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Abstract

Robustness of stability with respect to small delays, e.g., motivated by feedback systems in con-
trol theory, is of great theoretical and practical important, but this property does not hold for many
systems. In this paper, we introduce the conception of robustness with respect to small time-varying
delays for exponential stability of the non-autonomous linear systems. Sufficient conditions are given
for the non-autonomous systems to be robust, and examples are provided to illustrate that the condi-
tions are satisfied for a large class of the non-autonomous parabolic systems.
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1. Introduction and problems

For a general feedback control problem, its sensors, processors and actuators all intro-
duce time delays into the feedback loop. It is well known that the finite-dimensional system
of the form

dx(t)
dt

= Ax(t) + Bx(1), (1.1)
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where A, B € L(R"), preserves stability when small delays occur in the feedback loop.
That is, if system (1.1) is stable, then theregs> 0 such that for any(-) € C([0, +00),
[0, ro]) the delay system described by

dx(t)
dt

remains stable (cf. [9,14]). However, this finite-dimensional property of robustness with
respect to small delays does not hold for a general class of infinite-dimensional systems
described by partial differential equations which are exponentially stabilized by a feedback
but are destabilized by arbitrary small time delays in feedback loop. The first examples of
this sort appeared in Datko et al. [4] and Huang [10] independently in 1986 (for other
examples, see [8,9,11,12,15]). How do small delays in the feedback loop influence the
exponential stability achieved by feedback control? This is an important and difficult prob-
lem, see Fleming [7]. Huang in [10] gave a sufficient condition for system (1.1) to be robust
with respect to small delays, more precisely, he supposeditizathe infinitesimal gener-

ator of aCp-semigroupe’4 on Banach spack, ¢'4 is immediately norm continuous and

B € L(X). For other situation, see, e.g., [9,11] and references therein.

To the best of our knowledge, there are few results available in the literature on ro-
bustness with respect to small time-varying delays for exponential stability of the non-
autonomous systems. Our main goal here is to extend the results of Huang in [10] to the
non-autonomous systems. Consider the non-autonomous system

dx (1)
dt
on a Banach spack, where the linear operators(z), + > 0, generates an exponentially
bounded evolution familyU (z,s), t > s > 0, on X and B(-) € Cp([0, 00), L(X)) (i.e.,
B(-) € C([0, 00), L(X)) and|| Bloo := SURy<; oo | B(1)|| < 00), it is well known that there
is a unique exponentially bounded evolution fantily (¢, s), r > s > 0, on X such that

= Ax(t) + Bu(t — r(1)) (1.2)

= A(t)x (1) + B(t)x (1) (1.3)

t
Ug(t,s)x=U(t,s)x + / U(t,T)B(t)Ug(z,s)xdt (1.4)
N
forall r > s andx € X (cf. [6, Corollary 6.9.18], concerning unexplained concepts and

notation in this paper we also refer to this monograph and [13]). Now consider the non-
autonomous system with delay

dzy) =AW0x(®)+ B)x(t —r@)), >0,
x(0)=£0), 6el[-r0], (1.5)

where the delays(-) € C([0, c0); [0, r]) and the history functiog(-) € C([—r, 0]; X)
which is a Banach space equipped with the sup-norm (j§&:)|| := sup,c(—,.q 5@ 1)
We can transform (1.5) into
dx(t)
dt

= (A@) + B®))x(1) + B(t)(x(t —r(1)) —x(1)), t>0.
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Similarly, as in the autonomous situation, there exists a unique continxeatued func-
tionx(¢), t > —r, such that

{x(t) = Up(t,0£(0) + [3 Up(t, 1) B(1)(x(t — r(v)) — x(1))dt, 1>0,
x(t)=&(), te[-r0].

In this paper we try to find sufficient conditions &hz, s) and B(¢z) to ensure that system
(1.5) is robust with respect to small (and often inevitable) delays for exponential stability,
which is defined below.

(1.6)

Definition. The system (1.5) is called to be robust with respect to small time-varying
delays if there exist constantg > 0, M > 1, v > 0 such that for any delays(t)
C([0, 00); [0,70]), t > 0, and any history functions(-) € C([—rp, 0], X), the solution
x(0):=x(+6),t>0,0 € [—ro, 0], of the system (1.6) subject &-) satisfies

[x: ()] < Me™ 6|, t=0.

This paper is organized as follows. In Section 2 sufficient condition&/ @ns) and
B(t) are presented to ensure the robust stability with respect to small time-varying delays.
Finally, in Section 3, examples are given to illustrate that the conditions in Section 2 are
satisfied for a large class of the non-autonomous parabolic systems.

2. Main results

Robustness of stability with respect to small delays, e.g., motivated by feedback systems
in control theory, is of great theoretical and practical important, but this property does not
hold for many systems. In this section we derive sufficient conditions for system (1.6) to
be robust with respect to small delays for exponential stability.

Theorem 1. Assumethat {U (¢, s)};>5>0 iS uniformly normcontinuous for (¢, s) satisfying
0<¢ <s <t—¢,whereg’ isanarbitrary small positive number, B(-) € C([0, o0), L(X))
and || Blloo := SURh<; <o I1B(1)Il < 00. Then Ug(t, s) is uniformly norm continuous for
O<ée <s<t—¢g.

Proof. Forzg > s, without loss of generality, let, § € (0, r9). For (1.4) we have

Up(to+ h,s)x — Up(to, 5)x
to+h
=U(to+ h,s)x —U(tg, s)x + / Uo+h,t)B(t)Up(t,s)xdt
1o
to—§
+ / (U(to+h,7) — Ulto, 7)) B(t)Up (7, s)x dt
0
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Io
+ / (U(to+h,t) — Ulto, 7)) B(t)Up (1, 5)x dt.

108

For anye > 0, let

So€ [0, min{to, TOM2| Bl s”
(WhereM = sUpyc <, <2, I1U (2, )| + U (2, 5)[1}). We can deduce that
Io

/ (U(to + h,t) — Ulto, r))B(t)UB(r, s)xdt

t0—3o

Io

< / |[Uto+h,t)—Ulto, D) ||| B@| | U, )|l dT

10—80

< 2M?|| Bl soollx || < :;1)8|le|- (2.1)
Similarly, we have

8o

/(U(to +h,t) — Ulto, r))B(r)UB (,8)xdt| < é£||x||. (2.2)

0
Next, let

ho € (O, ;8}
5M2||B|co

Then forh € (0, ho]

to+h

/ Ulto+h, 1) B(T)Up(z,8)x dt | < M?||Blollx|lh < %EIIXII- (2.3)

fo

SinceU (¢, s) is norm continuous, there exigig < hg such that for any: € [0, /1]
1

Y7 N T &

SM<to|| Bl

uniformly for 0 < §g < t < ro — 80. Hence,

|[UGo+h, 1) = Ulto, D) <

t0—80
/ (U(to +h,t) — Ult, r))B(t)UB(r, s)xdrt
3o

t0—80
1
< f [UGo+h,0) — Ui, O] | B [ [Use.9) Il dr < el @4)

o
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From (2.1)—(2.4), it follows that for any > 0 there ish; > 0 such that
|Us(to+h.7) — Up(to.7)|| <&, hel0, hl,

uniformly for 0 < ¢’ < t < 19 — &¢’. The proof has been completeda

We further prove the robust stability with respect to small delays under the assumptions
of Theorem 1.

Theorem 2. Assumethat {U (¢, s)};>s>0 IS uniformly normcontinuous for (¢, s) satisfying
0<¢& <s <t—¢&',whereg’ isanarbitrary small positive number, B(-) € C([0, 00), £(X))
and || Blleo := SUR<r<oo 1B < 0. Then system (1.5) is robust with respect to small
delays for exponential stability.

Proof. Supposing thaUg(z, s) is exponential stable, i.e., there exist constavits> 1,
w > 0 such that|Ug(z, s)|| < Me=@*=9) ¢ > s > 0. For anyw; € (0, w), letrp > 0 be
such that

1
VOME“”O(1+ ||B||oo(2+ o — o

eMIIBlloo(1+e”0)ro _ 1
— w1

Letr; = %ro andr(t) € [0, r1]. If x(2), t = —r (for anyr > 0), is the solution of system
(1.6), letx;(8) := x(t +6), —r <6 < 0. Then

Up(t+6,0£&(0)
x,(9)=[ + o Ut + 0, DB (x(r —r(x) —x(x))dr, t+60>0, (2.5)

Et+06), t+6¢e[—r0].
We deduce from (2.5) that for amye [0, ro]

t
x| == ,nax |lx@+0)| <M|£O)] + / M||Bllso||x (x — r(0)) — x(v)| dT
—=ro,
0

t

< e+ [ 2M1Blx |0 dr.
0
Hence, forr € [0, rg] we have

[ )] < Mg |elo2MIBI=dT < gy £() | (2.6)

by the Gronwall’s inequality (hergfy := Me2MI1Bllro),
On the other hand, we have

[ O] < M=V &()|

t
+ / Me= | B)| |x(z = r(©)) — x(0)] de 2.7)
0
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forall t > 0 andr(¢) € [0, r1]. From (2.6) we obtain
[x(t—r@®) —x@®)] <2M|£C)| (2.8)
for all r € [0, ro] andr(¢) € [0, r1]. It follows from Theorem 1 that/z (¢, s) is norm con-
tinuous, that is, foe = r1 there exists> = ra(¢) € (0, r1) such that
|Up(ri—h,7) = Up(r1,D)|| <r1 (2.9)

uniformly for 2 € [0, r2] and O< ¢’ < t < r1 — ¢’. Furthermore, notice thdt/z (z, s)|| <
Me=®(=9) ¢ >0, so we can deduce for amy> 0 there exist$ > 0 (independent of;
andz,) such that

|UB (11, v) = U2, 1) || <, (2.10)
uniformly for |11 — £2| < 8 and O< &’ < min{ry — &', 12 — &’}. We now try to prove that
[x(t = r@) —x(@)] < Mae™ " |£0) | (2.11)

forall t > 0 andr(¢) € [0, r2]. Indeed, for alk € [0, ro] we have

[x(t =r®) —xt)] < Mze™¥ [
whereM; = 2M1¢“™® andws € [0, w]. By induction, we assume that

[x(t —r@) —x@®)| < M2e™ |£0)|| (2.12)
for t € [0, nro] andr(z) € [0, r2]. Using||Ug(z, s)|| < Me~*0~%), (2.5), (2.9), (2.10), and
(2.12), fort € [nro, (n + 1)ro) we have

[x(t —r@®) —x@)| < |Us(t —r @), t —r1) — Ug(t,t —ry) | |Us(t — r1, 0£(0) |

nro tfr(t)
+ ( / + / >Mew(tr(t)r)||B(7:)H |x(r = r(@) —x(®)] dz

nro—ri nro

+< 70 +/>M€_w(I_T)HB(T)”Hx(t_"(T))—X(t)Hdt

nro—ri nro
nro—ri
+ / |Us(t =r(t),t —r1) — Ug(t,t —r)|||Us(t = r1, 7) ||
0
x | B@||x(r = r(®) —x(@)| dr
nro
<riMe g + / Mt + De "7 B(v)||
nro—ri

X ||x(t — r(r)) — x(t)“ dt

t
+ / Mt + De | B@) | |x(z — r(2)) — x(v) | dT

nro—ry
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nro—ri

M / 00 | B[ (v — (1)) — x(2)| de
0
nro
< rlMe—a)(t—rl) ”é()” + / M (e + l)e_w(t_T)HB(‘L')H Moe™®17 Hé()” dt
nro—ri

t
+ / Mt +De "D B@)|||x(z = r()) — x(0) | dz

nro
nro—ri
M / ¢~ Moo | B(o) | £ | .
0

Therefore, we obtain
e x(t —r@®) —x®)|| <riMe” &) | + MMa(e* + )| Bllsor1]|EC) |

1
+rMMp| Bl —— |60
w — w1
t
+ / M (e + 1)||Bllooe™" |x(t — r (1)) — x(v) | dT

nro
1
) )lleo

t
+ / M| Bllos(L+ € )e™" |x(t — r (1)) — x() | d.

nro

<M Moe®? <1 + || Bllco <2 +

Hence, by the Gronwall’'s inequality we deduce that

1
e ||x(t = r(@)) — x(0)| < riM Moe® <1+ | Bllco <2+ - w1>>
% eMHBHOO(l-i-er)(t—nro) ”g}:()“
AHOIR (2.13)

thus, we obtain (2.11).
From (2.7) and (2.11) we can assert that

t
O] < Me™= e + / M= B@) || (z — (1) —x(0) | d
0

t
< Mg + [ M o e g0 | ax
0
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1
< Me‘“’l<1+ Mannoow_—wl)e“’“ lee)]-

The proof has been completedno

3. Examples

It is well known that many infinite-dimensional autonomous systems are not robust
with respect to small delays (see, e.qg., the Introduction). Noticelfliats) = e ~*)4 for
t > s is an exponentially bounded evolution familyAf is the infinitesimal generator of
Co-semigroupe’4, so there are many non-autonomous systems which are exponentially
stabilized by feedback and are destabilized by arbitrary small delays in the feedback loop.
Now we show that the conditions in Theorem 2 are satisfied for a large class of the
non-autonomous systems. Consider the abstract Cauchy problem

{ 4r()+ADOx(1) =0, 1>,
x(s) =x,
whereA(r), t > 0, satisfies the following assumptions:

(i) The resolvent sep(A(t)) D X = {1 € C: |argA| > 6o}, 6o € (0, /2), and ||(A —
A <M/A+1), A€ X, t>0,M>0;

(i) 1AL — A@) HAO™ — A ™I < Lt —s/*A™, A€ Z, 1,5 20, u,v €
©O,1,u+v=>1,L>0.

The assumption, introduced by Acquistapace and Terreni [1], implies that there is a
unigue exponential bounded evolution familyz, s) and the mappingt, s) — U(z,s) €
L(X) is continuous forr > s; these results follow from, e.g., [1] and [16]. So, if this
non-autonomous parabolic system is exponentially stabilized by the uniform bounded
linear feedback operato8(¢), ¢t > 0, i.e., the solution of the non-delay Cauchy prob-
lem (d/dt)x(t) = A(t)x(t) + B(¢)x(¢) is uniformly exponential stable, using Theorem 2,
then there existg > 0 such that the solution of the delay Cauchy problefiz)x(¢) =
A@)x(@) + B@)x( — r(t)) (for anyr(-) € C([0, +00), [0, ro])) is uniformly exponential
stable; this means that this non-autonomous system is robust with respect to small time-
varying delays.
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