devoted to study the interplay between fundamental matrices with constant 
jump and structure formulas. In § 4 and 5 we characterize sequences of orthogonal polynomials whose matrix 
weight satisfies a Pearson–Sylvester matrix differential equation by means of a Sylvester matrix differential 
system and a second order differential operator. Finally, in § 6 we show how to derive Painlevé equations 
for the matrix recurrence coefficients of orthogonal polynomial sequences associated with matrix weight 
functions of “exponential” type.

2. Riemann–Hilbert problem for matrix biorthogonal polynomials

2.1. Matrix biorthogonal polynomials

Let

W =

⎡⎢⎣W (1,1) · · · W (1,N)

...
. . .

...
W (N,1) · · · W (N,N)

⎤⎥⎦ ∈ CN×N ,

be a N ×N matrix of weights with support on a smooth oriented non self-intersecting unbounded curve γ, 
without end point, in the complex plane C, i.e. W (j,k) is, for each j, k ∈ {1, . . . , N}, a complex weight with 
support on γ. We define the moment of order n associated with W as

Wn = 1
2π i

∫
γ

znW (z) d z, n ∈ Z+ := {0, 1, 2, . . .}.

We say that W is regular if the matrix moments, Wn, n ∈ Z+, exist and the matrix of moments,

UUUn = [Wj+k ]j,k=0,...,n =

⎡⎢⎣W0 · · · Wn

...
. . .

...
Wn · · · W2n

⎤⎥⎦ ,

is such that

detUUUn �= 0, n ∈ Z+. (1)
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In this way, we define a sequence of matrix monic polynomials, 
{
P L
n(z)

}
n∈Z+

, were degP L
n(z) = n, n ∈ Z+, 

left orthogonal and right orthogonal, 
{
PR
n (z)

}
n∈Z+

, were degPR
n (z) = n, n ∈ Z+, with respect to a regular 

matrix measure W , by the conditions,

1
2π i

∫
γ

P L
n(z)W (z)zk d z = δn,kC

−1
n , (2)

1
2π i

∫
γ

zkW (z)PR
n (z) d z = δn,kC

−1
n , (3)

for k = 0, 1, . . . , n and n ∈ Z+, where Cn is a nonsingular matrix.
We can see that sequence of monic polynomials {P L

n}n∈Z+ are defined by (2) with respect to a regular 
matrix weight, W . In fact, taking into account a representation for P L

n as

P L
n(z) = p0

L,nz
n + p1

L,nz
n−1 + · · · + pn−1

L,n z + pnL,n

such that for each j = 0, 1, . . . , n − 1∫
γ

P L
n(z)W (z)zj d z = p0

L,nWn+j + p1
L,nWn+j−1 + · · · + pn−1

L,n Wj+1 + pnL,nWj = 0,

and with j = n∫
γ

P L
n(z)W (z)zn d z = p0

L,nW2n + p1
L,nW2n−1 + · · · + pn−1

L,n Wn+1 + pnL,nWn = C−1
n .

In matrix notation we have

[
pnL,n pn−1

L,n · · · p1
L,n p0

L,n
]
UUUn =

[
0 0 · · · 0 C−1

n

]
.

From (1) we know that the above linear system has an unique solution, i.e. there exists and are unique the 
matrices pnL,n, pn−1

L,n , . . . , p1
L,n, p

0
L,n, and so the sequence {P L

n}n∈Z+ is uniquely defined up to a multiplicative 
nonsingular matrix defined by (2).

This last sentence is a direct consequence of the non-singularity of the last block of UUU−1
n , i.e. the one in 

the position (n + 1), (n + 1), of the matrix UUU−1
n , as (see for instance [40])

UUU−1
n =

[
A B

C D

]

with D =
(
W2n − [Wn · · · W2n−1 ]UUU−1

n−1
[
WT

n · · · WT
2n−1

]T )−1
, and detD = detUUUn−1

detUUUn
. The same 

can be seen for {PR
n }n∈Z+ .

Notice that neither the matrix of weights is requested to be Hermitian nor the curve γ to be on the real 
line, i.e., we are dealing, in principle with nonstandard orthogonality and, consequently, with biorthogonal 
matrix polynomials instead of orthogonal matrix polynomials.

The matrix of weights induces a sesquilinear like form in the set of matrix polynomials CN×N [z] given 
by
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〈P,Q〉W :=
∫
γ

P (z)W (z)Q(z) d z,

in the sense that, for all P, P1, P2, Q, Q1, Q2 ∈ CN×N [z] and A, B ∈ CN×N we have

〈P1 + P2, Q1 + Q2〉W = 〈P1, Q1〉W + 〈P2, Q1〉W + 〈P1, Q2〉W + 〈P2, Q2〉W ,

〈AP,QB〉W = A 〈P,Q〉W B.

Moreover, we say that 
{
P L
n(z)

}
n∈Z+

and 
{
PR
n (z)

}
n∈Z+

are biorthogonal with respect to a matrix weight 
functions W , as from (2) and (3)

1
2π i

〈
P L
n , P

R
m

〉
W

= δn,mC−1
n , n,m ∈ Z+. (4)

As the polynomials are chosen to be monic, we can write

P L
n(z) = Izn + p1

L,nz
n−1 + p2

L,nz
n−2 + · · · + pnL,n,

PR
n (z) = Izn + p1

R,nz
n−1 + p2

R,nz
n−2 + · · · + pnR,n,

with matrix coefficients pkL,n, pkR,n ∈ CN×N , k = 0, . . . , n and n ∈ Z+ (imposing that p0
L,n = p0

R,n = I, 
n ∈ Z+). Here I ∈ CN×N denotes the identity matrix.

2.2. Three term relations

From (2) we deduce that the Fourier coefficients of the expansion

zP L
n(z) =

n+1∑
k=0

�nL,kP
L
k (z),

are given by �nL,k = 0N , k = 0, 1, . . . , n − 2 (here we denote the zero matrix by 0N), �nL,n−1 = C−1
n Cn−1

(is a direct consequence of orthogonality conditions), �nL,n+1 = I (as P L
n(z) are monic polynomials) and 

�nL,n = p1
L,n − p1

L,n+1 =: βL
n (by comparison of the coefficients, assuming C0 = I).

Hence, assuming the orthogonality relations (2), we conclude that the sequence of monic polynomials {
P L
n(z)

}
n∈Z+

is defined by the three term recurrence relations

zP L
n(z) = P L

n+1(z) + βL
nP

L
n(z) + γL

nP
L
n−1(z), n ∈ Z+, (5)

with recursion coefficients

βL
n := p1

L,n − p1
L,n+1, γL

n := C−1
n Cn−1,

with initial conditions, P L
−1 = 0N and P L

0 = I.
Any sequence of monic matrix polynomials, 

{
PR
n (z)

}
n∈Z+

, with degPR
n = n, biorthogonal with respect 

to 
{
P L
n(z)

}
n∈Z+

and W (z), i.e. (4) is fulfilled, also satisfies a three term relation. To prove this we compute 

the Fourier coefficients of zPR
m(z) in the expansion

zPR
n (z) =

n+1∑
k=0

PR
k (z)�nR,k, �nR,k = 1

2π i

∫
γ

zP L
k (z)W (z)PR

n (z) d z.
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From (2) we have �nR,n+1 = I, �nR,n = Cnβ
L
nC

−1
n , �nR,n−1 = Cn−1C

−1
n , and �nR,k = 0N , k = 0, . . . , n − 2, i.e. 

the sequence of monic polynomials 
{
PR
n (z)

}
n∈Z+

satisfies

PR
−1 = 0N , PR

0 = I, zPR
n (z) = PR

n+1(z) + PR
n (z)βR

n + PR
n−1(z)γR

n , n ∈ Z+, (6)

where

βR
n := Cnβ

L
nC

−1
n , γR

n := Cnγ
L
nC

−1
n = Cn−1C

−1
n ,

and the orthogonality conditions (3) are satisfied.

2.3. Second kind functions

We define the sequence of second kind matrix functions by

QL
n(z) := 1

2π i

∫
γ

P L
n(z′)

z′ − z
W (z′) d z′, (7)

QR
n(z) := 1

2π i

∫
γ

W (z′)P
R
n (z′)
z′ − z

d z′, (8)

for n ∈ Z+. From the orthogonality conditions (2) and (3) we have, for all n ∈ Z+, the following asymptotic 
expansion near infinity for the sequence of functions of the second kind

QL
n(z) = −C−1

n

(
Iz−n−1 + q1

L,nz
−n−2 + · · ·

)
, (9)

QR
n(z) = −

(
Iz−n−1 + q1

R,nz
−n−2 + · · ·

)
C−1

n . (10)

From now on we assume that the measures W (j,k), j, k ∈ {1, . . . , N} are Hölder continuous. Hence using 
the Plemelj’s formula, cf. [39], applied to (7) and (8), the following fundamental jump identities hold

(
QL

n(z)
)
+ −

(
Qn(z)L

)
− = P L

n(z)W (z), (11)(
QR

n(z)
)
+ −

(
QR

n(z)
)
− = W (z)PR

n (z), (12)

z ∈ γ, where, 
(
f(z)

)
± = lim

ε→0±
f(z + iε); here ± indicates the positive/negative region according to the 

orientation of the curve γ.
Now, multiplying equation (5) on the right by W and integrating we get, using the definition (7) of {

QL
n(z)

}
n∈Z+

, that

1
2π i

∫
γ

z′P L
n(z′)

z′ − z
W (z′) d z′ = QL

n+1(z) + βL
nQ

L
n(z) + C−1

n Cn−1Q
L
n−1(z).

As z′

z′−z = 1 + z
z′−z , from the orthogonality conditions (2) we conclude that

zQL
n(z) = QL

n+1(z) + βL
nQ

L
n(z) + C−1

n Cn−1Q
L
n−1(z), n ∈ Z+,

with initial conditions
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QL
−1(z) = QR

−1(z) = −C−1
−1 and QL

0(z) = QR
0 (z) = SW (z) := 1

2π i

∫
γ

W (z′)
z′ − z

d z′,

where SW (z) is the Stieltjes–Markov like transformation of the matrix of weights W .
Sometimes in the literature some authors distinguish between Markov transforms and Stieltjes transform 

when we are dealing with measure defined on a bounded or an unbounded interval, respectively, of the real 
line. Here we unified the notion as the scalar Markov convergence theorem (stated for the bounded case) is 
still valid for the unbounded case when the moment problem is determined.

It can be seen that

P L
n(z)Q0(z) = − 1

2π i

∫
γ

P L
n(z′) − P L

n(z)
z′ − z

W (z′) d z′ + 1
2π i

∫
γ

P L
n(z′)

z′ − z
W (z′) d z′,

i.e. we have the Hermite–Padé like formula for the left orthogonal polynomials,

P L
n(z)SW (z) + P

L,(1)
n−1 (z) = QL

n(z), n ∈ Z+,

where

P
L,(1)
n−1 (z) = 1

2π i

∫
P L
n(z′) − P L

n(z)
z′ − z

W (z′) dw, n ∈ Z+,

is a polynomial of degree at most n − 1 said to be the first kind associated polynomial with respect to {
P L
n(z)

}
n∈Z+

and W (z). Similarly, for the right situation we have the associated

PR,(1)
n (z) = 1

2πi

∫
γ

W (z′)
PR
n+1(z′) − PR

n+1(z)
z′ − z

dw, n ∈ Z+,

and the corresponding Hermite–Padé like formula for the right orthogonal polynomials,

SW (z)PR
n (z) + P

R,(1)
n−1 (z) = QR

n(z) n ∈ Z+.

2.4. Reductions: from biorthogonality to orthogonality

We consider two possible reductions:

i) When the matrix of weights W (z) with support on γ is symmetric, i.e. (W (z))� = W (z), z ∈ γ, then

PR
n (z) =

(
P L
n(z)

)�
, QR

n(z) =
(
QL

n(z)
)�

, z ∈ C.

Moreover,

〈P L
n , (P L

n)�〉W =
∫
γ

P L
n(x)W (x)(P L

n(x))� dx.

ii) When the matrix of weights W (z) is Hermitian positive definite with support on γ ⊂ R, i.e. (W (x))† =
W (x), x ∈ R, then

PR
n (z) =

(
P L
n(z̄)

)†
, QR

n(z) =
(
QL

n(z̄)
)†
, z ∈ C.
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In this case we have

〈P L
n , (P L

n)†〉W =
∫
R

P L
n(x)W (x)(P L

n(x))† dx.

2.5. Fundamental and transfer matrices vs. Riemann–Hilbert problems

We can summarize the left three term relation as follows[
P L
n+1(z) QL

n+1(z)
−CnP

L
n(z) −CnQ

L
n(z)

]
=
[
zI − βL

n C−1
n

−Cn 0N

] [
P L
n(z) QL

n(z)
−Cn−1P

L
n−1(z) −Cn−1Q

L
n−1(z)

]
;

and [
P

L,(1)
n (z)

−CnP
L,(1)
n−1 (z)

]
=
[
zI − βL

n C−1
n

−Cn 0N

] [
P

L,(1)
n−1 (z)

−Cn−1P
L,(1)
n−2 (z)

]
.

In terms of the left fundamental matrix Y L
n (z) and the left transfer matrix T L

n(z),

Y L
n (z) :=

[
P L
n(z) QL

n(z)
−Cn−1P

L
n−1(z) −Cn−1Q

L
n−1(z)

]
, T L

n(z) :=
[
zI − βL

n C−1
n

−Cn 0N

]
,

we rewrite the above identities as follows

Y L
n+1(z) = T L

n(z)Y L
n (z), n ∈ Z+.

From these we see that detY L
n (z) = detY L

0 (z) = 1, as detT L
n = 1 on C \ γ for n ∈ Z+.

For the right orthogonality, we similarly obtain from (6) that[
PR
n+1(z) −PR

n (z)Cn

QR
n+1(z) −QR

n(z)Cn

]
=
[
PR
n (z) −PR

n−1(z)Cn−1
QR

n(z) −QR
n−1(z)Cn−1

] [
zI − βR

n −Cn

C−1
n 0N

]
and also [

P
R,(1)
n (z) −P

R,(1)
n−1 (z)Cn

]
=
[
P

R,(1)
n−1 (z) −P

R,(1)
n−2 (z)Cn

] [zI − βR
n −Cn

C−1
n 0N

]
as we have the Hermite–Padé like formula for the right orthogonal polynomials,

QR
0 (z)PR

m(z) + P
R,(1)
m−1 (z) = QR

m(z) .

Taking the right versions of fundamental matrix Y R
n (z) and transfer matrix TR

n (z),

Y R
n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1
QR

n(z) −QR
n−1(z)Cn−1

]
, TR

m(z) :=
[
zI − βR

n −Cn

C−1
n 0N

]
,

we see that detY R
n (z) = det Y R

0 (z) = 1, because detTR
n = 1 on C \ γ for n ∈ Z+.

Note that,

TR
n (z) =

[
Cn 0N
0N −C−1

n

]
T L
n(z)

[
Cn 0N
0N −C−1

n

]−1

, n ∈ Z+.

Now we can state the following left Riemann–Hilbert problem.
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Theorem 1. The matrix function Y L
n (z) is, for each n ∈ Z+, the unique solution of the Riemann–Hilbert 

problem; which consists in the determination of a 2N × 2N complex matrix function such that:

(RH1): Y L
n (z) is holomorphic in C \ γ;

(RH2): has the following asymptotic behavior near infinity,

Y L
n (z) =

(
I + O(z−1)

) [Izn 0N
0N Iz−n

]
;

(RH3): satisfies the jump condition

(
Y L
n (z)

)
+ =

(
Y L
n (z)

)
−

[
I W (z)

0N I

]
, z ∈ γ.

As well as its right version.

Theorem 2. The matrix function Y R
n (z) is, for each n ∈ Z+, the unique solution of the Riemann–Hilbert 

problem; which consists in the determination of a 2N × 2N complex matrix function such that:

(RH1): Y R
n (z) is holomorphic in C \ γ;

(RH2): has the following asymptotic behavior near infinity,

Y R
n (z) =

[
Izn 0N
0N Iz−n

] (
I + O(z−1)

)
;

(RH3): satisfies the jump condition

(
Y R
n (z)

)
+ =

[
I 0N

W (z) I

] (
Y R
n (z)

)
−, z ∈ γ.

Remark 1. Conditions (RH2) and (RH3) are direct consequences of the representation of the second kind 
functions (9), (10) and the inverse formulas (11), (12), respectively.

Remark 2. For the symmetric and Hermitian reductions these two Riemann–Hilbert problems are equivalent 
and for the fundamental matrices we have

Y R
n (z) =

(
Y L
n (z)

)�
, symmetric case,

Y R
n (z) =

(
Y L
n (z̄)

)†
, Hermitian case.

In both cases, we will use the notation

Yn(z) := Y L
n (z).

We define the family of normalized left fundamental matrices
{
SL
n(z)

}
n∈Z+

associated with 
{
Y L
n (z)

}
n∈Z+

by means of

SL
n(z) := Y L

n (z)
[
Iz−n 0N
0N Izn

]
, n ∈ Z+.

Taking into account the representation of 
{
P L
n(z)

}
n∈Z+

and 
{
QL

n(z)
}
n∈Z+

in (5), we arrive to the asymptotic 
representation for the normalized fundamental matrices
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SL
n(z) = I +

[
p1

L,n −C−1
n

−Cn−1 q1
L,n−1

]
z−1 +

[
p2

L,n −C−1
n q1

L,n
−Cn−1p

1
L,n−1 q2

L,n−1

]
z−2 + O(z−3),

for z → ∞, where

p1
L,n − p1

L,n+1 = βL
n,

p2
L,n − p2

L,n+1 = βL
np

1
L,n + C−1

n Cn−1,

p3
L,n − p3

L,n+1 = βL
np

2
L,n + C−1

n Cn−1p
1
L,n−1,

and

q1
L,n − q1

L,n−1 = βR
n ,

q2
L,n − q2

L,n−1 = βR
nq

1
L,n + CnC

−1
n+1.

Observe that we will also have the following asymptotics for z → ∞,

(
SL
n(z)

)−1 = I −
[

p1
L,n −C−1

n

−Cn−1 q1
L,n−1

]
z−1

+
([

p1
L,n −C−1

n

−Cn−1 q1
L,n−1

]2

−
[

p2
L,n −C−1

n q1
L,n

−Cn−1p
1
L,n−1 q2

L,n−1

])
z−2 + O(z−3).

For the right version we have normalized right fundamental matrices
{
SR
n(z)

}
n∈Z+

associated with {
Y R
n (z)

}
n∈Z+

SR
n(z) =

[
I z−n 0N
0N I zn

]
Y R
m(z),

with asymptotic behavior at infinity given by

SR
n(z) = I +

[
p1

R,n −Cn−1
−C−1

n q1
R,n−1

]
z−1 +

[
p2

R,n −p1
R,n−1Cn−1

−q1
R,nC

−1
n q2

R,n−1

]
z−2 + O(z−3),

for z → ∞, and the asymptotics for the inverse matrix is

(
SR
n(z)

)−1 = I −
[

p1
R,n −Cn−1

−C−1
n q1

R,n−1

]
z−1

+
([

p1
R,n −Cn−1

−C−1
n q1

R,n−1

]2

−
[

p2
R,n −p1

R,n−1Cn−1

−q1
R,nC

−1
n q2

R,n−1

])
z−2 + O(z−3).

Here

p1
R,n − p1

L,n+1 = βR
n ,

p2
R,n − p2

L,n+1 = p1
L,nβ

R
n + Cn−1C

−1
n ,

p3
R,n − p3

R,n+1 = p2
L,nβ

R
n + p1

L,n−1Cn−1C
−1
n ,

and
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q1
R,n − q1

L,n−1 = βL
n,

q2
R,n − q2

L,n−1 = q1
L,nβ

L
n + C−1

n+1Cn.

Theorem 3. Let Y L
n and Y R

n be, for each n ∈ Z+, the unique solutions of the Riemann–Hilbert problems in 
Theorems 1 and 2, respectively; then

(Y L
n (z))−1 =

[
0 I

−I 0

]
Y R
n (z)

[
0 −I

I 0

]
, n ∈ Z+. (13)

Proof. Let us remember that 
{
P L
n

}
n∈Z+

satisfies (5), i.e.

zP L
n(z) = P L

n+1(z) + βL
nP

L
n(z) + C−1

n Cn−1P
L
n−1(z), n ∈ Z+,

with initial conditions P L
−1 = 0N and P L

0 = I; and 
{
PR
n

}
n∈Z+

satisfies (6), i.e.

tPR
n (t) = PR

n+1(t) + PR
n (t)Cnβ

L
nC

−1
n + PR

n−1(t)Cn−1C
−1
n , n ∈ Z+,

with initial conditions PR
−1 = 0N and PR

0 = I. Multiplying the first equation on the left by PR
n (t)Cn and 

the second one on the right by CnP
L
n(z) and summing up, we arrive after applying telescoping rule

(z − t)
n∑

k=0

PR
k (t)CkP

L
k (z) = PR

n (t)CnP
L
n+1(z) − PR

n+1(t)CnP
L
n(z), n ∈ Z+; (14)

hence for t = z,

PR
n (z)CnP

L
n+1(z) = PR

n+1(z)CnP
L
n(z), n ∈ Z+; (15)

As 
{
QL

n

}
n∈Z+

(respectively, 
{
QR

n

}
n∈Z+

) satisfies (5) (respectively, (6)), with initial conditions QL
−1 = QR

−1 =
−C−1

−1 , QL
0 = QR

0 = SW (z), proceeding in the same way with 
{
QL

n

}
n∈Z+

and 
{
QR

n

}
n∈Z+

in place of 
{
P L
n}n∈Z+

and 
{
PR
n

}
n∈Z+

, respectively, we arrive, for all n ∈ Z+, to

(z − t)
n∑

k=0

QR
k(t)CkQ

L
k(z) = QR

n(t)CnQ
L
n+1(z) −QR

n+1(t)CnQ
L
n(z) + SW (z) − SW (t); (16)

hence for t = z,

QR
n(z)CnQ

L
n+1(z) = QR

n+1(z)CnQ
L
n(z), n ∈ Z+. (17)

Applying the same procedure mixing the P ’s and the Q’s we get, for all n ∈ Z+,

(z − t)
n∑

k=0

QR
k(t)CkP

L
k (z) = QR

n(t)CnP
L
n+1(z) −QR

n+1(t)CnP
L
n(z) + I, (18)

(z − t)
n∑

k=0

PR
k (t)CkQ

L
k(z) = PR

n (t)CnQ
L
n+1(z) − PR

n+1(t)CnQ
L
n(z) − I, (19)

and when t = z we arrive to, for all n ∈ Z+,
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QR
n+1(z)CnP

L
n(z) −QR

n(z)CnP
L
n+1(z) = I, (20)

PR
n (z)CnQ

L
n+1(z) − PR

n+1(z)CnQ
L
n(z) = I. (21)

Equations (14), (16), (18) and (19) are known in the literature as Christoffel-Darboux formulas. Now, 
from (15), (17), (20) and (21) we conclude that[−QR

n−1(z)Cn−1 −QR
n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
Y L
n (z) = I, n ∈ Z+,

and as [−QR
n−1(z)Cn−1 −QR

n(z)
PR
n−1(z)Cn−1 PR

n (z)

]
=
[

0 I

−I 0

]
Y R
n (z)

[
0 −I

I 0

]
, n ∈ Z+,

we get the desired result. �
Corollary 1. In the conditions of Theorem 3 we have that for all n ∈ Z+,

QL
n(z)PR

n−1(z) − P L
n(z)QR

n−1(z) = C−1
n−1, (22)

P L
n−1(z)QR

n(z) −QL
n−1(z)PR

n (z) = C−1
n−1, (23)

QL
n(z)PR

n (z) − P L
n(z)QR

n(z) = 0. (24)

Proof. As we already proved that the matrix[−QR
n−1(z)Cn−1 −QR

n(z)
PR
n−1(z)Cn−1 PR

n (z)

]
,

is the inverse of Y L
n (z), i.e.

Y L
n (z)

[−QR
n−1(z)Cn−1 −QR

n(z)
PR
n−1(z)Cn−1 PR

n (z)

]
= I;

and multiplying the two matrices we get the result. �
Corollary 2. In the conditions of Theorem 3 we have that for all n ∈ Z+,

(SL
n(z))−1 = I +

[
q1
R,n−1 C−1

n

Cn−1 p1
R,n

]
z−1 +

[
q2
R,n−1 q1

R,nC
−1
n

p2
R,n−1Cn−1 p2

R,n

]
z−2 + · · · ,

(SR
n(z))−1 = I +

[
q1
L,n−1 Cn−1

C−1
n p1

L,n

]
z−1 +

[
q2
L,n−1 Cn−1p

1
L,n−1

C−1
n p2

L,n−1 p2
L,n

]
z−2 + · · · .

3. Constant jump on the support, structure matrices and zero curvature

So far we discussed the connection between biorthogonal families of matrix polynomials for a given 
matrix of weights W and a specific Riemann–Hilbert problem. Now, to derive difference and/or differential 
equations satisfied by these families of matrix polynomials we will move to a simpler setting and we will 
assume that the following hold

i) The matrix of weights factors out as W (z) = W L(z)WR(z), z ∈ γ.
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ii) The factors W L and WR are the restriction to the curve γ of matrices of entire functions W L(z) and 
WR(z), z ∈ C.

iii) The right logarithmic derivative hL(z) :=
(
W L(z)

)′(
W L(z)

)−1 and the left logarithmic derivative 

hR(z) :=
(
WR(z)

)−1(
WR(z)

)′ exist and are entire functions.

We underline that for a given matrix of weights W (z) we will have many possible factorization W (z) =
W L(z)WR(z). Indeed, if we define an equivalence relation (W L, WR) ∼ (W̃ L, ̃WR) if and only if W LWR =
W̃ LW̃R, then each matrix of weights W can be though as a class of equivalence, and can be described by 
the orbit {

(W Lφ, φ−1WR), φ(z) is a nonsingular matrix of entire functions
}
.

3.1. Constant jump on the support

Given assumptions i) and ii), for each factorization W = W LWR, we introduce the constant jump funda-
mental matrices which will be instrumental in what follows

ZL
n(z) := Y L

n (z)
[
W L(z) 0N

0N (WR(z))−1

]
, (25)

ZR
n(z) :=

[
WR(z) 0N

0N (W L(z))−1

]
Y R
n (z), n ∈ Z+. (26)

Taking inverse on (25) and applying (13) we see that ZR
n given in (26) admits the representation

ZR
n(z) =

[
0 −I

I 0

]
(ZL

n(z))−1
[

0 I

−I 0

]
, n ∈ Z+. (27)

Proposition 1. For each factorization W = W LWR, the constant jump fundamental matrices ZL
n(z) and 

ZR
n(z) are, for each n ∈ Z+, characterized by the following properties:

i) They are holomorphic on C \ γ.
ii) We have the following asymptotic behaviors

ZL
n(z) =

(
I + O(z−1)

) [znW L(z) 0N
0N Iz−n(WR(z))−1

]
,

ZR
n(z) =

[
znWR(z) 0N

0N (W L(z))−1z−n

] (
I + O(z−1)

)
,

for z → ∞.
iii) They present the following constant jump condition on γ

(
ZL
n(z)

)
+ =

(
ZL
n(z)

)
−

[
I I

0N I

]
,

(
ZR
n(z)

)
+ =

[
I 0N
I I

] (
ZR
n(z)

)
−,

for all z ∈ γ in the support on the matrix of weights.

Proof. We only give the proofs for the left case because their right ones follow from (27).

i) As the W L(z) and WR(z) are matrices of entire functions the holomorphicity properties of ZL
n are 

inherited from that of the fundamental matrices Y L
n .



A. Branquinho et al. / J. Math. Anal. Appl. 494 (2021) 124605 15
ii) It follows from the asymptotic of the fundamental matrices.
iii) From the definition of ZL

n(z) we have

(
ZL
n(z)

)
+ =

(
Y L
n (z)

)
+

[
W L(z) 0N

0N (WR(z))−1

]
,

and taking into account Theorem 1 we arrive to

(
ZL
n(z)

)
+ =

(
Y L
n (z)

)
−

[
I W L(z)WR(z)

0N I

] [
W L(z) 0N

0N (WR(z))−1

]
;

now, as

[
I W L(z)WR(z)

0N I

] [
W L(z) 0N

0N (WR(z))−1

]
=
[
W L(z) 0N

0N (WR(z))−1

] [
I I

0N I

]
,

we get the desired constant jump condition for ZL
n(z). �

Remark 3. For the symmetric and Hermitian reductions we assume

W L(z) = ρ(z), WR(z) = (ρ(z))�, W (z) = ρ(z)
(
ρ(z)

)�
, ZR(z) =

(
ZL(z)

)�
, symmetric,

W L(z) = ρ(z), WR(z) = (ρ(z̄))†, W = ρ(z)
(
ρ(z̄)

)†
, ZR(z) =

(
ZL(z̄)

)†
, Hermitian.

In both cases, we will use the notation

Zn(z) := ZL
n(z).

3.2. Structure matrices

In parallel to the matrices ZL
n(z) and ZR

n(z), for each factorization W = W LWR, we introduce what we 
call structure matrices given in terms of the right derivative and left derivative (logarithmic derivatives), 
respectively,

ML
n(z) :=

(
ZL
n(z)

)′(
ZL
n(z)

)−1
, MR

n (z) :=
(
ZR
n(z)

)−1(
ZR
n(z)

)′
.

It is not difficult to prove that

MR
n (z) = −

[
0 −I

I 0

]
ML

n(z)
[

0 I

−I 0

]
, n ∈ Z+.

Proposition 2. The following properties hold:

i) The structure matrices ML
n(z) and MR

n (z), defined on subsection 3.2, are, for each n ∈ Z+, matrices of 
entire functions in the complex plane.

ii) The transfer matrix satisfies

T L
n(z)ZL

n(z) = ZL
n+1(z), ZR

n(z)TR
n (z) = ZR

n+1(z), n ∈ Z+.
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iii) The zero curvature formulas [
I 0N

0N 0N

]
= ML

n+1(z)T L
n(z) − T L

n(z)ML
n(z), (28)[

I 0N
0N 0N

]
= TR

n (z)MR
n+1(z) −MR

n (z)TR
n (z), (29)

n ∈ Z+, are fulfilled.
iv) The second order zero curvature formulas[

I 0N
0N 0N

]
ML

n(z) + ML
n+1(z)

[
I 0N

0N 0N

]
=
(
ML

n+1(z)
)2
T L
n(z) − T L

n(z)
(
ML

n(z)
)2
, (30)[

I 0N
0N 0N

]
MR

n+1(z) + MR
n (z)

[
I 0N

0N 0N

]
= TR

n (z)
(
MR

n+1(z)
)2 − (MR

n (z)
)2
TR
n (z), (31)

n ∈ Z+, are satisfied.

Proof. Again we only give the proofs for the left case. We begin to prove that the sequence of matrix functions {
ML

n(z)
}
n∈Z+

is a sequence of matrices with coefficients given by entire functions. In fact, 
(
ML

n

)
+ =((

ZL
n

)′)
+

((
ZL
n

)−1
)

+
, and applying the constant jump condition we get

(
ML

n(z)
)
+ =

((
ZL
n

)′)
−

[
I I

0N I

]−1 [
I I

0N I

]((
ZL
n

)−1
)
−

=
(
ML

n(z)
)
−.

It follows from the definition of ZL
n that

T L
n(z) = Y L

n+1(z)
(
Y L
n (z)

)−1 = ZL
n+1(z)

(
ZL
n(z)

)−1
.

Taking derivatives on Tn(z) we get(
T L
n(z)

)′ =
(
ZL
n+1(z)

)′(
ZL
n(z)

)−1 − ZL
n+1(z)

(
ZL
n(z)

)−1(
ZL
n(z)

)′(
ZL
n(z)

)−1
, n ∈ Z+,

and so, taking into account that(
ZL
n+1(z)

)′(
ZL
n(z)

)−1 =
(
ZL
n+1(z)

)′(
ZL
n+1(z)

)−1
ZL
n+1(z)

(
ZL
n(z)

)−1 = ML
n+1T

L
n ,

we get (28). Using the same ideas we derive (29).
Now, multiplying (28) on the left by ML

n+1 we get

ML
n+1

[
I 0N

0N 0N

]
=
(
ML

n+1(z)
)2
T L
n(z) −

(
ML

n+1T
L
n(z)

)
ML

n(z),

and again by (28) applied to the term ML
n+1T

L
n(z) we get (30). �

Higher order transfer matrices

T L
n,�(z) := T L

n+�(z) · · ·T L
n(z), TR

n,�(z) := TR
n (z) · · ·T L

n+�(z),

satisfy

Y L
n+�(z) = T L

n,�(z)Y L
n (z), Y R

n+�(z) = Y R
n (z)TR

n,�(z).
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Proposition 3. The following zero-curvature conditions hold, for all n, � ∈ Z+,(
T L
n,�(z)

)′ = ML
n+�+1(z)T L

n(z) − T L
n(z)ML

n(z),
(
TR
n,�(z)

)′ = TR
n (z)MR

n+�+1(z) −MR
n (z)TR

n (z).

Proof. As before we only give a discussion for the left situation. It is done by induction: First of all recall 
that � = 0 is just the already proven zero-curvature condition. Now, assuming that it holds for � we prove 
it for � + 1: (

T L
n,�+1(z)

)′ =
(
T L
n+�+1(z)T L

n,�(z)
)′ =

(
T L
n+�+1(z)

)′
T L
n,�(z) + T L

n+�+1(z)
(
T L
n,�(z)

)′
=
(
ML

n+�+2(z)T L
n+�+1(z) − T L

n+�+1(z)ML
n+�+1(z)

)
T L
n,�(z)

+ T L
n+�+1(z)

(
ML

n+�+1(z)T L
n,�(z) − T L

n,�(z)ML
n(z)

)
,

= ML
n+�+2(z)T L

n+�+1(z)T L
n,�(z) − T L

n+�+1(z)T L
n,�(z)ML

n(z),

and the result is proven. �
Proposition 4 (Computing the structure matrices). If the subindex +++ indicates that only the positive powers 
of the asymptotic expansion about infinity are kept, for each factorization W = W LWR, we have for all 
n ∈ Z+, the following power expansions for the structure matrices, defined on subsection 3.2,

ML
n(z) =

(
SL
n(z)

[(
W L(z)

)′(
W L(z)

)−1 0N
0N −

(
WR(z)

)−1(
WR(z)

)′
] (

SL
n(z)

)−1
)

+++

, (32)

MR
n (z) =

((
SR
n(z)

)−1
[(

WR(z)
)−1(

WR(z)
)′ 0N

0N −
(
W L(z)

)′(
W L(z)

)−1

]
SR
n(z)

)
+++

. (33)

Proof. Using assumption i) in Proposition 2, we find the expressions for the left structure matrix, ML
n(z), 

in terms of SL
n(z) and W (z) = W L(z)WR(z). For doing so we require the use of the definition of SL

n(z), i.e.

ZL
n(z) = SL

n(z)
[
znW L(z) 0N

0N z−n
(
WR(z)

)−1

]
,

and consequently, we find

ML
n(z) =

(
SL
n(z)

)′(
SL
n(z)

)−1

+ SL
n(z)

[(
W L(z)

)′(
W L(z)

)−1 + nz−1 0N
0N −

(
WR(z)

)−1(
WR(z)

)′ − nz−1

] (
SL
n(z)

)−1
.

Given assumption iii) in the beginning of this section, on the entire character of the right derivative, (
W L(z)

)′(
W L(z)

)−1, and of the left derivative, 
(
WR(z)

)−1(
WR(z)

)′, and since 
(
SL
n(z)

)′(
SL
n(z)

)−1 has only 
negative powers of z in its Laurent expansion, and given that the structure matrix ML(z) has entire coeffi-
cients, the asymptotic expansion of ML

n(z) about ∞ must be a power expansion.
A similar approach holds for the right context, and we can determine MR

n (z) in terms of SR
n(z) and W (z). 

Indeed, from

ZR
n(z) =

[
WR(z)zn 0N

0N (W L(z))−1z−n

]
SR
n(z),

we get
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MR
n (z) =

(
SR
n(z)

)−1(
SR
n(z)

)′
+
(
SR
n(z)

)−1
[(

WR(z)
)−1(

WR(z)
)′ + nz−1 0N

0N −
(
W L(z)

)′(
W L(z)

)−1 − nz−1

]
SR
n(z),

and reasoning as for the left case we derive the desired result. �
Notice that given the matrices of entire functions hL(z) and hR(z) the structure matrices, using (32), can 

be explicitly determined in terms of the coefficients in SL
n(z) and SR

n(z). Moreover, when hL(z), hR(z) ∈
CN×N [z] are matrix polynomials, only the first elements, as much as the degree of the correspond-
ing polynomial, in the asymptotic expansions of SL

n(z) and SR
n(z) are involved, and we will have that 

ML
n(z), MR

n (z) ∈ C2N×2N [z] are also polynomials with degree degML
n(z), degML

n(z) = max(hL
n(z), hR

n(z)).

Remark 4. For the reductions we have

MR
n (z) =

(
ML

n(z)
)�

, symmetric,

MR
n (z) =

(
ML

n(z̄)
)†
, Hermitian.

In both cases, we will use the notation

Mn(z) := ML
n(z).

4. Matrix Pearson equations and differential equations

4.1. Matrix Pearson equations

As we have seen, the left and right logarithmic derivatives, hL(z) =
(
W L(z)

)′(
W L(z)

)−1 and hR(z) =(
WR(z)

)−1(
WR(z)

)′, play an important role in the discussion of the structure matrices. This motivates us 
to adopt the following strategy: assume that instead of a given matrix of weights we are provided with two 
matrices, say hL(z) and hR(z), of entire functions such that the following two matrix Pearson equations are 
satisfied

dW L

d z
= hL(z)W L(z), (34)

dWR

d z
= WR(z)hR(z); (35)

and given solutions to them we construct the corresponding matrix of weights W = W LWR. Moreover, this 
matrix of weights is also characterized by a Pearson equation.

Proposition 5 (Pearson Sylvester differential equation). Given two matrices of entire functions hL(z) and 
hR(z), any solution of the Sylvester type matrix differential equation, which we call Pearson equation for 
the weight,

dW

d z
= hL(z)W (z) + W (z)hR(z) (36)

is of the form W = W LWR where the matrix factors W L and WR are solutions of (34) and (35), respectively.
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Proof. Given solutions W L and WR of (34) and (35), respectively, it follows intermediately, just using the 
Leibniz law for derivatives, that W = W LWR fulfills (36). Moreover, given a solution W of (36) we pick a 
solution W L of (34), then it is easy to see that (W L)−1W satisfies (35). �
Remark 5. The matrix of weights W does not uniquely determine the left and the right matrix factors; indeed 
if W = W LWR, with factors solving (34) and (35), respectively, then W̃ L = W LC and W̃R = C−1WR for C
being a nonsingular matrix, gives also another possible factorization W = W̃ LW̃R, with factors solving the 
partial Pearson equations (34) and (35). This indeterminacy disappears when one considers the right and 
left derivatives of the factors.

Remark 6. Given two matrices of entire functions hL(z) and hR(z) and a matrix of weights W characterized 
by the matrix Pearson equation (36) we have the left and right fundamental matrices Y L

n (z) and Y R
n (z) sat-

isfying corresponding Riemann–Hilbert problems. The associated structure matrices are from (32) and (33)
given by,

ML
n(z) =

(
SL
n(z)

[
hL(z) 0N
0N −hR(z)

] (
SL
n(z)

)−1
)

+++

, (37)

MR
n (z) =

((
SR
n(z)

)−1
[
hR(z) 0N
0N −hL(z)

]
SR
n(z)

)
+++

. (38)

Remark 7. For the symmetric and Hermitian reductions, we have

hR(z) =
(
hL(z)

)�
, symmetric,

hR(z) =
(
hL(z̄)

)†
, Hermitian,

and (34) and (35) collapse into a single equation

d ρ

d z
= h(z)ρ(z),

where h(z) := hL(z), and the Pearson equation (36) reads

dW

d z
= h(z)W (z) + W (z)(h(z))�, symmetric,

dW

d z
= h(z)W (z) + W (z)(h(z̄))†, Hermitian.

(39)

4.2. Sylvester differential equations for the fundamental matrices

The differential structure determined by the Pearson equation for the matrix of weights induces a corre-
sponding Sylvester differential equations for the fundamental matrices as follows.

Proposition 6 (Sylvester differential linear equations). In the conditions of Proposition 5, the left fundamen-
tal matrix Y L

n (z) and the right fundamental matrix Y R
n (z) satisfy, for each n ∈ Z+, the following Sylvester 

matrix differential equations,

(
Y L
n (z)

)′ = ML
n(z)Y L

n (z) − Y L
n (z)

[
hL(z) 0N

R

]
, (40)
0N −h (z)
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(
Y R
n (z)

)′ = Y R
n (z)MR

n (z) −
[
hR(z) 0N
0N −hL(z)

]
Y R
n (z), (41)

respectively.

Proof. As ML
n(z) =

(
ZL
n(z)

)′(
ZL
n(z)

)−1 is the right derivative of the constant jump structure matrix 
from (25) we get (40); (41) is proven analogously. �

We write

ML
n(z) =

[
ML

1,1,n(z) ML
1,2,n(z)

ML
2,1,n(z) ML

2,2,n(z)

]
, MR

n (z) =
[
MR

1,1,n(z) MR
1,2,n(z)

MR
2,1,n(z) MR

2,2,n(z)

]
,

to express the previous results in the following manner.

Corollary 3. The Sylvester matrix differential equations (40) and (41) split in the following Sylvester differ-
ential systems{(

P L
n(z)

)′ + P L
n(z)hL(z) = ML

1,1,n(z)P L
n(z) −ML

1,2,n(z)Cn−1P
L
n−1(z),(

P L
n−1(z)

)′ + P L
n−1(z)hL(z) = −C−1

n−1M
L
2,1,n(z)P L

n(z) + C−1
n−1M

L
2,2,n(z)Cn−1P

L
n−1(z),

(42)

{(
QL

n(z)
)′ + QL

n(z)hR(z) = ML
1,1,nQ

L
n(z) −ML

1,2,n(z)Cn−1Q
L
n−1(z),(

QL
n−1(z)

)′ + QL
n−1(z)hR(z) = −C−1

n−1M
L
2,1,n(z)QL

n(z) + C−1
n−1M

L
2,2,n(z)Cn−1Q

L
n−1(z),

(43)

{(
PR
n (z)

)′ + hR(z)PR
n (z) = PR

n (z)MR
1,1,n(z) − PR

n−1(z)Cn−1M
R
2,1,n(z),(

PR
n−1(z)

)′ + hR(z)PR
n−1(z) = −PR

n (z)MR
1,2,n(z)C−1

n−1 + PR
n−1(z)Cn−1M

R
2,2,n(z)C−1

n−1,
(44)

{(
QR

n(z)
)′ + hL(z)QR

n(z) = QR
n(z)MR

1,1,n(z) −QR
n−1(z)Cn−1M

R
2,1,n(z),(

QR
n−1(z)

)′ + hL(z)QR
n−1(z) = −QR

n(z)MR
1,2,n(z)C−1

n−1 + QR
n−1(z)Cn−1M

R
2,2,n(z)C−1

n−1.
(45)

We first observe from the linear differential systems (42) and (44) satisfied by the left and right matrix 
orthogonal polynomials, respectively, we will be able to extract in some scenarios, see next section on 
applications, a matrix eigenvalue problem for a second order matrix differential operator, with matrix 
eigenvalues. The differential systems (43) and (45) for the left and right second kind functions also provide 
interesting information, and we will use them to discover nonlinear equations satisfied by the recursion 
coefficients.

Remark 8. For the reductions we have

(
Yn(z)

)′ = Mn(z)Yn(z) − Yn(z)
[
h(z) 0N
0N −(h(z))�

]
, symmetric,

(
Yn(z)

)′ = Mn(z)Yn(z) − Yn(z)
[
h(z) 0N
0N −(h(z̄))†.

]
, Hermitian.

5. Second order differential operators

We firstly derive, as a consequence of the Sylvester differential linear systems, second order differential 
equations fulfilled by the fundamental matrices, and therefore by the matrix biorthogonal polynomials and 
also by the corresponding second kind functions.

Following the standard use in Soliton Theory, given a matrix of holomorphic functions A(z) we define its 
Miura transform by
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M(A) = A′(z) + (A(z))2.

Observe that when A is a right (left) logarithmic derivative A = w′w−1 (A = w−1w′) we have M(A) =
w′′w−1 (M(A) = w−1w′′).

Proposition 7 (Second order linear differential equations). In the conditions of Proposition 5, the sequence 
of fundamental matrices, 

{
Y L
n

}
n∈Z+

and 
{
Y R
n

}
n∈Z+

, satisfy

(
Y L
n (z)

)′′ + 2
(
Y L
n (z)

)′ [hL(z) 0N
0N −hR(z)

]
+ Y L

n (z)
[M(

hL(z)
)

0N
0N M

(
− hR(z)

)]
= M

(
ML

n(z)
)
Y L
n (z), (46)(

Y R
n (z)

)′′ + 2
[
hR(z) 0N
0N −hL(z)

] (
Y R
n (z)

)′ + [M(
hR(z)

)
0N

0N M
(
− hL(z)

)]Y L
n (z)

= Y R
n (z)M

(
MR

n (z)
)
. (47)

Proof. We prove (46). First, let us take a derivative of (40) to get

(
Y L
n (z)

)′′ + (Y L
n (z)

)′ [hL(z) 0N
0N −hR(z)

]
+ Y L

n (z)
[(

hL(z)
)′ 0N

0N −
(
hR(z)

)′
]

=
(
ML

n(z)
)′
Y L
n (z) + ML

n(z)
(
Y L
n (z)

)′
but again by (40)

ML
n(z)

(
Y L
n (z)

)′ =
(
ML

n(z)
)2
Y L
n (z) −ML

n(z)Y L
n (z)

[
hL(z) 0N
0N −hR(z)

]
and if we substitute

ML
n(z)Y L

n (z) =
(
Y L
n (z)

)′ + Y L
n (z)

[
hL(z) 0N
0N −hR(z)

]
we finally get

ML
n(z)

(
Y L
n (z)

)′ =
(
ML

n(z)
)2
Y L
n (z) −

(
Y L
n (z)

)′ [hL(z) 0N
0N −hR(z)

]
− Y L

n (z)
[
hL(z) 0N
0N −hR(z)

]2

,

and the result follows. �
Definition 1. For the next corollary we need to introduce the following C2N×2N valued functions in terms 
of the difference of two Miura maps

HL
n(z) =

[
HL

1,1,n(z) HL
1,2,n(z)

HL
2,1,n(z) HL

2,2,n(z)

]
= M(ML

n(z)) −M
([

hL(z) 0N
0N −hR(z)

])
, (48)

HR
n(z) =

[
HR

1,1,n(z) HR
1,2,n(z)

HR
2,1,n(z) HR

2,2,n(z)

]
= M(MR

n (z)) −M
([

hR(z) 0N
0N −hL(z)

])
. (49)

Corollary 4. The second order matrix differential equations (46) and (47) split in the following differential 
relations
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(
P L
n

)′′(z) + 2
(
P L
n

)′(z)hL(z) + P L
n(z)M(hL(z))

=
(
M(hL(z)) + HL

1,1,n(z)
)
P L
n(z) − HL

1,2,n(z)Cn−1P
L
n−1(z) , (50)(

QL
n

)′′(z) − 2
(
QL

n

)′(z)hR(z) + QL
n(z)M(−hR(z))

=
(
M(hL(z)) + HL

1,1,n(z)
)
QL

n(z) − HL
1,2,n(z)Cn−1Q

L
n−1(z) , (51)(

PR
n

)′′(z) + 2hR(z)
(
PR
n (z)

)′(z) + M(hR(z))PR
n (z)

= PR
n (z)

(
M(hR(z)) + HR

1,1,n(z)
)
− PR

n−1(z)Cn−1HR
2,1,n(z) , (52)(

QR
n

)′′(z) − 2hL(z)
(
QR

n

)′(z) + M(−hL(z))QR
n(z)

= QR
n(z)

(
M(hR(z)) + HR

1,1,n(z)
)
−QR

n−1(z)Cn−1HR
2,1,n(z). (53)

Proof. Is a direct consequence of Proposition 7. �
5.1. Adjoint operators

We now elaborate around the idea of adjoint operators in this matrix scenario.
Given a matrix valued differential operator L defined on certain domain D, that belongs to the N ×N

complex matrix functions, we may consider the notion of adjoint operator L∗ with respect to the sesquilinear 
like form

〈f, g〉W :=
∫
γ

f(z)W (z)g(z) d z.

The adjoint operator L∗ of the differential operator L defined on the domain D is such that

〈L(f), g〉W = 〈f, L∗(g)〉W , f(z), g(z) ∈ D.

The existence of such adjoint is a delicate matter indeed. For a discussion of this subject see [43].
In our case and in what follows we will give explicit examples of such constructions.
From now on, and to be consistent with the definition of sesquilinear like form, 〈..., ...〉W , we restrict ourselves 

to the case when hL and hR are matrix polynomials of a specific degree.
Care must be taken at this point because in this definition of adjoint of a matrix differential operator we 

are not taking the transpose or the Hermitian conjugate of the matrix coefficients as was done in [31].

Definition 2. Motivated by (50) and (52) we introduce two linear operators ���L and ���R, acting on the linear 
space of polynomials CN×N [z] as follows

���L(P ) := P ′′ + 2P ′hL + PM(hL), ���R(P ) := P ′′ + 2hRP ′ + M(hR)P.

Lemma 1. Let us assume that the matrix of weights W (z) do satisfy the following boundary conditions

W |∂γ = 0N ,
(
W ′ − 2hLW

)∣∣
∂γ

= 0N ,
(
W ′ − 2WhR)∣∣

∂γ
= 0N , (54)

where ∂γ is the boundary of the curve γ, i.e. its endpoints. Then, W (z) satisfies a Pearson Sylvester differ-
ential equation (36) if, and only if, W (z) satisfies the following second order matrix differential equations

W ′′ − 2
(
hLW

)′ + M(hL)W = WM(hR) , (55)

W ′′ − 2
(
WhR)′ + WM(hR) = M(hL)W . (56)
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Proof. Taking derivative on (36), we get

W ′′ = M(hL)W + WM(hR) + 2hLWhR.

But, it is easy to see that

(
hLW

)′ = M(hL)W + hLWhR,
(
WhR)′ = WM(hR) + hLWhR,

and so we arrive to (55) and (56).
The reciprocal result is a consequence of adding the equations (55), (56) and the boundary condi-

tions (54). �
Now, we will see that the operators �L and �R are adjoint to each other with respect to the sesquilinear 

like form induced by the weight functions W .

Proposition 8. Whenever W (z) satisfies (36) and the boundary conditions (54), we have that

���R =
(
���L
)∗
, (57)

or, equivalently,

〈���L(P ), P̃ 〉W = 〈P,���R(P̃ )〉W , P (z), P̃ (z) ∈ CN×N [z].

Proof. By using the linearity of these operators it is sufficient to prove

〈���L(P L
n) , PR

k 〉W = 〈P L
n , ���R(PR

k )〉W , n, k ∈ Z+ .

For the sake of simplicity, we omit, the z dependence on the integrands in the integrals. This way, the 
orthogonality reads,

〈���L(P L
n) , PR

k 〉W =
∫
γ

(P L
n)′′ W PR

k d z + 2
∫
γ

(P L
n)′ (hL W )PR

k d z +
∫
γ

P L
n M(hL)W PR

k d z ,

and, using integration by parts, we find

〈���L(P L
n), PR

k 〉W =
(
(P L

n)′WPR
k

)∣∣
∂γ

−
∫
γ

(P L
n)′
((

WPR
k

)′ − 2hLW
)
PR
k d z +

∫
γ

P L
nM(hL)WPR

k d z

=
(
(P L

n)′WPR
k

)∣∣
∂γ

−
(
P L
n

((
WPR

k

)′ − 2hLW
)
PR
k

)∣∣∣
∂γ

+
∫
γ

P L
n

(
(W PR

k )′′ − 2 (hL W PR
k )′ + M(hL)W PR

k

)
d z .

Now, considering the boundary conditions (54) and taking into account that

(W PR
k )′′ = W ′′ PR

k + 2W ′ (PR
k )′ + W (PR

k )′′ , (hL W PR
k )′ = (hL W )′ PR

k + (hL W ) (PR
k )′ ,

we arrive to
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〈���L(P L
n) , PR

k 〉W =
∫
γ

P L
n

(
W ′′ − 2(hL W )′ + M(hL)W

)
PR
k d z

+ 2
∫
γ

P L
n

(
W ′ − hLW

)
(PR

k )′ d z +
∫
γ

P L
nW (PR

k )′′ d z;

and so

〈���L(P L
n) , PR

k 〉W =
∫
γ

P L
nW

(
(PR

k )′′ + 2hR(PR
k )′ + M(hR)PR

k

)
d z, n, k ∈ {0, 1, 2, . . .}

or, equivalently,

〈���L(P L
n) , PR

k 〉W = 〈P L
n , ���R(PR

k )〉W ,

which completes the proof. �
Remark 9. For a symmetric or Hermitian reductions we find that

���R(P ) =
(
���L(P�)

)�
, symmetric,

���R(P ) =
(
���L(P †)

)†
, Hermitian,

where in the last case we take x ∈ R. Relation (57) reads in this case as follows

���∗(P ) = (���(P�))�, symmetric,

���∗(P ) = (���(P †))†, Hermitian;

for P any matrix polynomial and ��� := ���L.

Definition 3. Let αL and αR be two N ×N matrices and define the following linear operators acting on the 
space of matrix polynomials CN×N [z] as follows

LL(P ) := P ′′ + 2P ′hL + PαL, LR(P ) := P ′′ + 2hRP ′ + αRP.

Observe that

LL(P ) = ���L(P ) − P M(hL) + PαL, LR(P ) = ���R(P −M(hR)P + αRP.

We have the following characterization.

Theorem 4. The following conditions are equivalent:

i) LR =
(
LL)∗ with respect to the matrix of weights W (z).

ii) The matrix of weights W (z) satisfies the matrix Pearson equation (36) with the boundary conditions (54)
as well as fulfills the constraint

(
αL − M(hL)

)
W = W

(
αR − M(hR)

)
. (58)
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iii) The matrix of weights W (z) satisfies the boundary conditions (54) as well as

W ′′ − 2
(
hLW

)′ + αLW = WαR, (59)

W ′′ − 2
(
WhR)′ + WαR = αLW. (60)

Proof. Following the ideas in the proof of Proposition 8

〈LL(P ), P̃ 〉W = 〈P,LR(P̃ )〉W

if and only if

〈−P M(hL) + PαL, P̃ 〉W = 〈P,−M(hR)P̃ + αRP̃ 〉W

that is (58) takes place, and so i) is equivalent to ii).
To prove that i) is equivalent to iii) observe that, adding (59) and (60), the following holds

W ′′ =
(
hLW

)′ +
(
WhR)′ ,

which transforms (36) if we integrate requesting boundary conditions (54). Moreover, if we subtract (59)
and (60) we arrive directly to (58). �
Remark 10. For the symmetric or Hermitian reductions we find that

LR(P ) =
(
LL(P�)

)�
, symmetric,

LR(P ) =
(
LL(P †)

)†
, Hermitian,

where in the last case we take x ∈ R.
Moreover, the following are equivalent conditions

i) Equations

L∗(P ) = (L(P�))�, symmetric,

L∗(P ) = (L(P †))†, Hermitian;
(61)

are satisfied by any matrix polynomial P , where L := LL.
ii) The matrix of weights W (z) satisfies the matrix Pearson equation (39) with the boundary conditions

W |∂γ = 0N ,
(
W ′ − 2hW

)∣∣
∂γ

= 0N , (62)

as well as fulfills the constraint(
α− M(h)

)
W = W

(
α� −M(h�)

)
, symmetric,(

α− M(h)
)
W = W

(
α† −M((h(z̄))†)

)
, Hermitian,

iii) The matrix of weights W (z) satisfies the boundary conditions (62) as well as

W ′′ − 2
(
hW

)′ + αW = Wα�, symmetric,
′′ ( )′ †

(63)

W − 2 hW + αW = Wα , Hermitian.
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5.2. Eigenvalue problems

Now we discuss a result that links our results based on the Riemann–Hilbert problem with previous 
seminal results by Grünbaum and Durán [31,33,35,36]. The next theorem shows when the polynomials and 
associated functions of second kind are eigenfunctions of a second order operator.

Theorem 5 (Eigenvalue problems for Hermite matrix case). Let hL(z) and hR(z) be degree one matrix poly-
nomials, i.e.

hL(z) = ALz + BL, hR(z) = ARz + BR, AL, AR, BL, BR ∈ CN×N ,

with AL, AR negative definite, and W (z) a matrix of weights that solves (59), (60) subject to the boundary 
conditions (54). Then, the following conditions are equivalent:

i) The operators LL and LR are adjoint operators with respect to the matrix of weights W (z), i.e. LR =(
LL)∗.

ii) The biorthogonal polynomial sequences with respect to W (z), say 
{
P L
n(z)

}
n∈Z+

, 
{
PR
n (z)

}
n∈Z+

, are 

eigenfunctions of LL and LR, i.e. there exist N ×N matrices, λL
n, λR

n such that

LL(P L
n) = λL

nP
L
n , LR(PR

n ) = PR
n λ

R
n, (64)

with λL
nC

−1
n = C−1

n λR
n, n ∈ Z+.

iii) The functions of second kind, 
{
QL

n(z)
}
n∈Z+

and 
{
QR

n(z)
}
n∈Z+

, associated with the biorthogonal poly-
nomials, 

{
P L
n(z)

}
n∈Z+

and 
{
PR
n (z)

}
n∈Z+

, fulfill the second order differential equations,

(
QL

n

)′′(z) − 2
(
QL

n

)′(z)hR(z) + QL
n(z) (αR − 2AR) = λL

n Q
L
n(z), (65)(

QR
n

)′′(z) − 2hL(z)
(
QR

n

)′(z) + (αL − 2AL)QR
n(z) = QR

n λ
R
n. (66)

Proof. ii) implies i). If n �= m

〈LL(P L
n(z)) , PR

m(z)〉W = λL
n〈P L

n(z) , PR
m(z)〉W = 0N ,

〈P L
n(z) , LR(PR

m(z))〉W = 〈P L
n(z) , PR

m(z)〉WλR
m = 0N ;

and for n = m

1
2π i 〈L

L(P L
n(z)) , PR

n (z)〉W = λL
nC

−1
n ,

1
2π i 〈P

L
n(z) , LR(PR

n (z))〉W = C−1
n λR

n , n ∈ Z+,

which implies that 〈LL(P L
n(z)) , PR

m(z)〉W = 〈P L
n(z) , LR(PR

m(z))〉W , n, m ∈ Z+.
i) implies ii). Let us note that the space of matrix polynomials of a given degree is invariant under the 

action of the operators LL and LR; hence

LL(P L
n) =

n∑
k=0

λL
n,kP

L
k .

Now, taking into account the biorthogonality of the sequences P L
n and PR

n with respect to W and using that 
the operators LL and LR are adjoint operators we have
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λL
n,kC

−1
k = 1

2π i 〈L
L(P L

n), PR
k 〉W = 1

2π i 〈P
L
n ,LR(PR

k )〉W = C−1
n λR

n,kδn,k, n,m ∈ Z+,

so it holds that LL(P L
n) = λL

nP
L
k and also LR(PR

n ) = λR
nP

R
k where λL

nC
−1
n = C−1

n λR
n.

ii) implies iii) We return back to equations (50) and (64) and see that[
M(hL(z′)), P L

n(z′)
]
+ HL

1,1,n(z′)P L
n(z′) − HL

1,2,n(z′)P L
n−1(z′) = −P L

n(z′)αL + λL
n P

L
n(z′) .

Now, multiplying this equation on the right by W (z′)/(z− z′) and integrating along γ, taking into account 
the boundary conditions, we get

M(hL(z))QL
n(z)−QL

n(z)M(−hR(z))+HL
1,1,n(z)QL

n(z)−HL
1,2,n(z)QL

n−1(z) = QL
n(z) (2AR −αR)+λL

n QL
n(z) .

Now, from (51) we get (65). We have proved that if 
{
P L
n

}
n∈Z+

satisfies a second order linear differential 
equation the associated functions of second kind also does.

We have that∫
γ

M(hL)(z′)
z′ − z

P L
n(z′)W (z′) d z′ =

∫
γ

(AL)2(z′)2 + {AL, BL}z′ + AL + (BL)2

z′ − z
P L
n(z′)W (z′) d z′,

with the anticommutator notation {A, B} = AB + BA. Now, as∫
γ

(z′)2

z′ − z
P L
n(z′)W (z′) d z′ =

∫
γ

(z′)2 − z2

z′ − z
P L
n(z′)W (z′) d z′ + z2QL

n(z)

=
∫
γ

(z′ + z)P L
n(z′)W (z′) d z′ + z2QL

n(z) ,

and, in the same way,∫
γ

z′

z′ − z
P L
n(z′)W (z′) d z′ =

∫
γ

z′ − z

z′ − z
P L
n(z′)W (z′) d z′ + zQL

n(z)

=
∫
γ

P L
n(z′)W (z′) d z′ + zQL

n(z) ,

we finally obtain ∫
γ

M(hL)(z′)
z′ − z

P L
n(z′)W (z′) d z′ = M(hL)QL

n(z), n ≥ 2,

where we have used the orthogonality conditions for 
{
P L
n

}
n∈Z+

. We also have

∫
γ

P L
n(z′)M(hL)(z′) − αL

z′ − z
W (z′) d z′ =

∫
γ

P L
n(z′)W (z′)M(hR)(z′) − αR

z′ − z
d z′

= QL
n(z) (M(hR)(z) − αR), n ≥ 2.

Using the same ideas we prove that
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∫
γ

HL
1,j,n(z′)
z′ − z

P L
n−j+1(z′)W (z′) d z′ = HL

1,j,n(z)QL
n−j+1(z), n ≥ 1, j = 1, 2 . (67)

In fact, by definition (48) we know that the matrix polynomials HL
1,j,n(z′) are of degree at most one, i.e.

HL
1,j,n(z′) = HL,0

1,j,nz
′ + HL,1

1,j,n , HL,0
1,j,n,H

L,1
1,j,n ∈ CN×N .

Summing and subtracting in (67) HL
1,j,n(z) we get in the left hand side

∫
γ

HL
1,j,n(z′)
z′ − z

P L
n−j+1(z′)W (z′) d z′ =

∫
γ

HL
1,j,n(z′) − HL

1,j,n(z)
z′ − z

P L
n−j+1(z′)W (z′) d z′ + HL

1,j,n(z)QL
n−j+1(z) ;

hence, as

HL
1,j,n(z′) − HL

1,j,n(z)
z′ − z

= HL,0
1,j,n ,

we arrive to∫
γ

HL
1,j,n(z′)
z′ − z

P L
n−j+1(z′)W (z′) d z′ = HL,0

1,j,n

∫
γ

P L
n−j+1(z′)W (z′) d z′ + HL

1,j,n(z)QL
n−j+1(z) ,

and by the orthogonality of 
{
P L
n−j+1(z)

}
n∈Z+

with respect to W (z) we get for j = 1, 2, and for all n =
1, 2, . . ., that (67) holds true.

From (52) and taking into account that LR(PR
n ) = PR

n λR
n we get[

PR
n (z′),M(hR)(z′)

]
+ PR

n (z′)HR
1,1,n(z′) − PR

n−1(z′)HR
2,1,n(z′) = −αR PR

n (z′) + PR
n (z′)λR

n .

Now, multiplying this equation on the left by W (z′)/(z− z′) and integrate (using the boundary conditions) 
over γ, we get

QR
n(z)M(hR)(z) −M(−hL)(z)QR

n(z) + QR
n(z)HR

1,1,n(z) −QR
n−1(z)HR

2,1,n(z) = (2AL − αL)QR
n + QR

n λ
R
n ,

and so, from (53) we arrive to (66).
iii) implies ii). Taking derivatives with respect to z we get, after integration by parts and using the 

boundary conditions

(QL
n)′(z) =

∫
γ

P L
n(z′)W (z′)
(z′ − z)2 d z′ ,

(QL
n)′′(z) = 2

∫
γ

P L
n(z′)W (z′)
(z′ − z)3 d z′ =

∫
γ

(P L
n(z′)W (z′))′′

z′ − z
d z′.

Moreover,

−2(QL
n)′(z)hR(z) = 2

∫
γ

P L
n(z′)W (z′)h

R(z′) − hR(z)
(z′ − z)2 d z′ − 2

∫
γ

P L
n(z′)W (z′) hR(z′)

(z′ − z)2 d z′

= 2QL
n(z)AR − 2

∫
γ

(P L
n(z′)W (z′)hR(z′))′

z′ − z
d z′.
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Now, we plug all this information into (65) and deduce that

∫
γ

(P L
n)′′W + 2(P L

n)′(W ′ −WhR) + P L
n(W ′′ − 2(WhR)′) + WαR)

z′ − z
d z′ = λL

n

∫
γ

P L
nW

z′ − z
d z′ ;

by the hypothesis over W we get

∫
γ

(P L
n)′′(z′) + 2(P L

n)′(z′)hL(z′) + P L
nα

L − λL
nP

L
n

z′ − z
W (z′) d z′ = 0N .

Hence, we get that 
{
P L
n

}
n∈Z+

satisfies (64). Using analogous arguments it can be proven that the equa-
tion (66) for 

{
QR

n

}
n∈Z+

implies that 
{
PR
n

}
n∈Z+

satisfies (64). �
Let us emphasize that the results in iii) in the previous Theorem regarding the second kind functions, {

QL
n

}
n∈Z+

and 
{
QR

n

}
n∈Z+

are, to the best of our knowledge, completely new. Moreover, from Theorem 4, 
we see that W in Theorem 5 can be taken as a solution of a Pearson–Sylvester differential equation given 
by (36) and that satisfies (58).

Remark 11. For the symmetric or Hermitian reductions we take h(z) = Az + B, with A definite negative, 
and W (z) a matrix of weights a solution of (63) subject to the boundary conditions (62). Then, the following 
conditions are equivalent:

i) Equation (61) is satisfied.
ii) The matrix orthogonal polynomials with respect to W (z) are eigenfunctions of L.
iii) The functions of second kind, 

{
Qn(z)

}
n∈Z+

, associated with the matrix orthogonal polynomials, {
Pn(z)

}
n∈Z+

fulfill the second order differential equations,

(
Qn

)′′(z) − 2
(
Qn

)′(z) (h(z))� + Qn(z) (α� − 2A�) = λn Qn(z), symmetric,(
Qn

)′′(z) − 2
(
Qn

)′(z) (h(z̄))† + Qn(z) (α† − 2A†) = λn Qn(z), Hermitian.

The equivalences, described in the previous remark, excluding the one for the second kind functions 
(which is new), coincide with those of [33]. Therefore, these results could be understood (in the sense the 
biorthogonality includes Hermitian and non Hermitian orthogonality) as an extension of those by Durán 
and Grünbaum to the non Hermitian orthogonality scenario.

6. Nonlinear difference equations for the recursion coefficients

Using the Riemann–Hilbert approach we will derive in this section nonlinear matrix difference equations 
fulfilled by the recursion coefficients. We will consider three different possibilities for the Pearson equations 
satisfied by the matrix of weights.

6.1. Nonlinear difference equations for Hermite matrix polynomials

We now explore the simplest case when max(deg hL
n(z), deg hR

n(z)) = 1 in full generality. We take

hL(z) = ALz + BL, hR(z) = ARz + BR,
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for arbitrary matrices AL, BL, AR, BR ∈ CN×N , with AL, AR definite negative matrices. Thus, the matrix of 
weights W (z) is a solution of the following Pearson equation (a Sylvester linear differential equation)

W ′(z) = (ALz + BL)W (z) + W (z)(ARz + BR).

For simplicity we take γ = R. Hence, the structure matrices have, cf. (37) and (38), the following form

ML
n(z) = ALz + KL

n, AL =
[
AL 0N

0N −AR

]
, KL

n =
[

BL+
[
p1

L,n,A
L] C−1

n AR+ALC−1
n

−Cn−1A
L−ARCn−1 −BR−

[
q1

L,n−1,A
R]
]
. (68)

The Sylvester differential system (40) for the left fundamental matrix is

(
Y L
n (z)

)′ + [Y L
n (z),

[
ALz+BL 0N

0N −ARz−BR

]]
=
[ [

p1
L,n,A

L] C−1
n AR+ALC−1

n

−Cn−1A
L−ARCn−1 −

[
q1

L,n−1,A
R]
]
Yn(z), n ∈ Z+,

that is, for all n ∈ Z+,

(P L
n)′ +

[
P L
n , A

Lz + BL] =
[
p1

L,n, A
L]P L

n −
(
C−1

n AR + ALC−1
n

)
Cn−1P

L
n−1, (69)

Cn−1(QL
n−1)′ −

[
Cn−1Q

L
n−1, A

Rz + BR] =
(
Cn−1A

L + ARCn−1
)
QL

n −
[
q1
n−1, A

R]Cn−1Q
L
n−1, (70)

Cn−1(P L
n−1)′ + Cn−1Pn−1

(
ALz + BL)+

(
ARz + BR)Cn−1P

L
n−1

=
(
Cn−1A

L + ARCn−1
)
P L
n −

[
q1
L,n−1, A

R]Cn−1P
L
n−1, (71)

(QL
n)′ −QL

n

(
ARz + BR)− (ALz + BL)QL

n =
[
p1
n, A

L]QL
n −

(
C−1

n AR + ALC−1
n

)
Cn−1Q

L
n−1. (72)

Taking the (n − 1)-th z power of the (69), the −n-th of (70), the −(n − 1)-th of (70) and the −(n + 1)-th 
of (72) we get, for all n ∈ Z+,

nIN +
[
p1

L,n, B
L]+

[
p2

L,n, A
L] =

[
p1

L,n, A
L] p1

n −
(
C−1

n AR + ALC−1
n

)
Cn−1,

nIN +
[
q1
n−1, B

R]+
[
q2
L,n−1, A

R] = −
(
Cn−1A

L + ARCn−1
)
C−1

n +
[
q1
L,n−1, A

R]q1
L,n−1,

Cn−1B
L + BRCn−1 + Cn−1

[
p1

L,n−1, A
L] = −

(
Cn−1A

L + ARCn−1
)
βL
n−1 −

[
q1
L,n−1, A

R]Cn−1,

BRCn + CnB
L +

[
q1
L,n, A

R]Cn = −Cn

[
p1

L,n, A
L]− (ARCn + CnA

L)βL
n.

After some cleaning we reckon that the system is, for all n ∈ Z+, equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I −
[
βL
n, B

L −
[ n−1∑
k=0

βL
k, A

L
]

+ ALβL
n

]
= C−1

n Cn−1A
L − C−1

n+1A
RCn −ALC−1

n+1Cn + C−1
n AR Cn−1,

Cn−1B
L + BRCn−1 − Cn−1

[ n−2∑
k=0

βL
k, A

L
]

= −
(
Cn−1A

L + ARCn−1
)
βL
n−1 −

[ n−1∑
k=0

Ckβ
L
k(Ck)−1, AR

]
Cn−1.

6.2. A matrix extension of the alt-dPI

We now discuss the case max(hL
n(z), hR

n(z)) = 2, but we perform a strong simplification as we take 
hR = 0N and hL = λ + μz + νz2, with λ, μ, ν ∈ CN×N arbitrary matrices but for ν being negative definite 
nonsingular matrix. Thus, the Pearson equation will be
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W ′(z) = (λ + μz + νz2)W (z). (73)

We obviously drop off the notation that distinguish left and right polynomials and only describe the results 
for the left case. The integrals are taken along γ, a smooth curve for which we have a simple Riemann–Hilbert 
problem as depicted in the following diagram:

C

π3

γ

x

y

Branch of the hyperbola 3x2 − y2 = 3

The structure matrix, cf. (37), is a second order polynomial Mn(z) = M0
nz

2 + M1
nz + M2

n with

M0
n =

[
ν 0N

0N 0N

]
, M1

n =
[
μ−

[
ν, p1

n

]
νC−1

n

−Cn−1ν 0

]
,

M2
n =

[
λ−

[
β, p1

n

]
−
[
ν, p2

n

]
+ ν

(
p1
n

)2 − p1
nν p

1
n + νC−1

n Cn−1
(
μ−

[
ν, p1

n

]
+ γβn

)
C−1

n

−Cn−1
(
μ + p1

n−1ν − νp1
n

)
−Cn−1ν C

−1
n

]
.

Proposition 9 (Matrix alt-dPI system). The recursion coefficients βn, γn of the matrix orthogonal polynomials 
with matrix of weights a solution of the Pearson equation (73) are subject to the following system of equations, 
for all n ∈ Z+,

(
μ +

[
ν,

n−1∑
k=0

βk

]
+ γ(βn + βn+1)

)
γn+1 = −(n + 1)I, (74)

λ + γ
(
γn + γn+1 + β2

n

)
− μβn +

[
μ,

n−1∑
k=0

βk

](
IN + βn

)
+
[
ν,

n−1∑
m=1

γm −
∑

0≤k<m≤n−1

βmβk

]
+
[
ν,

n−1∑
k=0

βk

] n−1∑
k=0

βk = 0N . (75)

Proof. Given the asymptotics about ∞,

−CnQn(z) = INz−n−1 + q1
nz

−n−2 + · · · ,
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we read the coefficient of z−n−1 coming from

Cn−1Q
′
n−1(z) = −Mn

2,1(z)Qn(z) + Mn
2,2(z)Cn−1Qn−1(z) ,

with Mn
2,1 = −Cn−1νz − Cn−1

(
μ + p1

n−1ν − νp1
n

)
, Mn

2,2 = −Cn−1νC
−1
n , we get (74); and from

Q′
n(z) = Mn

1,1 Qn(z) −Mn
1,2(z)Cn−1 Qn−1(z) ,

with

Mn
1,1 = νz2 +

(
μ−

[
ν, p1

n

])
z +

(
λ−

[
μ, p1

n

]
−
[
ν, p2

n

]
+ ν

(
p1
n

)2 + νC−1
n Cn−1 − p1

nν p
1
n

)
Mn

1,2 = νC−1
n z +

(
μ−

[
ν, p1

n

]
+ νβn

)
C−1

n ;

we deduce (75) from the z−n−1-coefficient. �
Another form of writing this result is

Proposition 10 (Matrix alt-dPI system). Given matrix orthogonal polynomials with matrix of weights W (z)
supported on γ, a solution of the Pearson equation (73), the recursion coefficients γn can be expressed directly 
in terms of the recursion coefficients βn, for all n ∈ Z+,

γn+1 = −(n + 1)
(
β +

[
γ,

n−1∑
k=0

βk

]
+ γ(βn + βn+1)

)−1
.

The coefficients βn fulfill, for all n ∈ Z+, the following non-Abelian alt-dPI,

λ + ν
(
γn + γn+1 + β2

n

)
− μβn +

[
β,

n−1∑
k=0

βk

](
IN + βn

)
+
[
ν,

n−1∑
m=1

γm −
∑

0≤k<m≤n−1

βmβk

]
+
[
ν,

n−1∑
k=0

βk

] n−1∑
k=0

βk = 0N .

Proof. From (74) we get the γn in terms of βn, plugged this relation into the second one gives the following 
nonlinear equation for the matrices βn. �

If we assume that ν = −I as expected strong simplifications occur. In the first place we find that

γn+1 = −(n + 1)(μ− βn − βn+1)−1,

and, secondly, we derive the following simplified version of a non-Abelian alt-dPI equation

λ− β2
n + n(β − βn−1 + βn)−1 + (n + 1)(μ− βn − βn+1)−1 − μβn = −

[
μ,

n−1∑
k=0

βk

](
IN + βn

)
.

Moreover, when we choose ν = −I and μ = 0N the non local terms disappear and the equation simplifies 
further to

−n(βn−1 + βn)−1 − (n + 1)(βn + βn+1)−1 + β2
n = λ.
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Let us remind the reader how the alt-dPI equation appeared for the first time. Going back to the scalar 
context, in Magnus’ work [54], associated with the weight functions solution of the Pearson equation W ′(z) =(
z2 + t

)
W (z), we can find the following scalar alternate discrete Painlevé I system

γn + γn+1 + β2
n + t = 0,

n + γn
(
βn + βn−1

)
= 0,

which can be written as

− n

βn + βn−1
− n + 1

βn + βn+1
+ β2

n + t = 0.

6.3. The matrix dPI system

We now increase further the degree of the polynomials appearing in the Pearson equations. We consider 
the case with max(hL

n(z), hR
n(z)) = 3, but we perform a strong simplification we take hR = 0N and hL =

μz + νz3, with μ, ν ∈ CN×N arbitrary matrices but for ν being negative definite nonsingular matrix. Now 
we take γ = R. Observe that we have non taken the more general possible polynomial of degree three, but 
an odd one, with well defined parity on z, this simplifies widely the computations.

The associated Pearson type equation for a matrix of weights of Freud type:

W ′(z) = (μz + νz3)W (z) (76)

The structure matrix, cf. (37), is a third order polynomial, that we write as follows

Mn(z) = M0
nz

3 + M1
nz

2 + M2
nz + M3

n

with

M0
n =

[
ν 0N

0N 0N

]
, M1

n =
[

0N μC−1
n

−Cn−1μ 0N

]
,

M2
n =

[
ν + [p2

n, ν] + μC−1
n Cn−1 0N

0N −Cn−1νC
−1
n

]
, M3

n =
[

0N ξnC
−1
n

−Cn−1ξn−1 0N

]
,

where ξn = μ + [p2
n, ν] + ν(C−1

n Cn−1 + C−1
n+1Cn), n ∈ Z+.

With this at hand we find.

Proposition 11 (Matrix dPI equation). The recursion coefficients γn of the matrix orthogonal polynomials 
with matrix of weights satisfying the Pearson equation (76) fulfill the following non-Abelian dPI equation

(
μ + ν(γn+2 + γn+1 + γn) +

[
ν,

n−1∑
k=1

γk
])

γn+1 = −(n + 1)I, n ∈ Z+.

Proof. Compare the coefficients of z−n−1 in the ODE for the second kind functions we get directly (without 
additional computations) the MdPI equations for the three term relation coefficients of 

{
Pn(z)

}
n∈Z+

. �
Notice the appearance again of non local terms, that disappear if we take ν = −I and the matrix dPI 

reads

γn+1 = nγ−1
n − γn − γn−1 − μ, n ∈ Z+,
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which was derived in the matrix context for the first time in [16] and the confinement of singularities for 
this relation was proven in [17,16], see also [47]. In 1995, Alphonse P. Magnus [54] for the Freud weight 
satisfying the Pearson equation W ′(z) = −

(
z3 +2tz

)
W (z) presented the following scalar discrete Painlevé I 

equation

γn
(
γn−1 + γn + γn+1

)
+ 2tγn = n.
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