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1. Introduction

The problem of characterizing algebra isomorphisms among general maps between Banach algebras has attracted consid-
erable interest. For maps known a priori to be linear it has been an active area of research for over a century, particularly for
the so-called linear preservers, maps that preserve some specific properties or features of algebra elements (see e.g. [11]).
The classical Banach-Stone theorem, for instance, implies that any unital norm-preserving linear surjection between two
spaces of type C(X), the algebra of complex-valued, continuous functions on a compact Hausdorff space X, is an isomet-
ric algebra isomorphism. One important consequence of the celebrated theorem of Gleason-Kahane-Zelazko [16] states
that if a surjective linear map T : A — B between semisimple commutative Banach algebras preserves the spectra, namely,
o(Tf)=o0o(f) for all f € A, then T is multiplicative and thus an algebra isomorphism. Recall that the spectrum of an al-
gebra element f € A is the compact set o (f) ={A e C: (A — f) ¢ A~!}. A result by Kowalski and Stodkowski [6] implies
that if a surjective map T : A — B between semisimple commutative Banach algebras is weakly additive in the sense that
o(Tf —Tg)=0(f — g) for all algebra elements f and g, and T(0) =0, then T is an algebra isomorphism. More on the
early stage of this subject can be found in [5,11]. Molnar [11,12] showed that a surjective self-map T of the algebra C(X)
with first-countable compact X which is unital and weakly multiplicative in the sense that o (TfTg) = o (fg) for all algebra
elements, is an isometric algebra isomorphism. Molnar’s result was generalized for arbitrary uniform algebras by Rao and
Roy [13], and was extended further in various directions (e.g. [1-3,7-9,14,15]). Recently it was realized that crucial for the
isomorphism problem is not the entire spectrum, but merely some of its distinguished parts (e.g. [1,2,7-9,15]).
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Let A C C(X) be a uniform algebra on a compact Hausdorff set X. Recall that the peripheral spectrum of f € A is the
set oz (f)=0(f)N{ze C: |z| = | fl} of spectral values of f with maximal modulus. Equivalently, o (f) is the set of
values of f with maximum modulus, i.e. o7 (f) ={f(x): x€ X and |f(x)| = |/ f]I}. Rao, Tonev and Toneva (e.g. [1]) extended
the mentioned Kowalski-Stodkowski’s result to so-called peripherally-additive maps T : A — B that are weakly additive in
the sense that o (Tf + Tg) = o, (f + g) for all f, g e A, and have found sufficient conditions for such maps to be unital
isometric algebra isomorphisms.

In this paper we show that the peripheral additivity property, considered in [1] and [15], is too restrictive for the
isomorphism problem: In fact, it suffices the map to be only norm-additive or norm-linear (see the definitions below). In
addition, it is enough the map to be either unital, or to preserve the peripheral spectra of C-peaking functions, rather than
of all algebra elements, as required in [15].

Below we describe the main results of the paper. The first proposition generalizes Rao-Tonev-Toneva’s additive analogue
of Bishop’s Lemma [1]. In it Px(A) denotes the set of peaking functions of A that peak on x, Ex(A) ={f € A: |fX®)|=|fl}=
{f € A: x€ E(f)} is the set of all algebra elements which take their maximum modulus at x, A is the Choquet boundary
of A and E(f) is the maximum modulus set of f € A (see the corresponding definitions in Section 2).

Proposition. (See Lemma 1, Proposition 4 and Corollary 5.) Let f € A, f % 0. For any xo € §A and arbitrary r > 1 (or, r > 1 if
f(x0) # 0), there exists an R-peaking function h € r|| f1| - Px,(A) such that |f(x)| + |h(x)| < | f(x0)| + |h(x0)| = | f(x0)| + [IA]|
for every x ¢ E(h) and | f ()| + |h(x)| = | f (x0)| + [h(x0)| for all x € E(h). Consequently, |||f| + |l = |f(x0)| + |h(x0)|. If & =
exp{iarg f(xp)}, then f +ah € C- Py, (A), o7 (f +ah) ={f(x0) + ah(xo)} and E(f + ah) = E(h). Given a neighborhood U of xo,
h can be chosen so that E(h) C U. Moreover, | f (xo)| + |h(xo)| = ||| f| + ||l = infhegm(,q) 1FI+ 1hl-

Ihl=ri £l
An operator T : A — B between Banach algebras is called norm-preserving if ||Tf| = | f||, norm-linear if |A\Tf + uTg| =
IAf + ngll, norm-additive if ||Tf + Tg|l = || f + gll, and norm-additive in modulus if |||Tf| + |Tglll = lIlfl + |g|ll (ie.

maxyeap ((THM|+ (T (M) = maxeesa (| f (€)1 +g@&))) for all f,ge A and A, u € C, where || - || is the uniform norm on
C(dA) and C(dB) correspondingly. Clearly, every norm-linear operator is norm-additive and every norm-preserving linear
(resp. additive) operator is automatically norm-linear (resp. norm-additive).

The primary results of the paper, which follow, reveal the structure of norm-additive and norm-linear operators between
uniform algebras and provide sufficient conditions for such operators to be unital isomorphic algebra isomorphisms.

Theorem. (See Theorem 13.) Any norm-linear surjection T : A — B between uniform algebras induces an associated homeomorphism
¥ :8A — §Bsothat |(Tf)(¥)| = |f((y))| forevery f € Aand y € §B.

The following theorem provides sufficient conditions for a norm-additive operator to be an algebra isomorphism.

Theorem (Norm-Additive Operators). (See Theorem 16.) A norm-additive surjection T : A — B between uniform algebras which is
norm-additive in modulus induces an associated homeomorphism v : B — 8 A such that |(Tf)(y)| = | f (¥ (¥))| for each f € A and
all y € §B. If, in addition, T(1) = 1 and T (i) =i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is an
isometric unital algebra isomorphism.

As a corollary we obtain the following criteria for a norm-additive operator to be norm-linear.

Corollary. (See Corollary 17.) Let T : A — B be a norm-additive surjection for which T(1) = 1 and T (i) = i, or which preserves the
peripheral spectra of C-peaking functions of A. Then T is norm-linear if and only if it is norm-additive in modulus.

The next theorem gives sufficient conditions for a norm-linear operator to be an algebra isomorphism. Namely,

Theorem (Norm-Linear Operators). (See Theorem 20.) A norm-linear surjection T : A — B between two uniform algebras for which
T(1) =1 and T (i) = i, or which preserves the peripheral spectra of all C-peaking functions of A, induces an associated homeomor-
phism i : 8B — 8 A such that T is a y-composition operator on B, and therefore, is an isometric unital algebra isomorphism.

This theorem yields the following corollary, which extends in a certain sense the corollaries of Banach-Stone’s theorem
and Gleason-Kahane-Zelazko’s theorem mentioned above.

Corollary (Linear Operators). (See Corollary 21.) If a linear operator between two uniform algebras, which is surjective and norm-
preserving, is unital, or preserves the peripheral spectra of C-peaking functions, then it is automatically multiplicative and, in fact, an
algebra isomorphism.
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2. Preliminaries

In this section A C C(X) will be a uniform algebra on a compact Hausdorff space X. For an f € A the set E(f) of all x
in X at which f attains its maximum modulus is called the maximum modulus set of f, ie. E(f)={xe X: |fx)|=|fl}=
xeX: f(x) eox ()= f Y or(f)). An element h € A is called a peaking function of A if o (h) = {1}, i.e. if |[h] =1 and
lh(x)| <1 whenever h(x) s 1. In this case, the maximum modulus set E(h) = {x € X: h(x) =1} =h~1{1} is called the peak
set of h. If E is a subset of X such that E C E(h) for some peaking function h, we say that h peaks on E. The set of all
peaking functions in A we denote by P(A). Clearly, C - P(A) is the set of all f € A with singleton peripheral spectra. The
elements of C - P(A) (resp. R-P(A)) we call C-peaking functions (resp. R-peaking functions) of A. A point x € X is called a
generalized peak point, or p-point, of A if for every neighborhood V of x there is a peaking function h with x € E(h) C V.
Recall that the set 8A of all generalized peak points of A is the Choquet (or the strong) boundary of A, and §A = 9A, the
Shilov boundary of A. Given an x € X, we denote by Px(A) the set of all peaking functions of A which peak on x and by
C - Px(A) the set of C-peaking functions of A that peak on x.

The following lemma, which we use on several occasions further, strengthens and generalizes the additive version of
Bishop’s Lemma from [15].

Lemma 1 (Strong version of the additive Bishop’s Lemma). For any nonzero f € A, xo € 8A and arbitrary r > 1 (or,r > 1if f(xo) #0)
there exists an R-peaking function h e r|| f|| - Px, (A) such that

|f@)] + [h@)| < | fx0)| + |h(x0)] (1)
foreveryx ¢ E(h) and | f(x)| + |h(x)| = | f (x0)| + |h(x0)| for all x € E(h). Consequently, maxxex (| f ()| + [h(0)]) = | f (x0)| + |h(x0)|.
Given a neighborhood U of xg, h can be chosen such that E(h) C U.

Proof. Consider first the case when f(xg) # 0. For every n € N we define the open set U, = {x € X: |f(x) — f(X0)| <
‘f(x’))'} Clearly, Uy C Un—1 and xq € U, for every n € N. Let r > 1. For each n, choose a peaking function k, € Py, (A) such

that E(k;) C Uy, and let h, € Pyx,(A) be a large enough power of k, such that |h,(x)| < ‘Zf,ff‘“‘;)"‘ on X \ Up. One can see
that M52, Un = f~1(f (X)) Indeed, it is clear that every x € f~1(f(x0)) belongs to (52, Un; conversely, if x € (5> Up

then |f(x) — f(x0)| < 'é,ﬂ’fj’l)‘ for every n e N, thus f(x) = f(xo), i.e. x€ f~1(f(xp)). We claim that the R-peaking function

h=r|f| - Zﬁ’o g—ﬁ satisfies inequality (1). Clearly, h e r|| f|| - Px,(A) and hence |h| =r] f| = |h(xo)|. In addition, E(h) C
Maz1 E(hn) €My Un = 71 (f (x0)).

For any x € E(h) we have |f(X)|+ [h()| =|f(xo)| + [Ihll, while | f ()| + [h(X)| = | f(x0)| + [h(X)| < |f (x0)| + [Ih] holds for
any xe f71(f(x0)) \ E(h). If x¢ f~1(f(x0)) = ﬁg; Uy, there are two possibilities.

Case 1: x ¢ Uy. In this case x ¢ U, for every n € N, and hence |h,(x)| < ‘zﬁﬁof)‘l‘ for every n € N. Therefore, |h(x)| <

FIFI- X250 A% < 1f (xo)l, and consequently, | £ (0| + 1h(| <l fll 41 f (xo)| = f xo)| + lAl.

Case 2: x € Uy—1 \ Uy for some n > 1. In this case x € U; for 1 <i<n—1 and x ¢ U; for every i > n. Therefore,
lhi(x)| < ‘foﬁl’l“})‘: for every i > n. Since x € Up_1, we have |f(x) — f(x0)| < ‘f(x‘))' and hence

h; h;
[£60] + 0| <[ F o)+ £ — Fxo)| + 00| < |Fop| + L9y . Z' WL g Z' Wl

i=1

Since each hy, is a peaking function of A, it follows that |hn (x)| 1 for any x € X, and therefore, Z" 1 lhi(x s | < Z?;f % =
hi
1— 5 halt \2;,’0\ <32, L{r(‘)‘“})”‘ <YE, 4, W Hence,
|f(x ( o)l
|F o]+ [he] < [f(xo)| + (1= 5 )+ 5 ———

1 1 1
<[f@o|+ (1= 5= + 5 + 37757 IS

1 1 1
= |f 00)| + (1 - 2,1—,1(1 -5 - 3_Zﬁ))nhu <[ o) + IRl

We have obtained that | f(x)| + [h(x)| < | f (x0)| + ||h]| for every x ¢ f~1(f(xo)).

If f(xo) =0, we must show that |f(x)| + |h(x)| < |[h(xp)| = ||h| for all x ¢ E(h). Let r > 1. For any n € N, define the open
set Vp={xeX: |f(®¥)| < %ﬂf“}. Clearly, V, € Vy—1 and xg € V, for every n € N. As before, for each n we choose a
peaking function k; € Py, (A) such that E(k;) C Vy, and let h, € Py, (A) be a large enough power of k; such that |h,;(x)| <

% on X\ V,. We claim that in this case the R-peaking function h=r|[f| - > ne; ’21—2 satisfies inequality (1). As before,
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one can see that E(h) C f~1(0) = Mi; Va. Note that [|h|| =r| f|l since h €| f]l - Px,(A). It is clear that if x € E(h) then
|f Ol + ()| = |||, while | f(x)|+ |h()| = |h(0)| < [|h] for any x € f~1(0) \ E(h).

Suppose now that x ¢ f~1(0). If in addition x ¢ V1, then we obtain, as before, that |h(x)| <] f] - Z —DIfI,
and therefore, | f(x)| 4+ [h(x)| < | fIl + (r — 1)||f|| _r||f\| =|lh|. If x€ Vp_1\ V, for some n > 1, then x € V; for 1<ig<n—-1

and x ¢ V; for every i > n. Therefore, |h;(x)| < ==L for every i > n. Because of x € V,_1 we see that |f(x)| < (r_;ﬂ”f” < %ﬁ”
and hence |f(x)| + |h(x)| < r”f” +rlfI ] 'h (x)' Frlfl o, (f‘)' Since each hy is a peaking function of A, it follows
that |hn(x)| 1 for every x € X and therefore Z" 1 ‘h'(,’o‘ < Zl 1 ? =1— 5. In addition, Y 72, ‘h'(f)‘ <¥2 (r;,.r” <

pRFad =3 4n . Therefore, we have

Hﬂl 11 1
|feo|+ |heo| < (1 ?1>WHH®I“IWH ( §3+——+3M1>NM<HUWWM

Consequently, | f(x)| + |h(x)| < ||h]| for every x ¢ f~1(f(0)).
Let U be a neighborhood of xg. If hy € Py, (A) is a peaking function of A with E(h,) C U, then |h.(x)| <1 on X\ U, the
function hh, satisfies inequality (1) and, in addition, E(hh,) CU. O

As noted above, Lemma 1 implies the additive version of Bishop’s Lemma [15] stated below, which neither specifies the
points where maxgcg | f(£)| + ||h|| is attained nor treats the case when f =0 on E:

Corollary 2 (Additive Bishop’s Lemma). (See [15].) Let f € A and E be a peak set for A such that f # 0 on E. For any r > 1 there exists
an R-peaking function h e r| f|| - P(A) with E(h) C E such that | f (x)| + |h(x)| < maxgcg | f ()| + ||h| forall x ¢ E.

The next corollary of Lemma 1 strengthens Corollary 2.

Corollary 3. Let f € A, f #0.If E is a peak set for A and r > 1 is arbitrary, then for any xo € E N §A with f(xo) # O there exists an
R-peaking function h e r|| f|| - Px,(A) with E(h) C E such that | f (x)| + |h(x)| < | f (x0)| + |h(x0)| = maxgcg | f(£)] + ||h] for every
x¢E.

Lemma 1 implies also the next proposition, which we use on several occasions further.

Proposition 4. Let f € A, f #0.Ifxo € A, o = exp{iarg(f(xp))} andr > 1 (or,r > 1if f(xo) # 0), then there exists an R-peaking
function h er| f| - Py, (A) such that E(f + oh) = E(h), | f (x0) + ath(x0)| = || f + «h]| and

|fx) +ah®)| <I|If +ah] (2)

whenever f(x) + ah(x) # f(xo) + ah(xg). Consequently, f +ah € C - Py, (A) and o5 (f + ah) = { f (xo) + ah(xo)}. Given a neigh-
borhood U of xq, h can be chosen to be such that E(f + «h) C U.

Proof. Let the function h be as in Lemma 1. If o = exp{iarg(f(xp))}, then |f(xo) +ah(xo)| = | f (xo)| + |h(Xp)| and therefore,
I f +ahll=maxeex | (&) +h(€)| < maxeex (| f(E) + [RE)D) = | f(X0)| + [h(X0)| = | f (x0) + ah(x0)| < || f + ch]. Hence || f +
ahl = |f(xo)| + |h(x0)| = | f (x0) + ah(x0)| and therefore, f(xg) + ah(xg) € o7 (f + ah). Inequality (1) implies that for any
x ¢ E(h), we have | f(x) +ahX)| <|f )|+ [h®)| < |f(xo0)| + |h(x0)| = | f + chl|, thus f(x) + cth(x) ¢ o7 (f +ah) and hence
E(f + ah) C E(h). Since E(h) C f~1(f(xp)), for any x € E(h) we have f(x)+ ah(x) = f(x0) + ah(x0) € 07 (f + ach), and
therefore, E(h) C E(f + ah). Consequently, E(h) = E(f + oh) and o (f + ah) = {f(x0) + ah(x)}, as claimed. If U is a
neighborhood of xg, then any function h from Lemma 1 with E(h) C U satisfies the inequality (2). O

Given an x € X, we denote by Ex(A) ={f € A: |fX)|=|fll} ={f € A: x€ E(f)} the set of all algebra elements which
take their maximum modulus at x. If h € Px(A), then, clearly, x is in the maximum modulus set E(h) of h, so h € Ex(A),
and therefore, Px(A) C Ex(A). One can see that C- Px(A) =C-P(A) N Ex(A) C Ex(A). Note that in the case of algebra C(X),
families of sets similar to £4(A) have been considered by Holsztynski [4] in his proof of Banach-Stone’s theorem.

The next result, which we will use on several occasions further in this paper, is a consequence of Lemma 1.

Corollary 5. Let f € A, f #0.1fxo € A, r > 1 (or,r > 1if f(x0) #0), and hg € r|| f|| - Px,(A) is as in Lemma 1, then

|fxo)| +7I1fIl = | f(x0)| + [ho(x0)| = [[1 1 + Ihol | = heg?ofw |11+ 1ht]. 3)
[hll=rl £

Proof. Let hg 1| f| - Px,(A) be a function as in Lemma 1. For any h € &, (A) with ||h]| =7 f]l, we have that |||f]|+
[h|ll = maxgex (I (E)+IRE)D > |f (o)l +1h(X0)| = | f (x0)| +|ho(x0)| = Maxeex (Lf ()| +ho(§)]) = Il I +Ihol |l Consequently,
infpee, () I1FI+ IR =I1f1+ lholll = | f (x0)] + Iho(x0)| = | f (x0)| + [Ih]|, according to Lemma 1. O

[Ihli=rli £l
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3. The associated homeomorphism

In this section A C C(X) and B C C(Y) will be uniform algebras on compact sets X and Y, respectively. We show that
under certain conditions any surjective operator T : A — B between uniform algebras induces in a natural way an associated
homeomorphism between §A and §B.

Recall that an operator T : A — B is R,-homogeneous if T(rf) =rTf for every f € A and r > 0. For instance, if T is
norm-additive, or more generally, peripherally-additive, then T is R-linear (see e.g. Lemma 12 in the next section) and
therefore, R -homogeneous. The operator T is monotone increasing in modulus (see [1]) if the inequality |f(x)| < |g(x)| on
dA implies |(Tf)(y)| < |(Tg)(y)| on dB for all f, g € A. For example, surjections T : A — B that are norm-additive in modulus
in the sense that |||Tf|+ |Tg|ll=|lIfl+ |g|ll for all f, g € A, are necessarily monotone increasing in modulus (cf. [1]) and
also norm-preserving.

Lemma 6. If a norm-preserving operator T : A — B is R -homogeneous and monotone increasing in modulus, then for any general-
ized peak point x € § A, the set

Ex= () ETf) (4)
fe&x(A)

is nonempty and Ex N §B # (.

Proof. Let x € §A. We will show that the family {E(Tf): f € Ex(A)} has the finite intersection property. Let fi,..., fn €
Ex(A) and define f = f1--- f;. Then

Ifi- fall = 1FU = | f®| =1 @] =& @] = [[1] | @] =1 F1l - M fall = 1 f1- falls
so [fx)|=IfIl =]_['}:1 [Ifjll and hence f € Ex(A). For any &£ € dA and every fixed k=1, ...,n, we have

[F®[=HE)]-[fn®] < (H ||fj||) | fu®] = '(1‘[ ||fj||) 'fk(g)‘-
J#k ik

Since T is monotone increasing in modulus and R -homogeneous, [(Tf)(n)| < |T((1_[#k Ifil) - fioml = (l_[j#k £l -
I(Tfi)I < [Tj=i 1fill =11l = ITf|l for all n € 9B. If y € E(Tf) N aB then |Tf|l = (THH)I < [T If51D - (TAIDI <
ITFN, thus ([T IF51D - [Ty = ITFIl = [Tj=; I f;ll and hence [(Tfi)(y)| = |l fill = ITfic|l. Hence y € E(Tfy) and there-
fore, E(Tf)NAB C E(Tfy). Since this holds for every k=1, ...,n we conclude that E(Tf)NdB C ﬂ?ﬂ E(Tf}j). Consequently,
the family {E(Tf): f € Ex(A)} has the finite intersection property, as claimed. Since each E(Tf) is a closed subset of Y,
a compact set, the above family must have nonempty intersection.

Observe that the set E(Tf) = (Tf)~ (o, (Tf)) is a union of peak sets of B since (Tf)~!(u) is a peak set for any u
oz (Tf). Hence, every y € Ey belongs to an intersection Fy =(T\¢c¢ (a) Fy,f C Ex of peak sets F f C E(Tf) of B. Therefore,
Fy meets 6B (cf. [10, p. 165]), and so does Ex. O

If, in addition, T preserves the peripheral spectra of algebra elements, sets similar to (4), involving only peaking functions,
are considered in [15].

Lemma 7. Let T : A — B be R;-homogeneous and norm-additive in modulus surjection. If x € A and y € Ex N §B, then
T=1(€y(B)) C Ex(A).

Proof. Since T is norm-additive in modulus, then it is norm-preserving and, as noted above, monotone increasing in mod-
ulus. Therefore, Ex # ¥ by Lemma 6. Fix a k € £,(B) and let h € T~1(k). To prove that h € £,(A), it suffices to show that
|[h(x)| = ||h|l. Take an open neighborhood V of x and a C-peaking function p € ||h| - Px(A) such that E(p) C V. Since
yeEx= ﬂfeex(A) E(Tf) C E(Tp) it follows that [(Tp)(y)| = |ITp|l. Hence, Tp € €,(B). Since T is norm-additive in modulus,
it preserves the norms and therefore, |k(y)| = ||k|| = ||h|| = |lpll = |Tp||. Hence,

IRl + Ipll = |1kl + 1pl| = |1kl + 1 Tpl|| = [k)| + [(TPYW)| = Ikl + ITpll = A + Pl

Consequently, |[|h] + |p|ll = |lh]l + |lp]l and there must be an xy € dA such that |h(xy)| = ||h|| and |p(xy)| = ||p|l. Therefore,
xy € E(p) C V and any neighborhood V of x must contain a point xy with |h(xy)| = ||h|. The continuity of h implies that
[h(x)| = ||h|l, so h € Ex(A). Hence, T‘l(Sy(B)) C Ex(A), as claimed. O

Corollary 8. If T : A — B is asin Lemma 7, then the set E is a singleton and belongs to § B for any generalized peak point x € § A.
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Proof. Let y € Ey. If there exists a z € Ex\ {y} then there is a function k € €, (B) such that |k(z)| < |[k|. For any h € T-1(k) C
Ex(A), we have E(k) = E(Th) D E. Hence, the function |k| = |Th| is identically equal to |k|| on Ey, in contradiction with
|k(z)| < |Ik|l. Therefore, the set Ex contains no points other than y. O

Let T: A — B be as in Lemma 7 and x € §A. Define t(x) to be the single element of the set Ey, i.e.,

{t}=Ex= [ ETh). (5)

he&x(A)

Hence T induces an associated mapping 7 : x — 7(x) from A to §B. Lemma 7 shows that &;(x(B) = £y (B) C T(Ex(A)). If
h € E4(A), then (4) implies E(Th) D Ex = {t(x)}. Consequently,

|(Th)(z(x))| = ITh] = |kl = |h(x)| (6)

for any h € Ex(A).
We mention that if, in addition, o5 (Th) = o (h) for some h € C - Px(A), then (Th)(t(x)) = h(x).

Corollary 9.If T : A— B isasin Lemma 7 then T(Ex(A)) = E¢(x)(B).

Proof. Let h € E4(A) for some x € §A and let k = Th. By Eq. (6) we have |k(t(x))| = |[(Th)(t(x))| = |h(x)| = ||h]l = k]|
Consequently, k € € (x)(B) and therefore T(Ex(A)) C ¢ (B). The opposite inclusion follows from Lemma 7. O

The next proposition shows that Eq. (6) in fact holds for every f € A and x € §A.

Proposition 10. If T : A — B is an R, -homogeneous and norm-additive in modulus surjection between uniform algebras, then the
induced associated mapping T is continuous and the equation

(TH(z®)| =|f] (7)

holds for every x € §A and all f € A. If, in addition, T is bijective, then t is a homeomorphism from § A onto 6B, and then

|(THW| =1y W)] (8)
forevery y € 8B, where  : B — S8 A is the inverse mapping of t.

Proof. First we will show that |(Tf)(t(x))| = |f(x)| for every x € 6A and for all f € A. Let x€ §A, feAand r > 1. If
ho er| f|l - Px(A) is a function as in Lemma 1, then ||Tholl = |lholl =7l fIl =rlITf|l and Tho € r||Tf|| - Ez(x(B). Since T is
norm-additive in modulus, the strong version of Bishop’s Lemma 1, (3) and Corollary 9 imply

[Feol +rifli = dnf IfI+1hl] = inf C[ITfI+Thi] = L A1+ Ikl = [(TH(E )|+ IS
IRl=rll fl IRll=rll F llkll=r[l £

Consequently, |(Tf)(t(x))| =|f(X)], as claimed.

To show the continuity of t let x € §A and p € (0,1). Choose an open set V of 7(x) in B and a peaking function
k € Pz(x(B) such that E(k) CV and |k(y)|<p onéB\V.Ifhe T—1(k), then h € &x(A), and according to Eq. (6), [h(x)| =
[(Th)(t(x))| = |k(t(x))| =1 > p. Therefore, the open set W = {& € §A: |h(€)| > p} contains x. The first part of the proof
shows that for every & € W, we have |k(t(§))| =|(Th)(z(§))| = |h(§)| > p, which implies that 7(§) € V since |k(n)| < p on
8B\ V. Consequently, T(W) C V, and thus t is continuous.

Now suppose that T is bijective. It is easy to see that T~': B — A is also an R, -homogeneous operator. Since the
equation |||Tf| + |Tglll = |I|f| + |g|ll is symmetric with respect to f and Tf, the operator T~!: B — A is also norm-
additive in modulus. By the first part of the proof, T~! induces its own associated continuous map v : 8B — §A such
that [(T~k)(¥ ()| = |k(n)| for all n € 6B and for any k € Eya(B). Let x € A and y = t(x) € §B. If h € Ex(A), then
k=Th e &y(B) by Corollary 9; Thus [h(y(y))| = [(T~' (k)W )| = k)| = [(Th)(y)| = [(Th)(z (x))| = |h(x)| = [|h]. Hence
¥(y) € E(h) for any h € Ex(A). Since ﬂhegxm) E(h) = {x}, we deduce that vy (t(x)) = ¥ (y) = x for every x € §A. Similar
arguments show that t(y¥(y)) =y for all y € §B. Consequently, T and 1 are both bijective and ¢ = t~!. Therefore, T is a
homeomorphism. Eq. (8) follows immediately from Eq. (7). O

A version of Proposition 10 for norm-multiplicative operators T is given in [9]. Proposition 10 yields one of the basic
results in [15] stated below, where, in particular, T is assumed to be peripherally-additive.

Corollary 11. (See [15, Lemma 14 and Corollary 6].) For any peripherally-additive and norm-additive in modulus surjection T : A — B
there exists a homeomorphism t : A — §B such that the equation |(Tf)(t (x))| = | f (x)| holds for every f € A and x € §A.
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In general, the moduli in Egs. (7) and (8) cannot be omitted, since if so, then T would also be multiplicative. For instance,
the operator Tf = if satisfies the hypotheses of Proposition 10 without being multiplicative. However, if T preserves the
peripheral spectra of all C-peaking functions, then, by the remark prior to Corollary 9, (Th)(z (x)) = h(x) for every x € A
and all h € C- Px(A).

Note that a mapping similar to 7, but involving only peaking functions, is considered in [1] and [15], where T is assumed
in addition to be peripherally-additive in the sense that o (Tf + Tg) = o (f + g) for all f,g e A and consequently, to
preserve the peripheral spectra of all f € A.

4. When are norm-linear or norm-additive operators algebra isomorphisms?

Here we provide sufficient conditions for norm-linear and norm-additive operators between uniform algebras to be
isometric algebra isomorphisms.

Lemma 12. If T : A — B is norm-additive operator and f, g € A, then

(@) To=0,

(b) T(=f)=-Tf,

(c) T is norm-preserving,

(d) T preserves the distances, ie. |Tf —Tgll=|f — gll,
(e) T is injective, and

(f) T is continuous.

If T is also surjective, then T is R-linear, thus additive and R, -homogeneous.

Proof. let f =g =0. Then 0 = ||f+g| = |[Tf+Tg| = ||I2T0|| = 2||TO||, so TO = 0. For property (b) note that
ITf+T=PHl=If+HI=10]=0, so Tf + T(—f) =0, which implies that T(—f)=—Tf.If g=0, then |Tf +T0|| =
ITfl = |l fll. Property (d) follows from (b) since ||f — g|| = ITf + T(—g)|| = ||ITf — Tg|. The injectivity of T follows from
property (d) since if Tf =Tg, then ||f — g|| = |ITf — Tg|| =0 and thus f = g. The continuity of T is a direct consequence
of (d). Finally, the R-linearity of T follows from the Mazur-Ulam theorem. O

As shown in [15], any norm-linear operator is norm-additive in modulus. Proposition 10 and Lemma 12 imply the fol-
lowing

Theorem 13. If T : A — B is a norm-linear surjection between uniform algebras, then the induced associated mapping v : A — 8B
is a homeomorphism and T is a ¥ -composition operator in modulus on 8B, i.e. |(Tf)(¥)| = | f (¥ (¥))| forevery f € Aand y € §B.

Let T: A— B be a bijection, 7 : A — 8B be as in Proposition 10, and ¢ = t~!. We call T a v-composition operator in
modulus on B if |[(Tf)(y)| = |f(¥(¥))], and yr-composition operator on §B if (Tf)(y) = f(¥(y)) for all f € A and y € §B.
Eq. (8) shows that T is a y-composition operator in modulus on §B.

The following lemma provides sufficient conditions under which the moduli in Eq. (8) can be omitted.

Lemma 14. Let the v -composition operator in modulus T : A — B on B from Proposition 10 be additive. If T(1) = 1 and T (i) =i, or if
T preserves the peripheral spectra of all C-peaking functions of A, (i.e. o (Tf) = or (f) forall f € C-P(A)), then (Tf)(y) = f(¥(¥))
forevery f € Aandall y € 6B, thus T is a r-composition operator on §B.

Proof. Suppose first that T(1) =1 and T (i) =i. Fix an f € A and yo € §B such that f((yo)) # 0. Since T is y¥-composition
operator in modulus, then |[(T(1 + f))(yo)| = |1+ )W (¥o)| =11+ f(¥(¥o))|- On the other hand, the additivity of T
implies |(T(1+ f))(yo)l = 11+ (Tf)(yo)|. Hence, |1+ f(¥(yo))| = |1+ (Tf)(yo)|. Consequently, either (Tf)(yo) = f(¥ (yo)),
or, (Tf)(yo) = f(¥(¥o)), which holds for every f € A and yo € §B. We claim that (Tf)(yo) = f(¥(¥0)). Without loss of
generality we may assume that Im{(Tf)(yo)} # 0. Assume that (Tf)(yo) = f(¥(¥o)) and suppose, in addition, that (T (i +
MNWo) =G+ HW o) =—i+ f o). Then |i+(T)(yo) = (TG + Y= I-i+ fFR o)l =-i+THyo)l=li+
(Tf)(yo)|. Therefore, (Tf)(yo0) = (Tf)(¥o), thus Im{(Tf)(y0)} = 0 which contradicts the assumption for f.If (T(i+ f))(yo) =
i+ H o) =i+ f(¥ (o)), then [i + (THyo)l = (TG + Y =10+ HW Qo) =i+ fF@F Yo =i + (THHyo)l,
which is impossible. Consequently, (Tf)(yo) = f(¥(y0)) for every f € A, as claimed.

Suppose now that T preserves the peripheral spectra of C-peaking functions. Then T(1) =1 and T (i) =i since |T(1)| =
IT(i)] =1 by (7), and the first part of the proof applies, but we will provide also an alternative proof. Fix an yo € §A and
let f € A. Since T is a {-composition operator in modulus on §B, without loss of generality we can assume that f(xg) #0,
where xo = T~1(yg). The strong version of the additive Bishop’s Lemma, and more precisely its consequence Proposition 4
with r =1, implies that there is an h € || f|| - P, (A) such that o (f +ah) = f(xo) +ah(xg), where o = exp{iarg(f(xo))}. If T
preserves the peripheral spectra of all C-peaking functions, then as noted at the end of the previous section, (Th)(t (xp)) =
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h(xo), (T (ah))(t(x0)) = ah(xg), and (T (f +ah)) (T (x0)) = f(x0) +h(xo), since h, oh and f +«h belong to C- Py, (A). Since
T is additive, (T(f + ah))(t(x0)) = (Tf)(t(x0)) + (T(ah))(t(x0)) = (Tf)(T(X0)) + ah(xp). Consequently, f(xo) + ah(xg) =
(T(f +ah)) (T (x0)) = (Tf)(T (x0)) + cth(Xo), and thus (Tf)(z (x0)) = f(xo). Hence (Tf)(y0) = f (¥ (y0)), where ¢y =7~1. O

Since the elements in a uniform algebra are uniquely determined by their restrictions on the Choquet boundary, uniform
algebras are isometrically and algebraically isomorphic to the restriction algebras on their Choquet boundaries. Therefore,
any map T : A — B induces automatically an associated map TT: A|sa — B|sg between the restriction algebras on their
corresponding Choquet boundaries.

Because an additive and norm-additive in modulus operator is norm-additive, Lemma 12, Proposition 10 and Lemma 14
imply the following

Corollary 15. Any additive and norm-additive in modulus surjection T : A — B is a ¥ -composition operator in modulus on §B. If, in
addition, T(1) = 1 and T (i) =i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is a y-composition
operator on § B, hence, the induced by T operator Tt Alsa — Bl|sp is an algebraic isomorphism and the restricted algebras A|s4 and
B|sp are algebraically isomorphic.

Note that, since the operator T in Corollary 15 is R-homogeneous, it preserves the peripheral spectra of all C-peaking
functions if it preserves the peripheral spectra of T-peaking functions, where T is the unit circle. Since, by Lemma 12, every
surjective norm-additive operator is additive, Proposition 10 and Corollary 15 yield:

Theorem 16 (Norm-Additive Operators). Any norm-additive and norm-additive in modulus surjection T : A — B between uniform
algebras is a yr-composition operator in modulus on 8B. If, in addition, T(1) = 1 and T (i) =i, or if T preserves the peripheral spectra
of all C-peaking functions of A, then T is an isometric unital algebra isomorphism.

Note that the operator T in Theorem 16 is not assumed a priori to be linear or continuous. Theorem 16 holds also for
surjective norm-additive in modulus isometries T (i.e. such that |Tf — Tg| = || f — g||) with T(0) =0, and therefore extends
in a certain sense to the case of uniform algebras the corollary of Banach-Stone’s theorem, mentioned in the beginning.
Theorem 16 implies the following criteria for a norm-additive operator to be norm-linear.

Corollary 17. Let T : A — B be a norm-additive surjection for which T (1) = 1 and T (i) = i, or which preserves the peripheral spectra
of C-peaking functions of A. Then T is norm-linear if and only if it is norm-additive in modulus.

Indeed, by Theorem 16, T is a y-composition operator in modulus, and therefore, [|ATf + uTgll = supyesp [A(T)(Y) +
(T ()] = Supyesp IAf (W () + g (V)] = SuPyesn |+ f(X) + 11g(0)| = [l f + pgl. Consequently, T is norm-linear. Con-
versely, any norm-linear operator is norm-additive and norm-additive in modulus, as shown in [1] and [15].

The second part of Theorem 16 generalizes the main result in [15] stated below, where, in particular, T is assumed to
preserve the peripheral spectra of all algebra elements.

Corollary 18. (See [1,15].) Any peripherally-additive and norm-additive in modulus surjection T : A — B is an isometric algebra
isomorphism.

As shown in [15], if T satisfies the equation ||Tf +«aTg| = ||f + «g| for all f,g € A and every @ € T, then T is norm-
additive and norm-additive in modulus. Therefore, Theorem 16 implies also the following

Corollary 19. Any surjection T : A — B which satisfies the equation ||Tf + aTg| = || f + «a gl forevery f,g e Aand all « € T,
is a y-composition operator in modulus on §B. If, in addition, T(1) = 1 and T (i) =i, or if T preserves the peripheral spectra of all
C-peaking functions of A, then T is an isometric unital algebra isomorphism.

Since, according to Corollary 17, every norm-linear operator is norm-additive and norm-additive in modulus, Theorem 16
yields:

Theorem 20 (Norm-Linear Operators). Anorm-linear surjection T : A — B between uniform algebras for which T (1) = 1and T (i) =1,
or which preserves the peripheral spectra of all C-peaking functions of A, is a ¥ -composition operator on §B, and therefore, an iso-
metric unital algebra isomorphism.

Note that the operator T in Theorem 20 is not assumed a priori to be linear or continuous. Multiplicative analogues of
Corollary 18 are proven in [7] and [9].

Both the norm-linearity and the preservation of peripheral spectra of all C-peaking functions are necessary conditions
for T in Theorem 20. Indeed, the operator Tf = — f is norm-linear but does not preserve the peripheral spectra and also is
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not multiplicative, while the operator Tf = % f #0, on C(X) preserves the peripheral spectra of algebra elements but is
not norm-linear.

As noted before, a linear operator which preserves the norms of algebra elements is norm-linear. Therefore, Theorem 20
implies the next characterization of algebra isomorphisms, which extends in a certain sense the corollaries of Banach-Stone’s
theorem and Gleason-Kahane-Zelazko’s theorem mentioned at the beginning.

Corollary 21 (Linear Operators). If a linear operator between two uniform algebras, which is surjective and norm-preserving, is unital,
or preserves the peripheral spectra of C-peaking functions, then it is automatically multiplicative and, in fact, an algebra isomorphism.

Since weakly peripherally-linear operators, in the sense that o, (ATf + uTg) Nor(Af + nug) #0 for all f,g€ A and
A, € C, are norm-linear, Theorem 20 also implies the following:

Corollary 22. Any weakly peripherally-linear surjection T : A — B is a y-composition operator in modulus on §B. If, in addition,
T(1)=1and T(i) =i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is an isometric unital algebra
isomorphism.

Corollary 19 implies that the weak peripheral linearity of T in Corollary 22 can be replaced by the more relaxed property
ox(Tf +aTg) Nor(f +ag) #0 for every f,g € A and all a € T. A version of Corollary 22 for weakly peripherally-
multiplicative operators in the sense that o, (TfTg) Nox(fg) # ¥ is proven in [9]. Corollaries 21 and 22 improve previous
results from [15], where, in particular, T is assumed to preserve the peripheral spectra of all f € A.
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