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1. Introduction

In almost all literature dealing with generalized trigonometric functions and generalized hyperbolic func-
tions, e.g. [3,5,8,13], both are currently studied independently. In this paper, by expanding the range of
parameters contained in these functions beyond normal, we show that a duality between the two can be
seen and one can be represented using the other, and we apply the duality to investigate formulas of
generalized trigonometric and hyperbolic functions.

Before stating our results, we introduce the definitions and some properties of generalized trigonometric
and hyperbolic functions.

Let ¢/(¢g+1) < p<oo, 1 <qg< oo and

y
dt

Fpq(y) 5:/m, y€10,1).

0

We will denote by sin, 4 the inverse function of Fj, 4, i.e.,
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sing q x == F;ql ().

Clearly, sin, , « is monotone increasing on [0, 7, 4/2) onto [0,1), where

70 = 2F -2
i pal 0, q/(¢+1) <p<1,

1
/ _{@mwumtuw,1<p<m,

1—t9) 1/p
0
and p* :=p/(p — 1) and B is the beta function. In almost literature dealing with generalized trigonometric
functions, the parameter p is assumed to be p > 1, but we here allow it to be p < 1. Note that the condition
g/(¢+1) < p <1 implies that sin, , = is monotone increasing on [0, c0) and no longer similar to sinz, but
to tanh z. Since sin, ,x € C1(0,7, 4/2), we also define cos, , = by

Then, it follows that
cosp x +sing oz =1. (1.1)

In case (p, q) = (2,2), it is obvious that sin, 4 x, cos, ; « and 7, 4 are reduced to the ordinary sinz, cosz and
m, respectively. This is a reason why these functions and the constant are called generalized trigonometric
functions (with parameter (p,q)) and the generalized 7, respectively.

The generalized trigonometric functions are well studied in the context of nonlinear differential equations
(see [3,6,7,11] and the references given there). Suppose that w is a solution of the initial value problem of
p-Laplacian

(hﬂwzuq’+g°;;”thq2uo, u(0) =0, u/'(0) =1, (1.2)

which is reduced to the equation u” + u = 0 of simple harmonic motion for u = sinz in case (p, ¢) = (2, 2).
Then,

d /\p q\ p 1\p—2, 1\ q—2 I _
o ) = (P (2 gl ) of =

Therefore, |u/|[P + |u|? = 1, hence it is reasonable to define u as a generalized sine function and v’ as a
generalized cosine function. Indeed, it is possible to show that u coincides with sin, , defined as above. The
generalized trigonometric functions are often applied to the eigenvalue problem of p-Laplacian.

In a similar way,

y
/ T )i/ y € [0, 00).
0

We will denote by sinh,, , the inverse function of G, 4, i.e.,

sinhy, ;@ := G, ().

Clearly, sinh,, , = is monotone increasing on [0, 7, 4/2) onto [0, 00), where r is the constant determined by

1 1
f-=1+3, je, r=—24 (1.3)
r q pg+p—q



H. Miyakawa, S. Takeuchi / J. Math. Anal. Appl. 502 (2021) 125241 3

Indeed, by 1 +t7 =1/(1 — s9%),

oo 1

_ Tryg

ylinc}oqu / 1+tq 1/p / ol 2
0 0

The important point to note here that for a fixed g € (1,00), if r = r(p) is regarded as a function of p, then
(1.4)
r(r(p)) = p. (1.5)

In particular, 7, , has been defined when p > ¢/(¢ + 1). Note that the condition > 1, i.e., p < g, implies
that sinh;, , z is defined in the bounded interval [0, . ,/2) with lim,_,.  /osinh, 2 = oo and no longer
similar to sinhz, but to tanz. Since sinh,, ,x € C*(0, 7, 4/2), we also define cosh,, , x by

d, .
coshy 4= 1= %(smhpﬂ x).
Then, it follows that
coshp @ —sinh] o =1. (1.6)

In case (p,q) = (2,2), it is obvious that sinh, ,z, cosh, 2 and the interval [0, 7, ,/2) are reduced to
sinh x, coshz and [0, c0), respectively. This is a reason why these functions are called generalized hyperbolic
functions (with parameter (p,q)). Just as sin, , « satisfies (1.2), sinh, ,x is a solution of the initial value
problem of p-Laplacian

(P2’ “”‘T”‘ﬂuw?u —0, w(0) =0, w(0) = 1.

We are interested in finding a duality between generalized trigonometric and hyperbolic functions.
Let us start with a brief observation. Since Fj 2(y) = tanh ™'y, it is easily seen that

1

sinj oz = tanhz, cosjpow=—5—
cosh” x

This yields that the hyperbolic functions can be written in terms of the generalized trigonometric functions
as

SiIl172 T 1
—>=—_ coshz =

\/COS1 2T /COS1 2T

From this observation, it is expected that any generalized hyperbolic function can be translated in terms

sinhx =

of generalized trigonometric functions. In fact, we can prove the following crucial lemmas that play an
important role in this paper.

Lemma 1.1. Let ¢/(¢+ 1) < p < o0, 1 < g < 00 and r be the number defined in (1.3). Then, for x €
[0771-7"711/2):

sin, 4 1
——*t— cosh, ,xz =
r/q )’ Pq r/p

sinhy, , v = —_—
COSrlq T COSrlq
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Lemma 1.2. Let q/(¢+ 1) < p < 00, 1 < q¢ < 0o and r be the number defined in (1.3). Then, for €
[0, 7p,q/2),

sinh, 4 = 1
Siny & = —2L— COSpg & = ———.
P.q ) p.q
’ cosh’/9 ' cosh’/P g
.q T.q

Lemmas 1.1 and 1.2 tell us the counterparts to generalized hyperbolic functions of the properties already
known for generalized trigonometric functions, and vice versa. For example, Lemma 1.2 immediately converts
(1.1) into (1.6) (with p replaced by ), that is,

p 04 _
cosy, T +siny, T = 1

into
T —gi q = .
cosh, ;@ —sinh] x =1;

and Lemma 1.1 (with (1.5)) does vice versa.
Using this idea with our lemmas, we will show the following generalization of Mitrinovi¢-Adamovié
inequality.

Theorem 1.3. Let q/(¢+1) <p < oo and 1 < g < co. Then, for z € (0,7).4/2),

1(+1) o Spa® 1.7
o8,/ x . (1.7)

Moreover, for x € (0,m,4/2), where r is the number defined in (1.3),

sinh, ¢

cosh)/{7T) 3 < < cosh?/? z. (1.8)

x

Inequalities (1.7) and (1.8) were proved by Klén et al. [5, Theorems 3.6 and 3.8] when p = ¢ > 1;
and Neuman [8, Theorem 6.1 and (6.9)] when p, ¢ > 1 (with better upper bounds). In our approach,
Theorem 1.3 allows us to obtain the same inequalities over the wider range of parameters ¢/(¢g+1) < p < o
and 1 < ¢ < oo, and (1.8) immediately follows from (1.7) by Lemma 1.2.

As a further application of our lemmas, the following theorem is obtained by deriving the identities (1.11)
and (1.12) below of the generalized hyperbolic functions corresponding to the multiple-angle formulas (1.9)
and (1.10) of the generalized trigonometric functions in [11, Theorem 1.1].

Theorem 1.4. Let 1 < g < oo. Then, for x € [0,72,,/2%/9%1) = [0, 74 4/4),
sing , (2%/%2) = 2%/9sing- , cosgifl x, (1.9)

q

cosp q (22/97) = cosl. , x —sinl. w. (1.10)

g

Moreover, for the same x,

22/4 ginh x
. 2 _ q/2,q
sinhgg/(g+2).q (2 /qaj) = = Sinhq/2 e (1.11)
a/2,q

. q 2/q+1
1+ smhq/27q CL‘)

1 —sinh?,, =z
q/2,9

coshag/(g12).q (2*/z) = < (1.12)
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Table 1
The parameters for which the double-angle formulas of GTF have been obtained.
qa (4,2 (2,9) (¢, 9)
2 (2,2) Abu al-Wafa’ (2,2) Abu al-Wafa’ (2,2) Abu al-Wafa’
3 (3/2,2) Theorem 3.13 (2,3) Cox-Shurman [1] (3/2,3) Dixon [2]
4 (4/3,2) Sato-Takeuchi [9] (2,4) Fagnano (4/3,4) Edmunds et al. [4]
6 (6/5,2) Takeuchi [12] (2, 6) Shinohara [10] (6/5,6) Takeuchi [12]
Table 2
The parameters for which the double-angle formulas of GTF have been obtained.
7 (4/2,9) (29/(2+a); 9) (2¢/(2+a),2)
2 (1,2) V. Riccati (1,2) V. Riccati (1,2) V. Riccati
3 (3/2,3) Dixon [2]  (6/5,3) Theorem 3.8 (6/5,2) Takeuchi [12]
4 (2,4) Fagnano (4/3,4) Edmunds et al. [4]  (4/3,2) Sato-Takeuchi [9]
6  (3,6) Theorem 3.6  (3/2,6) Theorem 3.3 (3/2,2) Theorem 3.13

Remark 1.5. In case of ¢ = 2, they are reduced to the double-angle formula of sin, cos, tan and sec?.

The multiple-angle formulas of the same type as (1.9) and (1.10) for generalized hyperbolic functions
have not been found so far. In parallel with Theorem 1.4, we establish them and furthermore deduce the
corresponding formulas of the same type as (1.11) and (1.12) for generalized trigonometric identities.

Theorem 1.6. Let 1 < ¢ < co. Then, for x € [O,qu/(q+2)7q/22/q+1) =1[0,74/2,4/2),

i 2/az) = 92/4gj hd 1
sinhy , (2/%2) = 2%/9sinhy« , ¥ coshy. .~ ,

2/q,.\ _ qa N
coshy 4 (27/%x) = coshg. , x +sinhg. .
Moreover, for the same x,

2/a g
2%/ 8ing j9 g @

1+sinf , )2/’

Sihog/(q+2),q (22/(155) = (

q/2,q

. 2/q+1
1 — sin? x) /ot

. q .
1+ Sig /o 4 T

COS2g/(g12).q (2°/92) = (

Remark 1.7. In case of ¢ = 2, they are reduced to the double-angle formula of sinh, cosh, tanh and sech?.

Double-angle formulas for generalized trigonometric functions, along with the addition theorems, are of
great interest, but few are available except for special parameters. So far, only the double-angle formulas
of sing« o, sing, and sing- 4, ¢ = 2,3,4,6, have been shown (Table 1). For more details, see [12] and
the references given there. Owing to Lemmas 1.1, 1.2 and Theorems 1.4 and 1.6, we succeed in finding
the double-angle formulas of sing/s s, singe and singss 3 (Table 2), and the counterparts for generalized
hyperbolic functions (Table 3 and Remark 3.5). In our past papers we did not give the double-angle formula
for sing /s o, but the present paper solves that too.

This paper is organized as follows. In Section 2, we will prove the lemmas and theorems introduced in
Section 1. Section 3 is devoted to using these results to produce new double-angle formulas for generalized
trigonometric and hyperbolic functions. Finally, Section 4 gives some notes on the generalization of the

tangent function.
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Table 3
The parameters that can be converted in
Lemmas 1.1 and 1.2.
GTF +<~— GHF
(a",2) (2¢/(2+49),2)
(2,9) (29/(2+q),9)
(¢, q) «—  (a/2,9)
(a/2,q) (a5 a)
(2¢/(2+4q),9) (2,9)
(29/(2+49),2) (¢",2)

2. Proofs of results

In this section, we will prove the lemmas and theorems introduced in Section 1. Properties (1.4) and
(1.5) are used frequently.

Proof of Lemma 1.1. Let p > ¢/(¢+ 1). Then, r > ¢/(¢+ 1) by (1.4) and the integration

y
L dt
Smr,;y:/m, y €[0,1),
0

with 1 — 7 = 1/(1 + s%) gives

sin”ly = L = sinh_ ! S
T.q y= (1 + Sq)l/p - P,q (1 _ yq)l/q )
0
Hence, we obtain
sinh, ¢ x Sm:’/q v , TE [O, T’q)

cosylq T

Also, by (1.6),
1
cosh, , = ,
P costP

and the proof is complete. 0O

Proof of Lemma 1.2. Let p > ¢/(q¢+1). Then, r > q/(¢+ 1) by (1.4). Lemma 1.1 with p replaced by r and
(1.5) show

. sing, , T 1 e
sinh, ,z = 1’;’/‘2 , coshygr=—0>—, =z€ [07 %) .
cosplq T cosplq T
Therefore,
sinh, , x 1
sing, , r = COSp g T

P.q Jq D.q )

' cosh’/9 ’ cosh’/P x

T,q q

and the proof is complete. 0O
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Proof of Theorem 1.3. We prove (1.7). Since sin, ,x < x in (0,7, 4/2), the second inequality holds; hence
we show the first inequality.
Let f(x) := « — sin, 4 x cosp, ,11/(q+1) x. Then,

1) = Lot e =y i o

f(x) = —% sm?)qq Ly cos(2‘1+1)/(‘1+1) 2,
q

Since pg +p — ¢ > 0, we see f”(x) < 0. Therefore, f'(z) < lim,_, 4o f'(x) = 0. Moreover, f(z) <
lim,_, 4o f(z) = 0, which means (1.7).
Next we show (1.8). Let p > ¢/(¢ + 1). Then, r > ¢/(¢+ 1) by (1.4). From (1.7) with p replaced by r,

sin, 4
cosi/q(‘”l) r< —42 <.
’ x

By Lemma 1.2 with p replaced by r and (1.5),

1 1/(g+1) ih
sin x
— < 719"1/ <1
coshgﬁqr x x coshg,tf x

Multiplying both sides by coshg’/g x, we conclude (1.8). O

Proof of Theorem 1.4. The former half is the multiple-angle formulas of generalized trigonometric functions,
which were proved in [11].
The latter half is shown as follows. By Lemma 1.1 with r(2¢/(¢ + 2)) = 2 and the former half,

sinh (2%/9z) = sing 4 (2%/92) 2%/ Sinq a4 mcosq* ,_q1 r
24/(q+2).q T o204 (02)a ( _ z)2/a’
085’ (22/ax) cos s qT smq

g

Lemma 1.2 with r(¢*) = ¢/2 shows that the right-hand side becomes

22/4 sinhg /s 4@
(1- sinhz/zq x)2/a

The formula of coshyg (g2, immediately follows from (1.6). O

Proof of Theorem 1.6. The former half is shown as follows. Let y € [0,00). Setting t9 = ((1 + s9)1/2 —1)/2
in

Y

smhq* / 1 —|—tq 1/(1*7
0

we have

y(4(1+y?))*/e 21T age ! d
/ (T + s9)12((1 1 59)1/2 —1)1-1/4

271+1/q((1 + sq)1/2 + 1)171/q

. -1 _
sinh .y =

0
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y(4(1+y?))t/e
—9—2/q / ds .
(14 s9)1/2°
0
that is,
sinh;},q y =221 sinhg’é (y(4(1 + y7)) /7). (2.1)

Hence we obtain

i 2/4,) = 92/4 4 q" -1
sinhg 4 (2%/92) = 2%/ 9sinh,« , 2 coshg. -~ .

In particular, letting y — oo in (2.1) and using r(¢*) = q/2, r(2) = 2q/(q + 2), we get

Tq/2,qa _ T2q/(q+2),q

2 21+2/q

The formula of coshy« , immediately follows from (1.6).
The latter half is proved as follows. By Lemma 1.2 with r(2¢/(q + 2)) = 2 and the former half,

. sinhy , (2%/92 22/4sinh,- , x cosh’. ;' x
silag/(g+2).q (22/(]1,) _ 711( ) _ av,q q*,q

coshﬁ{,f (22/az) (coshgi’q x 4 sinhl.  x)2/a )

Lemma 1.1 with 7(¢*) = ¢/2 shows that the right-hand side becomes

22/4 sing /e ¢ @
(1 +sing , )2/

The formula of cosyy/(4+2),q immediately follows from (1.1). O
3. Double-angle formulas

We first show the double-angle formula of sinhs . The proof is almost the same for sing ¢ in [12], but it is
included here for the convenience of the reader. Next, based on this, we prove the double-angle formula of
sing s ¢ from that of sinhy ¢ by Lemma 1.2; the formula of sing ¢ (resp. sing/s 3) from that of sing ¢ (vesp.
sing s 3) by Theorem 1.6.

Lemma 3.1. For x € [0,73/2,6/4),

2 Sinhgﬁ T COSh276 T

\/1— 8sinhf gz

1+ 20sinh 5 x — 8sinhy @
(1-38 sinhgﬁ x)3/2

sinhy ¢(2z) =

coshg 6(2x) =

Proof. The change of variable s = ¢ in

y
dt
sinhz_éy:/ , Yy €10,00),
’ V1416
] +
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leads to the representation

y2
sinh; ¢y = 1/ ds
26Y =5 | T Y/
, 9 1 3
J Vs(1+ s3)

The further change of variable

1-(V3-1s , 2+3
cny=———"—, k*°= ,
1+ (V3+1)s 4
gives
en”! ¢(y)
-1 (V3+1)enu+ (vV3—1))?2 2v/3snudnu
sinhs gy = = 7 du
’ 2 2-3%4snudnu (V3+1)cenu+ (vV3—1))2

0

1 -
= 2_31/4 Cc1 1¢(l‘),

where snu = sn (u, k), cnu = cn (u, k) and dnu = dn (u, k) are the Jacobian elliptic functions, and

_ _ 2
o) = %
Thus,
sinhy gz = 6~} (en(2-3/4)), @ e [0, 220)
and

1—2

-1 o
$e) = \/(\/ﬁ— )+ (V3+ 1)

For 0 <z< 7(-3/2,6/47

sinh2,6(2x) :¢_1 (CH(Q‘%))

61 (chi—SHQ:Ean:E)

1—k2sn7

where 7 := 2 - 3'/3z. Recall that sn? 2z =1 —cn2? 2z, dn®z = 1 — k2 sn? z; then the last equality gives

¢(X)? = (1= p(X)*)(A - k*(1 — ¢(X)2)> 7

sinhy ¢(22) = ¢~ ( 1—k2(1— ¢(X)2)2

where X := sinhy g z. With the observation

4/3X%(1+ X?)

(14 (V3+1)X2)2’
1- X2+ X1

(1+ (V3 +1)Xx2)2’

1-¢(X)* =

1k (1 - ¢(X)?) =
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o 1+4(V3+1)X2 —8X0 +4(V3+1)X8

9201 2
- R (1 - 6(X)?) e 7

implies that

P(X)? — (1 - p(X)*)(1 — k(1 — ¢(X)2)>
1—k2(1 - o(X)?)?

_ -1 14(\/§1)X28X64(\/§1)X8>

= <1+4(\/§+1)X2—8X6+4(\/§+1)X8 '

sinhg ¢(22) =¢ ! (

Routine simplification now results in the formula

2X+V1+ X6 . QSiHhQ,GZECOShg’eJ?
V1—8X6 \/1 - 8sinh§ ¢

The formula of coshs ¢ immediately follows from (1.6). O

sinhs ¢(2x) =

Remark 3.2. Since the left-hand side of (3.1) diverges to oo as x — 73,5 6/4 — 0, we obtain

. 73/2,6 1
3 h — = —,
s1nig ¢ 4 \/i
Theorem 3.3. For x € [0,73/26/4),
251113/2,6 X

SiH3/2’6(2JZ) = 1/3
(1 + 18 sing/z6 x— 27 siné?ZG a:)

Proof. By Lemma 1.2 with p = 3/2 and ¢ = 6, for z € [0, 73/2,6/4),

. sinh 2z
s1n3/2’6 (2]}) = %
coshy’s’ (27)
Applying Lemma 3.1 to the right-hand side gives

2 Sinhgﬁ x COSh276 T
(1+ 20sinh ; x — 8sinhy 2)1/3”

sin3/2’6 (2.]3) -

Lemma 1.1 with p =2 and ¢ = 6 yields

2 Sin3/2)6 €T

Sing 2,6 (2$) = .
/ (cos3 /g 6 7 + 20 sing o ¢ cosgg 6T — 8singly ¢ x)1/3

The conclusion follows from (1.1). O
Remark 3.4. Since the left-hand side of (3.2) converges to 1 as  — 73,5 6/4 — 0, we obtain

) T3/2,6 1
sm3/2,6 4 = m

(3.2)
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Remark 3.5. As the proof of Theorem 3.3, we can also obtain a formula of sinh, , from those of sin, ;, and
cosy. 4. For instance, combining Lemmas 1.1, 1.2 and the formula of siny /3 4 due to Edmunds et al. [4]:

9si 1/3
SiNy /3,4 T COSY 5 4 T

\/1 + 481113/3,4 x cosi;;4 T

sing /s (22) =

we have

. 2 sinh2 4 COShQ 4T
sinhg 4 (22) = : :

)

- 4
1 —sinhy 4z
which is very similar to the double-angle formula of lemniscate function:

. 2sing 4 x COSp 4 T
sing 4 (22) = —————F——.
1+sing 4

Thus, formulas for generalized hyperbolic functions can be produced from those for generalized trigonometric
functions, and vice versa.

Theorem 3.6. For x € [0,7m36/4),

25/35(1 + %)
(1= s3)(1+ 6534 s6)3/2 + (14 s3)(1 — 653 4 56)3/2)

sing ¢(2z) = 573"

where s 1= sinz g x.

Proof. Let € (0,7m36/4), since the theorem is trivial if # = 0. Applying Theorem 1.6 for ¢ = 6 with «
replaced by 2z € (0,7r3/276/24/3) = (0,73,6/2), we get

21/3 sing ¢ (2)

(1 4 sin§ ¢ (22))"/*

Sin3/2)6(2 . 21/31’) =

that is,
sin§/276(2 2Y3g) sing ¢ (22) — 2sinj ¢ (22) + sin§/2’6(2 2Y3z) = 0.

Therefore, since 0 < sin3 g (22)sing (2 - 21/3z) <1,

1- \/1 —sing, (2 - 21/32)

sin§/2’6(2 - 21/37)

sing6 (2z) =

Set S = S(z) := sing ;s 6(2'/3z). Using Theorem 3.3 for sing /s ¢ ¥, we have

1— /T —6455/(1 + 1855 — 27512)2
853/(1 + 1856 — 27512)

sin§76(2x) =

For a > b > 0, the identity

1- /T 0%ja® 2

b/a (Va+b+va—10)?
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holds; hence

1653
(V1 + 853 + 1855 — 27512 + /1 — 853 + 1855 — 27512)2
1653
(/I = S3)(1+353)3 + /(1 +S3)(1-353)3)2

sin§76(2x) =

Here, by Theorem 1.6 with ¢ = 6, s = s(z) := sing ¢ = satisfies

253

S3 = )
1+ s

Thus,

32s3(1 + s%)3
(VT SR+ 00 30 £ /(L + D201 — 057 + 50

sing ¢(22) =

which establishes the formula. 0O

Remark 3.7. Since the left-hand side of (3.3) converges to 1 as & — m36/4 — 0, we obtain
. 3,6 1/3
sing.6 — = = (3 —2v2)'/3.

Theorem 3.8. For x € [0,7¢/53/4),

3/5

4cosé§g (14 30052?2 Sz)(1— COSg/s5 5 x)l/3

sinG 573(2$) = . (34)
/ (1+24 coszfgg r+ 18 COS%Z3 x—27 cosé%i; x)2/3
Proof. From Theorem 1.6 with ¢ = 3, for x € [0,7r6/573/25/3) = [0,73/2,3/2),
22/3 sin x
sin6/5,3(22/3x) = 3/23 2/3"
(1 + sin§/2,3 x)
In a similar way to the proof of Theorem 3.6, we have
1—cos¥? (22/3z)
sinzg ST = 6/5,8 (3.5)

1+ Coszég’3(22/3a:).

Now, let = € [0,76/5.3/4) and y := x/(2%/%). Tt follows from Theorem 1.6 with ¢ = 3 that since 2y €
[077T6/5,3/25/3) = [0,73/2,3/2), we get

2%/3 sing 1y 5(2y)

373"
(1 + sin§/273(2y))

Sin6/5,3(2x) = Sin6/5,3(22/3 . 2y) = (36)

Here, Dixon’s formula (Lemma 3.10) and (3.5) yield
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sing 23y (2 - sing/z3 Y)
1-— sin§/2,3 y)/3(1 + sing/l3 Y)

(1 + 303/5)(1 _ C3/5)1/3
24/301/5 ’

sing /9 3(2y) = (

where ¢ := 0056/5’3(22/33;) = c08g/5,3 ¥. Therefore, from (3.6) we have

4¢3 (1 4 3c3/5)(1 — 3/5)1/3
1+ 24¢3/5 4+ 18¢6/5 — 27¢12/5)2/3”

Sin6/573(2$) = (
The proof is completed. O
Remark 3.9. Since the left-hand side of (3.4) converges to 1 as  — m¢,5.3/4 — 0, we obtain

T6/5,3 1
COS6/573 4 = E}E’T

No double-angle formula for sing/; o has been resolved so far. Finally in this section, we prove the previ-
ously unresolved double-angle formula of sing/; o, though this formula is not an application of Lemmas 1.1
and 1.2. Here are two lemmas needed to prove the formula.

Lemma 3.10 (Dizon [2]). Let u+wv, u, v € [0,73/2,3/2) with u # v. Then,

. 9 2 1/2 .9
SINg /g 5 UCOSy 5 5 U — COSZ)5 3 USING 19 5 U

Sing/g’g(u + ’U) = — n 5
Sll’l3/273 ’U,COS3/273 v — C083/273 u Sln3/273 v

s 1/2 1/2 .
1/2 ( n ) B Simg /2.3 UCOS3/273U — C083/2,3’USID3/2’3’U
0083/273 u+v)=

Sing/p 3 4 C0OS3/2,3 U — COS3/2 3 USINg /2 3V '
Moreover, if u = v, then for u € [0, 75,5 3/4),

SiH3/273 U(l + COSg;;3 U)

Sin3/273(2u) = ;
cos;)g’3 u(l+ smg/%,) u)

)

3/2 i3
12 €085 5 U — SiNg /5 5 U
€08y’ o (2u) = .
3/2,3 3/2 1 4 gind )
CO835 5 u(1l + sing 5 5 u

Proof. The proof is based on the addition theorem of Dixon’s elliptic functions. See Dixon [2]. O

Lemma 3.11 (Coz-Shurman [1], Sato-Takeuchi [9]). Let x +y, x, y € [0,m2,3) with x # y. Then,

2(sa — 5y)((1 — o) (1 + ¢y) — 5057)
Spqy = ;
T —co)(T+¢y)? —2525,(1 + ¢y) + s252(1 + ¢z)

where s, 1= sing 3 z and ¢, := cose 3 2. Moreover, if x =y, then for x € [0,72,3/2),

o — 4s,ci (3 +cp)?
T (T 4ep)(8+s3)2
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Proof. Let x, y, x +y € [0,m23) with  # y. Then, u := x/22/3 v = y/2%/3 satisfies u, v, u+v €
[0, 73/2,3/2) with u # v; hence, by Theorem 1.4 with ¢ = 3 and Lemma 3.10,
Sppy = 2238, ,CL2

_ s (830 — CY2SR)(8.Ci — Ci%5.)
= (SuCy — CySy)? ;

where S, :=sing ;32 and C, := cos3 /s 3 2. Here, from (1.10) in Theorem 1.4,
S. = <I_CZ>1/3, C. = (1“2)2/3.
2 2

(1= c)2/3(1+ ¢,)V3 — (1 + c2)V/3(1 — ¢,)2/3
((1 _ ng)l/:}(l + Cy)2/3 _ (1 + c$)2/3(1 — Cy)1/3)2'

Substituting them, we obtain

Saty = 2(S2 — 8y) -
Multiplied the numerator and the denominator by (1 —c,)/?(14 ¢,)?/3, the fraction part of the right-hand
side is equal to

(1 —c2)(1 4 ¢y) — 505,
(1 —ca)(1+¢y)? —2525,(1 +¢y) + 5,521+ ¢;)’

which is the conclusion. Case x = y is similarly proved. O

Remark 3.12. It follows from multiplying the numerator and the denominator of (3.7) by (1 — ¢z)(1 + ¢y)
that the right-hand side of (3.7) is symmetric with respect to = and y.

Theorem 3.13. For x € [0,73/32/4),

sing 0 2(22) = (® o Wo & 1)(sing/p 0 2), (3.8)
where
3
() 1 2 —2x2 421 — 23
x) = — ,
2422 +2y1—2a3
¥(z) = 4rv/1 — 23(3 + V1 — 3)3
(1+V1—a3)(8+23)2
Co(1 — (1 — #2)1/3)2
O () = 6x —2(1— (1 —2*)1/?)

2+ (1—a2)1/3)2

Proof. Recall that for z € [0, 2],

_ *
4Tp,qg =P Tgq*p*>
T * TCow gk
- 20\ — et =1 (Tamp* g _ :
siny 4 ( 5 z) = COSgs p» ( 5 (1 z)) ;

see [4] and [6]. Let x € [0,73/2,9/4) = [0, 3m2,3/8). Then, since 4x/73/5 5 € [0,1),
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Sin3/2,2(21‘) = COS2;3 <% — §$) = \/1 — sing’ﬁ (% — g.’ﬂ)

Applying (3.7) in Lemma 3.11, we obtain

. mo3 4 . T3 4
Sing 3 T—gx = Sing 3 T+§m

_ 2(1 — sing 3(42/3)) (1 + cosg 3(42/3) — sin3 5(42/3)) .

(14 cosg 3(4x/3) — sing 3(42/3))?

hence

‘i (2r) = (|1 (2(1 — sing 3(4x/3)) (1 + cose 3(4x/3) — sin%73(4x/3))>3
8/ (1 + coso 3(42/3) — sing 3(42/3))> '

Let f(z) := sing/ 2 and g(z) := sing 3(42/3). Then,

3
sy = |1 (200D (1+ VI—9@’ - g@)?)
(1 + /1 —g(x)® - g(m))2
|y (22 - 22
24 24/1—g(z)3 + g(x)?
= ®(g(x)). (3.9)
Therefore, it is easy to see that

(o) = 0 (f(2ay) = L2 20 - V1 - O (3.10)

2+ Y1 - f(22)?)2

On the other hand, by the double-angle formula in Lemma 3.11, we see that g(z) satisfies

_ Ag(x/2)y/T— (/2P (3 + 1 — g(@/2P%)° _ x
1) = s~ () 31
Thus, using (3.9), (3.11) and (3.10) in this order, we obtain
Fx) = o(g@) = (¥ (g(5))) = 2@ (@),

which is the desired conclusion. 0O

Remark 3.14. Since the left-hand side of (3.8) converges to 1 as x — 73/ 2/4 — 0, we obtain

sinlg 2.9 ”32272 — \/135 + 78v/3 — 61/6(168 + 97V/3) ~ 0.834896.
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4. Generalization of tangent function

Let z € [0, 7, 4/2) for simplicity. Generalized tangent function is usually defined as

Now, we propose another generalization of the tangent function:

Sy ¢ T

p/q .’
COSpiq T

Tpg(T) =

which coincides with tan, , z if p = ¢. Then, 7, ,() has properties very similar to tan z more than tan, , z:

1
14+ 79 (z) =
+75.4(@) cosh 1’
A (pa(e)) = o = (L 7 )/
da > P cos/d !z g 7

22/q7q*7q(37) .
(1 =74 o())2/

7'2,q(22/q$) =
Moreover, Lemma 1.1 gives
sinhy, q & = 7 4(x), cosh,,z=(1+ Tﬁq(x))l/p,
where r = pq/(pq + p — ¢). In particular, Lemma 1.2 and (4.1) with (1.5) yield

tan, ¢ & = 7p q(x)(1 + Tqu(x))l/p_l/q.

Let us apply this function to integration. Setting 7, ,(2/2%/9) = t, we have

_ 22/ sing. , (x/2%/7) cosgi;1 (z/2%/7) 92/at
sing , x = . ’ = 7
2 (cosl. . (z/22/9) +sinl.  (x/22/9))2/a (1 +19)%/4
q- 2/q\ _ «ind 2/q _
cosny 1 cosg?q (x/22 ) s?ngﬁq (1:/22 ) _ 1 tz’
cosg. , (x/2%/9) +sinl.  (x/2%/9) 1+t
tams - 3 = sing gz 22/at
e COS2 4 T o (1 —|—tq)2/qfl(1 — tq)’
2/ar,, 2/q 2/q
T2,q(-13) = 2 Tq ’q(x/f/ )2/ = 2 t2/ ,
(1= 7ge q(x/22/9))2/a (1 —t9)2/9
dt _ 1 _ (1 +tQ)2/q
dr 92/ cosszg_l) (x/22/4) 22/a

For example,

d dt
/ . =/7=log\t|+C=log|Tq*,q(x/22/q>\+Cv

sing 4 T

(4.1)
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dx dt
7:22/4/7:22/q n~ L ++ 0
[ a2 = bt

= 9%/4 sin;/lzq (g q(2/2%9)) + C.
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