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1. Introduction and results

Let H(ID) denote the space of all analytic functions in the unit disc ID. The Besov space B, consists of those f € H(D) for
which

151, = [17 @ (1= 122 da@ <0, 1<p<occ,
D
in particular, By is the Dirichlet space D. Moreover, f € H(D) belongs to the Qs o space if

lim /|f’(z)|2(l - |<pa(z)|2)sdA(z) =0, 0<s<o0,
la]—>1-
D
in particular, Q1,9 is VMOA, the space of analytic functions in the Hardy space H 1 whose boundary values have vanishing

mean oscillation on the unit circle T. Here ¢,(z) := (a — z)/(1 — az) is the automorphism of D which satisfies ¢q(¢4(2)) =z
for all a,ze . Both B, and VMOA are subspaces of the little Bloch space

By := [f e H(D): |z|li»n}7 f@(1-12) = 0}’
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which is in turn a subspace of the Bloch space
B:= {f e HD): || flls:= su£|f’(z)|(1 —12P) < oo].
ze

A positive Borel measure on D is a vanishing (or compact) s-Carleson measure if

im w(s)
-0 IS

=0, O0<s<oo,

where [ is an interval on T and S(I) :={zeD: 1—|I| <|z|, z/|z| € I}. It is well known that p is a vanishing s-Carleson
measure if and only if

11m /y%(z)y du(z)=0, 0<s< oo, (1)

laj—

see [3]. The Schwarzian derivative of a locally univalent function g :ID — £2 is defined as

_(g@Y 1D\ 1 o
S¢(2) .—(g,(z)) —5<g,(z)) =f (z)—z(f (2)°, f:=logg'. )

Adopting the terminology from [7] for a subspace X of H(D), we say that £ is an X domain if logg’ € X. Many such
domains have been characterized in terms of the Schwarzian derivative of g in the case when g is a conformal map of D.
Namely, Becker and Pommerenke [4] characterized bounded By domains in 1978, and in 1991 Astala and Zinsmeister [1]
gave a description of BMOA domains. Moreover, Q, domains were characterized by Pau and Peldez [9] in 2009 by using
a method developed by Bishop and Jones [5] in 1994. For geometric characterizations of bounded VMOA and 3y domains
we refer to a work by Pommerenke [10,11], and in the case of BMOA the reader is invited to see the monograph [7] or the
original paper by Bishop and Jones [5].

The purpose of this note is to present short proofs of the following two results which complete in part [7, Theorem 8.1(e)]
and [9, Theorems 1 and 2].

Theorem 1. Let 1 < p < oo, and let g : D — §2 be a conformal map such that g(T) is a closed Jordan curve. Then £2 is a B, domain if
and only if

I(g) :=/|sg(z)|"(1 —122)*" % dA(2) < 0. 3)
D

In particular, §2 is a Dirichlet domain if and only if Sg(2)(1 — |z|2) € L?(D).

Theorem 2. Let 0 < s < 1, and let g : D — 2 be a conformal map such that g(T) is a closed Jordan curve. Then 2 is a Qs do-
main if and only if |Sg(z)|2(l — |2|*)2T$ dA(2) is a vanishing s-Carleson measure. In particular, $2 is a VMOA domain if and only if
ISg(2)[2(1 — |z|?)3 dA(2) is a vanishing Carleson measure.

The rest of this note is devoted to proofs. But before presenting them, few words about the notation. We write a < b, if
a < Cb for some positive constant C, independent of a and b, and a > b is understood in an analogous manner. In particular,
ifa <b and a 2 b, then we write a >~ b. We will repeatedly use the following well-known result on the norm of the weighted
Bergman space Ah:

||h||Ap:—f|h<z)! —121%)" dA(2) = /!h(z)\ — 121"

(4)

valid for all h e H(D), 0 < p <oc and —1 < < o0.
2. Proof of Theorem 1
If £2 is a B, domain, i.e,, f =logg’ € B), then (2) and (4) yield
@SNy 1 gz SUSUG, + 115115,

from which (3) follows since B, C B with || fliz < |l f||§p.

If (3) is satisfied, then the subharmonicity of |Sg|P yields Sg(2)(1 — |z|%)2 — 0, as |z — 17, and hence f € By by
[10, Theorem 11.1]. Therefore for a given & > 0, there exists § € (0, 1) such that | f'(z)|(1 —|z|*) < &€ whenever |z| > §/(2— ).
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Letre (2175, 1), and denote f;(z) := f(rz). Since all polynomials belong to B, we may assume f’(0) = 0. Then the identities
(2) and (4) imply

1Fellg, = 157 g, SUSele  + ”fr/”f\%i_z

2 2p-2
SISgllyy el + f @[ (1-12P)P " dA@),
-
D(0,8)

where D(0, §) :={z: |z| < §}. This and Hardy’s convexity theorem [6, Theorem 1.5] show that

2 2p—2
Ilfrll'ép <C(||5grlli§ . +8p||fr||3 / |f'@]™"( p zP?) P=2dAz ))
b D(0,5)

for some positive constant C. Choosing ¢? = 1/(2C) and fixing § accordingly, re-arranging terms, applying Fatou’s lemma
and [8, Proposition 1.3], we obtain

.. 2 2p—2
11, < liminf | £, <2 <|sg|| B f F @ (1127 dA(Z)>-
D(0,6)

Therefore f € B, and thus £2 is a B, domain as desired.
3. Proof of Theorem 2

If f € Qso, ie., |f(2)>(1—|z|*)°dA(2) is a vanishing s-Carleson measure by (1), then so is | f”(2)|>(1 — |z|%)?>T*dA(z)
by [2, Theorem 2]. The identity (2) yields

1Se@ 2 (1= 122 < | @ (1 = 1227 + 1F1%] F @ (1= 1212,

and since Qs C B, it follows that |Sg(z)| (1 —1z12)>*SdA(z) is a vanishing s-Carleson measure.
To see the converse, note first that, by (1), |Sg(z)|2(1 — |2/%)?>*SdA(z) is a vanishing s-Carleson measure if and only if

la|—>1—

lim T(g,a):= la‘li_r)r}_/}sg(zﬂz(l —12)*(1 = |@a(@|?)’ dAz) = 0
D

Again the subharmonicity of |Sg|? yields Sg(z)(1 — |212)2 — 0, as |z] — 17, and therefore f € By by [10, Theorem 11.1].
Since all polynomials belong to Qs0, we may assume f’(0) = 0. Then (4), with h(z) := f'(z)/(1 — daz)*, and (2) yield

Li(f,a) ::f|f’(z)|2(1 - |‘Pa(z)’2)sdA(Z)
D

2
(1-12%)°(1 - Jpa@|) dA@)

s [Ir@Pa -z’ |§0a(2)|2)sdf\(z)+/‘1 —
D D
ST(ga)+ /!f’(z)|4(1 — 12’ (1 - |9a@]?) dA)

’
+ |2
D

Since f € By, for g1 > 0, there exists § € (0,1) such that |f’(z)|(1 — |z|*) < &1 whenever |z| > §. This and the triangular
inequality applied to the denominator of the last term in (5) implies

2
(1 =1z’ (1 = |ea@]*) dA2). (5)

hf.a) <T(g.a)+ / 7@ 1 - 1222 (1 - |ga(@[*) dAG)
D(0,6)

+eh(f.a)+ / IF @ (1 - |ea@]?) dA@)
D(0,8)

/(1—|a| *(1—121)° dAQ). 6)

az|25+2
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The last integral in (6) is uniformly bounded for all a € D by the Forelli-Rudin estimates [8, Theorem 1.7], and therefore

L(f,0) ST(g,a) + / IF'@[ (1 =122 (1 - |e@]*) dA@)

D(0,8)

+e20(f0) + / PP (1 - |ga@ ) dA) + 2. ™
D(0,6)

Let now & > 0 be given. Choosing ¢ sufficiently small and fixing § accordingly, and re-arranging terms in (7) we obtain
I1(f,a) < ¢ for all a € D sufficiently close to the boundary. Thus f € Q¢ as desired.

Note that there is no need to use dilatations as in the proof of Theorem 1 since I1(f,a) is uniformly bounded by
[9, Theorem 1].
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