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We study positive solutions up of the nonlinear Neumann elliptic problem Δu = u
in Ω, ∂u/∂ν = |u|p−1u on ∂Ω, where Ω is a bounded open smooth domain in R2. 
We investigate the asymptotic behavior of families of solutions up satisfying an 
energy bound condition when the exponent p is getting large. Inspired by the work 
of Davila-del Pino-Musso [8], we prove that up is developing m peaks xi ∈ ∂Ω, in 
the sense up

p/ 
∫
∂Ω up

p approaches the sum of m Dirac masses at the boundary and 
we determine the localization of these concentration points.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to study the following problem⎧⎨⎩Δu = u in Ω
∂u

∂ν
= |u|p−1u on ∂Ω

(1.1)

where p > 1, Ω ⊂ R2 is a smooth bounded domain and ∂/∂ν denotes the derivative with respect to the 
outward normal to ∂Ω. Elliptic problem with nonlinear boundary condition has been widely studied in the 
past by many authors and it is still an area of intensive research, see for instance [2,5–8,16,18,24].
Problem (1.1) has a variational structure. Indeed, its solutions are in a one-to-one correspondence with the 
critical points of the functional:

Ep(u) = 1
2

∫
Ω

|∇u|2 + u2 dx− 1
p + 1

∫
∂Ω

|u|p+1 dσ(x)
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defined on the Sobolev space H1(Ω). Trace and Sobolev embeddings tell us that we have

H1(Ω) ↪→ H
1
2 (∂Ω) ↪→ Lp(∂Ω)

and that the embeddings are compact for every p > 1. Since in dimension 2, any exponent p > 1 is subcritical 
(with respect to the Sobolev embedding) it is well known, by standard variational methods, that (1.1) has 
at least one positive solution.
Our main result provides a description of the asymptotic behavior, as p → +∞, of positive solutions of (1.1)
under a uniform bound of their energy, namely we consider any family (up) of positive solutions to (1.1)
satisfying the condition

p

∫
Ω

|∇up|2 + u2
p dx → β ∈ R, as p → +∞. (1.2)

Our strategy goes along the method developed by Davila, del Pino and Musso in [8] when they analyzed a 
nonlinear exponential Neumann boundary condition. Indeed, Davila et al. were interested to the following 
problem {

Δu = u in Ω
∂u
∂ν = εeu on ∂Ω

(1.3)

where ε is a small parameter. They proved that any family of solutions uε for which ε 
∫
∂Ω euε is bounded 

develops, up to subsequences, a finite number m of peaks ξi ∈ ∂Ω, ε 
∫
∂Ω euε → 2mπ, and reciprocally, they 

established that at least two such families exist for any given m ≥ 1.
There is another source of motivation for problem we are considering here. Its analogous usual elliptic 

equation is {
Δu = |u|p−1u in Ω
u = 0 on ∂Ω

(1.4)

known as Lane-Emden equation. Such equation has been investigated widely in the last decades, see for 
example [1,10–13,17]. Concerning general positive solutions (i.e. not necessarily with least energy) of the 
Lane-Emden Dirichlet problem, a first asymptotic analysis was carried out in [11] showing that, under the 
corresponding energy bound condition, all solutions (up) concentrate at a finite number of points in Ω. Later 
the same authors gave in [12] a description of the asymptotic behavior of up as p → ∞. They completed this 
study in a recent work with Grossi [10]. More precisely, they showed quantization of the energy to multiples 
of 8πe and proved convergence to 

√
e of the L∞- norm, thus confirming the conjecture made in [12]. A proof 

of this quantization conjecture was also independently done by Thizy [25].
Going back to (1.1), the asymptotic behavior of general positive solutions has not been studied yet. 

Before stating our theorem let us review some known facts. In [24], Takahashi studied (1.1) by analyzing 
the asymptotic behavior of least energy solutions (hence positive), as p → ∞. He proved that the least 
energy solutions remain bounded uniformly with respect to p and develop one peak on the boundary. The 
location of this blow-up point is associated with a critical point of the Robin function H(x, x) on the 
boundary, where H is the regular part of the Green function of the corresponding linear Neumann problem. 
More precisely, the Green function G(x, y) is the solution of the problem⎧⎨⎩ΔxG(x, y) = G(x, y) in Ω,

∂G (x, y) = δy(x) on ∂Ω,
(1.5)
∂νx
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for all y ∈ ∂Ω and its regular part

H(x, y) = G(x, y) − 1
π

log 1
|x− y| . (1.6)

Note that least energy solutions (up) of this 2-dimensional semi-linear Neumann problem satisfy the condi-
tion

p

∫
Ω

|∇up|2 + u2
p dx → 2πe, as p → +∞,

which is a particular case of (1.2). Later, following a similar argument firstly introduced in [1], Castro [6]
identified a limit problem by showing that suitable scaling of the least energy solutions (up) converges in 
C1

loc(R2
+) to a regular solution U of the Liouville problem

⎧⎪⎪⎨⎪⎪⎩
ΔU = 0 in R2

+
∂U

∂ν
= eU on ∂R2

+∫
∂R2

+
eU < ∞ (= 2π) and supR2

+
U < ∞.

(1.7)

He also proved that ‖up‖∞ converges to 
√
e as p → +∞, as it had been previously conjectured in [24]. All 

these results are respectively similar to those contained in [20,21] and [1] which focus on the least energy 
solution of the Lane-Emden problem in the plane.
However, problem (1.1) may have positive solutions with an arbitrarily large number of boundary peaks, 
as shown by Castro in [6]. Indeed, he proved that given any integer m ≥ 1, problem (1.1) has at least two 
families of positive solutions up, each of them satisfying

pup(x)p+1 ⇀ 2πe
m∑
i=1

δξi weakly in the sense of measure in ∂Ω,

as p → +∞, and the peaks of these two solutions are located near points ξ = (ξi, . . . , ξm) ∈ (∂Ω)m
corresponding to two distinct critical points of the following functional defined on (∂Ω)m

ϕm(x1, . . . , xm) := −
[ m∑
i=1

H(xi, xi) +
∑
j �=i

G(xi, xj)
]
.

It is natural to ask whether these properties hold for all families of positive solutions (up) satisfying (1.2), 
as p → ∞. To our knowledge, a complete answer to this conjecture has not been given so far, while partial 
results are available as we describe below. In fact we extend the concentration result in [8], concerning 
elliptic problem with exponential Neumann data, to a large exponent one. More precisely, we prove that 
up
p/ 

∫
∂Ω up

p approaches the sum of m Dirac masses at the boundary. The location of these possible points of 
concentration may be further characterized as solutions of a system of equations defined explicitly in terms 
of the gradients of the above Green function and its regular part.
In order to state our main result we introduce some notations. Let

vp = up∫
∂Ω up

p dσ(x)
,

where up is a positive solution of (1.1) satisfying (1.2). We define the blow-up set S of vpn
to be the subset 

of ∂Ω such that x ∈ S if there exist a subsequence, still denoted by vpn
, and a sequence xn in Ω with
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vpn
(xn) → +∞ and xn → x.

Now, we are able to state the following result:

Theorem 1.1. Let Ω ⊂ R2 be a smooth bounded domain. Then for any sequence vpn
of vp with pn → ∞, 

there exists a subsequence (still denoted by vpn
) such that the following statements hold true.

(1) There exists a finite collection of distinct points xi ∈ ∂Ω, i = 1, . . . , m such that S = {xi, 1 ≤ i ≤ m}.
(2)

fn :=
upn
pn∫

∂Ω upn
pn dσ(x)

⇀∗
m∑
i=1

aiδxi

in the sense of Radon measures on ∂Ω where

ai = lim
r→0

lim
n→+∞

⎛⎜⎝ 2π
(pn + 1)(

∫
∂Ω upn

pndσ(x))2

∫
∂Ω∩Br(xi)

upn+1
pn

dσ(x)

⎞⎟⎠
1
2

, ∀1 ≤ i ≤ m. (1.8)

(3) vpn
→

m∑
i=1

aiG(., xi) in C1
loc(Ω \ S), Lt(Ω) and Lt(∂Ω) respectively for any 1 ≤ t < ∞, where G is the 

Green’s function for Neumann problem (1.5).
(4) The concentration points xi, i = 1, . . . , m satisfy

ai∇τ(xi)H(xi, xi) +
∑
� �=i

a�∇τ(xi)G(xi, x�) = 0, (1.9)

where τ(xi) is a tangent vector to ∂Ω at xi.

As we mentioned before to prove this result we will proceed as in [8]. But, to adopt their argument, a 
blow up technique is needed to get some useful estimates. Indeed in both [6] and [24] the authors established 
the facts that

c1 ≤ ‖up‖L∞(Ω) ≤ c2 and c3 ≤ p

∫
∂Ω

|up|pdσ(x) ≤ c4 (1.10)

for some positive constants c1, c2, c3 and c4 independent of p for the case of least energy solutions to pursue 
the analysis. In our case we prove that these estimates hold true for general solutions (not necessarily 
positive) of (1.1) satisfying the bound energy condition (1.2). We point out that this last condition is very 
crucial in our framework to analyze the asymptotic behavior of the families (up). In fact, by using a suitable 
rescaling of the solution, we proved that the rescaled function about the maximum point of |up|, which is 
located on the boundary of Ω, converges to the bubble not only for least energy solution (shown in [6]) 
but also for finite energy ones. This information allowed us to obtain (1.10). This will be the subject of 
Proposition 2.1 which is the analogous result of [12, Proposition 2.2] and [13, Theorem 2.1] concerning 
Lane-Emden equation.
Let us point out that, as in [8] we have boundary concentration phenomena due to the nonlinear condition. 
But the exponent nonlinearity brings us some difficulties in our analysis.

Remark 1.2. In contrast with the exponential nonlinearity studied in [8], the argument of Davila et al. does
not give the value of the coefficients or weights ai’s nor the quantization of the energy result.



H. Fourti / J. Math. Anal. Appl. 502 (2021) 125200 5
To determine the data ai’s we think that new ideas are needed. May be a detailed local analysis is 
required to overcome this difficulty. However arguing as in Brezis and Merle [3], we get ai ≥ π/L0 where 
L0 will be defined in (3.2).
We conjecture that the ai’s are equal and more precisely we have

ai = l−12π
√
e, ∀1 ≤ i ≤ m

where l = lim
p→+∞

p 
∫
∂Ω

up(x)p.

If we combine this conjecture with results of Theorem 1.1 we get, for any family of positive solutions (up)
of (1.1) satisfying (1.2), the following results

(i) up to subsequence

pup(x) → 2π
√
e

m∑
i=1

G(x, xi) as p → +∞, in C1
loc(Ω̄ \ S),

where G is the Green’s function for Neumann problem (1.5);
(ii) (x1, . . . , xm) is a critical point of ϕm, that is the concentration points xi, i = 1, . . . , m satisfy

∇τ(xi)H(xi, xi) +
∑
� �=i

∇τ(xi)G(xi, x�) = 0. (1.11)

We also conjecture that

‖up‖L∞(Ω) →
√
e and p

∫
Ω

|∇up(x)|2 + u2
p(x) dx → m.2πe, as p → +∞.

This complete picture or behavior needs more accurate analysis. Verification of these conjectures remains 
as the future work [9].

The remainder of this paper is organized as follows: Section 2 is devoted to the asymptotic behavior of 
a general family (up) of nontrivial solutions of (1.1) satisfying (1.2). In Section 3 we give the proof of our 
theorem.

2. General asymptotic analysis

It was first proved in [18] for more general nonlinearities, that there exists at least one solution which 
changes sign. If the nonlinearity is odd in u, as in our case, it is mentioned in [18] that there exist infinitely 
many sign-changing solutions by a standard argument (see the reference therein), so it makes sense to study 
the properties of both positive and sign-changing solutions.

This section is mostly devoted to the study of the asymptotic behavior of a general family (up)p>1 of 
nontrivial solutions of (1.1) satisfying the uniform upper bound

p

∫
Ω

|∇up|2 + u2
p dx ≤ C, for some C > 0 independent of p. (2.1)

Recall that in [24] it has been proved that for any family (up)p>1 of nontrivial solutions of (1.1) the 
following lower bound holds
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lim inf
p→+∞

p

∫
Ω

|∇up|2 + u2
p dx ≥ 2πe, (2.2)

so the constant C in (2.1) is intended to satisfy C ≥ 2πe. Moreover if up is sign-changing then we also know 
that (see again [24])

lim inf
p→+∞

p

∫
Ω

|∇u±
p |2 + (u±

p )2dx ≥ 2πe. (2.3)

We recall that the energy functional associated to (1.1) satisfies

Ep(u) = 1
2‖u‖

2
H1(Ω) −

1
p + 1‖u‖

p+1
Lp+1(∂Ω), u ∈ H1(Ω).

Since for a solution u of (1.1)

Ep(u) = (1
2 − 1

p + 1)‖u‖2
H1(Ω) = (1

2 − 1
p + 1)‖u‖p+1

Lp+1(∂Ω), (2.4)

then (2.1), (2.2) and (2.3) are equivalent to uniform upper and lower bounds for the energy Ep or for the 
Lp+1(∂Ω)-norm, indeed

lim sup
p→+∞

2pEp(up) = lim sup
p→+∞

p

∫
∂Ω

|up|p+1 dσ(x) = lim sup
p→+∞

p

∫
Ω

|∇up|2 + u2
p dx ≤ C

lim inf
p→+∞

2pEp(up) = lim inf
p→+∞

p

∫
∂Ω

|up|p+1 dσ(x) = lim inf
p→+∞

p

∫
Ω

|∇up|2 + u2
p dx ≥ 2πe

and if up is sign-changing, also

lim inf
p→+∞

2pEp(u±
p ) = lim inf

p→+∞
p

∫
∂Ω

|u±
p |p+1 dσ(x) = lim inf

p→+∞
p

∫
Ω

|∇u±
p |2 + (u±

p )2 dx ≥ 2πe,

we will use all these equivalent formulations throughout the paper.
Observe that by the assumption in (2.1) we have that

Ep(up) → 0, ‖up‖H1(Ω) → 0, as p → +∞

Ep(u±
p ) → 0, ‖u±

p ‖H1(Ω) → 0, as p → +∞ (if up is sign-changing)

so in particular u±
p → 0 a.e. as p → +∞.

In this section, we will show that the solutions up do not vanish as p → +∞ (both u±
p do not vanish if up is 

sign-changing) and that moreover, differently with what happens in higher dimension, they do not blow-up. 
The last information is a consequence of the existence of the first bubble which is obtained by the rescaling 
respect to the maximum point. A uniform upper and lower bounds of the quantity p 

∫
∂Ω up

p dσ(x) is also 
obtained (see Proposition 2.1 below). All these estimates are required to adopt the argument developed in 
[8]. Our key result is the following:

Proposition 2.1. Let (up) be a family of solutions to (1.1) satisfying (2.1). Then
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(i) (No vanishing on the boundary).

‖up‖p−1
L∞(∂Ω) ≥ λ1,

where λ1 = λ1(Ω)(> 0) is the first eigenvalue of the eigenvalue problem{
Δu = u in Ω
∂u
∂ν = λu on ∂Ω

(2.5)

defined on H1(Ω).
If up is sign-changing then also ‖u±

p ‖p−1
L∞(∂Ω) ≥ λ1.

Moreover

lim inf
p→+∞

‖up‖L∞(∂Ω) ≥ 1 and lim inf
p→+∞

‖up‖L∞(Ω) ≥ 1. (2.6)

(ii) (Existence of the first bubble). Let (x+
p )p ⊂ Ω such that |up(x+

p )| = ‖up‖L∞(Ω). Then

x+
p ∈ ∂Ω, for all p > 1. (2.7)

Let us set

μ+
p :=

(
p|up(x+

p )|p−1)−1 (2.8)

and for t ∈ Ω̃+
p := {t ∈ R2

+ : yp + μ+
p t ∈ Ψ(Ω ∩BR(x+

p ))}

zp(t) := p

up(x+
p )

(
up

(
Ψ−1(yp + μ+

p t)
)
− up(x+

p )
)
, (2.9)

where yp = Ψ(x+
p ) and Ψ is the change of coordinates introduced in (2.13).

Then μ+
p → 0 as p → +∞ and

zp −→ U in C1
loc(R2

+) as p → +∞

where

U(t1, t2) = log
(

4
t21 + (t2 + 2)2

)
(2.10)

is the solution of the Liouville problem (1.7) satisfying U(0) = 0.
(iii) (No blow-up). There exists C > 0 such that

‖up‖L∞(Ω) ≤ C, for all p > 1. (2.11)

(iv) There exist constants c, C > 0, such that for all p sufficiently large we have

c ≤ p

∫
∂Ω

|up|pdσ(x) ≤ C. (2.12)

(v) √
pup ⇀ 0 in H1(Ω) as p → +∞.
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Proof. Point (i) has been first proved for positive solutions in [24], here we follow the proof in [17, Proposition 
2.5]. If up is sign-changing, just observe that u±

p ∈ H1(Ω), where we know that

0 < 2πe− ε
(2.2)/(2.3)

≤ p

∫
Ω

|∇u±
p |2 + (u±

p )2 dx
(2.1)
≤ C < +∞.

Moreover, the trace inequality

λ1(Ω)
∫
∂Ω

u2 dσ(x) ≤
∫
Ω

|∇u|2 + u2 dx

holds for all u ∈ H1(Ω), where λ1(Ω) > 0 is the least Steklov eigenvalue for (2.5). Thus we have∫
Ω

|∇u±
p |2 + (u±

p )2 dx =
∫
∂Ω

|u±
p |p+1 dσ(x) ≤ ‖u±

p ‖p−1
L∞(∂Ω)

∫
∂Ω

|u±
p |2 dσ(x)

≤
‖u±

p ‖p−1
L∞(∂Ω)

λ1(Ω)

∫
Ω

|∇u±
p |2 + (u±

p )2 dx.

Hence ‖u±
p ‖p−1

L∞(∂Ω) ≥ λ1(Ω) and ‖u±
p ‖p−1

L∞(Ω) ≥ ‖u±
p ‖p−1

L∞(∂Ω) ≥ λ1(Ω).
If up is not sign-changing just observe that either up = u+

p or up = u−
p and the same proof as before applies.

The proof of (ii) follows the same ideas in [6] where the same result has been proved for least energy 
(positive) solutions. In the sequel we will adopt the same method in [2] and [6] based on flattening the 
boundary near the maximum point then using a classical blow up argument introduced in [1].
Before doing so, we start by proving (2.7). We argue by contradiction. Suppose that there exists p > 1 such 
that x+

p ∈ Ω. Recall that x+
p is a point where |up| achieves its maximum. Without loss of generality, we can 

assume that:

up(x+
p ) = max

Ω
up > 0.

Hence x+
p is an interior local maximum and up(x+

p ) > 0. By continuity of up, there exists r > 0 such that 
up(x) > 0, for each x ∈ Br(x+

p ) and from (1.1) we get Δup > 0 in Br(x+
p ). Maximum principle implies that 

up is a constant function in Br(x+
p ). Therefore up = Δup = 0 in Br(x+

p ) which contradicts up(x+
p ) > 0.

If up(x+
p ) < 0 then x+

p is a minimum and a similar argument holds. Thus (2.7) is proved.
Next, we prove the remaining part of (ii). Recall that x+

p is a maximum point of |up| in Ω. Without loss of 
generality, we may assume that

up(x+
p ) = max

Ω
up > 0.

By (i) we have that pup(x+
p )p−1 → +∞ as p → +∞, so (2.6) holds and moreover μ+

p → 0, where μ+
p is 

defined in (2.8).
From (2.7), we have x+

p ∈ ∂Ω and ‖up‖L∞(Ω) = ‖up‖L∞(∂Ω). Up to a subsequence, x+
p converges to some 

x ∈ ∂Ω. Assume that x is located in the origin and the unit outward normal to ∂Ω at 0 is (−e2) where e2
is the second element of a canonical basis in R2. It will be convenient to work in fixed half balls. For this 
reason, we need some change of coordinates. This program was done in many works (see for example [14]
and [22]).
Since we will assume that ∂Ω is a C2 surface, we know that there is an R > 0 and a C2(R) function ρ such 
that (after a possible renumbering and reorientation of coordinates)
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∂Ω ∩BR(0) = {x ∈ BR(0) : x2 = ρ(x1)}
Ω′ := Ω ∩BR(0) = {x ∈ BR(0) : x2 > ρ(x1)}

and moreover, the mapping

Ω′ 
 x �→ y = Ψ(x) ∈ Ω′′ ⊆ R2

defined by {
y1 := x1,

y2 := x2 − ρ(x1),
(2.13)

is one-to-one. Define Φ := Ψ−1. Note that Ψ is a C2 function that transforms the set Ω′ (in what we refer 
to as x space) into a set Ω′′ in the half-space y2 > 0 (of y space). Note also that the point x = 0 is mapped 
to the origin of y space.
Our task now is changing the partial differential equation (1.1) satisfied by up in Ω′ into y coordinates. We 
define

ũp(y) := up(Φ(y)), for all y ∈ Ω′′.

Let ϕ ∈ D(BR(0) ∩Ω). Multiplying (1.1) by ϕ, integrating by part over BR(0) ∩Ω and using the change of 
variable x = Φ(y), we find∫

Ω′′

∇up(Φ(y)).∇ϕ(Φ(y)) + up(Φ(y))ϕ(Φ(y))dy

=
∫

∂Ω′′∩∂R2
+

|up(Φ(y1, 0))|p−1up(Φ(y1, 0))ϕ(Φ(y1, 0))dy1. (2.14)

Let ϕ1(y) := ϕ(Φ(y)), for each y ∈ Ω′′. A simple computation shows that

∇up(Φ(y)) = ∇ũp(y) −
(
ρ′(y1)

∂ũp

∂y2
(y), 0

)
. (2.15)

The above relation holds also for ϕ and ϕ1.
Using (2.14), (2.15) and Green’s formula, we can prove that the functions ũp satisfy the following problem⎧⎪⎪⎨⎪⎪⎩

Δũp − ũp − 2ρ′(y1)
∂2ũp

∂y1∂y2
− ρ′′(y1)

∂ũp

∂y2
+ (ρ′(y1))2

∂2ũp

∂y2
2

= 0 in Ω′′,

∂ũp

∂ν
+ ρ′(y1)

∂ũp

∂y2
− (ρ′(y1))2

∂ũp

∂y2
= |ũp|p−1ũp on ∂Ω′′ ∩ ∂R2

+.
(2.16)

Let R be such that BR(0) ∩ {y|y2 > 0} ⊂ Ω′′ and define B+
R

(0) := BR(0) ∩R2
+ and DR(0) := BR(0) ∩ ∂R2

+
(the flat boundary of B+

R
(0)). In particular we can look at problem (2.16) as being defined only in the 

half-ball B+
R

(0), that is⎧⎪⎪⎨⎪⎪⎩
Δũp − ũp − 2ρ′(y1)

∂2ũp

∂y1∂y2
− ρ′′(y1)

∂ũp

∂y2
+ (ρ′(y1))2

∂2ũp

∂y2
2

= 0 in B+
R

(0),
∂ũp + ρ′(y1)

∂ũp − (ρ′(y1))2
∂ũp = |ũp|p−1ũp on DR(0).

(2.17)
∂ν ∂y2 ∂y2
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Now we perform a classical blow up argument. Let p0 be a sufficiently large integer such that yp = Ψ(x+
p ) ∈

BR/4(0) for all p > p0. Then we consider

zp(t) := p

ũp(yp)
(
ũp(yp + μ+

p t) − ũp(yp)
)
, ∀t ∈ B+

R/(2μ+
p ), ∀p > p0

where ũp(yp) = up(x+
p ). For simplicity we shall write xp for x+

p , μp for μ+
p , B+

R
for B+

R
(0) and DR for DR(0).

The function zp satisfies the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δzp − μ2
pzp − μ2

pp− 2ρ′(μpt1 + yp,1)
∂2zp
∂t1∂t2

−μpρ
′′(μpt1 + yp,1)

∂zp
∂t2

− (ρ′(μpt1 + yp,1))2
∂2zp
∂t22

= 0 in B+
μ−1
p R/2,

∂zp
∂ν

+ ρ′(μpt1 + yp,1)
∂zp
∂t2

−(ρ′(μpt1 + yp,1))2
∂zp
∂t2

= |1 + zp
p
|p−1(1 + zp

p
) on Dμ−1

p R/2,

|1 + zp
p | ≤ 1, zp(0) = 0 and zp ≤ 0,

(2.18)

where (t1, t2) is the coordinates of t and yp,1 is the first component of yp. We rewrite (2.18) as follows:

⎧⎪⎨⎪⎩
−Lpzp + μ2

pzp = −μ2
pp in B+

μ−1
p R/2,

Npzp = |1 + zp
p |p−1(1 + zp

p ) on Dμ−1
p R/2,

|1 + zp
p | ≤ 1, zp(0) = 0 and zp ≤ 0,

(2.19)

where Lp := Δ − 2ρ′(μpt1 + yp,1)
∂2.

∂t1∂t2
− μpρ

′′(μpt1 + yp,1)
∂.

∂t2
− (ρ′(μpt1 + yp,1))2

∂2.

∂t22
and Np := ∂ .

∂ν
+

ρ′(μpt1 + yp,1)
∂ .

∂t2
− (ρ′(μpt1 + yp,1))2

∂ .

∂t2
.

Remark 2.2. Observe that ρ′(0) = 0 and the continuity of ρ′′ imply that

• Lp →p→∞ Δ,

• Np →p→∞
∂ .

∂ν
.

For fixed r > 0 we consider p1 > p0 large enough so that 8μpr < R for all p > p1, and consider the 
problem of finding wp solution of

⎧⎪⎨⎪⎩
−Lpw + μ2

pw = −pμ2
p in B+

4r,

Npw = |1 + zp
p |p−1(1 + zp

p ) on D4r,

w = 0 on S4r,

(2.20)

where S4r = ∂B4r ∩ R2
+ (the curved boundary of B+

4r). Firstly, the existence of such wp ∈ H1(B+
4r) is 

guaranteed by Lax-Milgram theorem and it satisfies

‖wp‖H1(B+
4r) ≤ C

(
‖μ2

pp‖L2(B+
4r) +

∥∥∥∥|1 + zp
p
|p
∥∥∥∥
L2(D4r)

)
.

Moreover, observe that for each q ≥ 2, and all p > p1
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∫
B+

4r

|μ2
pp|qdt ≤ C

since we have r ≤ Cμ−1
p and (i) holds. Also

∫
D4r

|1 + zp
p
|pqdσ(t) ≤

∫
D

μ
−1
p R/2

|1 + zp
p
|pqdσ(t)

= μ−1
p

∫
DR/2(yp)

|ũp(y)|pq
ũp(yp)pq

dσ(y)

≤ μ−1
p

1
up(xp)pq

∫
∂Ω

|up(x)|pqdσ(x)

≤ p

up(xp)2

∫
∂Ω

|up(x)|p+1dσ(x)

≤ C,

where the last inequality holds from Proposition 2.1 (i) and (2.1). Hence using a result from [23] (see also 
[6] page 270) we conclude that when q > 4, wp must be in W

1
2+t,q(B+

4r) for 0 < t < 2/q with

‖wp‖
W

1
2 +t,q(B+

4r)
≤ C

(
‖μ2

pp‖Lq(B+
4r) +

∥∥∥∥|1 + zp
p
|p
∥∥∥∥
Lq(D4r)

)
≤ C, (2.21)

where the constant C is independent of p since the coefficients of the operator (Lp, Np) were uniformly 
bounded. Furthermore, (2.21) implies that wp is L∞ bounded.
Consider now the function ϕp := wp − zp + ‖wp‖L∞(B+

4r) which solves

⎧⎪⎨⎪⎩
−Lpϕ + μ2

pϕ = μ2
p‖wp‖L∞(B+

4r) in B+
4r,

Npϕ = 0 on D4r,

ϕ ≥ 0 in B+
4r.

Note that, for p large, we have Npϕ = 0 is equivalent to ∂ϕ∂ν = 0 since the function (t1, t2) �→ ρ′(μpt1 + yp,1)
converges uniformly to 0. Hence the function ϕp satisfies

⎧⎪⎨⎪⎩
−Lpϕ + μ2

pϕ = μ2
p‖wp‖L∞(B+

4r) in B+
4r,

∂ϕ
∂ν = 0 on D4r,

ϕ ≥ 0 in B+
4r.

For t = (t1, t2) ∈ B4r, we define the function

ϕ̂p =
{

ϕp(t) if t2 ≥ 0,
ϕp(t1,−t2) if t2 < 0.

Clearly ϕ̂p is a non-negative solution of −Lpϕ +μ2
pϕ = μ2

p‖wp‖L∞(B+
4r) in B4r. Applying Harnack inequality 

([15, Theorem 4.17]), we obtain for every a ≥ 1
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⎛⎝ 1
|B3r|

∫
B3r

ϕ̂a
p

⎞⎠
1
a

≤ C

{
inf
B3r

ϕ̂p +
∥∥∥μ2

p‖wp‖L∞(B+
4r)

∥∥∥
L2(B4r)

}

≤ C

{
ϕp(0) +

∥∥∥μ2
p‖wp‖L∞(B+

4r)

∥∥∥
L2(B4r)

}
≤ C

where we have used the facts that zp(0) = 0 and wp is uniformly bounded in B+
4r. By interior elliptic 

regularity (see for instance [15, Theorem 9.13]) now we obtain that

‖ϕ̂p‖W 2,q(B2r) ≤ C

(∥∥∥μ2
p‖wp‖L∞(B+

4r)

∥∥∥
Lq(B3r)

+ ‖ϕ̂p‖Lq(B3r)

)
≤ C.

Hence, we get that

ϕp is uniformly bounded in W 2,q(B+
2r) for q > 1. (2.22)

It follows using (2.21) and (2.22) that

‖zp‖
W

1
2 +t,q(B+

2r)
≤ C (2.23)

for q > 4, 0 < t < 2/q and any p > p1. Finally, Shauder regularity will tell us that zp is bounded in C1,α(B+
r )

for some 0 < α < 1, independently of p > 1 large. Thus by Arzela-Ascoli Theorem and a diagonal process 
on r → ∞, after passing to a subsequence

zp → U in C1
loc(R2

+) as p → +∞. (2.24)

Since ρ′(0) = 0 and μp → 0 and by using Remark 2.2, we conclude that U satisfies the following problem{
ΔU = 0 in R2

+
∂U
∂ν = eU on ∂R2

+.
(2.25)

Moreover, we have U(0) = 0 and U ≤ 0.
Next we show that, if U satisfies (2.24) and (2.25), then we have∫

∂R2
+

eU < ∞. (2.26)

In order to prove (2.26), let us observe that for any R > 0 and each |t1| < R, we have

(p + 1)[log |1 + zp(t1, 0)
p

| − zp(t1, 0)
p + 1 ] −→p→+∞ 0.

So we can use Fatou’s Lemma to write

R∫
−R

eU(t1,0)dt1
(2.24) + Fatou

≤
R∫

−R

ezp(t1,0)−(p+1)[log |1+ zp(t1,0)
p |− zp(t1,0)

p+1 ]dt1 + op(1)

≤
∫

|1 + zp(t)
p

|p+1dσ(t) + op(1)

DR(0)
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≤
∫

DR(0)

|ũp(yp + μpt)|p+1

ũp(yp)p+1 dσ(t) + op(1)

≤ μ−1
p

∫
DRμp (yp)

|ũp(y)|p+1

ũp(yp)p+1 dσ(y) + op(1)

≤ p

‖up‖2
∞

∫
∂Ω

|up(x)|p+1dσ(x) + op(1)

(2.6)
≤ p

(1 − ε)2

∫
∂Ω

|up(x)|p+1dσ(x) + op(1)
(2.1)
≤ C < +∞,

so that eU ∈ L1(∂R2
+) and (2.26) is proved.

Recall that U is a non positive solution of (2.25). Using (2.26), U satisfies the Liouville problem (1.7). By 
virtue of the classification due to P. Liu [19] (see also [16, Theorem 1.3]), the solution U must be of the 
form

U(t1, t2) = log 2μ2

(t1 − μ1)2 + (t2 + μ2)2
,

for some μ2 > 0 and μ1 ∈ R. Since U(0) = 0 and U ≤ 0, arguing as in [6] (see page 265) we obtain (2.10). 
Last an easy computation shows that 

∫
∂R2

+
eU = 2π.

Point (iii) has been first proved in [24] in the case of least energy solutions using same ideas contained in 
[20], here we write a simpler proof which follows directly from (ii) by applying Fatou’s lemma. An analogous 
argument can be found in [6] arguing as in [1, Lemma 3.1]. Indeed, for each p > p0 we have

‖up‖2
∞2π = ‖up‖2

∞

∫
∂R2

+

eU(t)dσ(t)
(ii)-Fatou

≤ ‖up‖2
∞

∫
D

μ
−1
p R

∣∣∣∣1 + zp(t)
p

∣∣∣∣p+1

dσ(t)

≤ ‖up‖2
∞

∫
D

μ
−1
p R

|ũp(yp + μpt)|p+1

ũp(yp)p+1 dσ(t)

≤ ‖up‖2
∞μ−1

p

∫
DR(yp)

|ũp(y)|p+1

ũp(yp)p+1 dσ(y)

(2.8)
≤ p

∫
∂Ω

|up(x)|p+1dσ(x)
(2.1)
≤ C < +∞,

where R is chosen such that R ≤ R
2 .

(iv) follows directly from (iii). Indeed on the one hand

0 < C
(2.2)−(2.4)

≤ p

∫
∂Ω

|up|p+1 dσ(x) ≤ ‖up‖∞p

∫
∂Ω

|up|p dσ(x)
(iii)
≤ Cp

∫
∂Ω

|up|p dσ(x)

On the other hand by Hölder inequality

p

∫
|up|p dσ(x) ≤ |∂Ω| 1

p+1 p

⎛⎝∫
|up|p+1 dσ(x)

⎞⎠
p

p+1
(2.1)
≤ C.
∂Ω ∂Ω
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To prove (v) we need (iv). Indeed let us note that, since (2.1) holds, there exists w ∈ H1(Ω) such that, 
up to a subsequence, √pup ⇀ w in H1(Ω). We want to show that w = 0 a.e. in Ω.

Using the equation (1.1), for any test function ϕ ∈ C∞(Ω), we have

∣∣ ∫
Ω

∇(√pup)∇ϕ + √
pupϕdx

∣∣ = √
p
∣∣ ∫
∂Ω

|up|p−1upϕdσ(x)
∣∣ ≤ ‖ϕ‖∞√

p
p

∫
∂Ω

|up|p dσ(x)
(iv)
≤ ‖ϕ‖∞√

p
C

for p large. Hence ∫
Ω

∇w∇ϕ + wϕdx = 0 ∀ϕ ∈ C∞(Ω),

which implies that w = 0 a.e. in Ω. �
3. Proof of Theorem 1.1

We start with the following interesting result contained in [8], which is a variant of an estimate of Brezis 
and Merle [3].

Lemma 3.1. Consider the linear equation {
Δu = u in Ω
∂u
∂ν = h on ∂Ω

(3.1)

with h ∈ L1(∂Ω).
For any 0 < k < π there exists a constant C depending on k and Ω such that for any h ∈ L1(∂Ω) and u the 
solution of (3.1) we have ∫

∂Ω

exp
[

k|u(x)|
‖h‖L1(∂Ω)

]
dσ(x) ≤ C.

Let up be a family of positive solutions to (1.1) satisfying (1.2). We recall that vp = up/ 
∫
∂Ω up

p dσ(x)
and fp = up

p/ 
∫
∂Ω up

p dσ(x). Hence vp satisfies{
Δvp = vp in Ω
∂vp
∂ν = fp on ∂Ω.

We now define the quantity:

L0 = lim sup
p→+∞

p γp
e

(3.2)

where

γp =
∫
∂Ω

up
p dσ(x).

Note that the quantity L0 is a positive real number by (2.12).
In the sequel, we denote any sequence upn

of up by un and γpn
of γp by γn.

Since un has the property
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∫
∂Ω

fn dσ(x) =
∫
∂Ω

upn
n∫

∂Ω upn
n dσ(x)

dσ(x) = 1

we can subtract a subsequence of un, still denoted by un, such that there exists a positive bounded measure 
μ in M(∂Ω), the set of all real bounded Borel measures on ∂Ω, such that μ(∂Ω) ≤ 1 and∫

∂Ω

fnϕ −→
∫
∂Ω

ϕdμ

for all ϕ ∈ C(∂Ω) where

vn = un/γn and fn = γpn−1
n vpn

n .

To analyze the measure μ, we introduce some notations. For any δ > 0, we call x0 a δ-regular point if there 
exists a function ϕ in C(∂Ω), 0 ≤ ϕ ≤ 1, with ϕ = 1 in a neighborhood of x0 such that∫

∂Ω

ϕ dμ <
π

L0 + 2δ . (3.3)

We define

Σ(δ) = {xo ∈ ∂Ω : xo is not a δ-regular point}.

Our next lemma plays a central role in the proof of Theorem 1.1. It says that smallness of μ at a point x0
implies boundedness of vn near x0.

Lemma 3.2. Let x0 ∈ ∂Ω be a δ-regular point for some δ > 0. Then vn is bounded in L∞(BR0(x0) ∩ Ω) for 
some R0 > 0.

Proof. Let x0 be a regular point. From the definition of regular points, there exists R > 0 such that∫
∂Ω∩BR(x0)

fn dσ(x) < π

L0 + δ

holds for all n large. Put an = χBR(x0)fn and bn = (1 −χBR(x0))fn where χBR(x0) denotes the characteristic 
function of BR(x0). Split vn = v1n + v2n, where v1n and v2n are solutions to{

Δv1n = v1n in Ω
∂v1n
∂ν = an on ∂Ω

and {
Δv2n = v2n in Ω
∂v2n
∂ν = bn on ∂Ω

respectively.
By the maximum principle, we have v1n, v2n > 0. Since bn = 0 on BR(x0), elliptic estimates imply that

‖v2n‖L∞(B (x0)∩Ω) ≤ C‖v2n‖L1(BR(x0)∩Ω) ≤ C, (3.4)

R/2
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where we used the fact ‖v2n‖L1(Ω) = ‖Δv2n‖L1(Ω) = ‖bn‖L1(∂Ω) ≤ C for the last inequality. Thus we have 
to consider v1n only.
Claim: There exists some q > 1 such that ∫

BR/2(x0)∩∂Ω

fq
n dσ(x) ≤ C.

Indeed, let t be such that t′ = L0 + δ/2 where t′ is the Hölder conjugate of t. From∫
∂Ω∩BR(x0)

fn dσ(x) < π

L0 + δ

using Lemma 3.1, we have ∫
∂Ω∩BR(x0)

exp
[
(L0 + δ/2)|v1n|

]
dσ(x) ≤ C. (3.5)

Now observe that log(x) ≤ x/e for x > 0. As in [20] (see page 759), we have

pn log un

γ
1/pn
n

≤ t′
un

γn

for n large enough because lim
n→∞

γ1/pn
n = 1 which follows from (2.12). Hence

fn ≤ et
′vn , (fn)te−tv1n ≤ e(t′+t)v2n+t′v1n .

Therefore since v2n is uniformly bounded on BR/2(x0) ∩ Ω, we have

(fn)te−tv1n ≤ Cet
′v1n on BR/2(x0) ∩ ∂Ω. (3.6)

Combining (3.5) and (3.6), we get that fne−v1n is bounded in Lt(BR/2(x0) ∩ ∂Ω).
Fix η > 0 small enough such that π − η > π

L0+δ (t′ + η). By Lemma 3.1 we have∫
∂Ω∩BR(x0)

exp[(t′ + η)|v1n|] dσ(x) ≤ C.

Therefore ev1n is bounded in Lt′+η(∂Ω ∩BR(x0)) and so fn = fne
−v1n .ev1n is bounded in Lq(∂Ω ∩BR/2(x0))

for some q > 1. Hence we get the claim.
This fact and elliptic estimates imply that v1n is uniformly bounded in L∞(Ω ∩BR/4(x0)). Taking account 
of (3.4) and choosing R0 = R/4 the desired result follows. �

Let’s go back to the proof of Theorem 1.1. Taking account of (2.12) and Lemma 3.2, by the same 
argument of Ren and Wei (see [20] page 759), we have S = Σ(δ) for any δ > 0. We get S = {xo ∈ ∂Ω :
xo is not a δ-regular point for any δ > 0}. Then

μ({x0}) ≥
π

L0 + 2δ (3.7)

for all x0 ∈ S and for any δ > 0.
Hence S is a finite nonempty set (since μ(Ω) ≤ 1 and ‖vn‖L∞(∂Ω) → +∞) and from Lemma 3.2 for every 
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x ∈ ∂Ω \ S we have that vn is bounded in a neighborhood of x. Then vn is bounded in compact subsets of 
∂Ω \ S and so fn → 0 uniformly on compact subsets of ∂Ω \ S using (2.12). This shows that the support of 
μ is contained in S and therefore we can write

μ =
m∑
i=1

aiδxi
(3.8)

where ai > 0 and xi ∈ ∂Ω. Hence we get parts (1) and (2) and we will come back later to the proof of (1.8). 
We point out that (3.7) and (3.8) imply that ai ≥ π/L0.
Now, we need the following elliptic L1 estimate by Brezis and Strauss [4] for weak solutions with the L1

Neumann data.

Lemma 3.3. Let u be a weak solution of {
−Δu + u = f in Ω,
∂u
∂ν = h on ∂Ω

with f ∈ L1(Ω) and g ∈ L1(∂Ω), where Ω is a smooth bounded domain in RN , N ≥ 2. Then we have 
u ∈ W 1,q(Ω) for all 1 ≤ q < N

N−1 and

‖u‖W 1,q(Ω) ≤ Cq(‖f‖L1(Ω) + ‖g‖L1(∂Ω))

holds.

Using Lemma 3.3, we have vn is uniformly bounded in W 1,q(Ω) for any 1 ≤ q < 2. Thus, by choosing 
a subsequence, we have a function v∗ such that vn ⇀ v∗ weakly in W 1,q(Ω) for any 1 ≤ q < 2, vn → v∗

strongly in Lt(Ω) and Lt(∂Ω) respectively for any 1 ≤ t < ∞. The last convergence follows by the compact 
embedding W 1,q(Ω) ↪→ Lt(Ω) for any 1 ≤ t < q/(2 − q). Thus by taking the limit in the equation∫

Ω

(−Δϕ + ϕ)vn dx =
∫
∂Ω

fnϕ dσ(x) −
∫
∂Ω

∂ϕ

∂ν
vn dσ(x)

for any ϕ ∈ C1(Ω), we obtain

∫
Ω

(−Δϕ + ϕ)v∗ dx +
∫
∂Ω

∂ϕ

∂ν
v∗ dσ(x) =

m∑
i=1

aiϕ(xi)

which implies v∗ is the solution of the following problem⎧⎪⎨⎪⎩
Δv∗ = v∗ in Ω
∂v∗

∂ν
=

m∑
i=1

aiδxi
on ∂Ω

From this it follows that

v∗(x) =
m∑
i=1

aiG(x, xi).

In the sequel, we will prove that vn → v∗ in C1
loc(Ω \ S). We start by using Green representation for vn:
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vn(x) =
∫
∂Ω

G(x, y)fn(y) dσ(y), (3.9)

where G(x, y) is Green’s function for Neumann problem (1.5). Suppose x ∈ Ω and d = dist(x, ∂Ω). Then, 
for z ∈ Bd/2(x), we have dist(z, ∂Ω) ≥ 1

2d, and

|un(z)| ≤
∫
∂Ω

| 1
π

log 1
|z − y| + H(z, y)|fn(y) dσ(y)

≤
∫
∂Ω

(
1
π
| log 2

d
| + |H(z, y)|

)
fn(y) dσ(y)

≤ C(| log d| + 1)
∫
∂Ω

fn(y)dσ(y) ≤ C, ∀z ∈ Bd/2(x). (3.10)

Let K be a compact set in Ω \ S. From Lemma 3.2 and (3.10), we have that

vn ≤ C on K.

Since vn are bounded on K and satisfy Δvn − vn = 0 in K̊, we have by the elliptic regularity theory a 
subsequence of vn, still denoted by vn that approaches the same function v∗ in C1(K).
We proved part (3).

Finally, we prove simultaneously (1.8) and Statement (4) of Theorem 1.1, that are the choice of the weights 
ai’s and the localization of the concentration points. We borrow the idea of [8] and derive Pohozaev-type 
identities in balls around the peak point. Let us concentrate on x1. Without loss of generality, We may assume 
x1 = 0. In the sequel, we use a particular straightening of the boundary introduced in [8]. That is a conformal 
diffeomorphism Φc : Π ∩ BR1 −→ Ω ∩ Br1 which flattens the boundary ∂Ω, where Π = {(y1, y2) | y2 > 0}
denotes the upper half space and R1 > 0 is a radius sufficiently small such that (∂Ω ∩Br1) ∩ S = {0}. We 
may choose Φc is at least C3, up to ∂Π ∩ BR1 , Φc(0) = 0 and DΦc(0) = Id. Set ũn(y) = un(Φc(y)) for 
y = (y1, y2) ∈ Π ∩BR1 . Then by the conformality of Φc, ũn satisfies

{
−Δũn + b(y)ũn = 0 in Π ∩BR1 ,
∂ũn

∂ν = h(y)ũpn
n on ∂Π ∩BR1 ,

(3.11)

where ν̃ is the unit outer normal vector to ∂(Π ∩BR1), b and h are defined as

b(y) = |detDΦc(y)|, h(y) = |DΦc(y)e|

with e = (1, 0). Note that ν̃(y) = ν(Φc(y)) for y ∈ ∂Π ∩ BR1 . Note also that, by using a clever idea of [8], 
we can modify Φc to prescribe the number

α =
(

∂h
∂y1

)
h(y)2

∣∣∣∣
y=0

=
(

∂h

∂y1

)
(0).

Let R be such that 0 < R < R1. Applying now the Pohozaev identity to problem (3.11) we get∫
b(y)ũ2

n(y)dy + 1
2

∫
(y − y0,∇b(y))ũ2

n(y)dy

Π∩BR Π∩BR
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= 1
2

∫
∂(Π∩BR)

(y − y0, ν̃)b(y)ũ2
n(y)dσ(y) −

∫
∂(Π∩BR)

(y − y0,∇ũn(y))∂ũn

∂ν
dσ(y)

+1
2

∫
∂(Π∩BR)

(y − y0, ν̃)|∇ũn|2dσ(y) for any y0 ∈ R2,

where and from now on, ν̃ will be used again to denote the unit normal to ∂(H ∩ BR). The proof of the 
Pohozaev identity is standard and it is omitted here. Differentiating with respect to y0, we have, in turn,∫

∂(Π∩BR)

∇ũn(y)∂ũn

∂ν̃
dσ(y)

= 1
2

∫
∂(Π∩BR)

(
|∇ũn|2 + b(y)ũ2

n

)
ν̃dσ(y) − 1

2

∫
Π∩BR

∇b(y)ũ2
n dy.

Since ν̃ = (ν̃1, ̃ν2) = (0, −1) on ∂Π ∩BR, the first component of the above vector equation reads∫
∂Π∩BR

(ũn)y1h(y)ũpn
n dσ(y) +

∫
Π∩∂BR

(ũn)y1

∂ũn

∂ν̃
dσ(y)

= 1
2

∫
Π∩∂BR

(
|∇ũn|2 + b(y)ũ2

n

)
ν̃1dσ(y) − 1

2

∫
Π∩BR

by1(y)ũ2
ndy, (3.12)

where ()y1 denotes the derivative with respect to y1.
Recall that γn =

∫
∂Ω upn

n dσ(x). From the fact that f̃n(y) = ũpn
n

γn
⇀ a1δ0 in the sense of Radon measures on 

∂Π ∩BR, (2.11) and (2.12), we see

g̃n(y) := 1
γ2
n

ũpn+1
n (y)
pn + 1 = 1

(pn + 1)γn
f̃n(y)ũn(y)

satisfies that supp(g̃n) → {0} and 
∫
∂Π∩BR

g̃ndσ(y) = O(1) as n → +∞. Thus, by choosing a subsequence, 
we have the convergence

g̃n(y) = 1
γ2
n

ũpn+1
n (y)
pn + 1 ⇀ C1δ0 (3.13)

in the sense of Radon measures on ∂Π ∩BR, where C1 = limn→+∞
∫
∂Π∩BR

g̃ndσ(y) (up to a subsequence). 
By using this fact, we have

1
γ2
n

∫
∂Π∩BR

(ũn)y1h(y)ũpn
n dσ(y)

=
[
h(y)
γ2
n

ũpn+1
n (y)
pn + 1

]y1=R

y1=−R

−
∫

∂Π∩BR

hy1(y)
ũpn+1
n (y)

(pn + 1)γ2
n

dσ(y)

→ 0 − C1hy1(0) = −C1α

as n → +∞.
Let ṽ∗(y) = v∗(Φc(y)) denote the limit function in the y coordinates, and observe that
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ṽpn
→ ṽ∗ in C1

loc(Π ∩BR\{0}).

Thus after dividing (3.12) by γ2
n and then letting n → ∞, we obtain

−C1α +
∫

Π∩∂BR

ṽ∗y1

∂ṽ∗

∂ν̃
dσ(y)

= 1
2

∫
Π∩∂BR

(
|∇ṽ∗|2 + b(y)(ṽ∗)2

)
ν̃1 dσ(y) − 1

2

∫
Π∩BR

by1(y)(ṽ∗)2 dy. (3.14)

At this point, we have the same formula as the equation (117) in [8], thus we obtain the result. Indeed 
decompose v∗(x) = s(x) + w(x) where

s(x) = a1

π
log 1

|x| , w(x) = a1H(x, 0) +
m∑
j=2

ajG(x, xj).

We define then the corresponding functions in the new coordinates

s̃(y) = s(Φc(y)), w̃(y) = w(Φc(y)), y ∈ Π ∩BR1 .

Using this decomposition and the fact that w̃ satisfies

−Δw̃ + b(y)w̃ = −b(y)s̃(y) in Π ∩BR1 ,

we derive from (3.14)

−C1α +
∫

Π∩∂BR

s̃ν̃ s̃y1 + s̃ν̃w̃y1 + s̃y1w̃ν̃ dσ(y)

=
∫

Π∩∂BR

(1
2 |∇s̃|2 + ∇s̃∇w̃ + 1

2b(y)s̃
2 + b(y)s̃w̃

)
ν̃1dσ(y)

−
∫

Π∩BR

by1(y)(
1
2 s̃

2 + s̃w̃) dy +
∫

∂Π∩BR

w̃ν̃w̃y1 dσ(y)

−
∫

Π∩BR

b(y)s̃w̃y1 dy, (3.15)

where s̃ν̃ and w̃ν̃ are the partial derivatives with respect to ν̃ of the functions s̃ and w̃, respectively. Letting 
R → 0 and using [8, Lemma 9.3] together with (3.15) we obtain

−αC1 + 3α
4π a

2
1 − a1w̃y1(0) = α

4πa
2
1 −

a1

2 w̃y1(0)

that is

α
( a2

1
2π − C1

)
= 1

2a1w̃y1(0).

Since α ∈ R can be chosen arbitrarily, we conclude that
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w̃y1(0) = 0 and a2
1 = 2πC1 = 2π lim

R→0
lim

n→+∞

∫
∂Π∩BR

g̃ndσ(y).

Consequently the desired conclusion of Theorem 1.1 (4) follows and by using a change of variables we get 
(1.8). �
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