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Abstract

In this paper, we consider the existence of positive solutions to the fourth order boundary value problem⎧⎪⎨
⎪⎩

u′′′′ + αu′′ − βu = f (t, u), 0 < t < 1,

u(0) = ∑m−2
i=1 aiu(ξi ), u(1) = ∑m−2

i=1 biu(ξi ),

u′′(0) = ∑m−2
i=1 aiu

′′(ξi), u′′(1) = ∑m−2
i=1 biu

′′(ξi),
where α,β ∈ R, ξi ∈ (0,1), ai, bi ∈ [0,∞) for i ∈ {1,2, . . . ,m − 2} are given constants satisfying some
suitable conditions. The proofs are based on the fixed point index theorem in cones.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multipoint boundary value problems (BVPs) for ordinary differential equations arise in a
variety of areas of applied mathematics and physics. For instance, the vibrations of a guy wire of
uniform cross-section and composed of N parts of different densities can be set up as a multipoint
BVP in [4]; also, many problems in the theory of elastic stability can be handled by multipoint
problems in [5].

In [6], Il’in and Moiseev studied the existence of solutions for a linear multipoint BVP. Mo-
tivated, Gupta [7] studied certain three-point BVPs for nonlinear ordinary differential equations.
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Since then, more general nonlinear multipoint BVPs have been studied by several authors. We re-
fer the reader to [2,3,7] for some references. When it comes to fourth order BVP, only two-point
situation is often seen, here we just refer to [8,9]. Recently, Liu [8] has obtained some existence
results for{

u′′′′ = f (t, u, u′′), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1a)

under the condition that f is either superlinear or sublinear.
In 2003, Li [1] studied the existence of positive solutions for fourth order BVP without bend-

ing term but with two parameters{
u′′′′ + αu′′ − βu = f (t, u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1b)

under the assumptions:

(H1) f : [0,1] × [0,∞) → [0,∞) is continuous;
(H2) α,β ∈ R and α < 2π2, β � −α2/4, α/π2 + β/π4 < 1.

He established the following result for (1.1b).

Theorem 1.1. [1] Assume (H1) and (H2) hold. Then in each of the following cases:

(i) f 0 < π4 − απ2 − β , f ∞ > π4 − απ2 − β ,

(ii) f 0 > π4 − απ2 − β , f ∞ < π4 − απ2 − β ,

the BVP (1.1b) has at least one positive solution, where

f 0 = lim inf
u→0+ min

t∈[0,1]
(
f (t, u)/u

)
, f 0 = lim sup

u→0+
max

t∈[0,1]
(
f (t, u)/u

)
,

f ∞ = lim inf
u→+∞ min

t∈[0,1]
(
f (t, u)/u

)
, f ∞ = lim sup

u→+∞
max

t∈[0,1]
(
f (t, u)/u

)
.

In this paper, we are interested in the existence of a positive solution for the more general
fourth order m-point BVP,⎧⎪⎨

⎪⎩
u′′′′ + αu′′ − βu = f (t, u), 0 < t < 1,

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi),

u′′(0) = ∑m−2
i=1 aiu

′′(ξi), u′′(1) = ∑m−2
i=1 biu

′′(ξi),

(1.1)

where α,β ∈ R,ξi ∈ (0,1), ai, bi ∈ [0,∞) for i ∈ {1,2, . . . ,m − 2} are given constants. It is
clear that when ai = bi = 0, then (1.1) is reduced to (1.1b). To deal with (1.1), we give an
integral equation which is equivalent to (1.1). It is naturally expected that an integral equation
equivalent to⎧⎪⎨

⎪⎩
u′′′′ + αu′′ − βu = f (t, u), 0 < t < 1,

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi),

u′′(0) = ∑m−2
i=1 ciu

′′(ξi), u′′(1) = ∑m−2
i=1 diu

′′(ξi)

holds true. It at last fails when we attempt on it. Hence we just consider (1.1).
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By a positive solution of (1.1), we understand a function u which is positive on (0,1) and
satisfies the differential equation as well as the boundary conditions in (1.1).

The main tools of this paper are the following well-known fixed point index theorems.

Theorem 1.2. [10] Let E be a Banach space, and let P ⊂ E be a cone. Assume Ω(P ) is a
bounded open set in P . Suppose that A :Ω(P ) → P is a completely continuous operator. If
there exists ψ0 ∈ P \{θ} such that

ϕ − Aϕ �= μψ0, ∀ϕ ∈ ∂Ω(P ), μ � 0,

then the fixed point index i(A,Ω(P ),P ) = 0.

Theorem 1.3. [10] Let E be a Banach space, and let P ⊂ E be a cone. Assume Ω(P ) is a
bounded open set in P with θ ∈ Ω(P ). Suppose that A :Ω(P ) → P is a completely continuous
operator. If

Aψ �= μψ, ∀ψ ∈ ∂Ω(P ), μ � 1,

then the fixed point index i(A,Ω(P ),P ) = 1.

The paper is organized as follows. In Section 2, we give some preliminary lemmas. In Sec-
tion 3, we obtain an existence result for the BVP (1.1). Finally, in Section 4, we obtain a
uniqueness result of positive solution for a kind of special f .

2. Preliminary lemmas

To state and prove the main result of this paper, we need the following lemmas.

Lemma 2.1. Let (H2) holds. Then there exist unique ϕ1, ϕ2,ψ1,ψ2 satisfying{−ϕ′′
1 + λ1ϕ1 = 0,

ϕ1(0) = 0, ϕ1(1) = 1;
{−ϕ′′

2 + λ1ϕ2 = 0,

ϕ2(0) = 1, ϕ2(1) = 0;{−ψ ′′
1 + λ2ψ1 = 0,

ψ1(0) = 0, ψ1(1) = 1;
{−ψ ′′

2 + λ2ψ2 = 0,

ψ2(0) = 1, ψ2(1) = 0

respectively. And on [0,1], ϕ1, ϕ2,ψ1,ψ2 � 0, where λ1, λ2 are the roots for the polynomial
equation

λ2 + αλ − β = 0.

That is,

λ1 = −α + √
α2 + 4β

2
, λ2 = −α − √

α2 + 4β

2
.

Proof. Let ωi = √|λi | {i = 1,2}. We can get by computation that

– if λ1 > 0, ϕ1(t) = sinhω1t
sinhω1

, ϕ2(t) = sinhω1(1−t)
sinhω1

;

– if λ1 = 0, ϕ1(t) = t , ϕ2(t) = 1 − t ;

– if −π2 < λ1 < 0, ϕ1(t) = sinω1t
sinω1

, ϕ2(t) = sinω1(1−t)
sinω1

;

– if λ2 > 0, ψ1(t) = sinhω2t
sinhω2

, ψ2(t) = sinhω2(1−t)
sinhω2

;



40 H. Ma / J. Math. Anal. Appl. 321 (2006) 37–49
– if λ2 = 0, ψ1(t) = t , ψ2(t) = 1 − t ;
– if −π2 < λ2 < 0, ψ1(t) = sinω2t

sinω2
, ψ2(t) = sinω2(1−t)

sinω2
.

It is obvious that on [0,1], ϕ1, ϕ2,ψ1,ψ2 � 0, and ϕ′
1(0),ψ ′

1(0) > 0. �
In the rest of the paper, we make the following assumptions:

(A1)
∑m−2

i=1 aiϕ2(ξi) < 1,
∑m−2

i=1 biϕ1(ξi) < 1;
(A2)

∑m−2
i=1 aiψ2(ξi) < 1,

∑m−2
i=1 biψ1(ξi) < 1.

Notation. Set

ρ1 = ϕ′
1(0), ρ2 = ψ ′

1(0),

Δ1 =
∣∣∣∣

∑m−2
i=1 aiϕ1(ξi)

∑m−2
i=1 aiϕ2(ξi) − 1∑m−2

i=1 biϕ1(ξi) − 1
∑m−2

i=1 biϕ2(ξi)

∣∣∣∣ , (2.1)

Δ2 =
∣∣∣∣

∑m−2
i=1 aiψ1(ξi)

∑m−2
i=1 aiψ2(ξi) − 1∑m−2

i=1 biψ1(ξi) − 1
∑m−2

i=1 biψ2(ξi)

∣∣∣∣ . (2.2)

Lemma 2.2. Let (H2) holds. Assume that

(H3) Δ1 �= 0.

Then for any g ∈ C[0,1], the problem{−u′′ + λ1u = g(t),

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi)
(2.3)

has a unique solution

u(t) =
1∫

0

G1(t, s)g(s)ds + A(g)ϕ1(t) + B(g)ϕ2(t),

where

G1(t, s) = 1

ρ1

{
ϕ1(t)ϕ2(s), t � s,

ϕ1(s)ϕ2(t), s � t,
(2.4)

A(g) := 1

Δ1

∣∣∣∣−
∑m−2

i=1 ai

∫ 1
0 G1(ξi, s)g(s)ds

∑m−2
i=1 aiϕ2(ξi) − 1

−∑m−2
i=1 bi

∫ 1
0 G1(ξi, s)g(s)ds

∑m−2
i=1 biϕ2(ξi)

∣∣∣∣ (2.5)

and

B(g) := 1

Δ1

∣∣∣∣
∑m−2

i=1 aiϕ1(ξi) −∑m−2
i=1 ai

∫ 1
0 G1(ξi, s)g(s)ds∑m−2

i=1 biϕ1(ξi) − 1 −∑m−2
i=1 bi

∫ 1
0 G1(ξi, s)g(s)ds

∣∣∣∣ . (2.6)

Proof. The proof follows by routine calculations. �
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Next we assume

(H4) Δ1 < 0.

Lemma 2.3. Let (A1), (H2) and (H4) hold. Then for any g ∈ C[0,1] and g � 0, the unique
solution u of problem (2.3) satisfies

u(t) � 0, t ∈ [0,1].

Proof. Since Δ1 < 0 and G1 � 0 on [0,1] × [0,1],
A(g) � 0, B(g) � 0,

the result is obviously true. �
Remark 2.1. In Lemma 2.3, if we change (A1) to either

∑m−2
i=1 aiϕ2(ξi) > 1 or∑m−2

i=1 biϕ1(ξi) > 1, then for any g ∈ C[0,1] and g � 0, (2.3) has no positive solution.
Consider{−u′′(t) + λ1u(t) = g(t), 0 < t < 1,

u(0) = 0, u(1) = ∑m−2
i=1 biu(ξi),

where
∑m−2

i=1 biϕ1(ξi) > 1. Then

Δ1 =
m−2∑
i=1

biϕ1(ξi) − 1, B(g) = 0,

A(g) =
∑m−2

i=1 bi

∫ 1
0 G1(ξi, s)g(s)ds

1 − ∑m−2
i=1 biϕ1(ξi)

< 0.

So we have

u(t) =
m−2∑
i=1

bi

1∫
0

G1(t, s)g(s)ds + A(g)ϕ1(t).

Noticing that
∑m−2

i=1 biϕ1(ξi )

1−∑m−2
i=1 biϕ1(ξi )

< −1, we have

u(1) =
m−2∑
i=1

biu(ξi) =
m−2∑
i=1

bi

1∫
0

G1(ξi, s)g(s)ds + A(g)

m−2∑
i=1

biϕ1(ξi)

=
m−2∑
i=1

bi

1∫
0

G1(ξi, s)g(s)ds +
∑m−2

i=1 biϕ1(ξi)

1 − ∑m−2
i=1 biϕ1(ξi)

m−2∑
i=1

bi

1∫
0

G1(ξi, s)g(s)ds

<

m−2∑
i=1

bi

1∫
0

G1(ξi, s)g(s)ds −
m−2∑
i=1

bi

1∫
0

G1(ξi, s)g(s)ds

= 0.
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Similarly, we have

Lemma 2.4. Let (H2) holds. Assume that

(H5) Δ2 �= 0.

Then for any g ∈ C[0,1], the problem{−u′′ + λ2u = g(t),

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi)
(2.7)

has a unique solution

u(t) =
1∫

0

G2(t, s)g(s)ds + C(g)ψ1(t) + D(g)ψ2(t),

where

G2(t, s) = 1

ρ2

{
ψ1(t)ψ2(s), t � s,

ψ1(s)ψ2(t), s � t,
(2.8)

C(g) := 1

Δ2

∣∣∣∣−
∑m−2

i=1 ai

∫ 1
0 G2(ξi, s)g(s)ds

∑m−2
i=1 aiψ2(ξi) − 1

−∑m−2
i=1 bi

∫ 1
0 G2(ξi, s)g(s)ds

∑m−2
i=1 biψ2(ξi)

∣∣∣∣ , (2.9)

D(g) := 1

Δ2

∣∣∣∣
∑m−2

i=1 aiψ1(ξi) −∑m−2
i=1 ai

∫ 1
0 G2(ξi, s)g(s)ds∑m−2

i=1 biψ1(ξi) − 1 −∑m−2
i=1 bi

∫ 1
0 G2(ξi, s)g(s)ds

∣∣∣∣ . (2.10)

In the following, we need the assumption:

(H6) Δ2 < 0.

Lemma 2.5. Let (A2), (H2) and (H6) hold. Then for any g ∈ C[0,1] and g � 0, the unique
solution u of problem (2.7) satisfies

u(t) � 0, t ∈ [0,1].

Remark 2.2. In Lemma 2.5, if we change (A2) to either
∑m−2

i=1 aiψ2(ξi) > 1 or∑m−2
i=1 biψ1(ξi) > 1, then for any g ∈ C[0,1] and g � 0, (2.7) has no positive solution.

Now notice that

u′′′′ + αu′′ − βu =
(

− d2

dt2
+ λ1

)(
− d2

dt2
+ λ2

)
u,

so we can easily get

Lemma 2.6. Let (H2), (H4) and (H6) hold. Then for any g ∈ C[0,1], the problem⎧⎪⎨
⎪⎩

u′′′′ + αu′′ − βu = g(t),

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi),

u′′(0) = ∑m−2
a u′′(ξ ), u′′(1) = ∑m−2

b u′′(ξ ),

(2.11)
i=1 i i i=1 i i
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has a unique solution

u(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)g(s)ds dτ +
1∫

0

G2(t, τ )A(g)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(g)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t), (2.12)

where G1,G2,A(g),B(g),C(g),D(g) are defined as in (2.4), (2.8), (2.5), (2.6), (2.9), (2.10)
and

h(t) =
1∫

0

G1(t, s)g(s)ds + A(g)ϕ1(t) + B(g)ϕ2(t).

In addition, if (A1), (A2) hold and g � 0, then

u(t) � 0, t ∈ [0,1].

Remark 2.3. In Lemma 2.6, if neither (A1) nor (A2) holds true, then (2.11) has no positive
solution.

Lemma 2.7. For any g ∈ C[0,1] and g � 0, A(g), B(g), C(g), D(g) are all linear functionals
and nondecreasing in g.

Let E = C[0,1] and P = {u ∈ E: u � 0}. It is obvious that P is a cone in E. Define
T :E → E,

T :T u(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)f
(
s, u(s)

)
ds dτ +

1∫
0

G2(t, τ )A(f )ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(f )ϕ2(τ )dτ + C(e)ψ1(t) + D(e)ψ2(t), (2.13)

where

e(t) =
1∫

0

G1(t, s)f
(
s, u(s)

)
ds + A(f )ϕ1(t) + B(f )ϕ2(t).

By Lemma 2.6, we know that u is the fixed point of T in P is equivalent to u is the positive
solution of (1.1). Define L :E → E,

L :Lu(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)u(s)ds dτ +
1∫

0

G2(t, τ )A(u)ϕ1(τ )dτ

+
1∫
G2(t, τ )B(u)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t), (2.14)
0
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where

h(t) =
1∫

0

G1(t, s)u(s)ds + A(u)ϕ1(t) + B(u)ϕ2(t).

Lemma 2.8. Let (A1), (A2), (H1), (H2), (H4) and (H6) hold. Then T :P → P is completely
continuous.

Lemma 2.9. Let (A1), (A2), (H2), (H4) and (H6) hold. Then L :P → P is completely continu-
ous.

Notation.

f 0 = lim inf
u→0+ min

t∈[0,1]
(
f (t, u)/u

)
, f̄0 = lim sup

u→0+
max

t∈[0,1]
(
f (t, u)/u

)
,

f ∞ = lim inf
u→+∞ min

t∈[0,1]
(
f (t, u)/u

)
, f̄∞ = lim sup

u→+∞
max

t∈[0,1]
(
f (t, u)/u

)
.

Lemma 2.10 (Krein–Rutmann). [11] Let L :E → E be a continuous linear operator and
L(P ) ⊂ P . If there exist ψ ∈ E \ (−P) and a positive constant c such that cLψ � ψ , then the
spectral radius r(L) �= 0 and T have a positive eigenfunction corresponding to its first eigen-
value λ∗ = r(L)−1.

Lemma 2.11. If (A1), (A2), (H2), (H4) and (H6) are satisfied, then for the operator T defined
by (2.13), the spectral radius r(L) �= 0 and L have a positive eigenfunction corresponding to its
first eigenvalue λ∗ = r(L)−1.

Proof. It is easy to see that there is t1 ∈ (0,1) such that G1(t1, t1)G2(t1, t1) > 0. Thus there
exists [α,β] ⊂ (0,1) such that t1 ∈ (α,β) and

G2(t, τ )G1(τ, s) > 0, t, τ, s ∈ [α,β].
Take u ∈ E such that u(t) � 0, ∀x ∈ [0,1], u(t1) > 0 and u(t) = 0, ∀t /∈ [α,β]. Then for
t ∈ [α,β],

Lu(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)u(s)ds dτ +
1∫

0

G2(t, τ )A(u)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(u)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t)

�
β∫

α

β∫
α

G2(t, τ )G1(τ, s)u(s)ds dτ +
β∫

α

G2(t, τ )A(u)ϕ1(τ )dτ

+
β∫

α

G2(t, τ )B(u)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t)

> 0.
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So there exists a constant c > 0 such that t ∈ [0,1], c(Lu)(t) � u(t). From Lemma 2.10, we
know that the spectral radius r(L) �= 0 and L have a positive eigenfunction corresponding to its
first eigenvalue λ∗ = r(T )−1. �
3. Existence result for the BVP (1.1)

In this section, we obtain the following existence result for a positive solution of BVP (1.1).
It is our main result.

Theorem 3.1. Suppose that the conditions (A1), (A2), (H1), (H2), (H4) and (H6) are satisfied,
and

f 0 > λ∗, f ∞ < λ∗,

where λ∗ is the first eigenvalue of L defined by (2.14). Then the m-point boundary value problem
(1.1) has at least one positive solution.

Proof. From f 0 > λ∗ we know that there exists r1 > 0 such that

f (t, u) � λ∗u, ∀t ∈ [0,1], u ∈ [0, r1]. (3.1)

Let u∗ be a positive eigenfunction of L corresponding to λ∗, thus u∗ = λ∗Lu∗.
For every u ∈ ∂Br1 ∩ P , it follows from (3.1) that

T u(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)f
(
s, u(s)

)
ds dτ +

1∫
0

G2(t, τ )A(f )ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(f )ϕ2(τ )dτ + C(e)ψ1(t) + D(e)ψ2(t)

� λ∗
1∫

0

1∫
0

G2(t, τ )G1(τ, s)u(s)ds dτ +
1∫

0

G2(t, τ )A(u)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(u)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t)

= λ∗(Lu)(t), t ∈ [0,1]. (3.2)

We may suppose that T has no fixed point on ∂Br1 ∩ P (otherwise, the proof is complete).
Now we show that

u − T u �= μu∗, ∀u ∈ ∂Br1 ∩ P, μ � 0. (3.3)

If otherwise, there exist u1 ∈ ∂Br1 ∩ P and τ0 � 0 such that

u1 − T u1 = τ0u
∗,

hence τ0 > 0 and

u1 = T u1 + τ0u
∗ � τ0u

∗.
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Put

τ ∗ = sup{τ : u1 � τu∗}.
It is easy to show that τ ∗ � τ0 > 0 and u1 � τ ∗u∗. We find from L(P ) ⊂ P that

λ∗Lu1 � τ ∗λ∗Lu∗ = τ ∗ϕ∗.
Therefore by (3.2),

u1 = T u1 + τ0u
∗ � λ∗Lu1 + τ0u

∗ � (τ ∗ + τ0)u
∗,

which contradicts the definition of τ ∗. Hence (3.3) is true and we have from Theorem 1.2 that

i(T ,Br1 ∩ P,P ) = 0. (3.4)

From f ∞ < λ∗ we know that there exist 0 < σ < 1 and r2 > r1 such that

f (t, u) � σλ∗u, ∀t ∈ [0,1], u ∈ [r2,+∞).

Let L1u = σλ∗Lu, u ∈ E. Then L1 :E → E is a bounded linear operator and L1(P ) ⊂ P .
Let

M∗ = max
u∈Br2 ∩P, t∈[0,1]

1∫
0

1∫
0

G2(t, τ )G1(τ, s)f
(
s, u(s)

)
ds dτ

+
1∫

0

G2(t, τ )A(f )ϕ1(τ )dτ +
1∫

0

G2(t, τ )B(f )ϕ2(τ )dτ

+ C(e)ψ1(t) + D(e)ψ2(t).

It is clear that M∗ < +∞. Let

W = {u ∈ P : u = μT u, 0 � μ � 1}.
In the following, we prove that W is bounded.
For any u ∈ W , set ũ(t) = min{u(t), r2} and denote s(u) = {t ∈ [0,1]: u(t) > r2}, f̃ (t) =

f (t, ũ(t)). Then

u(t) = μ(T u)(t) � (T u)(t)

=
1∫

0

∫
s(u)

G2(t, τ )G1(τ, s)f
(
s, u(s)

)
ds dτ +

1∫
0

G2(t, τ )As(u)(f )ϕ1(τ )dτ

+
1∫

0

G2(t, τ )Bs(u)(f )ϕ2(τ )dτ + C(es(u))ψ1(t) + D(es(u))ψ2(t)

+
1∫

0

∫
[0,1]\s(u)

G2(t, τ )G1(τ, s)f
(
s, u(s)

)
ds dτ

+
1∫
G2(t, τ )A[0,1]\s(u)(f )ϕ1(τ )dτ +

1∫
G2(t, τ )B[0,1]\s(u)(f )ϕ2(τ )dτ
0 0
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+ C(e[0,1]\s(u))ψ1(t) + D(e[0,1]\s(u))ψ2(t)

� σλ∗

[ 1∫
0

1∫
0

G2(t, τ )G1(τ, s)u(s)ds dτ +
1∫

0

G2(t, τ )A(u)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(u)ϕ2(τ )dτ + C(h)ψ1(t) + D(h)ψ2(t)

]

+
[ 1∫

0

1∫
0

G2(t, τ )G1(τ, s)f
(
s, ũ(s)

)
ds dτ +

1∫
0

G2(t, τ )A(f̃ )ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(f̃ )ϕ2(τ )dτ + C(f̃ )ψ1(t) + D(f̃ )ψ2(t)

]

� (L1u)(t) + M∗, t ∈ [0,1],
where

As(u)(f ) := 1

Δ1

∣∣∣∣−
∑m−2

i=1 ai

∫
s(u)

G1(ξi, s)f (s, u(s))ds
∑m−2

i=1 aiϕ2(ξi) − 1

−∑m−2
i=1 bi

∫
s(u)

G1(ξi, s)f (s, u(s))ds
∑m−2

i=1 biϕ2(ξi)

∣∣∣∣ ,
and Bs(u),A[0,1]\s(u),B[0,1]\s(u) have the similar meaning and

es(u)(t) =
∫

s(u)

G1(t, s)f
(
s, u(s)

)
ds + As(u)(f )ϕ1(t) + Bs(u)(f )ϕ2(t).

Thus ((I − L1)u)(t) � M∗, t ∈ [0,1]. Since λ∗ is the first eigenvalue of L and 0 < σ < 1, the
first eigenvalue of L1, (r(L1))

−1 > 1. Therefore, the inverse operator (I − L1)
−1 exists and

(I − L1)
−1 = I + L1 + L2

1 + · · · + Ln
1 + · · · .

It follows from L1(P ) ⊂ P that (I − L1)
−1P ⊂ P . So we know that u(t) � (I − L1)

−1M∗,
t ∈ [0,1] and W is bounded. We denote by supW the bound of W .

Select r3 > max{r2, supW }. Let h = I −μT be a homotopy. Then from the homotopy invari-
ance property of the fixed point index combining Theorem 1.3, we have

i(T ,Br3 ∩ P,P ) = i(θ,Br3 ∩ P,P ) = 1. (3.5)

By (3.4) and (3.5), we have that

i
(
T , (Br3 ∩ P) \ (Br1 ∩ P),P

) = i(T ,Br3 ∩ P,P ) − i(T ,Br1 ∩ P,P ) = 1.

Then T has at least one fixed point on (Br3 ∩P)\ (Br1 ∩P), which means that m-point boundary
value problem (1.1) has at least one positive solution. �
Remark 3.1. λ∗ = π4 − απ2 − β when ai = bi = 0 (i = 1,2, . . .). In such a case, Theorem 2.1
is reduced to the second part of Theorem 1.1 in [1].

Remark 3.2. As for another case: f 0 < λ∗ and f ∞ > λ∗, we still do not know whether a similar
result holds.
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Remark 3.3. Since λ∗ is the first eigenvalue of the linear problem corresponding to (1.1), the
positive result cannot be guaranteed when the strict inequality is weakened to nonstrict inequality.
So our result is optimal.

4. Uniqueness result

In this section, we establish the uniqueness result for the positive solution of⎧⎪⎨
⎪⎩

u′′′′ + αu′′ − βu = h(t)ur , 0 < t < 1,

u(0) = ∑m−2
i=1 aiu(ξi), u(1) = ∑m−2

i=1 biu(ξi),

u′′(0) = ∑m−2
i=1 aiu

′′(ξi), u′′(1) = ∑m−2
i=1 biu

′′(ξi),

(4.1)

where r ∈ (0,1), α,β ∈ R, ξi ∈ (0,1), ai, bi ∈ [0,∞) for i ∈ {1,2, . . . ,m − 2} are given con-
stants.

Theorem 4.1. Suppose that (A1), (A2), (H1), (H2), (H4) and (H6) are satisfied, then (4.1) has at
most one positive solution.

Proof. Suppose u1, u2 are two positive solutions of (4.1). Set

Λ = {
λ ∈ (0,∞): u1(t) − λu2(t) � 0, t ∈ [0,1]}. (4.2)

It is obvious that Λ �= Φ. Let

λ∗ = supΛ. (4.3)

We claim that

λ∗ � 1.

In fact, if λ∗ < 1, it follows from (4.2) that u1(t) − λ∗u2(t) � 0, t ∈ [0,1]. So we have

u1(t) =
1∫

0

1∫
0

G2(t, τ )G1(τ, s)h(s)ur
1(s)ds dτ +

1∫
0

G2(t, τ )A(f1)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )B(f1)ϕ2(τ )dτ + C(e1)ψ1(t) + D(e1)ψ2(t)

�
1∫

0

1∫
0

G2(t, τ )G1(τ, s)h(s)(λ∗u2)
r (s)ds dτ +

1∫
0

G2(t, τ )A(f∗)ϕ1(τ )dτ

+ G2(t, τ )B(f∗)ϕ2(τ )dτ + C(e∗)ψ1(t) + D(e∗)ψ2(t)

= λ∗r

[ 1∫
0

1∫
0

G2(t, τ )G1(τ, s)h(s)ur
2(s)ds dτ +

1∫
0

G2(t, τ )A(f2)ϕ1(τ )dτ

+
1∫

0

G2(t, τ )A(f2)ϕ1(τ )dτ + C(e2) + D(e2)

]

= λ∗r
u2(t),
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where fi(t, u) = h(t)ur
i (i = 1,2), f∗(t, u) = h(t)(λ∗u2)

r ,

ei(t) =
1∫

0

G1(t, s)fi

(
t, u(s)

)
ds + A(fi)ϕ1(t) + B(fi)ϕ2(t) (i = 1,2),

e∗(t) =
1∫

0

G1(t, s)f∗
(
t, u(s)

)
ds + A(f∗)ϕ1(t) + B(f∗)ϕ2(t).

Hence λ∗r ∈ Λ. Noticing that 0 < r < 1, we know λ∗r > λ∗, which contradicts (4.3). Therefore

u1(t) � λ∗u2(t) � u2(t), t ∈ [0,1].
We can have by a similar way that

u2(t) � u1(t), t ∈ [0,1].
We conclude at last that

u1(t) ≡ u2(t), t ∈ [0,1]. �
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