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Let A ⊂ C(X) and B ⊂ C(Y ) be uniform algebras with Choquet boundaries δA and δB .
A map T : A → B is called norm-linear if ‖λT f + μT g‖ = ‖λ f + μg‖; norm-additive, if
‖T f + T g‖ = ‖ f + g‖, and norm-additive in modulus, if ‖|T f | + |T g|‖ = ‖| f | + |g|‖ for each
λ,μ ∈ C and all algebra elements f and g. We show that for any norm-linear surjection
T : A → B there exists a homeomorphism ψ : δA → δB such that |(T f )(y)| = | f (ψ(y))|
for every f ∈ A and y ∈ δB . Sufficient conditions for norm-additive and norm-linear
surjections, not assumed a priori to be linear, or continuous, to be unital isometric algebra
isomorphisms are given. We prove that any unital norm-linear surjection T for which
T (i) = i, or which preserves the peripheral spectra of C-peaking functions of A, is a unital
isometric algebra isomorphism. In particular, we show that if a linear operator between
two uniform algebras, which is surjective and norm-preserving, is unital, or preserves the
peripheral spectra of C-peaking functions, then it is automatically multiplicative and, in
fact, an algebra isomorphism.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The problem of characterizing algebra isomorphisms among general maps between Banach algebras has attracted consid-
erable interest. For maps known a priori to be linear it has been an active area of research for over a century, particularly for
the so-called linear preservers, maps that preserve some specific properties or features of algebra elements (see e.g. [11]).
The classical Banach–Stone theorem, for instance, implies that any unital norm-preserving linear surjection between two
spaces of type C(X), the algebra of complex-valued, continuous functions on a compact Hausdorff space X , is an isomet-
ric algebra isomorphism. One important consequence of the celebrated theorem of Gleason–Kahane–Żelazko [16] states
that if a surjective linear map T : A → B between semisimple commutative Banach algebras preserves the spectra, namely,
σ(T f ) = σ( f ) for all f ∈ A, then T is multiplicative and thus an algebra isomorphism. Recall that the spectrum of an al-
gebra element f ∈ A is the compact set σ( f ) = {λ ∈ C: (λ − f ) /∈ A−1}. A result by Kowalski and Słodkowski [6] implies
that if a surjective map T : A → B between semisimple commutative Banach algebras is weakly additive in the sense that
σ(T f − T g) = σ( f − g) for all algebra elements f and g , and T (0) = 0, then T is an algebra isomorphism. More on the
early stage of this subject can be found in [5,11]. Molnár [11,12] showed that a surjective self-map T of the algebra C(X)

with first-countable compact X which is unital and weakly multiplicative in the sense that σ(T f T g) = σ( f g) for all algebra
elements, is an isometric algebra isomorphism. Molnár’s result was generalized for arbitrary uniform algebras by Rao and
Roy [13], and was extended further in various directions (e.g. [1–3,7–9,14,15]). Recently it was realized that crucial for the
isomorphism problem is not the entire spectrum, but merely some of its distinguished parts (e.g. [1,2,7–9,15]).
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Let A ⊂ C(X) be a uniform algebra on a compact Hausdorff set X . Recall that the peripheral spectrum of f ∈ A is the
set σπ ( f ) = σ( f ) ∩ {z ∈ C: |z| = ‖ f ‖} of spectral values of f with maximal modulus. Equivalently, σπ ( f ) is the set of
values of f with maximum modulus, i.e. σπ ( f ) = { f (x): x ∈ X and | f (x)| = ‖ f ‖}. Rao, Tonev and Toneva (e.g. [1]) extended
the mentioned Kowalski–Słodkowski’s result to so-called peripherally-additive maps T : A → B that are weakly additive in
the sense that σπ (T f + T g) = σπ( f + g) for all f , g ∈ A, and have found sufficient conditions for such maps to be unital
isometric algebra isomorphisms.

In this paper we show that the peripheral additivity property, considered in [1] and [15], is too restrictive for the
isomorphism problem: In fact, it suffices the map to be only norm-additive or norm-linear (see the definitions below). In
addition, it is enough the map to be either unital, or to preserve the peripheral spectra of C-peaking functions, rather than
of all algebra elements, as required in [15].

Below we describe the main results of the paper. The first proposition generalizes Rao–Tonev–Toneva’s additive analogue
of Bishop’s Lemma [1]. In it Px(A) denotes the set of peaking functions of A that peak on x, Ex(A) = { f ∈ A: | f (x)| = ‖ f ‖} =
{ f ∈ A: x ∈ E( f )} is the set of all algebra elements which take their maximum modulus at x, δA is the Choquet boundary
of A and E( f ) is the maximum modulus set of f ∈ A (see the corresponding definitions in Section 2).

Proposition. (See Lemma 1, Proposition 4 and Corollary 5.) Let f ∈ A, f �≡ 0. For any x0 ∈ δA and arbitrary r > 1 (or, r � 1 if
f (x0) �= 0), there exists an R-peaking function h ∈ r‖ f ‖ · Px0 (A) such that | f (x)| + |h(x)| < | f (x0)| + |h(x0)| = | f (x0)| + ‖h‖
for every x /∈ E(h) and | f (x)| + |h(x)| = | f (x0)| + |h(x0)| for all x ∈ E(h). Consequently, ‖| f | + |h|‖ = | f (x0)| + |h(x0)|. If α =
exp{i arg f (x0)}, then f + αh ∈ C · Px0 (A), σπ ( f + αh) = { f (x0) + αh(x0)} and E( f + αh) = E(h). Given a neighborhood U of x0 ,
h can be chosen so that E(h) ⊂ U . Moreover, | f (x0)| + |h(x0)| = ‖| f | + |h|‖ = inf h∈Ex0 (A)

‖h‖=r‖ f ‖
‖| f | + |h|‖.

An operator T : A → B between Banach algebras is called norm-preserving if ‖T f ‖ = ‖ f ‖, norm-linear if ‖λT f + μT g‖ =
‖λ f + μg‖, norm-additive if ‖T f + T g‖ = ‖ f + g‖, and norm-additive in modulus if ‖|T f | + |T g|‖ = ‖| f | + |g|‖ (i.e.
maxη∈∂ B(|(T f )(η)|+ |(T g)(η)|) = maxξ∈∂ A(| f (ξ)|+ |g(ξ)|)) for all f , g ∈ A and λ,μ ∈ C, where ‖ ·‖ is the uniform norm on
C(∂ A) and C(∂ B) correspondingly. Clearly, every norm-linear operator is norm-additive and every norm-preserving linear
(resp. additive) operator is automatically norm-linear (resp. norm-additive).

The primary results of the paper, which follow, reveal the structure of norm-additive and norm-linear operators between
uniform algebras and provide sufficient conditions for such operators to be unital isomorphic algebra isomorphisms.

Theorem. (See Theorem 13.) Any norm-linear surjection T : A → B between uniform algebras induces an associated homeomorphism
ψ : δA → δB so that |(T f )(y)| = | f (ψ(y))| for every f ∈ A and y ∈ δB.

The following theorem provides sufficient conditions for a norm-additive operator to be an algebra isomorphism.

Theorem (Norm-Additive Operators). (See Theorem 16.) A norm-additive surjection T : A → B between uniform algebras which is
norm-additive in modulus induces an associated homeomorphism ψ : δB → δA such that |(T f )(y)| = | f (ψ(y))| for each f ∈ A and
all y ∈ δB. If, in addition, T (1) = 1 and T (i) = i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is an
isometric unital algebra isomorphism.

As a corollary we obtain the following criteria for a norm-additive operator to be norm-linear.

Corollary. (See Corollary 17.) Let T : A → B be a norm-additive surjection for which T (1) = 1 and T (i) = i, or which preserves the
peripheral spectra of C-peaking functions of A. Then T is norm-linear if and only if it is norm-additive in modulus.

The next theorem gives sufficient conditions for a norm-linear operator to be an algebra isomorphism. Namely,

Theorem (Norm-Linear Operators). (See Theorem 20.) A norm-linear surjection T : A → B between two uniform algebras for which
T (1) = 1 and T (i) = i, or which preserves the peripheral spectra of all C-peaking functions of A, induces an associated homeomor-
phism ψ : δB → δA such that T is a ψ-composition operator on B, and therefore, is an isometric unital algebra isomorphism.

This theorem yields the following corollary, which extends in a certain sense the corollaries of Banach–Stone’s theorem
and Gleason–Kahane–Żelazko’s theorem mentioned above.

Corollary (Linear Operators). (See Corollary 21.) If a linear operator between two uniform algebras, which is surjective and norm-
preserving, is unital, or preserves the peripheral spectra of C-peaking functions, then it is automatically multiplicative and, in fact, an
algebra isomorphism.
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2. Preliminaries

In this section A ⊂ C(X) will be a uniform algebra on a compact Hausdorff space X . For an f ∈ A the set E( f ) of all x
in X at which f attains its maximum modulus is called the maximum modulus set of f , i.e. E( f ) = {x ∈ X: | f (x)| = ‖ f ‖} =
{x ∈ X: f (x) ∈ σπ( f )} = f −1(σπ ( f )). An element h ∈ A is called a peaking function of A if σπ (h) = {1}, i.e., if ‖h‖ = 1 and
|h(x)| < 1 whenever h(x) �= 1. In this case, the maximum modulus set E(h) = {x ∈ X: h(x) = 1} = h−1{1} is called the peak
set of h. If E is a subset of X such that E ⊂ E(h) for some peaking function h, we say that h peaks on E . The set of all
peaking functions in A we denote by P(A). Clearly, C · P(A) is the set of all f ∈ A with singleton peripheral spectra. The
elements of C · P(A) (resp. R · P(A)) we call C-peaking functions (resp. R-peaking functions) of A. A point x ∈ X is called a
generalized peak point, or p-point, of A if for every neighborhood V of x there is a peaking function h with x ∈ E(h) ⊂ V .
Recall that the set δA of all generalized peak points of A is the Choquet (or the strong) boundary of A, and δA = ∂ A, the
Shilov boundary of A. Given an x ∈ X , we denote by Px(A) the set of all peaking functions of A which peak on x and by
C · Px(A) the set of C-peaking functions of A that peak on x.

The following lemma, which we use on several occasions further, strengthens and generalizes the additive version of
Bishop’s Lemma from [15].

Lemma 1 (Strong version of the additive Bishop’s Lemma). For any nonzero f ∈ A, x0 ∈ δA and arbitrary r > 1 (or, r � 1 if f (x0) �= 0)
there exists an R-peaking function h ∈ r‖ f ‖ · Px0 (A) such that

∣∣ f (x)
∣∣ + ∣∣h(x)

∣∣ <
∣∣ f (x0)

∣∣ + ∣∣h(x0)
∣∣ (1)

for every x /∈ E(h) and | f (x)|+ |h(x)| = | f (x0)|+ |h(x0)| for all x ∈ E(h). Consequently, maxx∈X (| f (x)|+ |h(x)|) = | f (x0)|+ |h(x0)|.
Given a neighborhood U of x0 , h can be chosen such that E(h) ⊂ U .

Proof. Consider first the case when f (x0) �= 0. For every n ∈ N we define the open set Un = {x ∈ X: | f (x) − f (x0)| <
| f (x0)|
2n+1 }. Clearly, Un ⊂ Un−1 and x0 ∈ Un for every n ∈ N. Let r � 1. For each n, choose a peaking function kn ∈ Px0 (A) such

that E(kn) ⊂ Un , and let hn ∈ Px0 (A) be a large enough power of kn such that |hn(x)| <
| f (x0)|
2nr‖ f ‖ on X \ Un . One can see

that
⋂∞

n=1 Un = f −1( f (x0)). Indeed, it is clear that every x ∈ f −1( f (x0)) belongs to
⋂∞

n=1 Un; conversely, if x ∈ ⋂∞
n=1 Un

then | f (x) − f (x0)| <
| f (x0)|
2n+1 for every n ∈ N, thus f (x) = f (x0), i.e. x ∈ f −1( f (x0)). We claim that the R-peaking function

h = r‖ f ‖ · ∑∞
1

hn
2n satisfies inequality (1). Clearly, h ∈ r‖ f ‖ · Px0(A) and hence ‖h‖ = r‖ f ‖ = |h(x0)|. In addition, E(h) ⊂⋂∞

n=1 E(hn) ⊂ ⋂∞
n=1 Un = f −1( f (x0)).

For any x ∈ E(h) we have | f (x)| + |h(x)| = | f (x0)| + ‖h‖, while | f (x)| + |h(x)| = | f (x0)| + |h(x)| < | f (x0)| + ‖h‖ holds for
any x ∈ f −1( f (x0)) \ E(h). If x /∈ f −1( f (x0)) = ⋂∞

n=1 Un , there are two possibilities.

Case 1: x /∈ U1. In this case x /∈ Un for every n ∈ N, and hence |hn(x)| <
| f (x0)|
2nr‖ f ‖ for every n ∈ N. Therefore, |h(x)| <

r‖ f ‖ · ∑∞
1

| f (x0)|
4nr‖ f ‖ < | f (x0)|, and consequently, | f (x)| + |h(x)| < r‖ f ‖ + | f (x0)| = | f (x0)| + ‖h‖.

Case 2: x ∈ Un−1 \ Un for some n > 1. In this case x ∈ Ui for 1 � i � n − 1 and x /∈ Ui for every i � n. Therefore,
|hi(x)| < | f (x0)|

2i r‖ f ‖ for every i � n. Since x ∈ Un−1, we have | f (x) − f (x0)| < | f (x0)|
2n and hence

∣∣ f (x)
∣∣ + ∣∣h(x)

∣∣ �
∣∣ f (x0)

∣∣ + ∣∣ f (x) − f (x0)
∣∣ + ∣∣h(x)

∣∣ <
∣∣ f (x0)

∣∣ + | f (x0)|
2n

+ r‖ f ‖ ·
n−1∑
i=1

|hi(x)|
2i

+ r‖ f ‖ ·
∞∑

i=n

|hi(x)|
2i

.

Since each hn is a peaking function of A, it follows that |hn(x)| � 1 for any x ∈ X , and therefore,
∑n−1

i=1
|hi(x)|

2i �
∑n−1

i=1
1
2i =

1 − 1
2n−1 . Moreover,

∑∞
i=n

|hi(x)|
2i <

∑∞
i=n

| f (x0)|
4i r‖ f ‖ �

∑∞
i=n

1
4i = 1

3·4n−1 . Hence,

∣∣ f (x)
∣∣ + ∣∣h(x)

∣∣ �
∣∣ f (x0)

∣∣ + | f (x0)|
2n

+
(

1 − 1

2n−1

)
r‖ f ‖ + 1

3 · 4n−1
r‖ f ‖

<
∣∣ f (x0)

∣∣ +
(

1 − 1

2n−1
+ 1

2n
+ 1

3 · 4n−1

)
r‖ f ‖

= ∣∣ f (x0)
∣∣ +

(
1 − 1

2n−1

(
1 − 1

2
− 1

3 · 2n−1

))
‖h‖ <

∣∣ f (x0)
∣∣ + ‖h‖.

We have obtained that | f (x)| + |h(x)| < | f (x0)| + ‖h‖ for every x /∈ f −1( f (x0)).
If f (x0) = 0, we must show that | f (x)| + |h(x)| < |h(x0)| = ‖h‖ for all x /∈ E(h). Let r > 1. For any n ∈ N, define the open

set Vn = {x ∈ X: | f (x)| <
(r−1)‖ f ‖

2n+1 }. Clearly, Vn ⊂ Vn−1 and x0 ∈ Vn for every n ∈ N. As before, for each n we choose a
peaking function kn ∈ Px0 (A) such that E(kn) ⊂ Vn , and let hn ∈ Px0(A) be a large enough power of kn such that |hn(x)| <
r−1

n on X \ Vn . We claim that in this case the R-peaking function h = r‖ f ‖ · ∑∞
n=1

hn
n satisfies inequality (1). As before,
2 r 2
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one can see that E(h) ⊂ f −1(0) = ⋂∞
n=1 Vn . Note that ‖h‖ = r‖ f ‖ since h ∈ r‖ f ‖ · Px0 (A). It is clear that if x ∈ E(h) then

| f (x)| + |h(x)| = ‖h‖, while | f (x)| + |h(x)| = |h(x)| < ‖h‖ for any x ∈ f −1(0) \ E(h).
Suppose now that x /∈ f −1(0). If in addition x /∈ V 1, then we obtain, as before, that |h(x)| < r‖ f ‖ · ∑∞

1
r−1
4nr < (r − 1)‖ f ‖,

and therefore, | f (x)| + |h(x)| < ‖ f ‖ + (r − 1)‖ f ‖ = r‖ f ‖ = ‖h‖. If x ∈ Vn−1 \ Vn for some n > 1, then x ∈ V i for 1 � i � n − 1
and x /∈ V i for every i � n. Therefore, |hi(x)| < r−1

2i r
for every i � n. Because of x ∈ Vn−1 we see that | f (x)| <

(r−1)‖ f ‖
2n <

r‖ f ‖
2n

and hence | f (x)| + |h(x)| <
r‖ f ‖

2n + r‖ f ‖∑n−1
i=1

|hi(x)|
2i + r‖ f ‖∑∞

i=n
|hi(x)|

2i . Since each hn is a peaking function of A, it follows

that |hn(x)| � 1 for every x ∈ X and therefore
∑n−1

i=1
|hi(x)|

2i �
∑n−1

i=1
1
2i = 1 − 1

2n−1 . In addition,
∑∞

i=n
|hi(x)|

2i <
∑∞

i=n
(r−1)

4i r
<∑∞

i=n
1
4i = 1

3·4n−1 . Therefore, we have

∣∣ f (x)
∣∣ + ∣∣h(x)

∣∣ � r‖ f ‖
2n

+
(

1 − 1

2n−1

)
r‖ f ‖ + 1

3 · 4n−1
r‖ f ‖ �

(
1 − 1

2n−1
+ 1

2n
+ 1

3 · 4n−1

)
r‖ f ‖ < r‖ f ‖ = ‖h‖.

Consequently, | f (x)| + |h(x)| < ‖h‖ for every x /∈ f −1( f (0)).
Let U be a neighborhood of x0. If h∗ ∈ Px0(A) is a peaking function of A with E(h∗) ⊂ U , then |h∗(x)| < 1 on X \ U , the

function hh∗ satisfies inequality (1) and, in addition, E(hh∗) ⊂ U . �
As noted above, Lemma 1 implies the additive version of Bishop’s Lemma [15] stated below, which neither specifies the

points where maxξ∈E | f (ξ)| + ‖h‖ is attained nor treats the case when f ≡ 0 on E:

Corollary 2 (Additive Bishop’s Lemma). (See [15].) Let f ∈ A and E be a peak set for A such that f �≡ 0 on E. For any r � 1 there exists
an R-peaking function h ∈ r‖ f ‖ · P(A) with E(h) ⊂ E such that | f (x)| + |h(x)| < maxξ∈E | f (ξ)| + ‖h‖ for all x /∈ E.

The next corollary of Lemma 1 strengthens Corollary 2.

Corollary 3. Let f ∈ A, f �≡ 0. If E is a peak set for A and r � 1 is arbitrary, then for any x0 ∈ E ∩ δA with f (x0) �= 0 there exists an
R-peaking function h ∈ r‖ f ‖ · Px0 (A) with E(h) ⊂ E such that | f (x)| + |h(x)| < | f (x0)| + |h(x0)| = maxξ∈E | f (ξ)| + ‖h‖ for every
x /∈ E.

Lemma 1 implies also the next proposition, which we use on several occasions further.

Proposition 4. Let f ∈ A, f �≡ 0. If x0 ∈ δA, α = exp{i arg( f (x0))} and r > 1 (or, r � 1 if f (x0) �= 0), then there exists an R-peaking
function h ∈ r‖ f ‖ · Px0 (A) such that E( f + αh) = E(h), | f (x0) + αh(x0)| = ‖ f + αh‖ and

∣∣ f (x) + αh(x)
∣∣ < ‖ f + αh‖ (2)

whenever f (x) + αh(x) �= f (x0) + αh(x0). Consequently, f + αh ∈ C · Px0 (A) and σπ ( f + αh) = { f (x0) + αh(x0)}. Given a neigh-
borhood U of x0 , h can be chosen to be such that E( f + αh) ⊂ U .

Proof. Let the function h be as in Lemma 1. If α = exp{i arg( f (x0))}, then | f (x0)+αh(x0)| = | f (x0)| + |h(x0)| and therefore,
‖ f + αh‖ = maxξ∈X | f (ξ) + αh(ξ)| � maxξ∈X (| f (ξ)| + |h(ξ)|) = | f (x0)| + |h(x0)| = | f (x0) + αh(x0)| � ‖ f + αh‖. Hence ‖ f +
αh‖ = | f (x0)| + |h(x0)| = | f (x0) + αh(x0)| and therefore, f (x0) + αh(x0) ∈ σπ ( f + αh). Inequality (1) implies that for any
x /∈ E(h), we have | f (x) + αh(x)| � | f (x)| + |h(x)| < | f (x0)| + |h(x0)| = ‖ f + αh‖, thus f (x) + αh(x) /∈ σπ ( f + αh) and hence
E( f + αh) ⊂ E(h). Since E(h) ⊂ f −1( f (x0)), for any x ∈ E(h) we have f (x) + αh(x) = f (x0) + αh(x0) ∈ σπ ( f + αh), and
therefore, E(h) ⊂ E( f + αh). Consequently, E(h) = E( f + αh) and σπ ( f + αh) = { f (x0) + αh(x0)}, as claimed. If U is a
neighborhood of x0, then any function h from Lemma 1 with E(h) ⊂ U satisfies the inequality (2). �

Given an x ∈ X , we denote by Ex(A) = { f ∈ A: | f (x)| = ‖ f ‖} = { f ∈ A: x ∈ E( f )} the set of all algebra elements which
take their maximum modulus at x. If h ∈ Px(A), then, clearly, x is in the maximum modulus set E(h) of h, so h ∈ Ex(A),
and therefore, Px(A) ⊂ Ex(A). One can see that C · Px(A) = C · P(A) ∩ Ex(A) ⊂ Ex(A). Note that in the case of algebra C(X),
families of sets similar to Ex(A) have been considered by Holsztyński [4] in his proof of Banach–Stone’s theorem.

The next result, which we will use on several occasions further in this paper, is a consequence of Lemma 1.

Corollary 5. Let f ∈ A, f �≡ 0. If x0 ∈ δA, r > 1 (or, r � 1 if f (x0) �= 0), and h0 ∈ r‖ f ‖ · Px0 (A) is as in Lemma 1, then
∣∣ f (x0)

∣∣ + r‖ f ‖ = ∣∣ f (x0)
∣∣ + ∣∣h0(x0)

∣∣ = ∥∥| f | + |h0|
∥∥ = inf

h∈Ex0 (A)

‖h‖=r‖ f ‖

∥∥| f | + |h|∥∥. (3)

Proof. Let h0 ∈ r‖ f ‖ · Px0(A) be a function as in Lemma 1. For any h ∈ Ex0 (A) with ‖h‖ = r‖ f ‖, we have that ‖| f | +
|h|‖ = maxξ∈X (| f (ξ)|+|h(ξ)|) � | f (x0)|+|h(x0)| = | f (x0)|+|h0(x0)| = maxξ∈X (| f (ξ)|+|h0(ξ)|) = ‖| f |+|h0|‖. Consequently,
inf h∈Ex0 (A)

‖h‖=r‖ f ‖
‖| f | + |h|‖ = ‖| f | + |h0|‖ = | f (x0)| + |h0(x0)| = | f (x0)| + ‖h‖, according to Lemma 1. �
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3. The associated homeomorphism

In this section A ⊂ C(X) and B ⊂ C(Y ) will be uniform algebras on compact sets X and Y , respectively. We show that
under certain conditions any surjective operator T : A → B between uniform algebras induces in a natural way an associated
homeomorphism between δA and δB .

Recall that an operator T : A → B is R+-homogeneous if T (r f ) = rT f for every f ∈ A and r � 0. For instance, if T is
norm-additive, or more generally, peripherally-additive, then T is R-linear (see e.g. Lemma 12 in the next section) and
therefore, R+-homogeneous. The operator T is monotone increasing in modulus (see [1]) if the inequality | f (x)| � |g(x)| on
∂ A implies |(T f )(y)| � |(T g)(y)| on ∂ B for all f , g ∈ A. For example, surjections T : A → B that are norm-additive in modulus
in the sense that ‖|T f | + |T g|‖ = ‖| f | + |g|‖ for all f , g ∈ A, are necessarily monotone increasing in modulus (cf. [1]) and
also norm-preserving.

Lemma 6. If a norm-preserving operator T : A → B is R+-homogeneous and monotone increasing in modulus, then for any general-
ized peak point x ∈ δA, the set

Ex =
⋂

f ∈Ex(A)

E(T f ) (4)

is nonempty and Ex ∩ δB �= ∅.

Proof. Let x ∈ δA. We will show that the family {E(T f ): f ∈ Ex(A)} has the finite intersection property. Let f1, . . . , fn ∈
Ex(A) and define f = f1 · · · fn . Then

‖ f1 · · · fn‖ = ‖ f ‖ �
∣∣ f (x)

∣∣ = ∣∣( f1 · · · fn)(x)
∣∣ = ∣∣ f1(x) · · · fn(x)

∣∣ = ∣∣ f1(x)
∣∣ · · · ∣∣ fn(x)

∣∣ = ‖ f1‖ · · · ‖ fn‖ � ‖ f1 · · · fn‖,
so | f (x)| = ‖ f ‖ = ∏n

j=1 ‖ f j‖ and hence f ∈ Ex(A). For any ξ ∈ ∂ A and every fixed k = 1, . . . ,n, we have

∣∣ f (ξ)
∣∣ = ∣∣ f1(ξ)

∣∣ · · · ∣∣ fn(ξ)
∣∣ �

(∏
j �=k

‖ f j‖
)

· ∣∣ fk(ξ)
∣∣ =

∣∣∣∣
(∏

j �=k

‖ f j‖
)

· fk(ξ)

∣∣∣∣.

Since T is monotone increasing in modulus and R+-homogeneous, |(T f )(η)| � |T ((
∏

j �=k ‖ f j‖) · fk)(η)| = (
∏

j �=k ‖ f j‖) ·
|(T fk)(η)| �

∏n
j=1 ‖ f j‖ = ‖ f ‖ = ‖T f ‖ for all η ∈ ∂ B . If y ∈ E(T f ) ∩ ∂ B then ‖T f ‖ = |(T f )(y)| � (

∏
j �=k ‖ f j‖) · |(T fk)(η)| �

‖T f ‖, thus (
∏

j �=k ‖ f j‖) · |(T fk)(y)| = ‖T f ‖ = ∏n
j=1 ‖ f j‖ and hence |(T fk)(y)| = ‖ fk‖ = ‖T fk‖. Hence y ∈ E(T fk) and there-

fore, E(T f )∩∂ B ⊂ E(T fk). Since this holds for every k = 1, . . . ,n we conclude that E(T f )∩∂ B ⊂ ⋂n
j=1 E(T f j). Consequently,

the family {E(T f ): f ∈ Ex(A)} has the finite intersection property, as claimed. Since each E(T f ) is a closed subset of Y ,
a compact set, the above family must have nonempty intersection.

Observe that the set E(T f ) = (T f )−1(σπ (T f )) is a union of peak sets of B since (T f )−1(u) is a peak set for any u ∈
σπ (T f ). Hence, every y ∈ Ex belongs to an intersection F y = ⋂

f ∈Ex(A) F y, f ⊂ Ex of peak sets F y, f ⊂ E(T f ) of B . Therefore,
F y meets δB (cf. [10, p. 165]), and so does Ex . �

If, in addition, T preserves the peripheral spectra of algebra elements, sets similar to (4), involving only peaking functions,
are considered in [15].

Lemma 7. Let T : A → B be R+-homogeneous and norm-additive in modulus surjection. If x ∈ δA and y ∈ Ex ∩ δB, then
T −1(Ey(B)) ⊂ Ex(A).

Proof. Since T is norm-additive in modulus, then it is norm-preserving and, as noted above, monotone increasing in mod-
ulus. Therefore, Ex �= ∅ by Lemma 6. Fix a k ∈ Ey(B) and let h ∈ T −1(k). To prove that h ∈ Ex(A), it suffices to show that
|h(x)| = ‖h‖. Take an open neighborhood V of x and a C-peaking function p ∈ ‖h‖ · Px(A) such that E(p) ⊂ V . Since
y ∈ Ex = ⋂

f ∈Ex(A) E(T f ) ⊂ E(T p) it follows that |(T p)(y)| = ‖T p‖. Hence, T p ∈ Ey(B). Since T is norm-additive in modulus,
it preserves the norms and therefore, |k(y)| = ‖k‖ = ‖h‖ = ‖p‖ = ‖T p‖. Hence,

‖h‖ + ‖p‖ �
∥∥|h| + |p|∥∥ = ∥∥|k| + |T p|∥∥ �

∣∣k(y)
∣∣ + ∣∣(T p)(y)

∣∣ = ‖k‖ + ‖T p‖ = ‖h‖ + ‖p‖.
Consequently, ‖|h| + |p|‖ = ‖h‖ + ‖p‖ and there must be an xV ∈ ∂ A such that |h(xV )| = ‖h‖ and |p(xV )| = ‖p‖. Therefore,
xV ∈ E(p) ⊂ V and any neighborhood V of x must contain a point xV with |h(xV )| = ‖h‖. The continuity of h implies that
|h(x)| = ‖h‖, so h ∈ Ex(A). Hence, T −1(Ey(B)) ⊂ Ex(A), as claimed. �
Corollary 8. If T : A → B is as in Lemma 7, then the set Ex is a singleton and belongs to δB for any generalized peak point x ∈ δA.
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Proof. Let y ∈ Ex . If there exists a z ∈ Ex \ {y} then there is a function k ∈ Ey(B) such that |k(z)| < ‖k‖. For any h ∈ T −1(k) ⊂
Ex(A), we have E(k) = E(T h) ⊃ Ex . Hence, the function |k| = |T h| is identically equal to ‖k‖ on Ex , in contradiction with
|k(z)| < ‖k‖. Therefore, the set Ex contains no points other than y. �

Let T : A → B be as in Lemma 7 and x ∈ δA. Define τ (x) to be the single element of the set Ex , i.e.,

{
τ (x)

} = Ex =
⋂

h∈Ex(A)

E(T h). (5)

Hence T induces an associated mapping τ : x 
→ τ (x) from δA to δB . Lemma 7 shows that Eτ (x)(B) = Ey(B) ⊂ T (Ex(A)). If
h ∈ Ex(A), then (4) implies E(T h) ⊃ Ex = {τ (x)}. Consequently,

∣∣(T h)
(
τ (x)

)∣∣ = ‖T h‖ = ‖h‖ = ∣∣h(x)
∣∣ (6)

for any h ∈ Ex(A).
We mention that if, in addition, σπ (T h) = σπ (h) for some h ∈ C · Px(A), then (T h)(τ (x)) = h(x).

Corollary 9. If T : A → B is as in Lemma 7 then T (Ex(A)) = Eτ (x)(B).

Proof. Let h ∈ Ex(A) for some x ∈ δA and let k = T h. By Eq. (6) we have |k(τ (x))| = |(T h)(τ (x))| = |h(x)| = ‖h‖ = ‖k‖.
Consequently, k ∈ Eτ (x)(B) and therefore T (Ex(A)) ⊂ Eτ (x)(B). The opposite inclusion follows from Lemma 7. �

The next proposition shows that Eq. (6) in fact holds for every f ∈ A and x ∈ δA.

Proposition 10. If T : A → B is an R+-homogeneous and norm-additive in modulus surjection between uniform algebras, then the
induced associated mapping τ is continuous and the equation

∣∣(T f )
(
τ (x)

)∣∣ = ∣∣ f (x)
∣∣ (7)

holds for every x ∈ δA and all f ∈ A. If, in addition, T is bijective, then τ is a homeomorphism from δA onto δB, and then

∣∣(T f )(y)
∣∣ = ∣∣ f

(
ψ(y)

)∣∣ (8)

for every y ∈ δB, where ψ : δB → δA is the inverse mapping of τ .

Proof. First we will show that |(T f )(τ (x))| = | f (x)| for every x ∈ δA and for all f ∈ A. Let x ∈ δA, f ∈ A and r > 1. If
h0 ∈ r‖ f ‖ · Px(A) is a function as in Lemma 1, then ‖T h0‖ = ‖h0‖ = r‖ f ‖ = r‖T f ‖ and T h0 ∈ r‖T f ‖ · Eτ (x)(B). Since T is
norm-additive in modulus, the strong version of Bishop’s Lemma 1, (3) and Corollary 9 imply

∣∣ f (x)
∣∣ + r‖ f ‖ = inf

h∈Ex(A)
‖h‖=r‖ f ‖

∥∥| f | + |h|∥∥ = inf
h∈Ex(A)
‖h‖=r‖ f ‖

∥∥|T f | + |T h|∥∥ = inf
k∈Eτ (x)(A)

‖k‖=r‖ f ‖

∥∥|T f | + |k|∥∥ = ∣∣(T f )
(
τ (x)

)∣∣ + r‖ f ‖.

Consequently, |(T f )(τ (x))| = | f (x)|, as claimed.
To show the continuity of τ let x ∈ δA and p ∈ (0,1). Choose an open set V of τ (x) in δB and a peaking function

k ∈ Pτ (x)(B) such that E(k) ⊂ V and |k(y)| < p on δB \ V . If h ∈ T −1(k), then h ∈ Ex(A), and according to Eq. (6), |h(x)| =
|(T h)(τ (x))| = |k(τ (x))| = 1 > p. Therefore, the open set W = {ξ ∈ δA: |h(ξ)| > p} contains x. The first part of the proof
shows that for every ξ ∈ W , we have |k(τ (ξ))| = |(T h)(τ (ξ))| = |h(ξ)| > p, which implies that τ (ξ) ∈ V since |k(η)| < p on
δB \ V . Consequently, τ (W ) ⊂ V , and thus τ is continuous.

Now suppose that T is bijective. It is easy to see that T −1 : B → A is also an R+-homogeneous operator. Since the
equation ‖|T f | + |T g|‖ = ‖| f | + |g|‖ is symmetric with respect to f and T f , the operator T −1 : B → A is also norm-
additive in modulus. By the first part of the proof, T −1 induces its own associated continuous map ψ : δB → δA such
that |(T −1k)(ψ(η))| = |k(η)| for all η ∈ δB and for any k ∈ Eψ(η)(B). Let x ∈ δA and y = τ (x) ∈ δB . If h ∈ Ex(A), then
k = T h ∈ Ey(B) by Corollary 9; Thus |h(ψ(y))| = |(T −1(k))(ψ(y))| = |k(y)| = |(T h)(y)| = |(T h)(τ (x))| = |h(x)| = ‖h‖. Hence
ψ(y) ∈ E(h) for any h ∈ Ex(A). Since

⋂
h∈Ex(A) E(h) = {x}, we deduce that ψ(τ (x)) = ψ(y) = x for every x ∈ δA. Similar

arguments show that τ (ψ(y)) = y for all y ∈ δB . Consequently, τ and ψ are both bijective and ψ = τ−1. Therefore, τ is a
homeomorphism. Eq. (8) follows immediately from Eq. (7). �

A version of Proposition 10 for norm-multiplicative operators T is given in [9]. Proposition 10 yields one of the basic
results in [15] stated below, where, in particular, T is assumed to be peripherally-additive.

Corollary 11. (See [15, Lemma 14 and Corollary 6].) For any peripherally-additive and norm-additive in modulus surjection T : A → B
there exists a homeomorphism τ : δA → δB such that the equation |(T f )(τ (x))| = | f (x)| holds for every f ∈ A and x ∈ δA.
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In general, the moduli in Eqs. (7) and (8) cannot be omitted, since if so, then T would also be multiplicative. For instance,
the operator T f = i f satisfies the hypotheses of Proposition 10 without being multiplicative. However, if T preserves the
peripheral spectra of all C-peaking functions, then, by the remark prior to Corollary 9, (T h)(τ (x)) = h(x) for every x ∈ δA
and all h ∈ C · Px(A).

Note that a mapping similar to τ , but involving only peaking functions, is considered in [1] and [15], where T is assumed
in addition to be peripherally-additive in the sense that σπ (T f + T g) = σπ ( f + g) for all f , g ∈ A and consequently, to
preserve the peripheral spectra of all f ∈ A.

4. When are norm-linear or norm-additive operators algebra isomorphisms?

Here we provide sufficient conditions for norm-linear and norm-additive operators between uniform algebras to be
isometric algebra isomorphisms.

Lemma 12. If T : A → B is norm-additive operator and f , g ∈ A, then

(a) T 0 = 0,
(b) T (− f ) = −T f ,
(c) T is norm-preserving,
(d) T preserves the distances, i.e. ‖T f − T g‖ = ‖ f − g‖,
(e) T is injective, and
(f) T is continuous.

If T is also surjective, then T is R-linear, thus additive and R+-homogeneous.

Proof. Let f = g = 0. Then 0 = ‖ f + g‖ = ‖T f + T g‖ = ‖2T 0‖ = 2‖T 0‖, so T 0 = 0. For property (b) note that
‖T f + T (− f )‖ = ‖ f + (− f )‖ = ‖0‖ = 0, so T f + T (− f ) = 0, which implies that T (− f ) = −T f . If g = 0, then ‖T f + T 0‖ =
‖T f ‖ = ‖ f ‖. Property (d) follows from (b) since ‖ f − g‖ = ‖T f + T (−g)‖ = ‖T f − T g‖. The injectivity of T follows from
property (d) since if T f = T g , then ‖ f − g‖ = ‖T f − T g‖ = 0 and thus f = g . The continuity of T is a direct consequence
of (d). Finally, the R-linearity of T follows from the Mazur–Ulam theorem. �

As shown in [15], any norm-linear operator is norm-additive in modulus. Proposition 10 and Lemma 12 imply the fol-
lowing

Theorem 13. If T : A → B is a norm-linear surjection between uniform algebras, then the induced associated mapping ψ : δA → δB
is a homeomorphism and T is a ψ-composition operator in modulus on δB, i.e. |(T f )(y)| = | f (ψ(y))| for every f ∈ A and y ∈ δB.

Let T : A → B be a bijection, τ : δA → δB be as in Proposition 10, and ψ = τ−1. We call T a ψ-composition operator in
modulus on δB if |(T f )(y)| = | f (ψ(y))|, and ψ-composition operator on δB if (T f )(y) = f (ψ(y)) for all f ∈ A and y ∈ δB .
Eq. (8) shows that T is a ψ-composition operator in modulus on δB .

The following lemma provides sufficient conditions under which the moduli in Eq. (8) can be omitted.

Lemma 14. Let the ψ-composition operator in modulus T : A → B on δB from Proposition 10 be additive. If T (1) = 1 and T (i) = i, or if
T preserves the peripheral spectra of all C-peaking functions of A, (i.e. σπ (T f ) = σπ ( f ) for all f ∈ C ·P(A)), then (T f )(y) = f (ψ(y))

for every f ∈ A and all y ∈ δB, thus T is a ψ-composition operator on δB.

Proof. Suppose first that T (1) = 1 and T (i) = i. Fix an f ∈ A and y0 ∈ δB such that f (ψ(y0)) �= 0. Since T is ψ-composition
operator in modulus, then |(T (1 + f ))(y0)| = |(1 + f )(ψ(y0))| = |1 + f (ψ(y0))|. On the other hand, the additivity of T
implies |(T (1 + f ))(y0)| = |1 + (T f )(y0)|. Hence, |1 + f (ψ(y0))| = |1 + (T f )(y0)|. Consequently, either (T f )(y0) = f (ψ(y0)),
or, (T f )(y0) = f (ψ(y0)), which holds for every f ∈ A and y0 ∈ δB . We claim that (T f )(y0) = f (ψ(y0)). Without loss of
generality we may assume that Im{(T f )(y0)} �= 0. Assume that (T f )(y0) = f (ψ(y0)) and suppose, in addition, that (T (i +
f ))(y0) = (i + f )(ψ(y0)) = −i + f (ψ(y0)). Then |i + (T f )(y0)| = |(T (i + f ))(y0)| = |−i + f (ψ(y0))| = |−i + (T f )(y0)| = |i +
(T f )(y0)|. Therefore, (T f )(y0) = (T f )(y0), thus Im{(T f )(y0)} = 0 which contradicts the assumption for f . If (T (i+ f ))(y0) =
(i + f )(ψ(y0)) = i + f (ψ(y0)), then |i + (T f )(y0)| = |(T (i + f ))(y0)| = |(i + f )(ψ(y0))| = |i + f (ψ(y0))| = |i + (T f )(y0)|,
which is impossible. Consequently, (T f )(y0) = f (ψ(y0)) for every f ∈ A, as claimed.

Suppose now that T preserves the peripheral spectra of C-peaking functions. Then T (1) = 1 and T (i) = i since |T (1)| =
|T (i)| = 1 by (7), and the first part of the proof applies, but we will provide also an alternative proof. Fix an y0 ∈ δA and
let f ∈ A. Since T is a ψ-composition operator in modulus on δB , without loss of generality we can assume that f (x0) �= 0,
where x0 = τ−1(y0). The strong version of the additive Bishop’s Lemma, and more precisely its consequence Proposition 4
with r = 1, implies that there is an h ∈ ‖ f ‖ ·Px0(A) such that σπ( f +αh) = f (x0)+αh(x0), where α = exp{i arg( f (x0))}. If T
preserves the peripheral spectra of all C-peaking functions, then as noted at the end of the previous section, (T h)(τ (x0)) =
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h(x0), (T (αh))(τ (x0)) = αh(x0), and (T ( f +αh))(τ (x0)) = f (x0)+αh(x0), since h,αh and f +αh belong to C ·Px0(A). Since
T is additive, (T ( f + αh))(τ (x0)) = (T f )(τ (x0)) + (T (αh))(τ (x0)) = (T f )(τ (x0)) + αh(x0). Consequently, f (x0) + αh(x0) =
(T ( f + αh))(τ (x0)) = (T f )(τ (x0)) + αh(x0), and thus (T f )(τ (x0)) = f (x0). Hence (T f )(y0) = f (ψ(y0)), where ψ = τ−1. �

Since the elements in a uniform algebra are uniquely determined by their restrictions on the Choquet boundary, uniform
algebras are isometrically and algebraically isomorphic to the restriction algebras on their Choquet boundaries. Therefore,
any map T : A → B induces automatically an associated map T † : A|δA → B|δB between the restriction algebras on their
corresponding Choquet boundaries.

Because an additive and norm-additive in modulus operator is norm-additive, Lemma 12, Proposition 10 and Lemma 14
imply the following

Corollary 15. Any additive and norm-additive in modulus surjection T : A → B is a ψ-composition operator in modulus on δB. If, in
addition, T (1) = 1 and T (i) = i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is a ψ-composition
operator on δB, hence, the induced by T operator T † : A|δA → B|δB is an algebraic isomorphism and the restricted algebras A|δA and
B|δB are algebraically isomorphic.

Note that, since the operator T in Corollary 15 is R-homogeneous, it preserves the peripheral spectra of all C-peaking
functions if it preserves the peripheral spectra of T-peaking functions, where T is the unit circle. Since, by Lemma 12, every
surjective norm-additive operator is additive, Proposition 10 and Corollary 15 yield:

Theorem 16 (Norm-Additive Operators). Any norm-additive and norm-additive in modulus surjection T : A → B between uniform
algebras is a ψ-composition operator in modulus on δB. If, in addition, T (1) = 1 and T (i) = i, or if T preserves the peripheral spectra
of all C-peaking functions of A, then T is an isometric unital algebra isomorphism.

Note that the operator T in Theorem 16 is not assumed a priori to be linear or continuous. Theorem 16 holds also for
surjective norm-additive in modulus isometries T (i.e. such that ‖T f − T g‖ = ‖ f − g‖) with T (0) = 0, and therefore extends
in a certain sense to the case of uniform algebras the corollary of Banach–Stone’s theorem, mentioned in the beginning.
Theorem 16 implies the following criteria for a norm-additive operator to be norm-linear.

Corollary 17. Let T : A → B be a norm-additive surjection for which T (1) = 1 and T (i) = i, or which preserves the peripheral spectra
of C-peaking functions of A. Then T is norm-linear if and only if it is norm-additive in modulus.

Indeed, by Theorem 16, T is a ψ-composition operator in modulus, and therefore, ‖λT f + μT g‖ = supy∈δB |λ(T f )(y) +
μ(T g)(y)| = supy∈δB |λ f (ψ(y)) + μg(ψ(y))| = supx∈δA |λ f (x) + μg(x)| = ‖λ f + μg‖. Consequently, T is norm-linear. Con-
versely, any norm-linear operator is norm-additive and norm-additive in modulus, as shown in [1] and [15].

The second part of Theorem 16 generalizes the main result in [15] stated below, where, in particular, T is assumed to
preserve the peripheral spectra of all algebra elements.

Corollary 18. (See [1,15].) Any peripherally-additive and norm-additive in modulus surjection T : A → B is an isometric algebra
isomorphism.

As shown in [15], if T satisfies the equation ‖T f + αT g‖ = ‖ f + αg‖ for all f , g ∈ A and every α ∈ T, then T is norm-
additive and norm-additive in modulus. Therefore, Theorem 16 implies also the following

Corollary 19. Any surjection T : A → B which satisfies the equation ‖T f + αT g‖ = ‖ f + αg‖ for every f , g ∈ A and all α ∈ T,
is a ψ-composition operator in modulus on δB. If, in addition, T (1) = 1 and T (i) = i, or if T preserves the peripheral spectra of all
C-peaking functions of A, then T is an isometric unital algebra isomorphism.

Since, according to Corollary 17, every norm-linear operator is norm-additive and norm-additive in modulus, Theorem 16
yields:

Theorem 20 (Norm-Linear Operators). A norm-linear surjection T : A → B between uniform algebras for which T (1) = 1 and T (i) = i,
or which preserves the peripheral spectra of all C-peaking functions of A, is a ψ-composition operator on δB, and therefore, an iso-
metric unital algebra isomorphism.

Note that the operator T in Theorem 20 is not assumed a priori to be linear or continuous. Multiplicative analogues of
Corollary 18 are proven in [7] and [9].

Both the norm-linearity and the preservation of peripheral spectra of all C-peaking functions are necessary conditions
for T in Theorem 20. Indeed, the operator T f = − f is norm-linear but does not preserve the peripheral spectra and also is



T. Tonev, R. Yates / J. Math. Anal. Appl. 357 (2009) 45–53 53
not multiplicative, while the operator T f = f | f |
‖ f ‖ , f �= 0, on C(X) preserves the peripheral spectra of algebra elements but is

not norm-linear.
As noted before, a linear operator which preserves the norms of algebra elements is norm-linear. Therefore, Theorem 20

implies the next characterization of algebra isomorphisms, which extends in a certain sense the corollaries of Banach–Stone’s
theorem and Gleason–Kahane–Żelazko’s theorem mentioned at the beginning.

Corollary 21 (Linear Operators). If a linear operator between two uniform algebras, which is surjective and norm-preserving, is unital,
or preserves the peripheral spectra of C-peaking functions, then it is automatically multiplicative and, in fact, an algebra isomorphism.

Since weakly peripherally-linear operators, in the sense that σπ (λT f + μT g) ∩ σπ (λ f + μg) �= ∅ for all f , g ∈ A and
λ,μ ∈ C, are norm-linear, Theorem 20 also implies the following:

Corollary 22. Any weakly peripherally-linear surjection T : A → B is a ψ-composition operator in modulus on δB. If, in addition,
T (1) = 1 and T (i) = i, or if T preserves the peripheral spectra of all C-peaking functions of A, then T is an isometric unital algebra
isomorphism.

Corollary 19 implies that the weak peripheral linearity of T in Corollary 22 can be replaced by the more relaxed property
σπ (T f + αT g) ∩ σπ ( f + αg) �= ∅ for every f , g ∈ A and all α ∈ T. A version of Corollary 22 for weakly peripherally-
multiplicative operators in the sense that σπ (T f T g) ∩ σπ ( f g) �= ∅ is proven in [9]. Corollaries 21 and 22 improve previous
results from [15], where, in particular, T is assumed to preserve the peripheral spectra of all f ∈ A.
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