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Abstract

In this paper, we introduce and study a new system of generalized mixed quasi-variational inclusions
with (H,η)-monotone operators. We prove the convergence of a new iterative algorithm for this system of
generalized mixed quasi-variational inclusions. The results in this paper extend and improve some known
results in the literature.
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1. Introduction

Variational inclusion problems are among the most interesting and intensively studied classes
of mathematical problems and have wide applications in the fields of optimization and control,
economics and transportation equilibrium, engineering science. For the past years, many exis-
tence results and iterative algorithms for various variational inequality and variational inclusion
problems have been studied. For details, please see [1–45] and the references therein.
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Recently, some new and interesting problems, which are called to be system of varia-
tional inequality problems were introduced and studied. Pang [27], Cohen and Chaplais [28],
Bianchi [29], and Ansari and Yao [15] considered a system of scalar variational inequalities
and Pang showed that the traffic equilibrium problem, the spatial equilibrium problem, the Nash
equilibrium, and the general equilibrium programming problem can be modeled as a system of
variational inequalities. Ansari et al. [30] introduced and studied a system of vector equilibrium
problems and a system of vector variational inequalities by a fixed point theorem. Allevi et al.
[31] considered a system of generalized vector variational inequalities and established some
existence results with relative pseudomonotonicity. Kassay and Kolumbán [16] introduced a
system of variational inequalities and proved an existence theorem by the Ky Fan lemma. Kas-
say et al. [17] studied Minty and Stampacchia variational inequality systems with the help of
the Kakutani–Fan–Glicksberg fixed point theorem. Peng and Yang [18,19] introduced a system
of quasi-variational inequality problems and proved its existence theorem by maximal element
theorems. Verma [20–24] introduced and studied some systems of variational inequalities and
developed some iterative algorithms for approximating the solutions of system of variational in-
equalities in Hilbert spaces. Kim and Kim [25] introduced a new system of generalized nonlinear
quasi-variational inequalities and obtained some existence and uniqueness results of solution for
this system of generalized nonlinear quasi-variational inequalities in Hilbert spaces. Cho et al.
[26] introduced and studied a new system of nonlinear variational inequalities in Hilbert spaces.
They proved some existence and uniqueness theorems of solutions for the system of nonlinear
variational inequalities.

As generalizations of system of variational inequalities, Agarwal et al. [32] introduced a sys-
tem of generalized nonlinear mixed quasi-variational inclusions and investigated the sensitivity
analysis of solutions for this system of generalized nonlinear mixed quasi-variational inclusions
in Hilbert spaces. Kazmi and Bhat [33] introduced a system of nonlinear variational-like inclu-
sions and gave an iterative algorithm for finding its approximate solution. Fang and Huang [34],
Verma [35], and Fang et al. [36] introduced and studied a new system of variational inclusions
involving H -monotone operators, A-monotone operators, and (H,η)-monotone operators, re-
spectively. Yan et al. [37] introduced and studied a system of set-valued variational inclusions
which is more general than the model in [34].

Inspired and motivated by the results in [15–37], the purpose of this paper is to introduce
and study a new system of generalized mixed quasi-variational inclusions with (H,η)-monotone
operators, which contains the mathematical models in [20–26,34,36,37] as special cases. By use
the resolvent technique for the (H,η)-monotone operators, we prove the existence of solutions
for this system of generalized mixed quasi-variational inclusions. We also prove the convergence
of a new iterative algorithm approximating the solution for this system of generalized mixed
quasi-variational inclusions. The result in this paper extends and improves some results in [20–
26,34,36,37].

2. Preliminaries

We suppose that H is a real Hilbert space with norm and inner product denoted by ‖ · ‖ and
〈·,·〉, respectively. Let CB(H) denote the families of all nonempty closed bounded subsets of H
and D̃(·,·) denote the Hausdorff metric on CB(H) defined by

D̃(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
, ∀A,B ∈ CB(H),

where d(a,B) = infb∈B ‖a − b‖, d(A,b) = infa∈A ‖a − b‖.
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Definition 2.1. [36,38] Let η :H ×H → H and H :H → H be two single-valued operators and
M :H → 2H be a set-valued operator. M is said to be

(i) η-monotone if〈
x − y,η(u, v)

〉
� 0, ∀u,v ∈H, x ∈ Mu, y ∈ Mv.

(ii) (H,η)-monotone if M is η-monotone and (H + λM)(H) = H for all λ > 0.

Remark 2.1. If η(u, v) = u − v, then the definition of η-monotonicity is that of monotonicity
and the definition of (H,η)-monotonicity becomes that of H -monotonicity in [1]. It is easy to
know that if H = I (the identity map on H), then the definition of (I, η)-monotone operators
is that of maximal η-monotone operators and the definition of I -monotone operators is that of
maximal monotone operators. Hence, the class of (H,η)-monotone operators provides a unifying
frameworks for classes of maximal monotone operators, maximal η-monotone operators, H -
monotone operators (for more details, please see [1,34,36–38]).

Definition 2.2. [1,38] Let H,g :H → H, η :H ×H → H be three single-valued operators. g is
said to be

(i) monotone if

〈gu − gv,u − v〉 � 0, ∀u,v ∈H;
(ii) strictly monotone if g is monotone and

〈gu − gv,u − v〉 = 0 if and only if u = v;
(iii) strongly monotone if there exists a constant r > 0 such that

〈gu − gv,u − v〉 � r‖u − v‖2, ∀u,v ∈ H;
(iv) Lipschitz continuous if there exists a constant s > 0 such that∥∥g(u) − g(v)

∥∥ � s‖u − v‖, ∀u,v ∈ H;
(v) strongly monotone with respect to H if there exists a constant γ > 0 such that

〈gu − gv,Hu − Hv〉 � γ ‖u − v‖2, u, v ∈H;
(vi) η-monotone if〈

gu − gv,η(u, v)
〉
� 0, ∀u,v ∈H;

(vii) strictly η-monotone if g is η-monotone and〈
gu − gv,η(u, v)

〉 = 0 if and only if u = v;
(viii) strongly η-monotone if there exists a constant r > 0 such that〈

gu − gv,η(u, v)
〉
� r‖u − v‖2, ∀u,v ∈H.

Remark 2.2. Example 1.1 in [1] shows that the strongly monotonicity with respect to H of g is
a generalization of the strongly monotonicity of g.
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Definition 2.3. [38] Let η :H×H →H be a single-valued operator, then for all u,v ∈ H, η(·,·)
is said to be

(i) monotone if〈
η(u, v), u − v

〉
� 0;

(ii) strongly monotone, if there exists a constant δ > 0 such that〈
η(u, v), u − v

〉
� δ‖u − v‖;

(iii) Lipschitz continuous, if there exists a constant τ > 0 such that

η(u, v) � τ‖u − v‖.

Definition 2.4. [39] Let M :H → CB(H) be a set-valued mapping and N :H × H → H be a
single-valued mapping.

(i) M is said to be D̃-Lipschitz continuous if there exists a constant ξ > 0 such that

D̃
(
M(u),M(v)

)
� ξ‖u − v‖, ∀u,v ∈ H.

(ii) N(·,·) is said to be Lipschitz continuous in the first argument if there exists a constant ξ > 0
such that∥∥N(u, ·) − N(v, ·)∥∥ � ξ‖u − v‖, ∀u,v ∈H.

(iii) N(·,·) is said to be monotone in the first argument if〈
N(u, ·) − N(v, ·), u − v

〉
� 0, ∀u,v ∈H.

(iv) N(·,·) is said to be strongly monotone in the first argument if there exists a constant α > 0
such that〈

N(u, ·) − N(v, ·), u − v
〉
� α‖u − v‖2, ∀u,v ∈ H.

Definition 2.5. Let g :H →H and N :H×H →H be two single-valued mappings.

(i) N(·,·) is said to be monotone with respect to g in the first argument if〈
N(u, ·) − N(v, ·), gu − gv

〉
� 0, ∀u,v ∈H.

(ii) N(·,·) is said to be strongly monotone with respect to g in the first argument if there exists a
constant β > 0 such that〈

N(u, ·) − N(v, ·), gu − gv
〉
� β‖u − v‖2, ∀u,v ∈H.

In a similar way, we can define the Lipschitz continuity and the strong monotonicity
(monotonicity) of N(·,·) with respect to g in the second argument.

Definition 2.6. [36] Let η :H × H → H be a single-valued operator, H :H → H be a strongly
η-monotone operator and M :H → 2H be an (H,η)-monotone operator. Then the resolvent op-
erator R

H,η
M,λ :H → H is defined by

R
H,η
M,λ(x) = (H + λM)−1(x), ∀x ∈H.
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Lemma 2.1. [36] Let η :H×H → H be a single-valued Lipschitz continuous operator with con-
stant τ , H :H → H be a strongly η-monotone operator with constant γ > 0 and M :H → 2H

be an (H,η)-monotone operator. Then, the resolvent operator R
H,η
M,λ :H → H is Lipschitz con-

tinuous with constant τ/γ , i.e.,

∥∥R
H,η
M,λ(x) − R

H,η
M,λ(y)

∥∥ � τ

γ
‖x − y‖, ∀x, y ∈ H.

3. A system of generalized mixed quasi-variational inclusions and an iterative algorithm

In this section, we will introduce a new system of generalized mixed quasi-variational in-
clusions with (H,η)-monotone operators and construct a new iterative algorithm for solving
this system of generalized mixed quasi-variational inclusions in Hilbert spaces. In what fol-
lows, unless other specified, we always suppose that H1 and H2 are two Hilbert spaces,
H1, g1 :H1 → H1, H2, g2 :H2 → H2, η1 :H1 × H1 → H1, η2 :H2 × H2 → H2, F,P :H1 ×
H2 → H1, G,Q :H1 × H2 → H2 are all single-valued mappings and A,C :H1 → CB(H1),
B,D :H2 → CB(H2) are four set-valued mappings. Let M :H1 → 2H1 be an (H1, η1)-
monotone operator and N :H2 → 2H2 be an (H2, η2)-monotone operator. We consider the
following problem of finding (x, y,u, v,w, z) such that (x, y) ∈ H1 ×H2, u ∈ A(x), v ∈ B(y),
w ∈ C(x), z ∈ D(y), and{

0 ∈ F(x, y) + P(u, v) + M(g1(x)),

0 ∈ G(x,y) + Q(w,z) + N(g2(y)).
(3.1)

The problem (3.1) is called a system of generalized mixed quasi-variational inclusions.
Below are some special cases of problem (3.1).

(i) If g1 ≡ I1 (the identity map on H1), g2 ≡ I2 (the identity map on H2), P ≡ 0 and Q ≡ 0,
then problem (3.1) reduces to the system of variational inclusions with (H,η)-monotone
operators, which is to find (x, y) ∈H1 ×H2 such that

{
0 ∈ F(x, y) + M(x),

0 ∈ G(x,y) + N(y).
(3.2)

Problem (3.2) was introduced and studied by Fang et al. [36]. From Remark 2.1, it is easy
know that problem (3.2) contains the system of variational inclusions with H -monotone op-
erators in [34] as a special case. If M and N are A-monotone and B-monotone, respectively,
then problem (3.2) becomes the problem in [35]. It is easy to know that both the system of
nonlinear variational-like inequalities and the system of nonlinear variational inequalities in
[36] are special cases of problem (3.2).

(ii) If g1 ≡ I1, g2 ≡ I2, F ≡ 0 and G ≡ 0, then problem (3.1) reduces to the system of set-valued
variational inclusions with (H,η)-monotone operators, which is to find (x, y,u, v,w, z)

such that (x, y) ∈H1 ×H2, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y) and
{

0 ∈ P(u, v) + M(x),

0 ∈ Q(w,z) + N(y).
(3.3)

If η1(x1, y1) = x1 − y1 for all x1, y1 ∈ H1, η2(x2, y2) = x2 − y2 for all x2, y2 ∈ H2, A ≡ I1

and D ≡ I2, then problem (3.3) becomes the following system of set-valued variational
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inclusions with H -monotone operators, which is to find (x, y,u,w) such that (x, y) ∈
H1 ×H2, v ∈ B(y), w ∈ C(x) and{

0 ∈ P(x, v) + M(x),

0 ∈ Q(w,y) + N(y).
(3.4)

Problem (3.4) was introduced and studied by Yan et al. [37]. If B ≡ I2 and C ≡ I1, then
problem (3.4) becomes the system of variational inclusions with H -monotone operators
considered by Fang and Huang [34]. From [37], we know that the mathematical models
of system of variational inequalities in [21–26] are special cases of problem (3.4).

Lemma 3.1. Let η1 :H1 × H1 → H1, η2 :H2 × H2 → H2 be two single-valued opera-
tors, H1 :H1 → H1 be a strictly η1-monotone operator and H2 :H2 → H2 be a strictly η2-
monotone operator and M :H1 → 2H1 be an (H1, η1)-monotone operator, N :H2 → 2H2 be an
(H2, η2)-monotone operator. Then (x, y,u, v,w, z) with (x, y) ∈ H1 ×H2, u ∈ A(x), v ∈ B(y),
w ∈ C(x), z ∈ D(y) is a solution of the problem (3.1) if and only if

g1(x) = R
H1,η1
M,λ

(
H1

(
g1(x)

) − λF(x, y) − λP (u, v)
)
,

g2(y) = R
H2,η2
N,ρ

(
H2

(
g2(y)

) − ρG(x, y) − ρQ(w,z)
)
,

where R
H1,η1
M,λ = (H1 + λM)−1, R

H2,η2
N,ρ = (H2 + ρN)−1, λ > 0 and ρ > 0 are constants.

Proof. The fact directly follows from Definition 2.6. �
For any given x0 ∈ H1, y0 ∈ H2, take u0 ∈ A(x0), v0 ∈ B(y0), w0 ∈ C(x0) and z0 ∈ D(y0). It

follows from Lemma 3.1 that there exist x1 ∈ H1 and y1 ∈ H2, such that

x1 = x0 − g1(x0) + R
H1,η1
M,λ

(
H1

(
g1(x0)

) − λF(x0, y0) − λP (u0, v0)
)
,

y1 = y0 − g2(y0) + R
H2,η2
N,ρ

(
H2

(
g2(y0)

) − ρG(x0, y0) − ρQ(w0, z0)
)
.

Since u0 ∈ A(x0), v0 ∈ B(y0), w0 ∈ C(x0) and z0 ∈ D(y0), by Nadler’s theorem [46], there
exist u1 ∈ A(x1), v1 ∈ B(y1), w1 ∈ C(x1) and z1 ∈ D(y1), such that

‖u1 − u0‖ � (1 + 1)D̃
(
A(x1),A(x0)

)
,

‖v1 − v0‖ � (1 + 1)D̃
(
B(y1),B(y0)

)
,

‖w1 − w0‖ � (1 + 1)D̃
(
C(x1),C(x0)

)
,

‖z1 − z0‖ � (1 + 1)D̃
(
D(y1),D(y0)

)
.

It follows from Lemma 3.1 that there exist x2 ∈H1 and y2 ∈H2, such that

x2 = x1 − g1(x1) + R
H1,η1
M,λ

(
H1

(
g1(x1)

) − λF(x1, y1) − λP (u1, v1)
)
,

y2 = y1 − g2(y1) + R
H2,η2
N,ρ

(
H2

(
g2(y1)

) − ρG(x1, y1) − ρQ(w1, z1)
)
.

Again by Nadler’s theorem, there exist u2 ∈ A(x2), v2 ∈ B(y2), w2 ∈ C(x2) and z2 ∈ D(y2),
such that
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‖u2 − u1‖ �
(

1 + 1

2

)
D̃

(
A(x2),A(x1)

)
,

‖v2 − v1‖ �
(

1 + 1

2

)
D̃

(
B(y2),B(y1)

)
,

‖w2 − w1‖ �
(

1 + 1

2

)
D̃

(
C(x2),C(x1)

)
,

‖z2 − z1‖ �
(

1 + 1

2

)
D̃

(
D(y2),D(y1)

)
.

By induction, we can obtain the following iterative algorithm for solving problem (3.1) as
follows.

Algorithm 3.1. For any given x0 ∈ H1 and y0 ∈ H2, we can compute the sequences {xn}, {yn},
{un}, {vn}, {wn} and {zn} by iterative schemes such that

xn+1 = xn − g1(xn) + R
H1,η1
M,λ

(
H1

(
g1(xn)

) − λF(xn, yn) − λP (un, vn)
)
, (3.5)

yn+1 = yn − g2(yn) + R
H2,η2
N,ρ

(
H2

(
g2(yn)

) − ρG(xn, yn) − ρQ(wn, zn)
)
, (3.6)

un ∈ A(xn), ‖un+1 − un‖ �
(

1 + 1

n + 1

)
D̃

(
A(xn+1),A(xn)

)
, (3.7)

vn ∈ B(yn), ‖vn+1 − vn‖ �
(

1 + 1

n + 1

)
D̃

(
B(yn+1),B(yn)

)
, (3.8)

wn ∈ C(xn), ‖wn+1 − wn‖ �
(

1 + 1

n + 1

)
D̃

(
C(xn+1),C(xn)

)
, (3.9)

zn ∈ D(yn), ‖zn+1 − zn‖ �
(

1 + 1

n + 1

)
D̃

(
D(yn+1),D(yn)

)
(3.10)

for all n = 0,1,2, . . . .

4. Existence of solutions and convergence of an iterative algorithm

In this section, we will prove the existence of solutions for problem (3.1) and the convergence
of iterative sequences generated by Algorithm 3.1.

Theorem 4.1. For i = 1,2, let ηi :Hi × Hi → Hi be Lipshitz continuous with constant τi ,
Hi :Hi → Hi be strongly ηi -monotone and Lipschitz continuous with constant γi and δi , re-
spectively, gi :Hi → Hi be strongly monotone and Lipschitz continuous with constant ri and si ,
respectively. Let A,C :H1 → CB(H1), B,D :H2 → CB(H2) be D̃-Lipschitz continuous with
constants lA > 0, lC > 0, lB > 0 and lD > 0, respectively. Let F :H1 × H2 → H1 be strongly
monotone with respect to ĝ1 in the first argument with constant α1 > 0, Lipschitz continuous
in the first argument with constant β1 > 0, and Lipschitz continuous in the second argument
with constant ξ1 > 0, respectively, where ĝ1 :H1 → H1 is defined by ĝ1(x) = H1 ◦ g1(x) =
H1(g1(x)), ∀x ∈ H1. Let G :H1 × H2 → H2 be strongly monotone with respect to ĝ2 in the
second argument with constant α2 > 0, Lipschitz continuous in the second argument with con-
stant β2 > 0, and Lipschitz continuous in the first argument with constant ξ2 > 0, respectively,
where ĝ2 :H2 → H2 is defined by ĝ2(y) = H2 ◦ g2(y) = H2(g2(y)), ∀y ∈ H2. Assume that
P :H1 × H2 → H1 is Lipschitz continuous in the first and second argument with constants
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μ1 > 0 and ν1, respectively, Q :H1 × H2 → H2 is Lipschitz continuous in the first and second
argument with constants μ2 > 0 and ν2, respectively, M :H1 → 2H1 is an (H1, η1)-monotone
operator and N :H2 → 2H2 is an (H2, η2)-monotone operator.

If there exist constants λ > 0 and ρ > 0 such that⎧⎪⎨
⎪⎩

√
1 + 2r1 + s2

1 + τ1
γ1

(√
δ2

1s2
1 − 2λα1 + λ2β2

1 + λμ1lA

)
+ ρ(ξ2 + μ2lC) τ2

γ2
< 1,

√
1 + 2r2 + s2

2 + τ2
γ2

(√
δ2

2s2
2 − 2ρα2 + ρ2β2

2 + ρν2lD

)
+ λ(ξ1 + ν1lB) τ1

γ1
< 1.

(4.1)

Then problem (3.1) admits a solution (x, y,u, v,w, z) and sequences {xn}, {yn}, {un}, {vn},
{wn}, {zn} converge to x, y,u, v,w, z, respectively, where {xn}, {yn}, {un}, {vn}, {wn}, {zn} are
the sequences generated by Algorithm 3.1.

Proof. Let an ≡ H1(g1(xn)) − λF(xn, yn) − λP (un, vn).
By (3.5) and Lemma 2.1, we have

‖xn+1 − xn‖ = ∥∥xn − g1(xn) + R
H1,η1
M,λ

(
H1

(
g1(xn)

) − λF(xn, yn) − λP (un, vn)
)

− [
xn−1 − g1(xn−1) + R

H1,η1
M,λ

(
H1

(
g1(xn−1)

) − λF(xn−1, yn−1)

− λP (un−1, vn−1)
)]∥∥

�
∥∥xn − xn−1 − [

g1(xn) − g1(xn−1)
]∥∥ + ∥∥R

H1,η1
M,λ (an) − R

H1,η1
M,λ (an−1)

∥∥
�

∥∥xn − xn−1 − [
g1(xn) − g1(xn−1)

]∥∥ + τ1

γ1
‖an − an−1‖. (4.2)

Since g1 :H1 → H1 is strongly monotone and Lipschitz continuous with constant r1 and s1,
respectively, we have∥∥xn − xn−1 − [

g1(xn) − g1(xn−1)
]∥∥2

� ‖xn − xn−1‖2 − 2
〈
g1(xn) − g1(xn−1), xn − xn−1

〉 + ∥∥g1(xn) − g1(xn−1)
∥∥2

�
(
1 + 2r1 + s2

1

)‖xn − xn−1‖2, (4.3)

‖an − an−1‖ = ∥∥H1
(
g1(xn)

) − λF(xn, yn) − λP (un, vn)

− [
H1

(
g1(xn−1)

) − λF(xn−1, yn−1) − λP (un−1, vn−1)
]∥∥

�
∥∥H1

(
g1(xn)

) − H1
(
g1(xn−1)

) − λ
[
F(xn, yn) − F(xn−1, yn)

]∥∥
+ λ

∥∥F(xn−1, yn) − F(xn−1, yn−1)
∥∥ + λ

∥∥P(un, vn) − P(un−1, vn−1)
∥∥.

(4.4)

Since F :H1 × H2 →H1 is strongly monotone with respect to ĝ1 = H1 ◦ g1 in the first argu-
ment with constant α1 > 0 and Lipschitz continuous in the first argument with constant β1 > 0,
respectively, we get∥∥H1

(
g1(xn)

) − H1
(
g1(xn−1)

) − λ
[
F(xn, yn) − F(xn−1, yn)

]∥∥2

�
∥∥H1

(
g1(xn)

) − H1
(
g1(xn−1)

)∥∥2

− 2λ
〈
F(xn, yn) − F(xn−1, yn),H1

(
g1(xn)

) − H1
(
g1(xn−1)

)〉
+ λ2

∥∥F(xn, yn) − F(xn−1, yn)
∥∥2

�
(
δ2

1s2
1 − 2λα1 + λ2β2

1

)‖xn − xn−1‖2. (4.5)
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Since F :H1 × H2 → H1 is Lipschitz continuous in the second arguments with constant
ξ1 > 0, we have∥∥F(xn−1, yn) − F(xn−1, yn−1)

∥∥ � ξ1‖yn − yn−1‖. (4.6)

It follows the Lipschitz continuity of P , the D̃-Lipschitz continuity of A and B , (3.7) and
(3.8) that∥∥P(un, vn) − P(un−1, vn−1)

∥∥
�

∥∥P(un, vn) − P(un−1, vn)
∥∥ + ∥∥P(un−1, vn) − P(un−1, vn−1)

∥∥
� μ1‖un − un−1‖ + ν1‖vn − vn−1‖
� μ1

(
1 + 1

n

)
D̃

(
A(xn),A(xn−1)

) + ν1

(
1 + 1

n

)
D̃

(
B(yn),B(yn−1)

)

� μ1

(
1 + 1

n

)
lA‖xn − xn−1‖ + ν1lB

(
1 + 1

n

)
‖yn − yn−1‖. (4.7)

It follows from (4.2)–(4.7) that

‖xn+1 − xn‖ �
[√

1 + 2r1 + s2
1

+ τ1

γ1

(√
δ2

1s2
1 − 2λα1 + λ2β2

1 + λμ1lA

(
1 + 1

n

))]
‖xn − xn−1‖

+ λ

(
ξ1 + ν1lB

(
1 + 1

n

))
τ1

γ1
‖yn − yn−1‖. (4.8)

Let bn ≡ H2(g2(yn)) − ρG(xn, yn) − ρQ(wn, zn).
By (3.6) and Lemma 2.1, we have

‖yn+1 − yn‖ = ∥∥yn − g2(yn) + R
H2,η2
N,ρ

(
H2

(
g2(yn)

) − ρG(xn, yn) − ρQ(wn, zn)
)

− [
yn−1 − g2(yn−1) + R

H2,η2
N,ρ

(
H2

(
g2(yn−1)

) − ρG(xn−1, yn−1)

− ρQ(wn−1, zn−1)
)]∥∥

�
∥∥yn − yn−1 − [

g2(yn) − g2(yn−1)
]∥∥ + ∥∥R

H2,η2
N,ρ (bn) − R

H2,η2
N,ρ (bn−1)

∥∥
�

∥∥yn − yn−1 − [
g2(yn) − g2(yn−1)

]∥∥ + τ2

γ2
‖bn − bn−1‖. (4.9)

Since g2 :H2 → H2 is strongly monotone and Lipschitz continuous with constant r2 and s2,
respectively, we have∥∥yn − yn−1 − [

g2(yn) − g2(yn−1)
]∥∥2

� ‖yn − yn−1‖2 − 2
〈
g2(yn) − g2(yn−1), yn − yn−1

〉 + ∥∥g2(yn) − g2(yn−1)
∥∥2

�
(
1 + 2r2 + s2

2

)‖yn − yn−1‖2, (4.10)

‖bn − bn−1‖ = ∥∥H2
(
g2(yn)

) − ρG(xn, yn) − ρQ(wn, zn)

− [
H2

(
g2(yn−1)

) − ρG(xn−1, yn−1) − ρQ(wn−1, zn−1)
]∥∥

�
∥∥H2

(
g2(yn)

) − H2
(
g2(yn−1)

) − ρ
[
G(xn, yn) − G(xn, yn−1)

]∥∥
+ ρ

∥∥G(xn, yn−1) − G(xn−1, yn−1)
∥∥ + ρ

∥∥Q(wn, zn) − Q(wn−1, zn−1)
∥∥.

(4.11)
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Since G :H1 × H2 → H2 is strongly monotone with respect to ĝ2 in the second argument
with constant α2 > 0 and Lipschitz continuous in the second argument with constant β2 > 0,
respectively, we obtain∥∥H2

(
g2(yn)

) − H2
(
g2(yn−1)

) − ρ
[
G(xn, yn) − G(xn, yn−1)

]∥∥2

�
∥∥H2

(
g2(yn)

) − H2
(
g2(yn−1)

)∥∥2

− 2ρ
〈
G(xn, yn) − G(xn, yn−1),H2

(
g2(yn)

) − H2
(
g2(yn−1)

)〉
+ ρ2

∥∥G(xn, yn) − G(xn, yn−1)
∥∥2

�
(
δ2

2s2
2 − 2ρα2 + ρ2β2

2

)‖yn − yn−1‖2. (4.12)

Since G :H1 ×H2 → H2 is Lipschitz continuous in the first arguments with constant ξ2 > 0,
we have∥∥G(xn, yn−1) − G(xn−1, yn−1)

∥∥ � ξ2‖xn − xn−1‖. (4.13)

It follows from the Lipschitz continuity of Q, the D̃-Lipschitz continuity of C and D, (3.9)
and (3.10) that∥∥Q(wn, zn) − Q(wn−1, zn−1)

∥∥
�

∥∥Q(wn, zn) − Q(wn−1, zn)
∥∥ + ∥∥Q(wn−1, zn) − Q(wn−1, zn−1)

∥∥
� μ2‖wn − wn−1‖ + ν2‖zn − zn−1‖
� μ2

(
1 + 1

n

)
D̃

(
C(xn),C(xn−1)

) + ν2

(
1 + 1

n

)
D̃

(
D(yn),D(yn−1)

)

� μ2lC

(
1 + 1

n

)
‖xn − xn−1‖ + ν2lD

(
1 + 1

n

)
‖yn − yn−1‖. (4.14)

It follows from (4.9)–(4.14) that

‖yn+1 − yn‖ �
[√

1 + 2r2 + s2
2

+ τ2

γ2

(√
δ2

2s2
2 − 2ρα2 + ρ2β2

2 + ρν2lD

(
1 + 1

n

))]
‖yn − yn−1‖

+ ρ

(
ξ2 + μ2lC

(
1 + 1

n

))
τ2

γ2
‖xn − xn−1‖. (4.15)

By (4.8) and (4.15), we have

‖xn+1 − xn‖ + ‖yn+1 − yn‖
�

[√
1 + 2r1 + s2

1 + τ1

γ1

(√
δ2

1s2
1 − 2λα1 + λ2β2

1 + λμ1lA

(
1 + 1

n

))

+ ρ

(
ξ2 + μ2lC

(
1 + 1

n

))
τ2

γ2

]
‖xn − xn−1‖

+
[√

1 + 2r2 + s2
2 + τ2

γ2

(√
δ2

2s2
2 − 2ρα2 + ρ2β2

2 + ρν2lD

(
1 + 1

n

))

+ λ

(
ξ1 + ν1lB

(
1 + 1

n

))
τ1

γ1

]
‖yn − yn−1‖

� θn

(‖xn − xn−1‖ + ‖yn − yn−1‖
)
, (4.16)
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where

θn = max

{√
1 + 2r1 + s2

1 + τ1

γ1

(√
δ2

1s2
1 − 2λα1 + λ2β2

1 + λμ1lA

(
1 + 1

n

))

+ ρ

(
ξ2 + μ2lC

(
1 + 1

n

))
τ2

γ2
,

√
1 + 2r2 + s2

2 + τ2

γ2

(√
δ2

2s2
2 − 2ρα2 + ρ2β2

2 + ρν2lD

(
1 + 1

n

))

+ λ

(
ξ1 + ν1lB

(
1 + 1

n

))
τ1

γ1

}
.

Let

θ = max

{√
1 + 2r1 + s2

1 + τ1

γ1

(√
δ2

1s2
1 − 2λα1 + λ2β2

1 + λμ1lA

)
+ ρ(ξ2 + μ2lC)

τ2

γ2
,

√
1 + 2r2 + s2

2 + τ2

γ2

(√
δ2

2s2
2 − 2ρα2 + ρ2β2

2 + ρν2lD

)
+ λ(ξ1 + ν1lB)

τ1

γ1

}
.

Then θn → θ as n → ∞. By (4.1), we know that 0 < θ < 1 and so (4.16) implies that xn

and yn are both Cauchy sequences. Thus, there exist x ∈ H1 and y ∈ H2 such that xn → x and
yn → y as n → ∞.

Now we prove that un → u ∈ A(x), vn → v ∈ B(y), wn → w ∈ C(x), zn → z ∈ D(y). In
fact, it follows from the Lipschitz continuity of A,B,C,D and (3.7)–(3.10) that

‖un − un−1‖ �
(

1 + 1

n

)
lA‖xn − xn−1‖, (4.17)

‖vn − vn−1‖ � lB

(
1 + 1

n

)
‖yn − yn−1‖, (4.18)

‖wn − wn−1‖ �
(

1 + 1

n

)
lC‖xn − xn−1‖, (4.19)

‖zn − zn−1‖ � lD

(
1 + 1

n

)
‖yn − yn−1‖. (4.20)

From (4.17)–(4.20), we know that un, vn, wn, zn are also Cauchy sequences. Therefore, there
exists u ∈H1, v ∈ H2, w ∈H1, z ∈H2 such that un → u, vn → v, wn → w, zn → z as n → ∞.
Further,

d
(
u,A(x)

)
� ‖u − un‖ + d

(
un,A(x)

)
� ‖u − un‖ + D̃

(
A(xn),A(x)

)
� ‖u − un‖ + lA‖xn − x‖ → 0.

Since A(x) is closed, we have u ∈ A(x). Similarly, v ∈ B(y), w ∈ C(x), z ∈ D(y). By con-
tinuity of g1, g2,H1,H2,F,G,P,Q,R

H1,η1
M,λ ,R

H2,η2
N,ρ and Algorithm 3.1, we know that x, y,u,

v,w, z satisfy the following relation:

g1(x) = R
H1,η1
M,λ

(
H1

(
g1(x)

) − λF(x, y) − λP (u, v)
)
,

g2(y) = R
H2,η2
N,ρ

(
H2

(
g2(y)

) − ρG(x, y) − ρQ(w,z)
)
.

By Lemma 3.1, (x, y,u, v,w, z) is a solution of problem (3.1). This completes the proof. �
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Remark 4.1. Theorem 4.1 improves and extends those results in [20–26,34,36,37] in several
aspects.

Remark 4.2. By the results in Sections 3 and 4, it is easy to obtain the convergence results of
iterative algorithms for the other special cases of problem (2.1) with (H,η)-monotone operators.
And we omit them here.
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