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In this paper a certain function space Cα, 0 ≤ α ≤ 1, larger than the space of
continuous functions, is introduced in order to study new properties and the exten-
sion of some already known results about the Riemann–Liouville fractional integral
and derivative operators.

Sufficient conditions for the continuity of I1−α
a f are given. Furthermore, neces-

sary conditions are given for the pointwise existence of fractional derivatives. The
existence of a derivative of order β, from the existence of a certain derivative of
order α, β < α, is also analyzed. © 1999 Academic Press
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1. INTRODUCTION

Some authors have studied the operators of Riemann–Liouville (R–L):

Iαa f �x� =
1

0�α�
∫ x
a
�x− t�α−1f �t�dt; �1:1�

Dα
af �x� = DI1−α

a f �x�; �1:2�
with α ∈ �0; 1�, a ∈ � and x > a, on different function spaces within which
it is pointed out that Hardy–Littlewood [2], Riesz [6], Erdélyi [1], Oldham–
Spanier [5], McBride [3], Srivastava–Buschman [8], Miller–Ross [4], and
especially Samko–Kilbas–Marichev [7] had made a deeper study.

In this paper we introduce a certain function space Cα, α ∈ �0; 1�. The
function of this space are called a α-continuous function, and it satisfies the
following relation:

C��� ≡ C1��� ⊂ Cα��� ⊂ L���; ∀α ∈ �0; 1�;
where C��� is the space of the continuous functions and L��� is the space
of the Lebesgue integrable functions, on the same interval � ⊂ �.

Moreover, properties of the R–L operators Iαa and Dα
a are studied on

those spaces, and the conditions, under which some of those properties
hold, are weakened.

We work out a basic theory, for the fractional calculus of R–L, similar to
that of the classical differential calculus.

In the sequel we use the following notation:
f ∈ F���, where F��� is the set of the real functions of a single real

variable with domain in � ⊂ �.

• M��� = �f x f is Lebesgue mesurable on ��.
• AC��� = �f x f is absolutely continuous on ��.
• ACn��� = �f x f; f �i� ∈ C��� ∀i = 1; : : : ; �n− 1� and

f �n−1��x� ∈ AC����.
• Hλ��� = �f x f verify the Hölder conditions of order λ on ��.
• �λ� denotes the integral part of a number λ.

• f �x� = O��x− a�ν−1� in x = a, with ν; a ∈ �, means

lim
x→a

f �x�
�x− a�ν−1 = k <∞ and k 6= 0:

2. DEFINITIONS

Here we introduce the concept of α-continuity, α ∈ �0; 1�, together with
the definitions of the R–L fractional integral and derivative operators.



fractional order continuity 207

2.1. α-Continuity

Definition 2.1.1. Let f ∈ M���, α ∈ �0; 1�, and x0 ∈ �. f is called
α-continuous in x0 if, there exists λ ∈ �0; 1− α� for which
g�x� = �x− x0�λf �x� is a continuous function in x0. Moreover, f is called
1-continuous in x0 if it is continuous in x0.

As usual, it is said that “f is a α-continuous function on � if it is
α-continuous for every x in �,” and it is denoted:

Cα��� = �f ∈ F��� x f is α-continuous in ��

Example 2.1.1. Next are α-continuous functions:

(1) ∀α ∈ �0; 1�, any measurable and bounded function on �.

(2) ∀α ∈ �0; 1�, f �x� = �x�, x > 0:

(3) ∀α ∈ �0; 3/4�, f �x� =


1; if x ∈ � ∩ �0; 1�
0; if x ∈ �c ∩ �0; 1�

sin�x�
�x2−1�1/4 ; if x > 1:

But

(4) ∀α ∈ �0; 1�, f �x� = �x− a�α−1 is not α-continuous in x = a.

The last example suggests the following:

Definition 2.1.2. Let f ∈ F��� be. The function f �x� is called
a-singular of order α, 0 ≤ α < 1, if f �x� = O��x− a�α−1� in x = a.

2.2. a-Integrability of Order α

Definition 2.2.1. Let α ∈ �+, f ∈ F��� and �a; x� ⊂ �. Then

Iαa f �x� =
1

0�α�
∫ x
a
�x− t�α−1f �t�dt

is called the Riemann–Liouville a-integral of order α of f .

Definition 2.2.2. Let α ∈ �+, f ∈ F��� and �a; x0� ⊂ �: it is said that
f is a-integrable of order α in x0 if Iαa f �x0� exists and it is finite.

Let E ⊂ � be, such that a ≤ x, ∀x ∈ E. It is said that “f is a-integrable
of order α on E if f is a-integrable of order α for every x ∈ E,” and it is
denoted

aIα�E� = �f ∈ F���x f is a-integrable of order α on E�:
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2.3. a-Differentiability of Order α

Definition 2.3.1. Let α ∈ �+ be such that n − 1 < α ≤ n with n ∈ �.
Let f ∈ F��� and �a; x0� ⊂ � be. It is said that f is a-differentiable of
order α in x0 if there exists

Dα
af �x0� = �DnIn−αf �x��x=x0

;

and it is finite, Dn being the classical derivative operator of order n.

Let E ⊂ � be such that a ≤ x, ∀x ∈ E. It is said that “f is a-differentiable
of order α on E if f is a-differentiable of order α for every x ∈ E”, and it
is denoted

aDα�E� = �f ∈ F���x f is a-differentiable of order α on E�:
Definition 2.3.2. Let f ∈ aDα�E�; x ∈ E and a ≤ x. The function

Dα
af �x� = DnIn−αa f �x�;

is called the a-derivative of order α function of f .

Example 2.3.1. (a) ∀a ∈ � − �1�, the function f �x� = x − 1 is not
a-differentiable of order α, α ∈ �0; 1�, in x = a; but it is differentiable of
order 1 in any x ∈ �:

(b) ∀α; a ∈ �0; 1�, the function f �x� =
{
x; if 0 ≤ x ≤ 1
2 − x; if x > 1;

is a-differentiable of order α in x = 1, and

�Dα
af �x��x=1 =

a�1− a�−α
0�1− α� +

�1− a�1−α
0�2 − α� :

However, f is not differentiable of order 1 in x = 1.

(c) Let f �x� =
{

xα

0�1+α� ; if 0 ≤ x ≤ 1
xα

0�1+α� − 2�x−1�α
0�1+α� ; if x > 1;

f is continuous, but is not 0-differentiable of order α in x = 1, ∀α ∈ �0; 1�
and

�Dα
0f �x��x=1− = 1y �Dα

0f �x��x=1+ = −1:

3. PROPERTIES

Some properties of α-continuous functions are given now, which will be
used later in order to establish some properties involving the a-integrability
and the a-differentiability of order α of these functions.
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3.1. Properties Involving the α-Continuity

Let α;β ∈ �0; 1� and set �a; b� ∈ � a real interval.

(1) Cα��� is a linear space over �.

(2) If f ∈ Cα��a; b��, then #�x0 ∈ �a; b�/ limx→x0
f �x� = ±∞� <∞,

where # denotes the cardinal of a set.

(3) If f ∈ Cα��a; b��, then ∃x1; x2; : : : ; xn ∈ �a; b� and ∃λ1; λ2; : : : ;
λn ∈ �0; 1 − α�, such that the function h�x� = �∏n

i=1 �x − xi�λi�f �x� is
bounded on �a; b�.

(4) If f ∈ Cα��a; b��, then f ∈ L��a; b��.
(5) If β < α, then Cα��� ⊂ Cβ���.

The above properties are easily proved from definition 2.1.1.
Now we give some properties of the operator Iαa , which complement the

already known properties of this operator. See, for example, Samko–Kilbas–
Marichev [7].

3.2. Properties about a-Integrability of Order α

Let α;β ∈ �+ and set �a; b� a real interval.

(1) aIα��a; b�� is a linear space over � and Iαa is a linear operator.

(2) If α ≤ β, then aIα��a; b�� ⊂ aIβ��a; b�� and
aIα��a; b�� ⊂ aIβ��a; b��.

(3) If c ∈ �a; b�, then aIα��a; b�� ⊂ cIα��c; b��.
(4) If f ∈ L��a; b�� and it is bounded on �a; b� then f ∈ aIα��a; b��.
(5) Let α ∈ �0; 1� and β ≥ 1− α be. Then Cα��a; b�� ⊂ aIβ��a; b��:
(6) (a) If f ∈ C��a; b��, then Iαa f ∈ C��a; b��.

(b) If f ∈ AC��a; b��, then Iαa f ∈ AC��a; b��.
(7) Let α ∈ �0; 1� and f ∈ Cα��a; b�� be. Then I1−α

a f is continuous
on �a; b� and

I1−α
a f �a� = lim

x→a+
I1−α
a f �x� = 0; for 0 ≤ α < 1:

Also, if f is a-singular of order α and f ∈ Cα��a; b��, the property holds,
but I1−α

a f �a� = cte <∞, for 0 ≤ α < 1.

Proof. The properties (1), (2), (3) and (4) are easily proved from
Definition 2.2.2. The properties (5) and (7) follow from 3.1.2 and 3.1.3.
The property (6) is in Samko–Kilbas–Marichev [7].



210 bonilla, trujillo, and rivero

On the other hand, in [7] the index rule of the Riemann–Liouville frac-
tional integral operators is given, in the next cases:

(a) If f ∈ L�a; b�, the index rule is true almost everywhere on �a; b�.
(b) If 1 ≤ α+ β and f ∈ L�a; b�, the index rule holds everywhere in

�a; b�.
Conditions under which this index rule holds are extended through the

spaces Cα as follows:

(8) If α+ β < 1 and f ∈ Cγ��a; b��, with 1− �α+ β� ≤ γ ≤ 1 then

Iαa �Iβa f �x�� = Iα+βa f �x�; ∀x ∈ �a; b�:
Moreover, this holds also if f is a-singular of order γ and f ∈ Cγ��a; b��.

Proof. It follows from the Fubini and Tonelli–Hobson theorems.

(9) Let n ∈ � and α ∈ �0; 1� be. If f ∈ C1−α��a; b�� then:

Dn
aI
n+α
a f �x� = Iαa f �x�; ∀x ∈ �a; b�

Proof. It follows from above properties 3.2.6 and 3.2.7.

3.3. Properties Involving the α-Differentiability

(1) aDα��a; b�� is a linear space over � and the operator Dαa is linear.

In Samko–Kilbas–Marichev [7], sufficient conditions are given for the
existence, almost everywhere, of the a-differentiability of order α of a
Lebesgue integrable function. In the next property, we give necessary con-
ditions for the pointwise a-differentiability of order α.

(2) Let α ∈ �0; 1�, x0 ∈ �a; b� and f ∈ Cα��a; b�� be. If f is
a-differentiable of order α in x0 and it has only a finite number of
discontinuities in some neighborhood of x0, then f is continuous in x0.

Proof. It follows by using the contradiction method and the properties
3.1.2 and 3.1.3.

(3) Let 0 < β ≤ α < 1. If f ∈ Cα��a; b�� and f ∈ aDα��a; b��, then
f ∈ aDβ��a; b��.

Proof. It follows from Definitions 2.1.1 and 2.3.1 and properties 3.2.7,
3.2.8, and 3.3.3.

The relations of inclusion between the spaces introduced above could be
collected in the following way, for 0 ≤ β < α < 1, �a; b� ⊂ � and λ ∈ �:

(i) Hλ��a; b�� ⊂ C��a; b�� ⊂ Cα��a; b�� ⊂ Cβ��a; b��.
(ii) AC��a; b�� ⊂ C��a; b�� ⊂ Cα��a; b�� ⊂ Cβ��a; b��.
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(iii) aIβ��a; b�� ⊂ aIα��a; b�� ⊂ aI1��a; b��.
(iv) �f ∈F��a; b�� x f �a�= 0�∩D��a; b��⊂Cα��a; b�� ∩ aDα��a; b��⊂

Cβ��a; b�� ∩ aDβ��a; b��.

3.4. Index Rule for the Operators Iαa and Dα
a

It is well known that, in general, DαaD
β
a f 6= Dα+β

a f and IαaD
α
af 6= f . In [7]

there are conditions under which the corresponding equalities hold. Certain
relations in this way are now given.

Let α;β ∈ �+ be, such that n − 1 < α ≤ n, m − 1 < β ≤ m with
n;m ∈ �:

1. Let f ∈ aDβ��a; b�� be, such that Dβa f ∈ aDα��a; b��. Then

Dα
aD

β
a f �x� = Dα+β

a f �x� −
m∑
k=1

Ak�x− a�−α−k
0�1− α− k� ; ∀x ∈ �a; b�;

where

Ak = lim
x→a+

Dm−k
a Im−βa f �x�; k = 1; 2; : : : ;m;

provided that

(i) n+m− α− β ≥ 1, or
(ii) n+m− α− β < 1 and f ∈ Cγ��a; b��, with

1− n−m+ α+ β ≤ γ ≤ 1.

2. Let f ∈ aDβ��a; b�� be, such that Dβa f ∈ aIα��a; b�� and
IαaD

β
a f ∈ L���a; b�� is integrable. Then

IαaD
β
a f �x� =


Iα−βa f �x� −

m∑
k=1

Ak

�x− a�α−k
0�α− k+ 1� if α ≥ β

Dβ−α
a f �x� −

m∑
k=1

Ak

�x− a�α−k
0�α− k+ 1� if β > α

almost everywhere on �a; b�, with

Ak = lim
x→a+

Dm−k
a Im−βa f �x�; k = 1; 2; : : : ;m:

3. Let f ∈ aIβ��a; b�� be such that I
β
a f ∈ aDα��a; b�� and

f ∈ Cγ��a; b�� with 1 − �n − α − β� ≤ γ ≤ 1, when n − α − β < 1.
Then

(i) If α ≥ β
Dα
aI
β
a f = Dα−β

a f; ∀x ∈ �a; b�:
(ii) If α < β

Dα
aI
β
a f = Iβ−αa f; ∀x ∈ �a; b�:
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If in (i) and (ii) we remove the condition f ∈ Cγ��a; b��, then the results
are true almost everywhere in �a; b�.
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