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1. Introduction

Let u be a linear functional in the linear spaBef polynomials with complex coeffi-
cients and denote by, },>0 the sequence of the moments associated wjitfy = (u, x™),
n > 0, where(-, -) means the duality bracket.

The linear functional is said to be quasi-definite if the Hankel matfix= (u,~+,-);f‘;:0
is quasi-definite, i.e., the principal submatridés = (ui+j);fj:0, n € NU {0}, are non-
singular.

The linear functional, given by (,, P) = P(a), for every P € P, is not a quasi-
definite linear functional since rani{,, = 1 for everyn > 0. This linear functional is said
to be either the Dirac linear functional or the Dirac mass at the point

To the linear functionak we can associate a formal power serfg$z) = Y oo —24;
which is related with the-transform of the sequende, } of moments ofx. S, is said to
be the Stieltjes function af. For the Dirac linear functional = §, given as above, we
haves, (z) = 1/(z — a) in a neighborhood of infinite.

Assumingu quasi-definite, there exists a sequence of monic polynof#als >0 such
that (see [2])

(i) degP, =n,n>0,
(i) {it, Py Pr) = knSp.m With ky % O.

The sequencgP,},>o is said to be the sequence of monic orthogonal polynomials
(SMOP) with respect to the linear functional

If {P,}.>0 is an SMOP with respect to the quasi-definite linear functianghen it is
well known (see [2]) that it satisfies a three-term recurrence relation

Pii1(x) =& = B) Pu(x) — Y Pr1(x), n=0, (1.1)

with y,, 20 andP_1(x) =0, Po(x) = 1.

Conversely, given a sequence of monic polynomials generated by a recurrence rela-
tion as above, there exists a unique quasi-definite linear functiosath that the fam-
ily {Py}n>0 is the corresponding SMOP. Such a result is known as the Favard theorem
(see [2]).

For an SMOR P, },,>0 relative tou, let {P,ﬁl)},@o be the sequence of monic polynomi-
als such that

1 1
P () = (x = Bus) PP () = yup1 PP (), 020,

PYm =0 PPmw=1
According to the Favard theorem there exists a quasi-definite linear funciidhalich
that{Pn(l)},,>O is the corresponding SMOP. The fam{ly,ﬁl)}@o is said to be the sequence

of polynomials of first kind associated with the linear functiomal
Another representation ({)P,ﬁl)}@o is given by

Ppi1(y) — Ppya(x)
y—x ’

1
PI‘El)(y) = u_0<us
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n > 0 (see [2, Chapter 3]).
Notice thatP,fl) (z)/ Pa+1(2) is the(n 4+ 1)-convergent of the continued fraction
1

Y1
z—p1— .

z—PBo—

Thus
uo
Su(z) =

Y1
z—PB1— -

from a formal point of view (see [2]).

For simplicity we will assume = 1.

Let {P,(x, o)}»>0 be the sequence of monic polynomials satisfying (1.1) with initial
conditionsPo(x, o) = 1, P1(x, o) = P1(x) — «. Taking into account the Favard theorem,
there exists a quasi-definite linear functionglsuch tha{ P, (x, o)}, >0 is the correspond-
ing SMOP. This sequence is said to be the co-recursive SMOP of paramatsociated
with the linear functionad. It is known see [2,7] thaP, (x, @) = P, (x) — aP,ff)l(x).

From (1.2) we get

(1.2)
z—Bo—

S ()—i[—ﬁ—i}
S el

‘“]_: Su@
Su(2) 1—-aS,(z)

These two bilinear rational transforms are related to self-similar reductions and spectral
transformations in the theory of nonlinear integrable systems (see [12]).

For a linear functionat, a polynomiatr, and a complex number, letru, (x —a)~u,
and Du be the linear functionals defined &by

Sua (2) = [

(ru, P) = (u, w P),
((x —a) u, P> = <u,

<Dl/£, P) :—(M, Pl)v

X —da

Px) — P(a)>

whereP € P.

A Cauchy product of two linear functionaids v can be defined as the linear functional
uv such that(uv, x") = Y} _qupve—p, n > 0. Obviously,uv = vu and sou = udo = u.
Sinceug = 1, there exists a unique linear functionatuch thattv = vu = 8. This linear
functionalv is said to be the inverse linear functional:ofind it will be denoted by —1.
Notice that(u )0 =1 and(u 1), = — Y} un—n Y, n > 1 (see [10]).

SincezZSu_l(z)Su (z) =1, we haveS,u (z) = Lz —Bo— ZZSu—l(Z)]. Taking into ac-

1
count(u 1o =1 and(u 1)1 = —po, we getu® = —y—llxzzrl. Concerning the linear
functionalu,, it is easy to check that, = (11 + aag)*l. This is an alternative proof of

the result of [10] but notice that there the Stieltjes function has an opposite sign.
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In the constructive theory of orthogonal polynomials the so-called direct problem is
considered. A direct problem for linear funmtials can be stated as follows: given two lin-
ear functionals, v such thav = F(u), whereF is a function defined if?’, the dual space
of P, to find necessary and sufficient conditions in ordeF tpreserves quasi-definiteness.
As a subsequent question, to find the explicit relations between the corresponding SMOP
{P,} and{Q,} associated witlx andv, respectively.

If u is a linear functional defined by a nonnegative meagun some interval of
the real line, with an infinite set of increasing points such that the moments exist, i.e.,
(u, x"y = f, x"du < oo then we can introduce the linear functiomaduch that

(v, x™) =/x"wdu, 1.3)
J q(x)

wherep, g are two polynomials with pairwise distinct zeros that has constant signién
we assume (1.3) is finite for eveny the generalized Christoffel theorem gives the SMOP
with respect tow in terms of polynomials of the SMOP with respecttdsee [4,11]). In
terms of linear functionals, the above transform reads- pu. Notice thatpu = qv is a
more general transform because of Dirac nue@s and derivatives of Dirac measures at
the zeros of; (x) can be considered farin addition in such a general problem.

Wheng(x) =1 andp(x) = x — a, the transform for linear functionals is said to be
a Christoffel transform (see [12]). Using the Jacobi matfimssociated with the linear
functionalu, the shifted Darboux transform df without free parameter yields the Jacobi
matrix of v (see [6]).

Itis known thatv is quasi-definite if and only iP,(a) #£0,n > 1, and

(x = 8)0n(x) = Pasa(x) — ;’,: é;’)an
as well as
On(x)Py(a) Pr(x)Pr(a)
(u, P2 - Z (u, P2 '

The polynomials{Q,},>0 are said to be the monic kernel polynomials of paraméter
associated with the linear functionalsee [2]).

If p(x) =1 andg(x) = A(x — a) then the transform is said to be the Geronimus trans-
form of the linear functionak (see [10,12]). The Jacobi matrix ofis the shifted Darboux
transform with free parameter of the Jacobi matrix ¢gee [6]).

Notice that in such a case=A"1(x — a)~1u + 8, is a quasi-definite linear functional
if and only if P,(a, —»~1) #£0,n > 1, and then

Py(a,—27h

On(x) =P (x) — m

Pp_1(x)
(see [9)]).
In our contribution, we analyze the direct problem stated as above for theCase
(x —a) andg (x) = A(x — a). Fora # a this situation has not been studied in the literature
as far as we know up to in the so-called positive definite case (see [4]).
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In Section 2, given a quasi-definite linear functionalnd complex numbeuws, a, and
A with a £ a and X # 0, we characterize the quasi-definiteness of the linear functional
V= %(x —a) M —du+@1- %)Sa. Instead of the analysis of the quasi-definiteness of
the linear functionab in two steps (first, the rational perbation and, second, the addition
of the Dirac linear functional) we consider the whole transformation taking into account
the first one cannot preserve the quasi-definiteness of the linear funcatidndkeed in [4]
this constraint must be emphasized when polynomial perturbations are introduced. Further,
we show thatx — a) Q,, is a linear combination of three consecutive polynomials of the
SMOP{ P, }n20-

Notice that the confluent cage= a yields a perturbation ofi via the addition of a
Dirac mass at the point= a. This corresponds to the Uvarov transform of the linear func-
tionalu (see [12]). The direct problem has been solved in [8]. We point out that the results
for a # a extend in a natural way those already knowndet a.

In Section 3, under the thesis of Section 2 we characterize when the relation between
{Py}n>0 and{Q,},>0, Obtained there, can be reduced to a relaipx) + s, P,—1(x) =
0, (x)+ 1, Qn—1(x) with s,,1,, = 0 for everyn > 1, andsy # 1. This last type of relation, as
an inverse problem, has been analyzed inThe motivation for such a kind of problems is
reflected in [3] when an extension of the cept of coherent pairs of measures associated
with Sobolev inner products is considered.

We also observe that there is an important difference for the eased anda # a.
Namely, ifa = a thens, # 1, for everyn > 1 while if a # a both situations, i.e., either
sn # t, for everyn > 1 ors, =1t, for some values of, can appear as we show in some
examples.

2. Direct problem

In this section, we study the direct problem foe= 2 (x — a)™1(x — @u + (1 — 1)8,
whereu is a given quasi-definite linear functional, andi, A € C with a # a, A #0.

Theorem 2.1. Letu, v be two linear functionals related by
x—au=r(x—a), a,a,reC. (2.1)

Assumerg = 1 = vg anda # a. If u is a quasi-definite linear functional with corresponding
SMOP{P,},>0 then, the linear functional is quasi-definite if and only if

_ P, (ZZ) Pn—l(a)

Ay =
R,(a) Ry_1(a)

#0, n=>1

whereR,(x) = (A — 1D P,(x) + (a — Zz)Pn(f)l(x). Furthermore, if{Q,},>0 is the SMOP
associated withy then
Ppya(x)  Po(x)  Py—1(x)
(x —@)Qn(x) =AM Pog1(@  Po(@ Pia(@|, n>1 (2.2)
Ryy1(a) Rp(a) Rp-1(a)
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Proof. Assumev is a quasi-definite linear functional af@,},>o is its corresponding
SMOP.
Consider the Fourier expansion@f — a) Q, in terms of the polynomial®,, that is

(X = @) 0n(x) = Poy1(X) + ) 0 jPj(x), n>1,
j=0

wherea,,; = (u, P].Z)71<u, (x —a)Q, P;). From formula (2.1) we get

(x —a)Qn(x) = Ppy2(x) + atpp P (X) + ttp p—1 Pp—1(x) (2.3)
With oy n—1 = A (iljgi) #0.
Forx=a
0= Pu+1(@) + oty .n Pu (@) + tp n—1Pn-1(a). (2.4)
On the other hand,
(a —a)Qn(a) = Pyt1(a) + otn n Pu(a) + apn—1Pr-1(a). (2.5)

Subtracting (2.5) to (2.3) and dividing hy— a, we can apply: in order to get
<u (x—=a)Qn(x) —(a— é)Qn(a)>

X —a

= nyl) (@) +onn P(l)l(a) + Oln,nflpn(i)z(a)' (2.6)

n—

The left-hand side becomes

<u, (x — &)w> + Qn(a) =Mv, Qn(x) — Qn(a))+ On(a)
=1 —-2)Qn(a)
and therefore
1= 2)Qu(@) = PV (@) + ann P2 (@) + ctnn1P 25 (@). (2.7)
Thus, (2.5) and (2.7) yield
0= Ru+1(a) + on n Ry (a) + otn n—1Rn—1(a). (2.8)

Since the system of Egs. (2.4) and (2.8pin, anda, ,—1 has a non-zero solution, then
we getA,, # 0 for everyn > 1.

Besides, from (2.3), (2.4), and (2.8) we obtain (2.2).

Conversely, ifA, # 0 for everyn > 1 we will prove that the polynomial@,, defined

by
Pop1(x)  Pp(x)  Pp-1(x)
(x —@)0n () =AM Poy1(@  Pu@ Pia@|, n>1,
Ryt1(a) Rp(a) Rp-1(a)
are orthogonal with respect to Indeed, for 0< j <n — 2,

M, Qn(x)(x — @) Pj(x)) = (u, (x —a) Qn(x) Pj(x)) =0
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and forj =n — 1,
Mv, Qn () (x — @) Pac1(0)) = (1, (x — @) Qn (x) Pu—1(x)) = Apy1A, Hu, PZ_1) #0.

Thus, we only need to prove théat, 0, ) = 0 for everyn > 1. In order to do this, observe
that

A, On) =k[<v, (x —a) +Qn(a)]

=<(x iy, Qo) = Qn<a)>HQn(a)
X —da

=<M (x —a)Qn(x) — (@ —a)Qn(a)

X —a

On(x) — Qn(a)>
X —a

>+ (A —1)On(a).

Applying the expression afx — a) 0, (x) in terms of the polynomial®, (x) and (2.7) we
get

<u, (x —a)Qn(x) — (a— &)Qn(a)>

X —a
Y@ PP@ PO
Pyya(@ Pu@  Pp1(@)
Ryt1(a)  Ru(@) Ry—1(a)
So(v, Q,)=0foreveryn > 1

As a conclusion{v, Q,f) = (v, O, (x —a)P,_1) # 0, and({v, Q, p) = 0 for every poly-
nomial p of degree less tham. O

—a-l

n

=1 -2)Q0u(a).

Corollary 2.2. Under the conditions of Theorenlthe linear functionab is quasi-definite
if and only if1 + Z” L M #0, for everyn > 1.

Furthermore, we have

(x — @) Qn(x) = Pug1(x) + an(@, @) Py (x) + by(a, @) Pi_1(x), n>1 (2.9)
with

an(a,d) = Pp —a+ (a—a)A, " Pu_1(@) Ru(a) (2.10)
and

bu(a,d) =y, + (@ —a)A; Py (@) Ry (a). (2.11)

Proof. From the expression ofi,,, using the Christoffel-Darboux formula (see [2]), we
have forn > 1

Ap=(a—a)[A—NVKn-1(a,a u)u, P?_1)+ Bu(a,d)],
whereK, (x, y; u) denotes the reproducing kernel of degresssociated witlhy and
Py(a)  Py-1(a)

B,(a,a) =
P(l)l( ) P(l)z(a)
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Inserting the three-term recurrence relation for both polynonfialand P,fi)l, we get

Bia,d) .  Poa@Py@ B, 1, Q)
—— = =(a—a) 5 5 2.
(u, Pr_4) (u, Pr_q) (u, Py o)
Iteration yields
~ n—1 (@)
B, (a,a) » P (a)P ]_(a)
Onit 4 — LA A >1 2.12
” P2 ) =(a a)szc:] w ,PJZ) , nZ= ( )

Therefore

Anz(&—a)(u,Pnz_l)[l+(k DK,—1(a,a; u)+(a—a)z%j|
b

=(a— a) u, P2 1 |:1+ Z Fi (Z)II;)(“):|, (2.13)

and the first part of the corollary follows from Theorem 2.1.
On the other hand, we can write formula (2.2) as follows
(x —a)Qn(x) = Pug1(x) +an(a,a) Py (x) + bn(a,a) Py—1(x), n=1
Using the three-term recurrence relation far.1(a) andR,,11(a) we get
an(a,d) = Pp — Ay aPuy(@ Ry-1(a) — aPy_1(@) Ry (a)]
=Bu—a+(a— DA Puo1(@Ry(@).
Besides, from (2.13) we obtain

An+l Ay ~ P, (d)Rn (a)
2y 2 a—a 2
(w, P7)  (u, P7_;) (u, P?)

and, since, (a, @) = Apt1/A, andy, = (u, P?)/(u, P? ;), then
bu(a,d) = yn+(@—a)A, ' Py(@Ry(@). O
In Theorem 2.1 and Corollary 2.2 we have assumed a. Notice that ifa = a the

relation (2.1) between the linear functionalandv becomes: = Av + (1 — 1)4,. In this
situation it is well known (see [8]) thatis quasi-definite if and only if for eveny > 1

1+(A—DK,(a,a;u)#0

and then

(x —a)On(x) = Pyy1(x) + an(@) Py (x) + bp(a) Pi—1(x), n=1, (2.14)
holds, where

an(a) =Ppp —a A =1 P—1(a)Py(a)

 (u, P21+ O — DK,1(a, a; w)]
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and
1+ (A —DKy(a,a;u)
14+ —DKp-1(a,a;u)
Notice that, these results can be recovered from Corollary 2.2, witemds toa.

bu(a) = yn

3. Linear relations between the polynomials { P,} and { Q,}

Let« andv be quasi-definite linear functionals with corresponding SM®B,,>0 and
{Qn}n>0, respectively. In Section 2, we have obtained that #ndv satisfy the relation
(x —a)u = A(x —a)v with a, a, A € C then an expression of the form

(x = @) Qn(x) = Puy1(x) + an Py (x) + by Pr—1(x), n=1, (3.1)

holds (see formulas (2.9) and (2.14)). Tlsta linear combinatio of three consecutive
polynomialsP, coincides with a linear combination of three consecutive polynondials
On the other hand, in [1], it was proved that if the linear functiomadsdv are quasi-
definite and they are related as above, then there exists a reRti@nh+ s, P,—1(x) =
0, (x) + t, Qn—1(x) with s,t, # 0, n > 1, andsy # 11 if and only if for everyn > 1,
Pn 75 Qn-
Thus, at the present, we have two expressions linking the polyno®jasd Q,,, the
last quoted and the one given in formula (3.1).
We see below that iP, # Q,, n > 1, then both formulas are not independent. In fact,
one of them can be reduced to the other.

Theorem 3.1. Let u, v be two different quasi-definite linear functionals normalized by
uo = 1= vp and related by

x—au=r(x—a)v, a,a,reC.
Let {P,}n>0 and {Q,},>0 be their corresponding SMOPHE following conditions are
equivalent

(i) Formula(3.1)can be reduced to an expression

Py(x)+ 5, Pr1(x) = Qp(x) + 1, Qpn-1(x) (32)

with s,,t, #~ 0 for everyn > 1 andsy #11.
(ii) Foralln>1, Ry(a)=( —1)Py(a) + (@ —a) P, (@) #0.

Proof. Suppose that (i) holds. In [1, Theorem 2.4] it has been proved that whenever such
a relation (3.2) is satisfied theR, # Q,, for everyn, and besides?,(x) = 0, (x) +
A IR (@) K,—1(x,a; v),n > 1 (see formula (2.24) in [1]). So, (ii) follows.

In order to derive the converse result we will first consider the sage:. Inserting the
three-term recurrence relation in (3.1) successivelyar; and P, we get, form > 2,

(x —a)Qn(x) = (x —a) Py(x) + (@ — B + an) Pu(x) + (bn — Yu) Pu—1(x)
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= —@)[Pu(x) 4+ (@ — Bu + an) Pr_1(x)]
+[@— B+ an)(@— Bu-1) +bn — Yu | Pa-1(x)
— Yn—-1(a — Bn + an) Pr—2(x). (3.3)
The first part of the formula (3.3) for — 1 reads:

(x —a)On-1(x) = (x —a)P,—1(x) + (@ — Bp—1+ an-1) Po—1(x)

+ (bp—1— ¥Yu—1) Pu—2(x). (34)
Taking into account (2.10) and (2.11), the above two formulas can be written
(¥ = @) Qu(x) = (x — @) [Pn 0+ =D, (a)Pnl(&)Pnlm}
D @ yaa[ Pa2(@) Pat(x) — Paoa(@) Pa—2()],

n

(x —a)Qn-1(x)

— (=) Pyg () + 4D

Anfl

Ru-1(a)[ Pa—2(@) Py—1(x) — Py—1(a@) Pa—2(x)].
Thus, forany, e R, n > 2
(x — &)[Qn (x) + tn Qn—l(x)]
5 (a—a)
=(x - a)[Pn(X) + (

n

Ru(a)P—1(a) + tn) Pn—l(x)]

IR R, . .
+(a— a)[ nA(a) Yn—1+ . l(f)tnj| [Pn72(a)Pnfl(x) - Pnfl(a)Pth(x)]'
Now, since by hypothesiB, (a) # 0 for all n, if we take
Ry(a) A1
In=— - Vn-1, > 2,
Ria@) A, "0 "

we gett, #0 as well as

On(x) +1,0p-1(x) = Py (x) + 5, Pr—1(x),

wheres, = (a — @) A7 R, (@) Py—1(@) + tn.

Observe that, using (2.11), we can obtain

Ry(a)
R, _1(a)

Forn =1, from the values af; andby, the first part of formula (3.3) becoméh (x) =
P1(x) + “T2 R1(a). ThenPi(x) + s1= Q1(x) + 11 holds withs1r1 # 0 andsy — 11 #0.

Finally, notice that the case= a can be derived in a similar way.O

#0, n=2.

Sp =

Remarks. (1) In Section 2, we have seen that the linear functierialquasi-definite if and

only if 1+Z’}:0 % # 0,n > 1. Itis worth noticing that the parametg®, (a)},>o,
’ o

which appear in the above result, also characterize the existence of formula (3.2).
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(2) In terms of the linear functionals, we have ttiat(a) # 0 (n > 1) if and only if
the linear functiona{x — a)w is quasi-definite, where is either the linear functional
(casen = a, 1 # 1), or the linear functional® (caseu # @, » = 1) or the linear functional
associated with the co-recursive polynomials (casea, 1 # 1).

(3)Ifa#aandx #1itwas proved in [9] thaiR, (a) #~ O for everyn > 1 if and only
if the linear functional{=1 “(x —a)"Yu + 8, is quasi-definite. When andv are related
as in Theorem 3.1, th|s Iast condition is equivalent to the quasi-definiteness of the linear
functional Av — u. Moreover, in this case the SMOP associated with— u is {P, —
% Pn—l}n20-

Next, we want to point out that a difference appears between the €¢asésanda # a
with respect to the parameteysandy, in formula (3.2).

In Theorem 3.1, it has been shown that there exists a relation of the form

Py(x) + sy Pr1(x) = Qn(x) + 1, Qn—1(x) (35)

with s,1, #0,n > 1, andsy # 71 if and only if R,(a) # 0, n > 1. Moreover, we get for
everyn > 1

Pa—1(a)Ru(a)

n—1 Pj(@)R;(a)
(u, [1+Z u71’2>]

Iy —Sp =

Then, whenevet = a andi # 1, (3.5) holds if and only if the linear functionél — a)u
is quasi-definite. Besideg # 1, forn > 1.

However, ifa #£ a, even if the conditiorR,, (a) # 0 is satisfied for alh > 1 then both
situations eithex — a)u is quasi-definite ox — a)u is not quasi-definite can appeatr.

In fact, an example of the first situation was given in [1] beingndv the Jacobi linear
functionals with parameteks — 1, 8 anda, 8 — 1 (@, B > 0), respectively, and = —1,
a=1,»=—ap~ L. Inthis case, alss, # 1, for everyn > 1.

Next, we are going to show an example of the second situation, that is, when the linear
functional(x — a)u is not quasi-definite and, as a consequence, the condljtigr, is not
satisfied for every: > 1.

Letu be the Chebyshev linear functional of second kind, that is, the Jacobi linear func-
tional with parameterg = 8 = 1/2, and take: = 1,a = 0, andi = 3. We denote byP,}
the monic polynomials associated withwhose recurrence coefficients g8g = 0 and
yn = 1/4 (see [2]). Observe that the linear functionalis not quasi-definite.

With these conditions the co-recursive polynomiRjsare given by

1
Rn(x)=2[Pn(x)+ EPnl(x)i|o (3.6)

Notice that%R,, (x) are the monic Chebyshev polynomials of fourth kind, that is the monic
Jacobi polynomials with parameters=1/2 andg = —1/2, see [5].

First, we check that the linear functionatefined byxu = 3(x — 1)v is quasi-definite.
As we have introduced in Theorem 2.1

Pn(a) Pn—l(a)

Al’l = )
R,(a) Ry_1(a)

n>=1,
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and sinceP,, (0) = (—1)" /4", P2,,1(0) =0, andR, (1) = (2n + 1)/2"~1 we get

4n -1 4n +3
Ao = (—1)nm and Ap1= (—1)n+l4—2n-
ThereforeA,, # 0 for everyn > 1, and thug is quasi-definite. Observe that= —%w +81
wherew denotes the Chebyshev linear functional of third kind.

As R, (1) #0, forn > 1, from Theorem 3.1 a relation of the form (3.5) holds with
Ry (1) 2n+1

= - = - 221
T T Ra® T 22— "
and
Ap-1
th, = L Sp, N =2.
Therefore, taking into accouy (x) = Q1(x) + 1, we deduce
dn+1 4n +1
P ——  Pp_1(x)= —— Qo >1,
2n (X) 2an - 1) 2n—-1(x) = 02, (x) 2@ — 1) Oo-1(x), n
Ponia() — 2 F3 1) = Qo) + ot 00 @). n >0
X)— s = X) + 55— 02 (x), >
2+l 24n+ 1) T Rl 20n+ 1) o

Notice that in this case, =12,, n > 1.
Eventually, from the values ahe recurrence coefficients @Pn} and Theorem 2.2
in [1], we can deduce that the recurrence parametergdgf are, = (—1)",n > 0, and

4n —1 4n + 3

_ T2 420, and joa=—— T2 a1
an+3) " Vo= "4 —1 "

Von+l=
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