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1. Introduction
The purpose of this paper is to study the following problem
Au=u in Q

Ou _ |ulP~ u on 90

v

(1.1)

where p > 1, Q C R? is a smooth bounded domain and /v denotes the derivative with respect to the
outward normal to 0€2. Elliptic problem with nonlinear boundary condition has been widely studied in the
past by many authors and it is still an area of intensive research, see for instance [2,5-8,16,18,24].
Problem (1.1) has a variational structure. Indeed, its solutions are in a one-to-one correspondence with the
critical points of the functional:

1 1
Ep(u) = 5 / |VU|2 +U2 dl’ — m / |U‘p+1 dO’(ZE’)
Q o
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defined on the Sobolev space H'(Q2). Trace and Sobolev embeddings tell us that we have
HY(Q) < H?(99) — LP(09)

and that the embeddings are compact for every p > 1. Since in dimension 2, any exponent p > 1 is subcritical
(with respect to the Sobolev embedding) it is well known, by standard variational methods, that (1.1) has
at least one positive solution.

Our main result provides a description of the asymptotic behavior, as p — +00, of positive solutions of (1.1)
under a uniform bound of their energy, namely we consider any family (u,) of positive solutions to (1.1)
satisfying the condition

p/|Vup|2—|—u§ de — S €R, asp— +oo. (1.2)
Q

Our strategy goes along the method developed by Davila, del Pino and Musso in [8] when they analyzed a
nonlinear exponential Neumann boundary condition. Indeed, Davila et al. were interested to the following
problem

(1.3)

ou __ u
5 = €€ on 0N}

{ Au=u in
where ¢ is a small parameter. They proved that any family of solutions wu. for which e f 90 €< is bounded
develops, up to subsequences, a finite number m of peaks & € 9%, ¢ [, 90 €'° — 2mm, and reciprocally, they
established that at least two such families exist for any given m > 1.

There is another source of motivation for problem we are considering here. Its analogous usual elliptic
equation is

u=0 on 00 (1.4)

{ Au = |[ulP7lu  inQ
known as Lane-Emden equation. Such equation has been investigated widely in the last decades, see for
example [1,10-13,17]. Concerning general positive solutions (i.e. not necessarily with least energy) of the
Lane-Emden Dirichlet problem, a first asymptotic analysis was carried out in [11] showing that, under the
corresponding energy bound condition, all solutions (u,,) concentrate at a finite number of points in 2. Later
the same authors gave in [12] a description of the asymptotic behavior of u, as p — co. They completed this
study in a recent work with Grossi [10]. More precisely, they showed quantization of the energy to multiples
of 8me and proved convergence to /e of the L°°- norm, thus confirming the conjecture made in [12]. A proof
of this quantization conjecture was also independently done by Thizy [25].

Going back to (1.1), the asymptotic behavior of general positive solutions has not been studied yet.
Before stating our theorem let us review some known facts. In [24], Takahashi studied (1.1) by analyzing
the asymptotic behavior of least energy solutions (hence positive), as p — oo. He proved that the least
energy solutions remain bounded uniformly with respect to p and develop one peak on the boundary. The
location of this blow-up point is associated with a critical point of the Robin function H(z,z) on the
boundary, where H is the regular part of the Green function of the corresponding linear Neumann problem.
More precisely, the Green function G(z,y) is the solution of the problem

AG(z,y) = Gz, y) in Q,
) =dyr) oo, (-5)
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for all y € 99 and its regular part

1
lz —y|

H(z,y) = G(z,y) - %log (1.6)

Note that least energy solutions (u,,) of this 2-dimensional semi-linear Neumann problem satisfy the condi-
tion

p/ |V, |? + uf, dr — 2mwe, as p — +oo,
Q

which is a particular case of (1.2). Later, following a similar argument firstly introduced in [1], Castro [6]
identified a limit problem by showing that suitable scaling of the least energy solutions (u,) converges in
CL.(R%) to a regular solution U of the Liouville problem

AU =0 inRﬁ_

ou =c”  onOR? (1.7)

v
U _ _
faR%r e’ < oo (=2m) and supgz U < oo.

He also proved that ||u,|« converges to y/e as p — +00, as it had been previously conjectured in [24]. All
these results are respectively similar to those contained in [20,21] and [1] which focus on the least energy
solution of the Lane-Emden problem in the plane.

However, problem (1.1) may have positive solutions with an arbitrarily large number of boundary peaks,
as shown by Castro in [6]. Indeed, he proved that given any integer m > 1, problem (1.1) has at least two
families of positive solutions u,, each of them satisfying

m
puy(x)P T — 2me Z d¢, weakly in the sense of measure in 0f2,
i=1

as p — +oo, and the peaks of these two solutions are located near points £ = (&,...,&,) € (0Q2)™
corresponding to two distinct critical points of the following functional defined on (99)™

m

Om(T1, .. Tm) = —[ZH(mi,mi) + ZG(xh:rj)}.

i=1 G

It is natural to ask whether these properties hold for all families of positive solutions (u,) satisfying (1.2),
as p — 0o. To our knowledge, a complete answer to this conjecture has not been given so far, while partial
results are available as we describe below. In fact we extend the concentration result in [8], concerning
elliptic problem with exponential Neumann data, to a large exponent one. More precisely, we prove that
ub / f s Ub approaches the sum of m Dirac masses at the boundary. The location of these possible points of
concentration may be further characterized as solutions of a system of equations defined explicitly in terms
of the gradients of the above Green function and its regular part.

In order to state our main result we introduce some notations. Let

Up

Vp =
P [oq up do(x)

where u,, is a positive solution of (1.1) satisfying (1.2). We define the blow-up set .S of v,, to be the subset
of 0 such that x € S if there exist a subsequence, still denoted by v,, , and a sequence z,, in Q with
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Vp, (Tp) = +o0 and =z, — =.
Now, we are able to state the following result:

Theorem 1.1. Let Q C R? be a smooth bounded domain. Then for any sequence Up,, of vp with p, — oo,
there exists a subsequence (still denoted by v, ) such that the following statements hold true.

(1) There exists a finite collection of distinct points x; € 9, i =1,...,m such that S = {z;, 1 <i<m}.

(2)

m

uP
. pn E
fn . - az T

f 9 Upn

in the sense of Radon measures on 0S) where

2

27
a r%n—lg-&r-loo (pn + 1)(f6§2 ug:da(x))Q / Upn U(l‘) 5 <1< m ( )
OQNB,(z;)

) Vp, — Zaz Lai) in CL (N S), LY(Q) and L1(0R) respectively for any 1 <t < oo, where G is the

Greens functzon for Neumann problem (1.5).

(4) The concentration points x;, i =1,...,m satisfy
aiVT($i)H($i,3§i) +ZagVT(,;i)G(zi,u) =0, (1.9)
2=

where T(x;) is a tangent vector to O at x;.

As we mentioned before to prove this result we will proceed as in [8]. But, to adopt their argument, a
blow up technique is needed to get some useful estimates. Indeed in both [6] and [24] the authors established
the facts that

cr < upllpemy <2 and ¢ Sp/ lup|Pdo(x) < cs (1.10)
0

for some positive constants c1, o, c3 and ¢4 independent of p for the case of least energy solutions to pursue
the analysis. In our case we prove that these estimates hold true for general solutions (not necessarily
positive) of (1.1) satisfying the bound energy condition (1.2). We point out that this last condition is very
crucial in our framework to analyze the asymptotic behavior of the families (u,). In fact, by using a suitable
rescaling of the solution, we proved that the rescaled function about the maximum point of |u,|, which is
located on the boundary of ), converges to the bubble not only for least energy solution (shown in [6])
but also for finite energy ones. This information allowed us to obtain (1.10). This will be the subject of
Proposition 2.1 which is the analogous result of [12, Proposition 2.2] and [13, Theorem 2.1] concerning
Lane-Emden equation.

Let us point out that, as in [8] we have boundary concentration phenomena due to the nonlinear condition.
But the exponent nonlinearity brings us some difficulties in our analysis.

Remark 1.2. In contrast with the exponential nonlinearity studied in [8], the argument of Davila et al. does
not give the value of the coefficients or weights a;’s nor the quantization of the energy result.
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To determine the data a;’s we think that new ideas are needed. May be a detailed local analysis is
required to overcome this difficulty. However arguing as in Brezis and Merle [3], we get a; > 7/Ly where
Lo will be defined in (3.2).

We conjecture that the a;’s are equal and more precisely we have

a;=1""2mve, V1<i<m

where [ = lim p/up(x)p.

p—>—+00
o9
If we combine this conjecture with results of Theorem 1.1 we get, for any family of positive solutions (u,)

of (1.1) satisfying (1.2), the following results

(¢) up to subsequence

pup(x) = QW\/EZ G(x,x;) as p — +oo, in CL.(Q\ S),

i=1

where G is the Green’s function for Neumann problem (1.5);

(i) (x1,...,2m) is a critical point of ¢,,, that is the concentration points x;, i = 1,...,m satisfy
VT(zi)H(l‘i,xi) +ZVT(zi)G($i,$g) =0. (1.11)
£

We also conjecture that

[upll oo @) — Ve and p/ |V, (z)|* + ui(m) dr — m.2me, as p — +oo.
Q

This complete picture or behavior needs more accurate analysis. Verification of these conjectures remains
as the future work [9].

The remainder of this paper is organized as follows: Section 2 is devoted to the asymptotic behavior of
a general family (u,) of nontrivial solutions of (1.1) satisfying (1.2). In Section 3 we give the proof of our
theorem.

2. General asymptotic analysis

It was first proved in [18] for more general nonlinearities, that there exists at least one solution which
changes sign. If the nonlinearity is odd in u, as in our case, it is mentioned in [18] that there exist infinitely
many sign-changing solutions by a standard argument (see the reference therein), so it makes sense to study
the properties of both positive and sign-changing solutions.

This section is mostly devoted to the study of the asymptotic behavior of a general family (u,),>1 of
nontrivial solutions of (1.1) satisfying the uniform upper bound

p/ |V |? + uf, dx < C, for some C' > 0 independent of p. (2.1)
Q

Recall that in [24] it has been proved that for any family (up),>1 of nontrivial solutions of (1.1) the
following lower bound holds
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. . 2 2
L}gﬁrolgp/ |Vup|® + u, dov > 2me, (2.2)
Q

so the constant C in (2.1) is intended to satisfy C' > 2we. Moreover if w, is sign-changing then we also know
that (see again [24])

p——+o0

hmmfp/ \Vur|? + (uF)?dz > 2me. (2.3)

We recall that the energy functional associated to (1.1) satisfies

1 1
Ep(u) = 5““”%{1(9) - m\lulliﬁl<ag>, ue H'(Q).

Since for a solution u of (1.1)

11 1 i1

By(w) = (5 = =l = G = S5l oo, (24)

then (2.1), (2.2) and (2.3) are equivalent to uniform upper and lower bounds for the energy E, or for the
LPTL(9€)-norm, indeed

limsup 2pE,(up) = hmsup p/|u [P do (2 )—hmsup p/|Vup| +uydr < C

p—>+o0

p—r+oo

liminf 2pE,(u,) = hmlnf ]0/|up|p+1 do(x )—hmlnf p/|Vup|2—|—u dx > 2me
and if u, is sign-changing, also

= limi +|p+1 — Tim i +2 +12 S
lplﬂlfolf 2pE, (u3) Eg_&gf p/ [usy [P do () ljglféof p/ IVuy|® + (us; )" do > 2me,
Q
we will use all these equivalent formulations throughout the paper.
Observe that by the assumption in (2.1) we have that

Ep(up) = 0, |upllgr) — 0, asp — 400

Ep(upi) — 0, Hu;t||H1(Q) —0, asp— +o0 (if up is sign-changing)

so in particular u;t — 0 a.e. as p = +00.

In this section, we will show that the solutions u, do not vanish as p — +oo (both u;t do not vanish if w, is
sign-changing) and that moreover, differently with what happens in higher dimension, they do not blow-up.
The last information is a consequence of the existence of the first bubble which is obtained by the rescaling
respect to the maximum point. A uniform upper and lower bounds of the quantity p fa&z ub do(x) is also
obtained (see Proposition 2.1 below). All these estimates are required to adopt the argument developed in
[8]. Our key result is the following:

Proposition 2.1. Let (up) be a family of solutions to (1.1) satisfying (2.1). Then
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(¢) (No vanishing on the boundary).

-1
”up”ioo(ag) > A1,

where A\; = A\ (Q)(> 0) is the first eigenvalue of the eigenvalue problem

Au=u in §
% =Au on 0}
defined on H'(Q).
If uy is sign-changing then also HupiH’z;l(aQ) > A
Moreover

EgigHUPHLOO(BQ) > 1 and Eg_&gg“up”Lw(ﬁ) > 1

(i) (Ewistence of the first bubble). Let (x}), C Q such that lup ()| = lupll oo @y - Then

x; € 90, forallp>1.
Let us set
1\ -1
py = (plup(z;)P~)

and fort € ﬁ;‘ ={te R_f_ D yp ot € U(QN Br(z)))}

zp(t) ==

“p(fg)

where y, = W(x,}) and ¥ is the change of coordinates introduced in (2.13).

Then pf — 0 as p — 400 and
zp — U in Clloc(@) as p — +00

where

4
Ulty, ts) = log |
(11:12) = log (t%+(tz+2)2>

is the solution of the Liouville problem (1.7) satisfying U(0) = 0.
(#i1) (No blow-up). There exists C' > 0 such that

||Up||Loo(§) <C, forallp>1.

(tv) There exist constants ¢,C > 0, such that for all p sufficiently large we have

c< p/ lup|Pdo(x) < C.
o0

(v) /pup — 0 in H(Q) as p — +o0.

<up(‘1’_1(yp +ppt)) — up(x;f))

(2.6)

(2.8)

(2.10)

(2.11)

(2.12)
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Proof. Point (7) has been first proved for positive solutions in [24], here we follow the proof in [17, Proposition
2.5]. If u,, is sign-changing, just observe that u;,t € H(Q2), where we know that

2/ i2 2 e
0<27T€—<€ < /|Vu| )dm§C<—|—oo.

Moreover, the trace inequality

Al(Q)/u do(x /|Vu|2+u dx

o0

holds for all u € H'(Q), where A\1(Q2) > 0 is the least Steklov eigenvalue for (2.5). Thus we have

/|w;t|2+(u;t)2dz:/|u;t\f'+1 do(z) ||u“—“||Lw o0) /|ui\ do(x
Q o0

||uium
/ Vut P 4 (uF)?d

IN

Hence ||ui|\Lm ooy = A1(2) and ||u;,t||1£;1( > Huinmm > A ().

If u,, is not sign-changing just observe that elther Up = u; or u, = u, and the same proof as before applies.
The proof of (ii) follows the same ideas in [6] where the same result has been proved for least energy

(positive) solutions. In the sequel we will adopt the same method in [2] and [6] based on flattening the

boundary near the maximum point then using a classical blow up argument introduced in [1].

Before doing so, we start by proving (2.7). We argue by contradiction. Suppose that there exists p > 1 such

that x;‘ € Q. Recall that x;‘ is a point where |u,| achieves its maximum. Without loss of generality, we can

assume that:

up(x;

) = maxu, > 0.
Q

Hence z is an interior local maximum and u,(z;7) > 0. By continuity of u,, there exists 7 > 0 such that

up(x) > 0 for each = € B, (z}}) and from (1.1) we get Au,, > 0 in B,.(x;}). Maximum principle implies that
uyp is a constant function in B (z;}). Therefore u, = Au, = 0 in B, (z) ) which contradicts uy,(z;5) > 0.
If up(xf) < 0 then x} is a minimum and a similar argument holds. Thus (2.7) is proved.
Next, we prove the remaining part of (i7). Recall that :E;r is a maximum point of |u,| in Q. Without loss of
generality, we may assume that

up(x;) = mﬁaxup > 0.

By (i) we have that pu,(z)P~! — 400 as p — +00, so (2.6) holds and moreover puf — 0, where g} is
defined in (2.8).
From (2.7), we have z} € 0 and ||up|| @) = l[upllL=a0)- Up to a subsequence, z; converges to some
T € 0f). Assume that T is located in the origin and the unit outward normal to 02 at 0 is (—ez2) where ey
is the second element of a canonical basis in R2. It will be convenient to work in fixed half balls. For this
reason, we need some change of coordinates. This program was done in many works (see for example [14]
and [22]).
Since we will assume that 9 is a C? surface, we know that there is an R > 0 and a C?(R) function p such
that (after a possible renumbering and reorientation of coordinates)
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90N Br(0) = {z € Br(0): x5 = p(21)}
Q' :=QNBg(0) ={z € Br(0): x> p(z1)}

and moreover, the mapping
Qsz—y=U) e CR?

defined by

{yl = (2.13)

Yo = x2 — p(r1),

is one-to-one. Define ® := U~1. Note that ¥ is a C? function that transforms the set Q' (in what we refer
to as z space) into a set 2" in the half-space y» > 0 (of y space). Note also that the point T = 0 is mapped
to the origin of y space.

Our task now is changing the partial differential equation (1.1) satisfied by u, in €’ into y coordinates. We
define

Up(y) = up(P(y)), foralyeQ”.

Let ¢ € D(Br(0) N Q). Multiplying (1.1) by ¢, integrating by part over Bz (0) N {2 and using the change of
variable z = ®(y), we find

/Vup(<1>(y))~V<P(‘1>(y)) + up(2(y))p(2(y))dy

= [ Il 0P (01,0 (@(01,0))n (2.14)
09/ NORZ.

Let ¢1(y) := ¢(P(y)), for each y € ”. A simple computation shows that

o,

Vuy(B(y)) = Viip(y) - <p'<y1>a—y2<y>7 o). (2.15)

The above relation holds also for ¢ and ;.
Using (2.14), (2.15) and Green’s formula, we can prove that the functions u, satisfy the following problem

0%u, ou 0%u
Al — 1 — 20 p_ p+ / 2 p:O : Q//’
aitp up = 2p ~(yl) yoys " ()7, + (@) o2 in 2.16)
Up / Up (1 20Up 1~ p-1~ ” 2
o + ' (y1) Dy (r'(y1)) Dy |[up|P™ up  on 007 NORY.

Let R be such that Bg(0) N {y[y2 > 0} C Q" and define B (0) := Bz(0) NRZ and Dg(0) := Bg(0) N IRZ
(the flat boundary of B%(O)). In particular we can look at problem (2.16) as being defined only in the
half-ball BE(0), that is

0% ou. 0%u
A, — Ty — 20 P " (y) =L+ (p 2P —0 in BX(0),
a~p p p~(yl)aylay2 pN (yl)ay2 (r'(y1)) a2 =(0) 217
u u u ~ 1~
aiyp + Pl(yl)aiyz - (p/(yl))QTyZ = [up” lup on D(0).
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Now we perform a classical blow up argument. Let py be a sufficiently large integer such that y, = \I/(x;f )€
B§/4(0) for all p > py. Then we consider

p —_—
zp(t) = (p(yp + ,up t) = Up(yp)), Vte BYg/ut), YP > po

where @, (yp) = u,(x;}). For simplicity we shall write @, for 2}, p, for p}, B for BE(0) and Dy for Dg(0).
The function z, satisfies the following system

22’p
Ot10t5
(0 (mpt1 + yp,1))?

Azy — p2zp — pop — 20" (ppts + yp,1)

0z 0%z
—tpp” (ppts + yp71>a—t§ - aT%p =0 in B+*1R/2’

9z 2 2.18
8—+p(ﬂpt1 + Ypa )gt ( )
— (0 (ppts + yp1))? 52 pralt +2 I” i+ ) 2) on D ig,

[1+22] <1, 2(0)=0 and ngo
where (t1,t2) is the coordinates of ¢ and y, 1 is the first component of y,. We rewrite (2.18) as follows:

—Lypzp + N;%Zp = _N;%p in B+71R/27
Npzp = |1+ %”|p_1(1 + Z;) on D iz, (2.19)

\1+%p|§1, zp(0) =0 and =z, <0,
92. 0. 02 0.
where Ly, :== A — 2p"(ppth + yp1)

_— // t v ’ t 2_ d N _ 9.
1 9t,0t, ppp” (ppts + yp,l)a (" (pt1 + Yp,1)) 2 an » o

to +

0 0.

t '(ppt 2

P (pts + Yp,1 Vo, ~ Pt +4.0)) 5
Remark 2.2. Observe that p’(0) = 0 and the continuity of p” imply that

° Lp —7p—roco Aa

* N o g

For fixed r > 0 we consider p; > po large enough so that 8u,r < R for all p > p;, and consider the
problem of finding w,, solution of

—Lyw + /J%U) = —puf, in B} |
Nyw = [1+ 2[P~1(1+32) on Dy, (2.20)
w =0 on Sy,

where Si = 0B4r NR2 (the curved boundary of B ). Firstly, the existence of such w, € H'(B]) is
guaranteed by Lax-Milgram theorem and it satisfies
L2(D4T)>.

||w17||H1 Bf, HNpP||L2 Bf) + |11 + |p
(

Moreover, observe that for each ¢ > 2, and all p > p;
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/ |luzplidt < C

+
By,

since we have 7 < Cpu;* and (i) holds. Also

/ 1+ %’\qua(t) < / I+ %’V’qda(t)
Dy

—1
up R/2

— M;l / |ap(y)|pq dO’(y)

up (yp)pq
Drya(yp)

<yt [ lpla)Pido(a)

p(Tp)P?
o0
<l [lm@Ptias
up(zp)
o0
<C,

where the last inequality holds from Proposition 2.1 (¢) and (2.1). Hence using a result from [23] (see also
[6] page 270) we conclude that when ¢ > 4, w, must be in W2t44(B} ) for 0 < t < 2/q with

Z.
144 < C 2 q 1 Zp < C’ 221
0l yecnps, < (nu,,an - H| +2 Lq(DM)) < (2:21)

where the constant C' is independent of p since the coefficients of the operator (L,, N,) were uniformly
bounded. Furthermore, (2.21) implies that w, is L>° bounded.
Consider now the function ¢, 1= wy — 2 + ||[wp | o (57 ) Which solves

—Lpp + ppe = ppllwpll ey in B,
Npp =0 on Dy,
©>0 in Bf .

Note that, for p large, we have N, = 0 is equivalent to g—f = 0 since the function (t1,%2) — p'(tpts + yp,1)
converges uniformly to 0. Hence the function ¢, satisfies

—Lpp + ppp = ppllwpll e pry  in BE,
g—f = on Dy,
©>0 in By .

For t = (t1,t2) € By, we define the function

~ Qop(t) lf t2 207
P gplts,—ta) ity <0,

Clearly ¢, is a non-negative solution of —L,p + p%go = ,u]29||wp|| Leo(B}y In By,. Applying Harnack inequality
([15, Theorem 4.17]), we obtain for every a > 1



12 H. Fourti / J. Math. Anal. Appl. 502 (2021) 125200

L2(B4r)}
LQ(BAL'F) }

where we have used the facts that z,(0) = 0 and w, is uniformly bounded in Bj . By interior elliptic

1
a

1 ~Q . A
| B3, | /901? <C{g§9@p+H/‘;%”prLoo(BL)

IN

H;Q)pr”Loo(B;)

C{sop<0)+\
C

IN

regularity (see for instance [15, Theorem 9.13]) now we obtain that

I@pllwa(s,) < C (HuillwpllLoo(Bm . ||¢W<BST>) <cC.

La(Bs,

Hence, we get that
¢p is uniformly bounded in W*4(Bj) for ¢ > 1. (2.22)
It follows using (2.21) and (2.22) that

2pllyy 3400 gy ) <€ (2.23)

for g > 4,0 <t < 2/qand any p > p;. Finally, Shauder regularity will tell us that z, is bounded in C*%(B;")
for some 0 < o < 1, independently of p > 1 large. Thus by Arzela-Ascoli Theorem and a diagonal process
on r — oo, after passing to a subsequence

zp — U in C’lloc(@) as p — +oo. (2.24)

Since p'(0) = 0 and p, — 0 and by using Remark 2.2, we conclude that U satisfies the following problem

_ 2
{AU—O in R% (2.25)

U _ U 2
5y =€ on OR?%.

Moreover, we have U(0) = 0 and U < 0.
Next we show that, if U satisfies (2.24) and (2.25), then we have

/ eV < oo (2.26)
oR?
In order to prove (2.26), let us observe that for any R > 0 and each |t;| < R, we have

Zp(tl,O) Zp(tl,())

p+1

(p+ Dflog |1 + | -

] —p—+oo 0.
So we can use Fatou’s Lemma to write

R R
[ o, pen e [ ot gy g,

-R -R

t
< / 11+ Z”—”V’“da(t) + 0,(1)
Dr(0) P
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U (yp + ppt) [P
< [ B e o)
Dr(0) e
- u,(y)[P !
< w0 B ) o)
P\IP
DRup(yp)
p
< e [t + o)
17<>oaﬂ

(2.6) D p (2.1)
L [P st +o,1) < € < 4o

[5}9)

NS

so that eV € L'(OR?%) and (2.26) is proved.
Recall that U is a non positive solution of (2.25). Using (2.26), U satisfies the Liouville problem (1.7). By

virtue of the classification due to P. Liu [19] (see also [16, Theorem 1.3]), the solution U must be of the
form

2412

U(ti.to) =1
(t,t2) = log G s )

for some pe > 0 and g1 € R. Since U(0) = 0 and U < 0, arguing as in [6] (see page 265) we obtain (2.10).
Last an easy computation shows that | OR?. eV = 2or.

Point (7i7) has been first proved in [24] in the case of least energy solutions using same ideas contained in
[20], here we write a simpler proof which follows directly from (ii) by applying Fatou’s lemma. An analogous
argument can be found in [6] arguing as in [1, Lemma 3.1]. Indeed, for each p > py we have

(#4)-Fatou 2, ()|
Hup\lio%:”upllio/SU(t)dU(t) < lupllZ / ‘1+pp do(t)
aRi D/J.;IR
[ty (yp + ppt) [P
< IIupllio/ e L —do(t)
tp(Yp)
DH;_,lR
_ [Up(y) [P+
< uliwt [ PO o)
g b Up (yp)P T+
DR(yp)
(2:8)

(2.1)
< p/|up(x)|p+1da(gc) < C < +o0,
o)

where R is chosen such that R < g
(iv) follows directly from (iii). Indeed on the one hand

(2.2)—(2.4) ) (iii)
0<C =y [l do@) < lupllap [ lul dote) < Co [ fuyl? do(a)
o o0 o

On the other hand by Hélder inequality

b~
-

(2.1)
p / lupl? dor(z) < |8Q|7Tp / P do(z) | < C.
o0 Q
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To prove (v) we need (iv). Indeed let us note that, since (2.1) holds, there exists w € H'(Q) such that,
up to a subsequence, /pu, — w in H*(Q2). We want to shoy that w = 0 a.e. in Q.
Using the equation (1.1), for any test function ¢ € C°°(2), we have

0o w) o
|/ (vVPup) Ve + \/pupp dz| = \/—|/|up|p Ly do(z) ||<P|| /| wp|? do(z ||<$||ﬁ o

for p large. Hence
/Vchp +wedr =0 Yo O®(Q),
Q

which implies that w =0 a.e. in Q. O
3. Proof of Theorem 1.1

We start with the following interesting result contained in [8], which is a variant of an estimate of Brezis
and Merle [3].

Lemma 3.1. Consider the linear equation

(3.1)

u — p, on 0f)

{Au-u n
ov

with h € L'(98).
For any 0 < k < 7 there exists a constant C' depending on k and Q such that for any h € L*(9S2) and u the

solution of (3.1) we have
/exp [M] do(x) < C.
12l 21 (o0
o0

Let u, be a family of positive solutions to (1.1) satisfying (1.2). We recall that v, = u,/ [, ub do(x)
and f, = ub/ [, ub do(x). Hence v, satisfies

Av, = v, in Q
Xo = f, on 99.

We now define the quantity:

Ly = limsup — P (3.2)

p—4oo €
where
Vp = /ug do(x).
G1y)

Note that the quantity Lo is a positive real number by (2.12).
In the sequel, we denote any sequence u,,, of u, by u, and vy, of v, by v,.
Since u, has the property
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/fn do(z) = / W do(z) =1

o0 [5}9)

we can subtract a subsequence of u.,, still denoted by w,,, such that there exists a positive bounded measure
win M(99), the set of all real bounded Borel measures on 0€, such that p(0€2) <1 and

/ fnp — / pdp
o0 o0

for all ¢ € C(09) where

—1
Upn = un/’Yn and f’n = foL” Uﬁ" :

To analyze the measure u, we introduce some notations. For any § > 0, we call z¢ a d-regular point if there
exists a function ¢ in C(9), 0 < ¢ < 1, with ¢ =1 in a neighborhood of z such that

T
d . .
/<p P Tor2 (3:3)
(o9}

We define
2(0) ={z, €00 : 1z, is not a d-regular point}.

Our next lemma plays a central role in the proof of Theorem 1.1. It says that smallness of p at a point xg
implies boundedness of v,, near x.

Lemma 3.2. Let xo € 02 be a d-regular point for some § > 0. Then vy, is bounded in L>°(Bg,(xo) N Q) for
some Ry > 0.

Proof. Let xg be a regular point. From the definition of regular points, there exists R > 0 such that

™

Lo+9

frn do(x) <

QQOBR(LL‘[))

holds for all n large. Put a, = X By (2)fn a0d by, = (1 = XBp(20)) fn Where X B (z,) denotes the characteristic
function of Bgr(xg). Split v, = v1,, + V2, where vy, and vy, are solutions to

{ Avi, = vip in Q

Ovin _
Dt = Gp on oN
and

Avy, = voy, in Q
85% =b, on 0f)

respectively.
By the maximum principle, we have vy, va, > 0. Since b,, = 0 on Bg(xz¢), elliptic estimates imply that

[vanll Lo (Br o (zo)ne) < CllvznllLt(Br(zona) < C, (3.4)
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where we used the fact [[van|[z1(Q) = [[Avan|l1(@) = |bullz1(90) < C for the last inequality. Thus we have
to consider vi,, only.
Claim: There exists some ¢ > 1 such that

fldo(z) < C.

BR/Q(Z())Q(?Q
Indeed, let ¢ be such that ' = Lo + §/2 where ¢’ is the Holder conjugate of ¢. From

™

fn do(z) < Tois

8QNBR(z0)

using Lemma 3.1, we have

exp [(LO + 6/2)|v1n|} do(x) < C. (3.5)
89N Br (o)

Now observe that log(z) < x/e for z > 0. As in [20] (see page 759), we have

u u
pn log 1/”;n S t/ —
In Tn

for n large enough because lim ~./P» = 1 which follows from (2.12). Hence
n— o0

fn < et’vn, (fn)te—tvln < e(t’—&-t)'ugn—i-t'vln.
Therefore since vy, is uniformly bounded on Bp /2(;150) N 2, we have
(fa)te ' < Cel™  on Bps(ao) N ON. (3.6)

Combining (3.5) and (3.6), we get that f,e~"'" is bounded in L*(Bg/2(xo) N ORQ).

Fix n > 0 small enough such that 7 —n > 7 (' + 7). By Lemma 3.1 we have

/ expl(t! + nlorn]] do(z) < C.
9QNB R (x0)

Therefore e is bounded in L +"7(8QN Bg(x0)) and so f, = fne "".e"™ is bounded in L(0QN Bp/o(x0))
for some ¢ > 1. Hence we get the claim.

This fact and elliptic estimates imply that vy, is uniformly bounded in L (2N Bg/4(x0)). Taking account
of (3.4) and choosing Ry = R/4 the desired result follows. O

Let’s go back to the proof of Theorem 1.1. Taking account of (2.12) and Lemma 3.2, by the same
argument of Ren and Wei (see [20] page 759), we have S = ¥(J) for any § > 0. We get S = {z, € 00 :
T, is not a §-regular point for any § > 0}. Then

n({zo}) > ﬁ (3.7)

for all ¢ € S and for any § > 0.
Hence S is a finite nonempty set (since p(2) < 1 and v, | z=a0) — +00) and from Lemma 3.2 for every
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x € 00\ S we have that v, is bounded in a neighborhood of . Then v,, is bounded in compact subsets of
00N\ S and so f, — 0 uniformly on compact subsets of 92\ S using (2.12). This shows that the support of
1 is contained in S and therefore we can write

o= ialﬁxi (3.8)
i=1

where a; > 0 and x; € 09. Hence we get parts (1) and (2) and we will come back later to the proof of (1.8).
We point out that (3.7) and (3.8) imply that a; > 7/ Lo.

Now, we need the following elliptic L' estimate by Brezis and Strauss [4] for weak solutions with the L!
Neumann data.

Lemma 3.3. Let u be a weak solution of

—Autu=f inQ,
%:h on 0N

with f € LY(Q) and g € LY(09), where Q is a smooth bounded domain in RN, N > 2. Then we have
ue Whi(Q) for all1 < q < i< and

llullwra)y < Colllfllr) + 9l o))

holds.

Using Lemma 3.3, we have v,, is uniformly bounded in W14(Q) for any 1 < ¢ < 2. Thus, by choosing
a subsequence, we have a function v* such that v, — v* weakly in W4(Q) for any 1 < q < 2, v, — v*
strongly in L*(Q2) and L*(09Q) respectively for any 1 <t < oo. The last convergence follows by the compact
embedding Wh4(Q) — L¥(Q) for any 1 <t < q/(2 — ¢). Thus by taking the limit in the equation

/(anp + P, dx = /fncp do(z) — %v” do(x)
Q o0 o0

for any ¢ € C1(f2), we obtain

which implies v* is the solution of the following problem

Av* = v* in
ov* U

= Zaiémi on 0f)
ov —

From this it follows that
v*(z) = ZaiG(x,xi).
i=1

In the sequel, we will prove that v,, — v* in CL _(Q\ S). We start by using Green representation for v,,:

loc
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on(z) = / G,y fuly) doly). (3.9)

o0

where G(x,y) is Green’s function for Neumann problem (1.5). Suppose z € Q and d = dist(z, ). Then,
for z € By/2(x), we have dist(z,00Q) > %d, and

ua(2) saé oz + H(=) f(0) o)

< [ (G108 3]+ 1G] ) £200) doto)

o0

< C(logd| +1) [ fuly)do(y) < C, ¥z € Buyala). (3.10)
o

Let K be a compact set in Q \ S. From Lemma 3.2 and (3.10), we have that
v, < Con K.

Since v,, are bounded on K and satisfy Av, — v, = 0 in K , we have by the elliptic regularity theory a
subsequence of v, still denoted by v,, that approaches the same function v* in C*(K).
We proved part (3).

Finally, we prove simultaneously (1.8) and Statement (4) of Theorem 1.1, that are the choice of the weights
a;’s and the localization of the concentration points. We borrow the idea of [8] and derive Pohozaev-type
identities in balls around the peak point. Let us concentrate on z1. Without loss of generality, We may assume
x1 = 0. In the sequel, we use a particular straightening of the boundary introduced in [8]. That is a conformal
diffeomorphism @, : II N B, — 2N B,, which flattens the boundary 09, where II = {(y1,y2) | y2 > 0}
denotes the upper half space and Ry > 0 is a radius sufficiently small such that (002N B,,) NS = {0}. We
may choose ®, is at least C3, up to I N Bg,, ®.(0) = 0 and D®.(0) = Id. Set U, (y) = un(P.(y)) for
y = (y1,y2) € IIN Bp,. Then by the conformality of ®., u, satisfies

—~Aﬂn—|—b(y)ﬂn = in IINBg,, (3.11)
%Lun — (y)agn on 81_[ N BR17 .

where 7 is the unit outer normal vector to d(II N Bg, ), b and h are defined as
b(y) = |detD®.(y)l, h(y) = [DPc(y)el

with e = (1,0). Note that v(y) = v(P.(y)) for y € OII N Bg,. Note also that, by using a clever idea of [§],
we can modify ®. to prescribe the number
oh
= ()
y=0 Y

Let R be such that 0 < R < R;. Applying now the Pohozaev identity to problem (3.11) we get

[ w5 [ - V00w

IINBr IINBr
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= % / (y — yo, 7)b(y)uZ (y)do (y) — / (y — vo, Vﬂn(y))%da(y)

ov
(TN B ) (TN Br)

1 SO
3 [ - nD)IVE o) for any o <2

O(IINBR)

where and from now on, 7 will be used again to denote the unit normal to d(H N Bg). The proof of the
Pohozaev identity is standard and it is omitted here. Differentiating with respect to yg, we have, in turn,

/ Vﬂn(y)% do(y)

6(HQBR)
1 ~ 12 ~2\ ~ 1 ~2
= [ (VEPrawR)e) 5 [ o) dy.
O(IINBR) IINBr

Since v = (v, v2) = (0, —1) on 911 N Bg, the first component of the above vector equation reads

~ ~ _ oy,
/ (Un )y, M(y)uprdo(y) + / (un)ylg do(y)
SIINBr N8Bx
1 ~ o ) )
=3 / (|Vun|2 + b(y)Ui)mdU(y) —3 / by, (y)u2dy, (3.12)
[N9Bx NBg

where (),, denotes the derivative with respect to y;.

Recall that v, = [, ubrdo(x). From the fact that f,(y) = % — a1dp in the sense of Radon measures on
OIl N Bg, (2.11) and (2.12), we see

_ Laptiy) 1
PY?%, Pnt+1 (pn + 1)711

gn(y) : Fa®)in(y)

satisfies that supp(g,) — {0} and [, By, Indo(y) = O(1) as n — 4o0. Thus, by choosing a subsequence,
we have the convergence

1 abrt(y)

= — — (19 3.13
R 190 (3.13)

in the sense of Radon measures on 911 N Br, where Cy = lim,— 4+ fantR dndo(y) (up to a subsequence).
By using this fact, we have

1 N y

= | @b dotw)

" OIINB
h(y) apn+1(y) } yi=R / gpn+1(y>

= |2 In ) - hy, () ———2"do
{%% pntl |, _ g Y (y)(pn+1)%% )

OIINBRr
—0— Clhyl (0) = —-Cia

as n — +00.
Let v*(y) = v*(®.(y)) denote the limit function in the y coordinates, and observe that
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Uy, — v* in CL.(IIN Br\{0}).

Thus after dividing (3.12) by 72 and then letting n — oo, we obtain

. Ov*
—Cia+ / Uy, 8—1)5 do(y)

IINOBRr

1

=5 [ (VR @R)n a5 [ )@ 3.19

IINOBRr IINBRr

At this point, we have the same formula as the equation (117) in [8], thus we obtain the result. Indeed
decompose v*(z) = s(z) + w(z) where

a 1 Ui
s(z) = ?llog Ek w(zx) :alH(a:,O)—l-ZajG(x,xj)_
j=2

We define then the corresponding functions in the new coordinates
5(y) = s(Pe(y)),  w(y) = w(®c(y)), yellNBg,.
Using this decomposition and the fact that w satisfies
—Aw+b(y)w = —b(y)s(y) inIIN Bg,,
we derive from (3.14)

—Cia+ / gljgyl + ggﬂjyl + §y1 Wy da(y)

IINOBR

1 1 o
_ / (5IV51 + V3V + Sb(y)F* + b{y)5) 7ador(y)

IINOBR

1 e ~
- [ nwGEesn s [ @, do)
IINBr OIINBRr
- [ s, dy. (3.15)
IINBRr

where 55 and wy are the partial derivatives with respect to 7 of the functions s and w, respectively. Letting
R — 0 and using [8, Lemma 9.3] together with (3.15) we obtain

3

—aC'
@ 1+47T

ai — a1y, (0) = —

that is
a? .
a(% — Cl) = —a1Wy, (0).

Since a € R can be chosen arbitrarily, we conclude that
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Wy, (0) =0 and af =21C; =27 lim Tim / Gndo(y).
OIINBR

Consequently the desired conclusion of Theorem 1.1 (4) follows and by using a change of variables we get
(1.8). O
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