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Abstract

Robustness of stability with respect to small delays, e.g., motivated by feedback systems
trol theory, is of great theoretical and practical important, but this property does not hold for
systems. In this paper, we introduce the conception of robustness with respect to small time-
delays for exponential stability of the non-autonomous linear systems. Sufficient conditions ar
for the non-autonomous systems to be robust, and examples are provided to illustrate that th
tions are satisfied for a large class of the non-autonomous parabolic systems.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction and problems

For a general feedback control problem, its sensors, processors and actuators a
duce time delays into the feedback loop. It is well known that the finite-dimensional sy
of the form

dx(t)

dt
=Ax(t)+Bx(t), (1.1)
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whereA,B ∈ L(Rn), preserves stability when small delays occur in the feedback l
That is, if system (1.1) is stable, then there isr0 > 0 such that for anyr(·) ∈ C([0,+∞),

[0, r0]) the delay system described by

dx(t)

dt
=Ax(t)+Bu

(
t − r(t)

)
(1.2)

remains stable (cf. [9,14]). However, this finite-dimensional property of robustness
respect to small delays does not hold for a general class of infinite-dimensional sy
described by partial differential equations which are exponentially stabilized by a fee
but are destabilized by arbitrary small time delays in feedback loop. The first examp
this sort appeared in Datko et al. [4] and Huang [10] independently in 1986 (for
examples, see [8,9,11,12,15]). How do small delays in the feedback loop influen
exponential stability achieved by feedback control? This is an important and difficult
lem, see Fleming [7]. Huang in [10] gave a sufficient condition for system (1.1) to be r
with respect to small delays, more precisely, he supposed thatA is the infinitesimal gener
ator of aC0-semigroupetA on Banach spaceX, etA is immediately norm continuous an
B ∈ L(X). For other situation, see, e.g., [9,11] and references therein.

To the best of our knowledge, there are few results available in the literature o
bustness with respect to small time-varying delays for exponential stability of the
autonomous systems. Our main goal here is to extend the results of Huang in [10]
non-autonomous systems. Consider the non-autonomous system

dx(t)

dt
=A(t)x(t)+B(t)x(t) (1.3)

on a Banach spaceX, where the linear operatorsA(t), t � 0, generates an exponentia
bounded evolution familyU(t, s), t � s � 0, onX andB(·) ∈ Cb([0,∞),L(X)) (i.e.,
B(·) ∈ C([0,∞),L(X)) and‖B‖∞ := sup0�t<∞ ‖B(t)‖ <∞), it is well known that there
is a unique exponentially bounded evolution familyUB(t, s), t � s � 0, onX such that

UB(t, s)x =U(t, s)x +
t∫

s

U(t, τ )B(τ)UB(τ, s)x dτ (1.4)

for all t � s andx ∈ X (cf. [6, Corollary 6.9.18], concerning unexplained concepts
notation in this paper we also refer to this monograph and [13]). Now consider the
autonomous system with delay

dx(t)

dt
=A(t)x(t)+B(t)x

(
t − r(t)

)
, t > 0,

x(θ)= ξ(θ), θ ∈ [−r,0], (1.5)

where the delaysr(·) ∈ C([0,∞); [0, r]) and the history functionξ(·) ∈ C([−r,0];X)
which is a Banach space equipped with the sup-norm (i.e.,‖ξ(·)‖ := supθ∈[−r,0] ‖ξ(θ)‖).
We can transform (1.5) into

dx(t) = (
A(t)+B(t)

)
x(t)+B(t)

(
x
(
t − r(t)

)− x(t)
)
, t > 0.
dt



F. Guo et al. / J. Math. Anal. Appl. 288 (2003) 671–679 673

bility,

ying

elays.
2 are

stems
s not
.6) to
Similarly, as in the autonomous situation, there exists a unique continuousX-valued func-
tion x(t), t � −r, such that{

x(t)=UB(t,0)ξ(0)+ ∫ t
0 UB(t, τ )B(τ)(x(τ − r(τ ))− x(τ)) dτ, t > 0,

x(t)= ξ(t), t ∈ [−r,0]. (1.6)

In this paper we try to find sufficient conditions onU(t, s) andB(t) to ensure that system
(1.5) is robust with respect to small (and often inevitable) delays for exponential sta
which is defined below.

Definition. The system (1.5) is called to be robust with respect to small time-var
delays if there exist constantsr0 > 0, M � 1, ω > 0 such that for any delaysr(t) ∈
C([0,∞); [0, r0]), t � 0, and any history functionsξ(·) ∈ C([−r0,0],X), the solution
xt (θ) := x(t + θ), t � 0, θ ∈ [−r0,0], of the system (1.6) subject toξ(·) satisfies∥∥xt (·)∥∥�Me−ωt

∥∥ξ(·)∥∥, t � 0.

This paper is organized as follows. In Section 2 sufficient conditions onU(t, s) and
B(t) are presented to ensure the robust stability with respect to small time-varying d
Finally, in Section 3, examples are given to illustrate that the conditions in Section
satisfied for a large class of the non-autonomous parabolic systems.

2. Main results

Robustness of stability with respect to small delays, e.g., motivated by feedback sy
in control theory, is of great theoretical and practical important, but this property doe
hold for many systems. In this section we derive sufficient conditions for system (1
be robust with respect to small delays for exponential stability.

Theorem 1. Assume that {U(t, s)}t�s�0 is uniformly norm continuous for (t, s) satisfying
0< ε′ < s < t−ε′, where ε′ is an arbitrary small positive number,B(·) ∈ C([0,∞),L(X))
and ‖B‖∞ := sup0�t<∞ ‖B(t)‖ < ∞. Then UB(t, s) is uniformly norm continuous for
0< ε′ < s < t − ε′.

Proof. For t0 > s, without loss of generality, leth, δ ∈ (0, t0). For (1.4) we have

UB(t0 + h, s)x −UB(t0, s)x

= U(t0 + h, s)x −U(t0, s)x +
t0+h∫
t0

U(t0 + h, τ)B(τ)UB(τ, s)x dτ

+
t0−δ∫ (

U(t0 + h, τ)−U(t0, τ )
)
B(τ)UB(τ, s)x dτ
0
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+
t0∫

t0−δ

(
U(t0 + h, τ)−U(t0, τ )

)
B(τ)UB(τ, s)x dτ.

For anyε > 0, let

δ0 ∈
[
0,min

{
t0,

1

10M2‖B‖∞
ε

}]
(whereM := sup0�s�t�2t0{‖U(t, s)‖ + ‖UB(t, s)‖}). We can deduce that

∥∥∥∥∥
t0∫

t0−δ0

(
U(t0 + h, τ)−U(t0, τ )

)
B(τ)UB(τ, s)x dτ

∥∥∥∥∥
�

t0∫
t0−δ0

∥∥U(t0 + h, τ)−U(t0, τ )
∥∥∥∥B(τ)∥∥∥∥UB(τ, s)

∥∥‖x‖dτ

� 2M2‖B‖∞δ0‖x‖ � 1

5
ε‖x‖. (2.1)

Similarly, we have∥∥∥∥∥
δ0∫

0

(
U(t0 + h, τ)−U(t0, τ )

)
B(τ)UB(τ, s)x dτ

∥∥∥∥∥� 1

5
ε‖x‖. (2.2)

Next, let

h0 ∈
(

0,
1

5M2‖B‖∞
ε

]
.

Then forh ∈ (0, h0]∥∥∥∥∥
t0+h∫
t0

U(t0 + h, τ)B(τ)UB(τ, s)x dτ

∥∥∥∥∥�M2‖B‖∞‖x‖h� 1

5
ε‖x‖. (2.3)

SinceU(t, s) is norm continuous, there existsh1 < h0 such that for anyh ∈ [0, h1]∥∥U(t0 + h, τ)−U(t0, τ )
∥∥� 1

5M2t0‖B‖∞
ε

uniformly for 0< δ0 < τ < t0 − δ0. Hence,∥∥∥∥∥
t0−δ0∫
δ0

(
U(t0 + h, τ)−U(t0, τ )

)
B(τ)UB(τ, s)x dτ

∥∥∥∥∥

�
t0−δ0∫ ∥∥U(t0 + h, τ)−U(t0, τ )

∥∥∥∥B(τ)∥∥∥∥UB(τ, s)
∥∥‖x‖dτ � 1

5
ε‖x‖. (2.4)
δ0
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ptions
From (2.1)–(2.4), it follows that for anyε > 0 there ish1 > 0 such that∥∥UB(t0 + h, τ)−UB(t0, τ )
∥∥� ε, h ∈ [0, h1],

uniformly for 0< ε′ < τ < t0 − ε′. The proof has been completed.✷
We further prove the robust stability with respect to small delays under the assum

of Theorem 1.

Theorem 2. Assume that {U(t, s)}t�s�0 is uniformly norm continuous for (t, s) satisfying
0< ε′ < s < t−ε′, where ε′ is an arbitrary small positive number,B(·) ∈ C([0,∞),L(X))
and ‖B‖∞ := sup0�t�∞ ‖B(t)‖ < ∞. Then system (1.5) is robust with respect to small
delays for exponential stability.

Proof. Supposing thatUB(t, s) is exponential stable, i.e., there exist constantsM � 1,
ω > 0 such that‖UB(t, s)‖ � Me−ω(t−s), t � s � 0. For anyω1 ∈ (0,ω), let r0 > 0 be
such that

r0Meωr0

(
1+ ‖B‖∞

(
2+ 1

ω −ω1

))
eM‖B‖∞(1+eωr0)r0 < 1.

Let r1 = 1
2r0 andr(t) ∈ [0, r1]. If x(t), t � −r (for any r > 0), is the solution of system

(1.6), letxt (θ) := x(t + θ), −r � θ � 0. Then

xt (θ)=


UB(t + θ,0)ξ(0)

+ ∫ t+θ

0 UB(t + θ, τ )B(τ)(x(τ − r(τ ))− x(τ)) dτ, t + θ > 0,

ξ(t + θ), t + θ ∈ [−r,0].
(2.5)

We deduce from (2.5) that for anyt ∈ [0, r0]

∥∥xt (·)∥∥ := max
θ∈[−r0,0]

∥∥x(t + θ)
∥∥�M

∥∥ξ(0)∥∥+
t∫

0

M‖B‖∞
∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

� M
∥∥ξ(·)∥∥+

t∫
0

2M‖B‖∞
∥∥xτ (·)∥∥dτ.

Hence, fort ∈ [0, r0] we have∥∥xt (·)∥∥�M
∥∥ξ(·)∥∥e∫ t0 2M‖B‖∞ dτ �M1

∥∥ξ(·)∥∥ (2.6)

by the Gronwall’s inequality (hereM1 :=Me2M‖B‖∞r0).
On the other hand, we have∥∥xt (·)∥∥�Me−ω(t−r1)

∥∥ξ(·)∥∥
+

t∫
Me−ω(t−τ−r1)

∥∥B(τ)∥∥∥∥x(τ − r(τ )
)− x(τ)

∥∥dτ (2.7)
0
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for all t � 0 andr(t) ∈ [0, r1]. From (2.6) we obtain∥∥x(t − r(t)
)− x(t)

∥∥� 2M1
∥∥ξ(·)∥∥ (2.8)

for all t ∈ [0, r0] andr(t) ∈ [0, r1]. It follows from Theorem 1 thatUB(t, s) is norm con-
tinuous, that is, forε = r1 there existsr2 = r2(ε) ∈ (0, r1) such that∥∥UB(r1 − h, τ)−UB(r1, τ )

∥∥< r1 (2.9)

uniformly for h ∈ [0, r2] and 0< ε′ � τ < r1 − ε′. Furthermore, notice that‖UB(t, s)‖ �
Me−ω(t−s), t � 0, so we can deduce for anyε > 0 there existsδ > 0 (independent oft1
andt2) such that∥∥UB(t1, τ )−UB(t2, τ )

∥∥< ε, (2.10)

uniformly for |t1 − t2|< δ and 0< ε′ < min{t1 − ε′, t2 − ε′}. We now try to prove that∥∥x(t − r(t)
)− x(t)

∥∥�M2e
−ω1t

∥∥ξ(·)∥∥ (2.11)

for all t � 0 andr(t) ∈ [0, r2]. Indeed, for allt ∈ [0, r0] we have∥∥x(t − r(t)
)− x(t)

∥∥�M2e
−ω1t

∥∥ξ(·)∥∥
whereM2 = 2M1e

ωr0 andω1 ∈ [0,ω]. By induction, we assume that∥∥x(t − r(t)
)− x(t)

∥∥�M2e
−ω1t

∥∥ξ(·)∥∥ (2.12)

for t ∈ [0, nr0] andr(t) ∈ [0, r2]. Using‖UB(t, s)‖ � Me−ω(t−s), (2.5), (2.9), (2.10), and
(2.12), fort ∈ [nr0, (n+ 1)r0) we have∥∥x(t − r(t)

)− x(t)
∥∥�

∥∥UB

(
t − r(t), t − r1

)−UB(t, t − r1)
∥∥∥∥UB(t − r1,0)ξ(0)

∥∥
+
( nr0∫
nr0−r1

+
t−r(t)∫
nr0

)
Me−ω(t−r(t)−τ )

∥∥B(τ)∥∥∥∥x(τ − r(τ )
)− x(τ)

∥∥dτ

+
( nr0∫
nr0−r1

+
t∫

nr0

)
Me−ω(t−τ )

∥∥B(τ)∥∥∥∥x(τ − r(τ )
)− x(τ)

∥∥dτ

+
nr0−r1∫

0

∥∥UB

(
t − r(t), t − r1

)−UB(t, t − r1)
∥∥∥∥UB(t − r1, τ )

∥∥
× ∥∥B(τ)∥∥∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

� r1Me−ω(t−r1)
∥∥ξ(·)∥∥+

nr0∫
nr0−r1

M(eωr1 + 1)e−ω(t−τ )
∥∥B(τ)∥∥

× ∥∥x(τ − r(τ )
)− x(τ)

∥∥dτ
+

t∫
M(eωr1 + 1)e−ω(t−τ )

∥∥B(τ)∥∥∥∥x(τ − r(τ )
)− x(τ)

∥∥dτ

nr0−r1
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+ r1M

nr0−r1∫
0

e−ω(t−r1−τ )
∥∥B(τ)∥∥∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

� r1Me−ω(t−r1)
∥∥ξ(·)∥∥+

nr0∫
nr0−r1

M(eωr1 + 1)e−ω(t−τ )
∥∥B(τ)∥∥M2e

−ω1τ
∥∥ξ(·)∥∥dτ

+
t∫

nr0

M(eωr1 + 1)e−ω(t−τ )
∥∥B(τ)∥∥∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

+ r1M

nr0−r1∫
0

e−ω(t−r1−τ )M2e
−ω1τ

∥∥B(τ)∥∥∥∥ξ(·)∥∥dτ.
Therefore, we obtain

eω1t
∥∥x(t − r(t)

)− x(t)
∥∥� r1Meωr1

∥∥ξ(·)∥∥+MM2(e
ωr1 + 1)‖B‖∞r1

∥∥ξ(·)∥∥
+ rMM2‖B‖∞eωr1

1

ω−ω1

∥∥ξ(·)∥∥
+

t∫
nr0

M(eωr1 + 1)‖B‖∞eω1τ
∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

� r1MM2e
ωr1

(
1+ ‖B‖∞

(
2+ 1

ω−ω1

))∥∥ξ(·)∥∥
+

t∫
nr0

M‖B‖∞(1+ eωr1)eω1τ
∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ.

Hence, by the Gronwall’s inequality we deduce that

eω1t
∥∥x(t − r(t)

)− x(t)
∥∥� r1MM2e

ωr1

(
1+ ‖B‖∞

(
2+ 1

ω−ω1

))

× eM‖B‖∞(1+eωr1)(t−nr0)
∥∥ξ(·)∥∥

�M2
∥∥ξ(·)∥∥, (2.13)

thus, we obtain (2.11).
From (2.7) and (2.11) we can assert that

∥∥xt (·)∥∥�Me−ω(t−r1)
∥∥ξ(·)∥∥+

t∫
0

Me−ω(t−τ−r1)
∥∥B(τ)∥∥∥∥x(τ − r(τ )

)− x(τ)
∥∥dτ

�Me−ω(t−r1)
∥∥ξ(·)∥∥+

t∫
Me−ω(t−τ−r1)

∥∥B(τ)∥∥M2e
−ω1τ

∥∥ξ(·)∥∥dτ

0
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�Meωr1

(
1+M2‖B‖∞

1

ω−ω1

)
e−ω1t

∥∥ξ(·)∥∥.
The proof has been completed.✷

3. Examples

It is well known that many infinite-dimensional autonomous systems are not r
with respect to small delays (see, e.g., the Introduction). Notice thatU(t, s)= e(t−s)A for
t � s is an exponentially bounded evolution family ifA is the infinitesimal generator o
C0-semigroupetA, so there are many non-autonomous systems which are expone
stabilized by feedback and are destabilized by arbitrary small delays in the feedbac

Now we show that the conditions in Theorem 2 are satisfied for a large class
non-autonomous systems. Consider the abstract Cauchy problem{

d
dt
x(t)+A(t)x(t)= 0, t � s,

x(s)= x,

whereA(t), t > 0, satisfies the following assumptions:

(i) The resolvent setρ(A(t)) ⊃ Σ = {λ ∈ C: |argλ| � θ0}, θ0 ∈ (0,π/2), and ‖(λ −
A(t))−1‖ �M/(1 + λ), λ ∈Σ , t � 0,M � 0;

(ii) ‖A(t)(λ − A(t))−1(A(t)−1 − A(s)−1)‖ � L|t − s|µ|λ|−ν , λ ∈ Σ , t, s � 0, µ,ν ∈
(0,1], µ+ ν > 1,L> 0.

The assumption, introduced by Acquistapace and Terreni [1], implies that ther
unique exponential bounded evolution familyU(t, s) and the mapping(t, s) → U(t, s) ∈
L(X) is continuous fort > s; these results follow from, e.g., [1] and [16]. So, if th
non-autonomous parabolic system is exponentially stabilized by the uniform bo
linear feedback operatorsB(t), t � 0, i.e., the solution of the non-delay Cauchy pro
lem (d/dt)x(t)= A(t)x(t)+ B(t)x(t) is uniformly exponential stable, using Theorem
then there existsr0 > 0 such that the solution of the delay Cauchy problem(d/dt)x(t) =
A(t)x(t)+ B(t)x(t − r(t)) (for any r(·) ∈ C([0,+∞), [0, r0])) is uniformly exponentia
stable; this means that this non-autonomous system is robust with respect to sma
varying delays.
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