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1. Introduction

Noise reduction by barriers has become a common measure of environmental protection. A practical method for the
reduction of noise radiated from the aero-engines and inside of wind tunnels is to use absorbing linings. It is therefore
desirable to have theoretical work which attempts to determine how effectively the sound radiation is reduced by absorbing
lining in the presence of fluid flow. Clearly, the radiated sound will be a complicated function of the Mach number and
the absorptive properties of the surface scattering the sound waves and an analysis of this dependence is a problem of
some significance. It is also worth mentioning that the use of absorbing barrier particularly for the reduction of traffic noise
has received much attention in recent years (see list of references in Butler [1]). The present work arose in connection with
noise reduction by means of barriers. It is hoped that the present work would have possible applications in noise abatement.

Rawlins [2] discussed the sound scattered by semi-infinite absorbing plane due to a cylindrical acoustic wave, satisfying
Ingard’s condition [3] in a moving fluid. Later on Asghar et al. [4] extended Rawlin’s idea to calculate the diffraction of
spherical acoustic wave from an absorbing plane. But there has been a considerable discussion in the literature regarding
the proper impedance boundary conditions on acoustic field in the presence of fluid flow. Effects of moving medium was
first correctly given by Miles [5] and Ribner [6] for a plane interface of relative motion. Ingard [3] discussed the effect
of flow on boundary conditions at a plane impedance surface. Later on Myers [7] discussed the diffraction of cylindrical
acoustic waves, by a semi-infinite absorbing plane, which was in fact generalization of the Ingard’s condition [3]. Now a
days, Myers’ condition [7] is the accepted form of the boundary condition for impedance walls with flow.

Diffraction from a strip is a well-studied phenomenon. Many scientists worked on diffraction problems related to strip
geometry [8-11]. In this paper, we have investigated the diffraction of an acoustic wave from a finite absorbing barrier
by using Myers’ impedance boundary condition. The integral transforms, Wiener-Hopf technique [9,12] and asymptotic
methods [13] are used to calculate the diffracted field. It is found that the two edges of the finite barrier give rise to two
diffracted fields (one from each edge) and to an interaction field. The results for the half plane [14] can be recovered by
taking an appropriate limit.
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2. Formulation of the problem

We consider the diffraction of an acoustic wave incident on the finite absorbing plane occupying a space y =0,
—I < x < 0. The line source is located at (xp, yo). The system is placed in a fluid moving with subsonic velocity U par-
allel to the x-axis. The time dependence is taken to be of harmonic type e ! (o is the angular frequency) and the plane
is assumed to be satisfying the Myers’ impedance condition [7]

-p U ap
Zq  iwZg 9x’
where uy is the normal derivative of the perturbation velocity, p is the surface pressure, Z; is the acoustic impedance of

the surface and —n a normal pointing from the fluid into the surface. The perturbation velocity u of the irrotational sound
wave can be written in terms of the velocity potential @ as u= V®. Then the resulting pressure p of the sound field is

= 0 +U 9 D
=—po )%
where pp is the density of the undisturbed stream.
Thus, we have to solve the following boundary value problem

Up =

92 a2
(1—M2)—+21kM +—+k2 @(x, y) =8(x —x0)8(¥ — Yo), (1)
9x2 dy?
subject to the following boundary conditions
d 9 M? 32
:FZ/SM :i:lk,B IBM” 5~ o(x,05)=0, —l<x<0, 2)
3y k  ox2

it:D(x,OJr):%qf’(x,o_), —oco<x<—I, x>0,
?(x,0")=@(x,07), —oco<x<-I, x>0. (3)

In above equations k = % which is the wave number, g = pzi: is the specific complex admittance and M = % where M
is the Mach number and c is the velocity of sound. It is assumed that the flow is subsonic, i.e., |[M| <1, and Re8 > 0, a
necessary condition for an absorbing surface.

3. Wiener-Hopf equations

Since we are dealing with subsonic flow, so we can make the following real substitutions

=v1-M2X, xo=+v1-M2Xo, y=Y, yo=Ys, PB=vV1-M2B, k=+1-M2K, (4)

writing

®(x, y) =y (X, Y)e MK, (5)

and using the relation (4), Egs. (1) to (3) can be written as

92 9 3(X — Xo)8(Y — Yo)
— + K2 DX, Y e~ iKMXo 6
<8X2+8Y2+ )111 X,Y)= T (6)

0 0 iBM? 92

— F2BM— +ikKB(1+M?) F ———— O(x =0, —I<X<0, 7
[ayq: ax TIKB(L+MY)F o MZ)Kaxz]'/’ (x.0%) =4 )

—Y¢<f>(x, ot) = a_yw(”(x, 07), —co<X<-I X>0,

v O (X,0") =y P(X,07), —co<X<-I X>0. (8)
The total velocity potential may be expressed as

Y OXY) =W (X, V) + %X, V), (9)

where ¥y (X, Y) is the incident field (corresponding to the inhomogeneous equation), ¥ (X, Y) is the diffracted field (corre-
sponding to the homogeneous equation). Thus ¥p(X, Y) and ¥ (X, Y) satisfy the following equations

92 92 ) 8(X — X0)8(Y — Yo)
— K? |¥o(X, Y e HKMXo 10
<8X2 oyt ) X =T e (10)

32 32 )
— 4+ —+ K |¥(X,Y)=0. 11
<3x2+ay2+ ) (X.Y) (11)
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The solution of (10) can be obtained by Green’s function method

o0
a a 1.
Wo(X,Y) = =Ho(KR) = — / —elleX=Xorrkl¥=Yoll 4o, (12)
4i 4mi K
—0o0
where a = ;’% R=(X—=X0)?+ (Y —Yo)?, k =+/K2—0a2, K is the wave number, and « is the Fourier transform
variable. Now we introduce the spatial Fourier transform over the variable X by
] o0
J(,Y)= —— f WX, Ve XdX = (a,Y) +e P (o, Y) + ¥ (@, Y), (13)
V21
—00

where

o0

_ 1 .

U (o, Y) = E/W(X,Y)e’“xdx,
0

_ 1 .
U_(a,Y) = —— | w(X, V)X gx,
N2
—00
1 0
(o, Y) = —/W(x, Y)eleXdx, (14)
V27
-

where ¥_ (a, Y) is regular for Ima < ImK, and W (o, Y) is regular for Ima > —Im K while ¥ («, Y) is an integral function
and therefore ¥ (¢, Y) is analytic in the common region —ImK <« <ImK.
On taking the Fourier transform of Eq. (11), we obtain

dy?
where k¥ = +/K2 — a2. Thus, the Fourier transform of Egs. (7) and (8) gives

2 _
<—+K2)l1/(oz,Y)=0, (15)

V_ (o, 0") =¥_(,07) =¥_(,0),
Vo (o, 07) =¥, (,07) = ¥y (2, 0),
v (a,0") =0/ (o, 07) =¥ (a, 0),
¥ (o, 0%) =¥ (o0, 07) = ¥ (e, 0), (16)

and

@/ (a,0%) = —2iaMB[ W1 (¢, 0F) + Yo (e, 0)] — iKB(1 + M?)[ ¥ (e, 0T) + P (r, 0)]

BMZ 2 _ _ B
- ﬁ[% (a,07) + W (e, 0)] — ¥ (ex, 0), 17)
(@, 07) = 2iaMB[d1 (@, 0) + Fo (e, 0)] + iKB(1+ M2) [ (o, 07) + P (e, 0) ]
iBM%a? . L .
Tk (@ 07) + Fo(@. 0] - ¥(@. 0. (8)

The solution of Eq. (15) satisfying radiation condition is given by

Ar(e)e*Y if Y >0,

V@N=1 @ ity <o, (19)
Using Egs. (13) and (16) in Eq. (19), we get
Wy (e, 0) + e (o, 0) + ¥ (o, 07) = Aq (), (20a)
Wy (, 0) + e (a, 0) + ¥ (r, 07) = Az (), (20b)
Wl (a,0) +e ! (a,0) + ¥ (o, 0T) = iKc A1 (@), (20c)
(o0

W (e, 0) + e (ar, 0) + ¥ (@, 07) = —ik Az (). (20d)
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Subtracting (20b) from (20a) and (20d) from (20c), we obtain

Ar(@) — Az(@) =¥ (0, 01) — ¥ (a, 07) =21 (e, 0), (21)
and
1,- - 2J (a,0
Ar(a) + Ax(@) = E[llf{(a, 0%) —¥{(a,07)] = % (22)
where
1. - _
Ji(@,0) = 5[% (a,07) =@ (r, 07)]. (23)
and
1. - _
Ji(@,0)= E[W{(a, 0%) — (e, 07)]. (24)
By adding and subtracting Egs. (21) and (22), we get
"(«,0
Ar(a) = J1(a,0) + % (25)
and
1(@,0)
Az(a)=—h(a,0)+]1T. (26)
Making use of (20a) in (20c) and (20b) in (20d), we can write
Wl (a,0) +e ! (a,0) + ¥ (o, 0T) = i [y (e, 0) + e P (at, 0) + W1 (o, 01)], (27a)
Wl (, 0) + e (a, 0) + ¥ (r, 07) = —ik [Py (e, 0) + e (ex, 0) + ¥y (o, 07)]. (27b)
By eliminating ll_/l’(ot, 0™) from (27a) and (17) and lf/{(ot, 07) from (27b) and (18), we get
Wl (a,0) +e N (a,0) — 2iaMB[W1 (o, 07) + Wo(ex, 0)] — iKB(1 + M?)[¥1 (0, 07) + Fp(ex, 0)]
iBM?*a? - PR _,
- m[uﬁ (a,07) + Wy, 0)] — ¥ (. 0)
=ik [¥s (o, 0) + e *P_(at, 0) + ¥ (e, 0T)], (28a)
and
Wl (o, 0) + e (a,0) + 2iaMB[¥1 (e, 0) + P (e, 0)] + iK B(1 + M?)[ ¥ (¢, 07) + P (r, 0)]
iBM%a? | - _ _
—  [w )+ ¥ -y
= MZ)K[ 1(0r, 07) 4+ (e, 0)] — Py (ex, 0)
= —ik[¥i (e, 0) + e (ar, 0) + ¥ (., 07)]. (28b)
By adding Egs. (28a) and (28b), we get
Wy (,0) + e W (o, 0) — ik L(e) J1(e0) = ¥, 0). (29)

Similarly, by eliminating ¥ (o, 07) from (27a) and (17) and ¥;(«,0™) from (27b) and (18), and then subtracting the
resulting equations, we get

iL(a) J (e, 0)

(@, 0) + e (@, 0) + 202 =¥(,0), (30)
[(2aMB + KB(1 + M?) + BM-a_y)
(1-M?)K
where
by =1+ 2| (2aM+ k(1 +02) + Mo (31)
S aA-MHK )|

Eqgs. (29) and (30) are the Wiener-Hopf equations. We proceed to find the solutions for these equations.



M. Ayub et al. / J. Math. Anal. Appl. 349 (2009) 245-258 249

4. Solution of the Wiener-Hopf equations

For the solution of the Wiener-Hopf equations (29) and (30), one can use the following factorizations [14]
M3a?

Loy=1+" <2aM+ K(1+M?) + ———
K (1 - MK

)] =Li (@)l () (32a)
and

k(o) =k (a)k— (@), (32b)
where Ly(x) and x4 (o) are regular for Imo > —ImK, i.e., for upper half plane and L_(«) and «_() are regular for
Imoa < ImK, i.e., lower half plane. Putting the value of J;(c,0) and J}(c, 0) from Egs. (29) and (30) into (25) and (26), we
get

A(@) = (¥, (a,0) + e~ (a,0) — ¥ (at, 0))

ikL(a)
B[QaM + K(1+ M?) + M2y

(1-M?)K 3 —ial 7 g
L@ {¥s(@,0) +e7*'W_(a,0) — Wo(a, 0)}, (33)

+

and

Ax(o) = — W, (e, 0) +e ! (a, 0) — ¥ (ar, 0))

1
@
2012
B[aM + K(1+M?) + g4)]
kL(x)

For a plane wave incidence, one can assume that

+

{Fs (@, 0) + e ™P_(a,0) — Fp(cx, 0)}. (34)

Uo(X,Y) = efiKXcosegfiKYsinGO
s = .

Then after taking the Fourier transform, we get

_ 1 [1 — e—iltw—Kcostp)

Yol@.0) = «/E[ i(a — K cosfo) ] (35)
and

_ b [1— e—illa—Kcostp)

V(. 0) = JE[ (a — K cos6p) ] (36)
where b = —iK sin6p. Making use of Egs. (32a), (32b), (35) and (36) in Egs. (29) and (30), we obtain

- o b [1— e—illa—Kcosbo)

Vi (a,0)+ e (,0) + Sy (@)S— () J1(@) = «/ﬂ[ (@ — K cosfy) :| (37)
and

(@, 0) + e (o, 0) + L@l @h@o 1 [1 - eiﬂ(dikmse@] (38)

[{2aMB + KB(1 + M2) + (fj/’Mgl)K}] V2r | i(a — K cos6o)

where

S(a) = —ik (@) L(a) = Sy ()S—_ (), (39)

and Sy (o) and S_(w) are regular in upper and lower half planes, respectively. Equations of type (37) and (38) have been
considered by Noble [9] and a similar analysis may be employed to obtain an approximate solution for large K. Thus, we
follow the procedure given in [9, Section 5.5, p. 196].

Dividing Eq. (37) by S (o) on both the sides, we get

Ui(a,0) ¥ (,0) 1 — e ille=Kcoso)
———te N ——+S_-@]ilo) = . (40)
Si(@) Si(@) V27 L S+ (o) (e — K cosbo)
The first term on the left-hand side of above equation is regular in the upper half plane. Hence, we can write
e ey’ (¢, 0)
———— =Us(@)+U_(), (41)

S+(a)
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and
b efil(otfl( cosfp)
=Vi(@)+V_(2). (42)

V2T S+ (@) [(a — K cos 90)] *
Using Eqgs. (41) and (42) in Eq. (37) and also adding the pole contribution on both sides of the resulting equation, we get

v (e, 0) b [ 1 1 ]

——— 4+ U (@) +Vy(a) - -

S+() * * V27w S () (o — K cosfp) LS+(@) S+ (Kcosbp)

b
V27 S (K cos ) (a — K cosfg)

—iS_(a) Ji(a) —U_(a) = V_(). (43)

Similarly, dividing Eq. (37) by S_(a)e~® on both sides, we have

@0 V@) alg @)= 2o [1 — erillea=K cosew] )
S_(a) S_(a) V2rS_(a)L (@ —Kcosfp)
The second term on the left-hand side of above equation is regular in lower half plane. Therefore, we can write
M =R (a)+R_(), (45)
S_(@)
and
pei!
JImS (@) — Keosey @) HN-@). (46)
Using Eqgs. (45) and (46) in Eq. (44), we obtain
¥’ (a,0) peilK costo il
4+ R_(a) — N_(x) =ie"* Sy () J1(a) — Ry () + N4 (). (47)

S_(@) * V27 S_ () (a — K cosbp)

The LHS of Eq. (43) and RHS of Eq. (47) are regular in T > —K> and the RHS of Eq. (43) and the LHS of Eq. (47) are regular
in T < K, cosfy. Hence using the extended form of Liouville’s theorem, each side of Eqs. (43) and (47) is equal to zero, i.e.,

¥i(@.0 + Ut (@) + V() b [ ! ! ]— (48)
S O F * V27 S 1 (@)@ — Kcos6) LS+ @) Sy(Kcosbp) |
and
l[_l’ (o, 0) beill(coség
— % +R_(a) = N_(&t) = 0. 49
S () V27 S_ () (o — K cos 6p) @) @ (49)
Using the general decomposition theorem [9], explicit expressions for U (&), V4 (&), R—() and N_(«) are given by
1 " eittar ¢ 0)
Ui(o) = =— / — de, 50
%00 ) ssoc-o (50)
—oo+IC
T pe—il(c—K costn)
Vi) = — de, 51
HO%5m ] e Keostos, 0w w0 el
—oo+ic
1 ‘ el (¢,0)
R_(a)=——— — 27 de, 52
©="2mi / sSoc-w =
—oo+id
and
1 oco+id beigl
N_(@)=—— (53)

dg,
2mi Vo€ —Kcosb)S-(0)(¢ —a) ‘
+i

where —Ky < ¢ < Ky cosfp and —Ky <d < Ky cos6y, also T >c and T <d.
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Using Egs. (50) and (51) in Eq. (48), we get

1 [-, b b
—|:II/+(01,O)— ]+

S+(@) 27 (0 — K cos6yp) 27 S (K cosfp) (or — K cosbyp)
oo+ic . .
1 e—lgl B bele cos by
+— — ¥ (£, 00+ ————|d¢ =0. 54
2mi / S+(€)(§—a)[ 0 «/2n(¢—1<coseo)] ¢ G4
—00o+IC

Using Eqgs. (52) and (53) in Eq. (49), we get

. oco+id .
L [ (@0 4 ] ! / e [u‘/ (£.0) ]d; 0. (55)
—— |V (@) = |~ =— —_— ,0)— —————— [d; =0.
S_ () /27 (o0 — K cos 6p) 27 y S -a| T 27 (¢ — K cosfyp)
—00+i
Let us introduce the following notations
_ b _
v (¢,0) - —— =¥, 0), 56
+(@.0) V27 (o — K cos6p) +@.0) (58)
and
_ beiaKc0500 _
v (0,0) 4 ———— =¥*(«, 0). 57
¢ /21 (¢ — K cosbp) 57)
Using Eqgs. (56) and (57) in Egs. (54) and (55), we get
_ oo+ic A
P,0) 1 / e 51y (2, 0) b -0 (58)
Si(@) 27 ) Sy —w) V27 S (K cosfp) (e — K cosbp)
—00-+ic
and
G0 1 f e (c,0)
o, e ~(¢,
S—_() 2mi 5-()(¢ —a)
—oo+id
From the assumption that 0 < 6y < 7r, we can choose a so that —K, cosfy < a < K, cos6p and take c =d =a.
In Eq. (58) replacing ¢ by —¢ and in Eq. (59) replacing o by —« and noting that S (—«) = S_(4«), we obtain
- oo+ia . . _
e, 0 1 / ellw* (—¢,0) b -0 (60)
Si(@)  2mi ) S_(OC+@) V27 S, (K cosfp) (o — K cosbp)
—oo-+ia
and
- oo+ia A
U*(—,0) 1 / e 2 (1) e — (61)
S 2mi ) SS@©OC+a)
—oo-+ia
Adding and subtracting Egs. (60) and (61), we get
St@ 0 1 F eitlst (r0) b
+ P - / +1>0 d;- + = 0, (62)
St(@)  2mi CS_@G+ ) 27 S (K cosBp)(a — K cosp)
—oo+ia
and
Di@0) 1 " edDi(,0 b
+\%, — / 227 gr =0, (63)
Sel@  2mi J  S_(OCE+a V27 S (K cos @) (a — K cosfp)
—oo+ia
where
[ (a,0) + ¥ (—a,0)] = S* (. 0), (64)

and
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[ (a,0) — ¥*(—a,0)] = D% («, 0). (65)

Now Egs. (62) and (63) are of the same type and we obtain an approximate solution by a method due to Jones [12]. Setting

S%(a,0) = D% (a,0) = F (@, 0), (66)
Egs. (62) and (63) take the form
ocotia !
Fi@0 / el*lF% (£,0) b o (67)
St 2@ ) S_(OC¢+@) V27 S (Kcosbp) (o — Kcosfp)
—oo+1a

where A = £1. Calculating F* (r, 0) with the help of Egs. (56), (57), (64) and (65) and combining the resulting equations,
we get

b be”K cosbp
F*(,0)=Fy(a,0) — + A , 68
+ * V27 (a — K cosp)  ~/27 (@ + K cos 6p) (68)
where
Fi(ar,0) = (&, 0) — AW/ (—x, 0). (69)
Using Eq. (68) in Eq. (67), we obtain
1 b beiaK cos By b A
— | Fi(x,0) = + A ]+ +—I, (70)
S+(@) [ * V27 (o0 — K cos6p) V27 (o + K cos6p) A2 S (K cosfp)(a — K cosfy)  27i
where
ootia ei;l b beilK cosbp
1= / —[F(,O)— + A ]d,
SO+ +¢ /27 (¢ — K cosép) V27 (£ + K cosbp) £
—oo+ia
or
b beilK cos g
I=1p — I +A I3, 71)
1 5o 12 o 13 (
where
oco+ia il
B e'F,(2,0)
I = — " de,
CS_(OE +a)
—oo+tia
oco+ia

pit!
I = / de,
S_(¢)(¢ +a)(¢ — K cosbp)

—oo+ia

oo+-ia

eitl
/ d.
S_(¢)(& +a)(¢ + K cosbp)
—oo+ia
We note that F(w,0) is regular in 7 > —Kj3. Thus, we should expect that F, («, 0) will have a branch point at o« = —K
but for large [ this is sufficiently far from the point &« = K to enable us to evaluate the above integrals in the asymptotic
expansion as

I1 = 27iT (o) F (K), (72)
where
T(a)= L,E_1w_1{—i(1<+a)l}, (73)
2mi
E_i=2eTei()~13) T h_y, (74)

4
where h_1 =e'4,

ue z n_1
Wn7%(2)=/ s du=TI(n+1)e2z2 2W7%(n+1)’g(z), (75)
0
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where z = —i(K + a)l, Wn,, is known as a Whittaker function. Similarly, the other integrals may be evaluated easily by

giving
eill(cosé)o
I :zm[ + Rz(a)],
/2w S_(K cos)(ax + K cosBg)
I3 =2miR (),
where
E_1[W_1{—i(K £ K cosp)l} — W_1{—i(K + a)l}]
Ri2(a) = .

2mi(o F K cosbp)
Substituting Eqs. (72), (76) and (77) in (71), we obtain

eiIK cos g

[ =27iT(a)F(K) —

Using above equation in Eq. (70), we get

Fi(@,00 b

——[G1(e0) = AGa(a)] — iAbT (@) F(K),

Si(@) 27
where
P1(cr) — €K SRy () = Gy (@),

ellKcosfo p, () — Ry () = G (),

and
1 1 1 e
(@ — K cos ) [s+(a) - S+(Kc0590)] =P,
1 1 1
[ - ] = Pa(a).
(¢ + Kcosbp) | Sy(x) S_(Kcosbp)

Now, we can find out F(K) by setting o« = K in Eq. (79), we get

Fi(K) =

b [01(10—,\02(10]
V2 L gy +AT(K) '

Using Eq. (82) in Eq. (79), we get

2mi + Rz(a)] + X
V27 [«/2715_(1( cosbp)(a + K cosbp)

G1(K) — AG2(K)

(76)

(77)

(78)

ilK cos 6y

Var

2R ().

(79)

(80a)
(80Db)

(81a)

(81b)

(82)

Fr@. 0= byz(—:) [G1(@) — 1Ga(@)] - ”’T(j%““)

For A = —1, Eq. (83) becomes

bS ()
V2

¥l (,0) + ¥/ (—a,0) =

For A =1, Eq. (83) becomes

bS. ()
V2

By adding and subtracting Eqgs. (84) and (85), we get

bS+(@)Gi() | bT(e)S+()Cq

(o, 0) — W (-, 0) =

¥, (a0 = D TN,
and

&' (a,0)= bs_(ojzc_;(—a) + bT(_OiE_;(a)Cz
where

S4(o) = Li(@)ks (@),

1
st AT (K)

]. (83)

G1(K) + G2 (K)

[G1(@) + G2 ()] +

G1(K) — Ga(K)

. (84)
ﬁ — T(K) ]

[Gi(@) = Ga()] -

) 85
s T T ] (85)

(86)

(87)
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and

S_(0)=L_()k—_(a),
while k4 (o) = VK @,

G2(K) + S+ (K)G1(K)T(K)
Ci1=5S4(K 88
1=54( )[ 1= SZ(0T2(K) ], (88)
and
G1(K) + S+ (K)G2(K)T(K)
Cr=S4(K ) 89
2=54( )[ 1= SZ(0OT2(K) ] (89)
In a similar way, the solution for the second Wiener-Hopf equation, namely (38) is presented as
B, (@, 0) = —il4 ()G} () I —iT(@)L4(@)C} _ (90)
V2r[(2aMB + KB(1+M?) + P V27 [{20MB + KB(1 +M?) + (fMM‘;)K 1
and
¥ (@,0) = T e T (91)
V27w [{—2aMB + KB(1 + M?) + ] V2w [(=2aMB + KB(1 + M2) + )]
where
[{2aMB + KB(1 + M2) + BM¢ y) ,
G/1 (a) — (1-M2)K 1 _ 1 ] _ ellKC0590 R]((X), (92)
(o — K cosbp) Ly(x) Li(Kcosbp)
eilkcosbo [ [{—2aMB + KB(1+ M?) + fMM‘; 11
Gh() = [ -
(o + K cos6p) Li(a)
BI(2MK cos6) + K (1 + M2) + M2 cos? 6y |
i A=MOK_ 1 Ry(a) (93)
L_(K cos ) ’
G, (K) + Ly (K)G" (K)T(K)
C =L (K)| =2 1 } 94
1= )[ 1-L2(K)T2(K) 54
G (K) + Ly (K)GL (K)T(K)
C, =L (K)| 2 2 ] 95
2= L )[ 1— 12 (K)T?(K) (95)
Substituting Eqs. (35), (36), (86), (87), (90) and (91) in Egs. (33) and (34), we get
A1(a)} _ bsgn(Y) [(5+(oe)01(a) 4 T(oz)5+(oe)C1>
Ay(@)| ™ ikL(a) V21 V2
n e—ial<5—(a)62(_0‘) N T(—a)s_(oocz) 1 [1 — e HaKeosty H
V27 V27 J2m | (e —Kcosbp)
B[(ZaM +KA1+M?»)+ - M2)1<)] [ L+(a)G/] (@)
ik L(at) V27 [(2eMB + KB(1 + M2) + (f_"”;,‘sz )]
T(a)Ly (a0)C] e—ial[ L_(a)Gy(—ax)
t omlaMB + KB+ MD & BT ) VZT(~2eMB + KB(1 + M2) + BV ))
T(—a)L_(a)C) 1 [1—eila—Kcosb)
T | J] o0
[(—2MB + KB(1+ M2) + (fMM‘;)K)] 2w | (o — Kcosbp)
where
v — 1 ify>o,
=14 ey <o,

and Aq(a) corresponds to Y >0 and A,(«) corresponds to Y < 0. Now ¥ (X,Y) can be obtained by taking the inverse
Fourier transform of Eq. (19), thus
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W(X.Y)= A1(Ol)} eilYI=ierX goy (97)

1
Neza / Ax(@)

where Aq(«) and A () are given by Eq. (96).
Substituting the values of A1(«) and Az(«) from Eq. (96) into Egs. (97) and using the approximations (80a), (80b), (92)
and (93), we can break up the field ¥ (X, Y) into two parts

WX, V) =W P(X, V) + WX, Y), (98)
where
sep bo[ S (a)eliklYI-iaX b [ erieKeosin)g (q)eikl¥i-iax
YSeP(X, Y — d
( )= 2mi / kL(a)S4+ (K cosbp)(o — K cosbp) OH—Zm' _/ KL(a)S_(Kcosbpy)(ax — K cos6p) o
—00 —0o0
i 7 [2eMB+KB(1+M>) + BMMS‘)K]L+(a)e‘”(“"<C°59°)ei“'y“io‘xd
27 K L(at) (ot — K cos )Ly (K cos o) ¢
—0Q
22 2
i Oo[(ZaM—H((l—l—MZH— MZ)K)(ZBMKCOSGO—I—BK(I+M2)+W)
2 _ 2 _M2a?
% J (—2aM + K14+ M?) + 555%)
L_(or)eixlYI-iax A {4aMB(2aM+K(1+M2)+m}
X s 2 [ ]
L — K cosfo)L_(K cosé 2 _ 2) 4 M2
kL(o) (o cosp)L_ (K cosbp) ”700 {—2aM +K(1+M?) + e}
efil(achoseo)eiK\Y\fiaX
99
kL(@)(a — K cosfp) 59)
and
o0
wX,Y) = L [T(@)54 @)1 +e T (-5 (@)C
271 ] «L(@) * -
—0Q
_ S+(a)€”KCOSGOR1(Ot) _ S_(a)e—ilozRz(_a)]eiKIY\—iax da
i T {2aMB+KB(1+M?)+ (fMM‘i‘)K}[ T (o)L ()C}
o L 2 BM22
) kL(a) {2aMB + KB(1 +M?) + 5_pa7e)
e T (—a)L_()C) eiliccosto \ (a)Rq ()
202 2,2
(—2aMB+KB(1+M?) + M) 2aMB+KB(1+M?) + 2ar)
—ial
B e L _(a)Ry(—a) _ ]emm_iaxdm (100)
(—2aMB + KB(1 + M2) 4 M=o )

(1-M2)K
Here WP (X,Y) consists of two parts each representing the diffracted field produced by the edges at x=0 and x = -,
respectively, as though the other edge was absent while ¥ (X, Y) gives the interaction of one edge upon the other.

5. Far field approximation

The far field may now be calculated by evaluating the integral in Eq. (97) asymptotically [13]. For that we substitute
X =RcosH, |Y|=Rsinf and deform the contour by the transformation o = —K cos(d +iq3) (0 <0 <, —00 < 3 < 00).
Hence for large KR, Eqs. (97), (99) and (100), respectively, become

1
i T \?[A1(=Kcos) | ikriz
v(X,Y e 1, 101
XV = 7= (21<R> {A2<—Kcos9> (1on
i 1 %
T
WP = [bsgn(Y K cosO K cos0 — ) exp|iKR+i— |, 102
[bsgn(Y) f1(—K cost) + g1 (K cos0)] 1<(1<R> p( ; 4> (102)

and

1
) i 2
wint _ [zbsgn(Y)fz( K cosO) + ga(— Kcos@)]—K<%> exp<i1<R+i%>, (103)
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where A1(—K cos6) and A(—K cosf) are given by Eq. (96), and

S+(—Kcosb)
L(—=K cos8)S+ (K cosbp)(—K cos6 — K cosbp)

e—il(=Kcoso=Kcosbo) 5 (K cos @)

f1(—=K cosf) =

- , (104)
L(—K cos6)S(—K cosbp)(—K cos® — K cosbp)
1 BI—2MK cos6 + K(1+ M?) + MKCOZOT )y o gyeill—K coso—K costo)
(=K cosb) = (1-M?) +
&1 K (cos6 + cosfp) L(—K cos®) Ly (K cosfp)
[~2MK cos + K(1+ M2) + M2K201) (K cosp) [2BMK cos b + BK (14 M?) + EK cosiin
(a-Mm (1-M2)K
[2MK cosé + K(1 4+ M2) + Mf{‘f\;gz"] L(—K cos6)
4BMK cos0[—2MK cosf + K (1 + M?) + 4””(1’3\;32)9 Jeil(=K cosf=K costo)
M2K cos? } (105)
L(~K cos0)[2MK cos6 + K (1 + M2) + MKl
1 .
f2(—K cosf) = 1K c036) [T(—K cos6)S(—K cos8)Cq + e SO T (K cos8)S_(—K cos6)Ca
+ S+ (—K cos§)e'!KOSh Ry (—K cos§) + S_(—K cos§)e 3¢ R, (K cos )], (106)
and
2
o(_Kcosd) = B[—2MK cos@ + K(1 4+ M?) + ’V'(le\?ﬁ MK cos=6 ) [ T(—K cos8)L4(—K cos6)C}
L(—K cosf) B[—2MK cosf + K(1+ M?) + Mfl";;;;z@]
ellKcsO T (K cos0)S_ (—K cos6)C) ellKcostoy  (—K cos#)Rq(—K cosb)
B[2MK cosf + K(1 + M2) + "”(21"531329] B[—2MK cos@ + K(1 + M2) + M(zl’<§§§2)9]
ellKcosf (K cos@)Ry(K cosd) ] (107)
B[—2MK cosé + K (1 + M2) + ’V'(Zl"j;f@]
Thus from Eq. (9), we obtain
1
i 7 \2 | A1(—=Kcosb) | . x
X,Y H KR) + e!KR+T 108
VX, ¥) = o(KR) 4/_<2KR> {Az(—KCOSQ)} (108)
Using Eq. (108) in Eq. (5), the total far field is given by
. 1
eiKMXo ) i T \2 . e A1(—K cos6)
@(X, )N H1(1<R)6711<MX + ( > elKR‘HzeflKMX . 109)
D amivi—mz © V2 \2KR Ay(—K cos0) (

6. Graphical results

In this section, we will present some graphs showing the effects of sundry parameters on the separated field produced
by the two edges of the barrier.

A computer program MATHEMATICA has been used for the numerical evaluation and graphical plotting of the separated
field given by the expression (102). The absorbing parameter B is to be taken from 0.1 to 0.9 and the Mach number is
allowed to take the values from —1 to 1. Positive Mach number indicates that the stream flow is from left to right and
negative Mach number indicates that the stream flow is from right to left. The following situations are considered.

(i) Where the source is fixed in one position (for all Mach numbers) relative to the finite barrier (6 = 45°, M and 6 are
allowed to vary).

(ii) Where the source is fixed in one position, relative to the finite barrier (g = 45°, B and 6 are allowed to vary).

For all the situations, 6y = 45°, Figs. 1-4 show that the field, in the region 0 <6 < 7, is most affected by the changes in
M, B and K. The main features of the graphical results, some of which can be seen in Figs. 1-4, are as follows:

(a) In Fig. 1, as the value of M increases, the amplitude of the separated field decreases, i.e., the sound intensity reduces,
by fixing all other parameters. For the same values of M, it can be seen from Figs. 1 and 2 that by increasing the wave
number K, the number of oscillations increases.

(b) In Fig. 3, by increasing the absorbing parameter B, again the amplitude of the separated field decreases, i.e., the
sound intensity reduces. For the same values of B, it can be seen from Figs. 3 and 4 that by increasing the wave number K,
the number of oscillations increases.
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Fig. 1. Variation of separated field with observation angle 6, for different values of M at 6y = %, K=1,B=0.5.
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Fig. 2. Variation of separated field with observation angle 6, for different values of M at 6y = %, K=2,B=0.5.
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Fig. 3. Variation of separated field with observation angle 6, for different values of B at 6y = %, K=1, M=0.5.
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Fig. 4. Variation of separated field with observation angle 6, for different values of B at 6o = %, K =2, M =0.5.
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7. Conclusion

The diffracted field due to an absorbing finite barrier satisfying Myers’ condition [7] in a moving fluid is obtained. The
total field is shown to be the sum of the field produced by the two edges of the finite barrier and a field due to the
interaction of the two edges. Further the consideration of finite strip will help to understand the acoustic diffraction and
will go a step further to complete the discussion for the half plane by taking limit [ — oo in the expression (109). Also the
results for the still fluid can be found by putting M = 0.
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