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Winnerless competition principle (WLC) is a type of competition that does not have
a winner; all species take turns (or switch) to win. In the phase space, it appears as a stable
heteroclinic contour connecting single-species equilibria. In ecology, May and Leonard
[R.M. May, W.J. Leonard, Nonlinear aspects of competition between three species, SIAM
J. Appl. Math. 29 (1975) 243–253] were the first to discover the behavior in their famous
paper that the competition of three species experiences a special type of WLC competition,
the rock-paper-scissors competition. Recently, WLC concepts are used for the design in
neural network dynamics. In this manuscript, it is shown that WLC can also appear in
the chemostat model. We consider a chemostat model of n species of microorganisms
competing for k essential and growth-limiting nutrients. Sufficient conditions for a stable
heteroclinic cycle connecting single-species equilibria in the limit sets are given. The
heteroclinic cycle can be constructed so that the equilibria are connected in the following
order: E1 → E2 → E3 → ·· · → En → E1 in which Ei ’s are the ith species equilibria.
This heteroclinic cycle describes the rock-paper-scissors winnerless competition; all of the
n species take turns to win, there is no final winner.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Winnerless competition principle (WLC) is a type of competition without a winner; all species take turns (or switch)
to win. Recently, WLC concepts are used for the design in neural dynamics and neural network computations [1,2,4,12,
14,16,17]. The main point of this principle is the transformation of the spatial inputs into outputs based on the intrinsic
“switching” dynamics of the neural system. The geometrical image of the sequence of the switching in the phase space is
a stable heteroclinic contour (or cycle).

A heteroclinic cycle consists of finite saddle equilibria and finite heteroclinic orbits that connect these equilibria. A win-
nerless competition cycle is a heteroclinic cycle that connects only one-species equilibria. The most famous one is the
May–Leonard competition models [3,13] in ecology,

x′
1 = x1(1 − x1 − α1x2 − β1x3),

x′
2 = x2(1 − β2x1 − x2 − α2x3),

x′
3 = x3(1 − α3x1 − β3x2 − x3),
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where 0 < αi < 1 < βi for all i = 1,2,3. For the symmetric case studied by May and Leonard when αi = α, βi = β , i = 1,2,3,
and α +β > 2 the solutions of the system asymptotically moves closer and closer to an orbit, a heteroclinic contour, joining
the equilibria (1,0,0), (0,1,0), and (0,0,1). Let Ai = 1 − αi and Bi = βi − 1, i = 1,2,3. Chi et al. [3] showed that in the
asymmetric case when A1 A2 A3 < B1 B2 B3, the heteroclinic contour is stable and is a WLC phenomena. WLC can also appear
in a chemostat model.

Chemostat model is a mathematical model in ecology describing two or more populations competing for the same
resources, such as growth-limiting nutrients. It may represent competition in a simple lake, or as a model of waste water
treatment process [15]. The general chemostat model for n species competing for k growth-limiting nutrients is as the
following [6–8]:

N ′
i(t) = Ni(t)

(
μi(R1, R2, . . . , Rk) − D

)
,

R ′
j(t) = D

(
R0

j − R j(t)
) −

n∑
i=1

c jiμi(R1, R2, . . . , Rk)Ni,

Ni(0) > 0, R j(0) � 0, i = 1,2, . . . ,n, j = 1,2, . . . ,k. (1)

Ni(t) denotes the density of species i at time t; R j(t) denotes the concentration of nutrient j at time t; μi(R1, . . . , Rk)

is the specific growth rate of species i as a function of the nutrients Ri ’s; D is the flow rate of the chemostat; R0
j is the

supply concentration of nutrient j; and c ji is the content of nutrient j in species i. The individual death rates of populations
are assumed to be insignificant compared to the flow rate D , i.e., the maximal growth rate of each species, ri , exceeds the
washout rate D since otherwise it cannot survive. According to Liebig’s “Law of the minimum”, the specific growth rate of
species i is determined by the nutrient that is the most limiting, that is

μi(R1, R2, . . . , Rk) = min
(

f1i(R1), f2i(R2), . . . , fki(Rk)
)
, (2)

where f ji(R j) is the growth rate of the species i when nutrient R j is limiting. The function f ji : R+ → R+ is assumed to
be continuously differentiable and satisfies

f ji(0) = 0 and f ′
ji(x) > 0 for x > 0.

For example, we may choose the Monod or Michaelis–Menten kinetics for resource up-takes:

f ji(R j) = ri R j

K ji + R j
, i = 1,2, . . . ,n, j = 1,2, . . . ,k. (3)

For species i and resource j, there is a break-even concentration λ ji defined as

f ji(λ ji) = D.

The break-even concentration λ ji is the subsistence concentration of the resource when species i is growth-limited by
resource j alone. By definition of the function f ji , we have f ji(x) < D if x < λ ji ; and f ji(x) > D if x > λ ji . In the numer-
ical example we show later, we assume Monod or Michaelis–Menten kinetics for resource up-takes. Then the break-even
concentration of species i on resource R j becomes

λ ji = f −1
ji (D) = D K ji

ri − D
.

For model (1), if we form the linear combinations of the variables, we obtain the following equation

d

dt

(
R j(t) +

n∑
i=1

c ji Ni(t)

)
= D

(
R0

j − R j(t) −
n∑

i=1

c ji Ni(t)

)
.

Solving this leads to

R j(t) +
n∑

i=1

c ji Ni(t) = R0
j + O

(
exp(−Dt)

)
.

Therefore, the polygonal set{
(R1, . . . , Rk, N1, . . . , Nn) ∈ R

k+n+ : R j +
n∑

i=1

c ji Ni = R0
j , j = 1, . . . ,k

}

is an invariant and globally attracting set for model (1). On the polygonal set, model (1) is given as

N ′(t) = Ni(t)
[
μi(N1, N2, . . . , Nn) − D

]
, (4)
i
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where

μi(N1, N2, . . . , Nn) = μi

(
R0

1 −
n∑

j=1

c1 j N j(t), R0
2 −

n∑
j=1

c2 j N j(t), . . . , R0
k −

n∑
j=1

ckj N j(t)

)

on the set

Γ =
{

(N1, N2, . . . , Nn) ∈ R
n+:

n∑
i=1

c ji Ni � R0
j , j = 1, . . . ,k

}
.

Then the resources can be easily recovered from the equations

R j(t) = R0
j −

n∑
i=1

c ji Ni(t), j = 1, . . . ,k.

Huisman and Weissing [6–8] explained biodiversity by using the consumer-resource model (1). Their numerical sim-
ulation results showed that three or more resources can generate sustained oscillations or chaotic dynamics of species
abundance. For three resources, there are periodic oscillations among three species [9] and among four species [11] and
the rigorous mathematical verification was given. When there are five species, chaotic dynamics may occur. Moreover, they
showed that three resources can support up to nine species and five resources up to twelve species. Competitive exclusion
principle states that at most k species coexist in the competition for k resources. Base on their observation of model (1),
the competitive exclusion principle no longer holds when there are more than two resources.

In this manuscript, we present the existence conditions for a stable heteroclinic cycle and therefore a WLC. We state
a theorem that helps us to verify the results. The following theorem states the existence and stability conditions of hetero-
clinic cycles for the Lotka–Volterra competition system

a′
i(t) = ai(t)

(
1 −

n∑
j=1

ρi ja j(t)

)
, i = 1,2, . . . ,n, (5)

where ρi j > 0 for i, j = 1, . . . ,n, i �= j and ρii = 1 for i = 1, . . . ,n. Denote by Ai the equilibrium with only species i exists,
i.e., Ai = (0, . . . ,0,1,0, . . . ,0). The eigenvalues of the Jacobian matrix at Ai are 1 − ρ ji for all j �= i and 1 − 2ρii = −1.
Assume that there is a heteroclinic orbit Γi connecting the points Ai and Ai+1, i = 1,2, . . . ,n, and An+1 ≡ A1. The following
results show that the contour or the heteroclinic cycle Γ = ⋃n

i=1 Γi ∪ Ai can be an attractor.

Theorem 1. (See Afraimovich et al. [1].) For the Lotka–Volterra competition system (5), assume that for i = 1,2, . . . ,n,

1 − ρki < 0, for k �= i + 1, and 1 − ρi+1,i > 0,

1 − ρi,i+1 > −1 = 1 − 2ρi+1,i+1,

1 − ρi,i+1 > 1 − ρk,i+1, for k �= i, i + 2, and

ν =
n∏

i=1

(
−1 − ρi,i+1

1 − ρi+1,i

)
> 1. (6)

(Here i + 1 = 1 if i = n.) Then there is a neighborhood U of the contour Γ such that for any initial condition a0 = (a0
1,a0

2, . . . ,a0
n) in U

with a0
i > 0, one has dist(a(t),Γ ) → 0 as t → ∞ where a(t) is the orbit going through a0 .

The value of ν is called the saddle value. The conditions in Theorem 1 are obtained by linearizing the system at the
equilibria Ai ’s for all i = 1,2, . . . ,n and finding the eigenvalues of each Jacobian matrix at Ai . Hence, the results can be
applied to the resource-consumer system (1) and its limiting equations (4).

Consider the limiting equations (4). Denote by Ei the equilibrium with only species i exists, i.e., Ei = (0, . . . ,0, N∗
i ,

0, . . . ,0). The eigenvalues of the Jacobian matrix at Ei are

σi j =
{

μ j(Ei) − D, for j �= i,

N∗
i · ∂μi

∂Ni
(Ei), for j = i.

(7)

Note that σii , i = 1,2, . . . ,n, is always less than zero. For a fixed i, assume that σik < 0, for k �= i + 1 and σi,i+1 > 0. Then
the equilibrium Ei has only one-dimension unstable manifold. An intersection of hyper-planes, P2i = ⋂n

j=1, j �=i,i+1{N j = 0},
is a two-dimensional invariant manifold containing points Ei and Ei+1 such that Ei is a saddle point on P2i and Ei+1 is
a stable node on P2i . System (4) on P2i has the form:
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N ′
i = Ni

(
μi(R1, R2, . . . , Rk) − D

)
,

N ′
i+1 = Ni+1

(
μi+1(R1, R2, . . . , Rk) − D

)
. (8)

The functions μi ’s are defined as in (2). Because of the structure of the function μi , without loss of generality, we may
assume in (8) there are two limiting resources only. Hsu et al. [5] showed that system (8) behaves just like the two-
dimensional Lotka–Volterra system. When σik < 0, for k �= i + 1 and σi,i+1 > 0, there is no equilibrium in P2i where Ni > 0
and Ni+1 > 0, and the separatrix Γi of the saddle point Ei must go to the attractor Ei+1.

Therefore, for the full system (1) and its limiting equations (4), there is a heteroclinic orbit Γi connecting the points Ei

and Ei+1, i = 1,2, . . . ,n, and En+1 = E1. We have similar results for model (1) for the heteroclinic contour Γ = ⋃n
i=1 Γi ∪ Ei

following Theorem 1.

Corollary 1. For the resource-consumer competition system (1), assume for i = 1,2, . . . ,n

σik < 0, for k �= i + 1, and σi,i+1 > 0, (9a)

σi+1,i > σi+1,i+1, (9b)

σi+1,i > σi+1,k, for k �= i, i + 2, (9c)

ν =
n∏

i=1

(
−σi+1,i

σi,i+1

)
> 1. (9d)

(Here i + 1 = 1 if i = n.) Then there is a neighborhood U of the contour Γ such that for any initial condition a0 = (a0
1,a0

2, . . . ,a0
n) in U

with a0
i > 0, one has dist(a(t),Γ ) → 0 as t → ∞ where a(t) is the orbit going through a0 .

Corollary 1 is used to construct a locally stable heteroclinic cycle for model (1). This manuscript is organized as follows. In
Section 2, the three-resource–three-species case is reviewed and studied. Three-resource–four-species is studied in Section 3.
In Section 4, we show that the heteroclinic cycles for the two-resource–n-species case does not exist. Three and more
resources and n species case is presented in Section 5. In Section 6, discussion and possible further work are presented.

2. Three resources and three species

For the consumer-resource model (1), when n = k = 3, Li [9] studied the special case when the break-even concentrations
of the three species N1, N2, and N3 related to the three resources S , R , and Q satisfying the following:

λS3 < λS2 < λS1 < S0,

λR1 < λR3 < λR2 < R0,

λQ 2 < λQ 1 < λQ 3 < Q 0, (10)

where N1 is limited by Q , N2 is limited by S , and N3 is limited by R . The hypothesis (10) says that among all three
species N3 is the strongest competitor for resource S and is the weakest for resource Q ; N2 is the strongest for resource Q
and the weakest for resource R; and N1 is the strongest for resource R and the weakest for resource S . Hence, the compe-
tition for resources is in cyclic fashion. The saddle value ν for the system is

ν = −σ13σ21σ32

σ31σ12σ23
. (11)

Li [9] had proved the following results.

Theorem 2. (See [9].) Consider the consumer-resource model (1) when n = k = 3 and its three resources S, R, and Q . If the break-even
concentrations satisfy (10) and the saddle value ν < 1, then the heteroclinic cycle E1(Q ) → E2(S) → E3(R) → E1 is unstable and
there exists a stable periodic solution.

The notation E1(Q ) → E2(S) → E3(R) → E1 will be used throughout the manuscript. It represents the heteroclinic cycle
in the order E1 → E2 → E3 → E1. The notation E1(Q ) denotes that the first species N1 is limited by the resource Q near
the equilibrium E1. By Corollary 1, we obtain stable condition for a heteroclinic cycle.

Theorem 3. Consider the consumer-resource model (1) when n = k = 3 and its three resources S, R, and Q . Assume the break-even
concentrations satisfy (10) and the saddle value ν > 1. Furthermore, if
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Fig. 1. A stable heteroclinic cycle for model (1) when n = k = 3.

σ12 > 0, σ23 > 0, σ31 > 0,

σ11 < σ13 < 0,

σ22 < σ21 < 0,

σ33 < σ32 < 0, (12)

then the heteroclinic cycle E1(Q ) → E2(S) → E3(R) → E1 is locally stable.

For the system when n = k = 3, there are other ways to produce heteroclinic cycles or periodic solutions. For example, if
the break-even concentrations satisfy the following conditions:

λS1 < λS2 < λS3,

λR1 < λR3 < λR2,

λQ 2 < λQ 3 < λQ 1,

then we maybe able to find the following heteroclinic cycle

E1(Q ) → E2(R) → E3(R) → E1

and a periodic solution depending on the saddle value ν . In addition, if the break-even concentrations for resource S
stay fixed in the order λS1 < λS2 < λS3, then there are possibly 36 ways to have heteroclinic cycle in the following order
E1 → E2 → E3 → E1. Fig. 1 shows a heteroclinic cycle of model (1) when n = k = 3.

3. Three resources and four species

When there are three resources and four species, k = 3 and n = 4, we can construct a heteroclinic cycle in this order:
E1 → E2 → E3 → E4 → E1. There are many ways to do it depending on the limiting resources of each species. The following
theorem presents one stable heteroclinic cycle in the model.

Theorem 4. For the case of three resources S, R, and Q and four species, assume the break-even concentrations satisfy the following:

λS3 < λS2 < λS4 < λS1,

λR4 < λR1 < λR3 < λR2,

λQ 2 < λQ 1 < λQ 4 < λQ 3. (13)

Then the assumption (9a) in Corollary 1 is satisfied. Furthermore, if the eigenvalues (7) satisfy (9b), (9c), and (9d), i.e.,

σ21 > σ22, σ21 > σ24,

σ32 > σ33, σ32 > σ31,

σ43 > σ44, σ43 > σ42,

σ14 > σ11, σ14 > σ13, (14)



604 S.-B. Hsu, L.-I.W. Roeger / J. Math. Anal. Appl. 360 (2009) 599–608
Fig. 2. A stable heteroclinic cycle among four species for system (1).

and

ν = σ21σ32σ43σ14

σ12σ23σ34σ41
> 1,

then there exists a stable heteroclinic cycle in the following order

E1(Q ) → E2(S) → E3(R) → E4(Q ) → E1.

Fig. 2 shows an example of a heteroclinic cycle among four species.

Proof. There are four single-species equilibria, E1 = (N∗
1,0,0,0), E2 = (0, N∗

2,0,0), E3 = (0,0, N∗
3,0), and E4 = (0,0,0, N∗

4).
The eigenvalues σi j of the Jacobian matrix at Ei are defined as in (7). Under the condition that N1, N2, N3, and N4 are
limited by resources Q , S , R , and Q respectively, we find the resource values at each equilibrium that satisfy (13) such that
assumption (9a) is satisfied, i.e., σ12 > 0, σ23 > 0, σ34 > 0, and σ41 > 0, and σi j < 0 for i j �= 12,23,34, and 41.

Let E1 = (N∗
1,0,0,0) be a steady state at which N1 is limited by Q . Then since μ1(S∗

1, R∗
1, Q ∗

1 ) − D = 0, at E1 we have

Q ∗
1 = λQ 1, S∗

1 > λS1, and R∗
1 > λR1. (15)

N∗
1, S∗

1, and R∗
1 can be found to be

N∗
1 = (

Q 0 − λQ 1
)
/cQ 1, S∗

1 = S0 − cS1N∗
1 and R∗

1 = R0 − cR1N∗
1.

The Jacobian matrix at E1 is⎛
⎜⎝

−cQ 1N∗
1 f ′

Q 1(Q ∗
1 ) −cQ 2N∗

1 f ′
Q 1(Q ∗

1 ) −cQ 3N∗
1 f ′

Q 1(Q ∗
1 ) −cQ 4N∗

1 f ′
Q 1(Q ∗

1 )

0 σ12 0 0
0 0 σ13 0
0 0 0 σ14

⎞
⎟⎠ ,

where

σ1 j = μ j
(

S∗
1, R∗

1, Q ∗
1

) − D = min
(

f S j
(

S∗
1

)
, f R j

(
R∗

1

)
, f Q j

(
Q ∗

1

)) − D, j = 2,3,4.

The conditions that satisfy σ12 > 0, σ13 < 0, and σ14 < 0 are

S∗
1 > λS2, R∗

1 > λR2, and Q ∗
1 > λQ 2;

S∗
1 < λS3, R∗

1 < λR3, or Q ∗
1 < λQ 3;

S∗
1 < λS4, R∗

1 < λR4, or Q ∗
1 < λQ 4. (16)

These three inequalities (16) do not contradict the break-even concentration relations (13). The above four inequalities,
(15) and (16), can be simplified to

Q ∗
1 = λQ 1, S∗

1 > λS1, and R∗
1 > λR2. (17)

If E2 = (0, N∗
2,0,0) is a steady state at which N2 is limited by S , then at E2 we have

Q ∗ > λQ 2, S∗ = λS2, and R∗ > λR2, (18)
2 2 2
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so that μ2(S∗
2, R∗

2, Q ∗
2 ) − D = 0. Then N∗

2 , R∗
2, and Q ∗

2 can be found to be

N∗
2 = (

S0 − λS2
)
/cS2, R∗

2 = R0 − cR2N∗
2 and Q ∗

2 = Q 0 − cQ 2N∗
2.

The Jacobian matrix at E2 is⎛
⎜⎝

σ21 0 0 0
−cS1N∗

2 f ′
S2(S∗

2) −cS2N∗
2 f ′

S2(S∗
2) −cS3N∗

2 f ′
S2(S∗

2) −cS4N∗
2 f ′

S2(S∗
2)

0 0 σ23 0
0 0 0 σ24

⎞
⎟⎠ ,

where

σ2 j = μ j
(

S∗
2, R∗

2, Q ∗
2

) − D = min
(

f S j
(

S∗
2

)
, f R j

(
R∗

2

)
, f Q j

(
Q ∗

2

)) − D, j = 1,3,4.

The conditions that satisfy σ21 < 0, σ23 > 0, and σ24 < 0 are

S∗
2 < λS1, R∗

2 < λR1, or Q ∗
2 < λQ 1;

S∗
2 > λS3, R∗

2 > λR3, and Q ∗
2 > λQ 3;

S∗
2 < λS4, R∗

2 < λR4, or Q ∗
2 < λQ 4. (19)

These inequalities (19) do not contradict (13). These statements (18) and (19) can be simplified to

S∗
2 = λS2, R∗

2 > λR3, and Q ∗
2 > λQ 3. (20)

Similarly, if E3 = (0,0, N∗
3,0) is a steady state at which N3 is limited by R , then

R∗
3 = λR3, S∗

3 > λS3, and Q ∗
3 > λQ 3. (21)

The conditions for σ31 < 0, σ32 < 0, and σ34 > 0 are

S∗
3 < λS1, R∗

3 < λR1, or Q ∗
3 < λQ 1;

S∗
3 < λS2, R∗

3 < λR2, or Q ∗
3 < λQ 2;

S∗
3 > λS4, R∗

3 > λR4, and Q ∗
3 > λQ 4. (22)

They can be simplified to

R∗
3 = λR3, λS1 > S∗

3 > λS4, and Q ∗
3 > λQ 3. (23)

If E4 = (0,0,0, N∗
4) is a steady state at which N4 is limited by Q , then

Q ∗
4 = λQ 4, S∗

4 > λS4, and R∗
4 > λR4. (24)

The conditions for σ41 > 0, σ42 < 0, and σ43 < 0 are

S∗
4 > λS1, R∗

4 > λR1, and Q ∗
4 > λQ 1;

S∗
4 < λS2, R∗

4 < λR2, or Q ∗
4 < λQ 2;

S∗
4 < λS3, R∗

4 < λR3, or Q ∗
4 < λQ 3. (25)

They can be simplified to

Q ∗
4 = λQ 4, S∗

4 > λS1 and λR2 > R∗
4 > λR1. (26)

That is, we may find appropriate parameters that satisfy (17), (20), (23), and (26) such that assumption (9a) is satisfied. The
proof is complete. �
4. Two resources and n species

For the consumer-resource model (1), when there are two nutrients and two species in a continuous culture, Hsu
et al. [5] showed that the competition outcomes are similar to the Lotka–Volterra two-species competition models. When
there are more than two species, Li and Smith [10] showed that competitive exclusion principle holds for the case of
3 species and all of the cases for n > 3 species except for the following case when their break-even concentrations satisfy
the following:

λS1 < λS2 < λS3 < · · · < λSn,

λRn < λR,n−1 < · · · < λR2 < λR1. (27)

Additional results are obtained for the two-resource–n-species case in the following theorem.
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Theorem 5. Consider the limiting system (4) of the chemostat model with n species competing for two essential nutrients S and R.
Assume that the break-even concentrations satisfy (27). Then there exists no heteroclinic cycle.

Proof. We prove by contradiction that the assumption (9a) in Corollary 1 can never be satisfied.
Suppose there is a heteroclinic cycle connecting all single-species equilibria Ei ’s. Without loss of generality we may start

the cycle from E1. Let Γi j denote the heteroclinic orbit connecting the two points Ei and E j . We prove that the heteroclinic
orbits Γ12,Γ23, . . . , and Γn−2,n−1 can be found, but Γn1 does not exist. The cycle is broken between En and E1. Therefore,
there is no heteroclinic cycle.

The proof consists of three parts: (i) if there is a heteroclinic orbit Γk,k+1, k = 1,2, . . . ,n − 1, then species k must be
limited by resource R; (ii) there is no heteroclinic orbit Γkm where k + 1 < m � n; and (iii) there is no heteroclinic orbit Γn1.

Claim 1: If there is a heteroclinic orbit Γk,k+1, k = 1,2, . . . ,n − 1, then species k must be limited by the resource R .

Since there is a heteroclinic orbit Γk,k+1, we have σk,k+1 > 0 and σk, j < 0 for all j �= k + 1. If Nk is limited by resource S ,
then at Ek , S∗

k = λS,k and R∗
k > λR,k . Since the heteroclinic orbit Γk,k+1 connects Ek to Ek+1, the k + 1st eigenvalue σk,k+1 of

the Jacobian matrix at Ek is positive which implies S∗
k > λS,k+1 and R∗

k > λR,k+1, a contradiction to the assumption (27) that
says S∗

k = λS,k < λS,k+1. If Nk is R-limited, then S∗
k > λS,k and R∗

k = λR,k . Since λR,k < λR,k−1 < λR,k−2 < · · · < λR2 < λR1, we
have

σk,k−1 < 0, σk,k−2 < 0, . . . , σk,2 < 0, and σk,1 < 0.

S∗
k can be chosen in this way λS,k+1 < S∗

k < λS,k+2 < λS,k+3 < · · · < λS,n so that σk,k+2 < 0, σk,k+3 < 0, . . . , and σk,n < 0.
Since S∗

k > λS,k+1 and R∗
k = λR,k > λR,k+1, we obtain σk,k+1 > 0.

Claim 2: There is no heteroclinic orbit connecting Ek to Em where k + 1 < m � n.

Suppose there is one, then σk,m > 0 and σk,k+1 < 0. If Nk is S-limited, then at Ek we have S∗
k = λS,k and R∗

k > λR,k .
σk,m > 0 implies S∗

k > λS,m and R∗
k > λR,m , a contradiction to (27) which says S∗

k = λS,k < λS,m . If Nk is R-limited, then
S∗

k > λS,k and R∗
k = λR,k , then σk,k+1 < 0 implies S∗

k < λS,k+1 or R∗
k < λR,k+1, both are impossible due to (27).

Claim 3: There is no heteroclinic orbit connecting En to E1.

Suppose there is one, then σn,1 > 0 and σn,2 < 0. If Nn is R-limited, then at En we have R∗
n = λR,n and S∗

n > λS,n . If
σn,1 > 0 then S∗

n > λS,1 and R∗
n > λR,1, a contradiction. If Nn is S-limited, then R∗

n > λR,n and S∗
n = λS,n . If σn,2 < 0 then

S∗
n < λS,2 or R∗

n < λR,2, a contradiction.
So far, the possible heteroclinic orbit is E1(R) → E2(R) → ·· · → En−1(R) → En , but En → E1 is impossible. There is no

heteroclinic loop under the assumption (27). �
5. Three or more resources and n species

The following theorem says that three resources can support any finite number of species, which greatly improve the
results by Huisman and Weissing [6–8].

Theorem 6. Assume the break-even concentrations of three resources S, R, and Q and n species N1, N2, . . . , Nn, satisfy the following
relations:

λS1 < λS2 < λS3 < · · · < λSn,

λR1 < λRn < λR2 < λR3 < · · · < λR,n−1,

λQ ,n−1 < λQ n < λQ ,n−2 < · · · < λQ 2 < λQ 1. (28)

Then the assumption (9a) in Corollary 1 can be satisfied. Furthermore, if the eigenvalues defined as in (7) satisfy (9b), (9c), and (9d),
then we have the following stable heteroclinic cycle:

E1(Q ) → E2(Q ) → ·· · → En−2(Q ) → En−1(R) → En(S) → E1.

Proof. We verify the following four cases: (i) Ek(Q ) → Ek+1, k = 1, . . . ,n − 3, (ii) En−2(Q ) → En−1, (iii) En−1(R) → En , and
(iv) En(S) → E1, so that the eigenvalues defined in (7) satisfy the assumption (9a).

(i) Ek(Q ) → Ek+1, k = 1, . . . ,n − 3. Since Nk is limited by Q , we have Q ∗
k = λQ k . Let S∗

k and R∗
k satisfy

λS,k+1 < S∗
k < λS,k+2,

λR,k+1 < R∗
k < λR,k+2.

We show that the choices of the S∗ and R∗ imply σki < 0 for i �= k + 1 and σk,k+1 > 0. And hence Ek → Ek+1.
k k
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Since

S∗
k > λS,k+1, R∗

k > λR,k+1, and Q ∗
k > λQ ,k+1,

we have σk,k+1 > 0. Since

Q ∗
k < λQ ,k−1 < λQ ,k−2 < · · · < λQ 1,

we have σki < 0 for i = 1,2, . . . ,k − 1. Since

S∗
k < λS,k+2 < λS,k+3 < · · · < λSn,

we have σki < 0 for i = k + 2,k + 3, . . . ,n.
(ii) En−2(Q ) → En−1. Since Nn−2 is limited by Q we have Q ∗

n−2 = λQ ,n−2. Let S∗
n−2 and R∗

n−2 satisfy

λS,n−1 < S∗
n−2 < λSn,

λR,n−1 < R∗
n−2.

Since S∗
n−2 < λSn we have σn−2,n < 0. Since Q ∗

n−2 = λQ ,n−2 < λQ i for i = 1,2, . . . ,n − 3 we have σn−2,i < 0. Since
S∗

n−2 > λS,n−1, R∗
n−2 > λR,n−1, and Q ∗

n−2 > λQ ,n−1, we have σn−1,n−2 > 0.
(iii) En−1(R) → En . Since Nn−1 is limited by R , R∗

n−1 = λR,n−1. Let S∗
n−1 and Q ∗

n−1 satisfy

λSn < S∗
n−1,

λQ n < Q ∗
n−1 < λQ ,n−2.

Since Q ∗
n−1 < λQ i for i �= n − 1,n, we have σn−1,i < 0. Since S∗

n−1 > λSn , Q ∗
n−1 > λQ n , and R∗

n−1 > λR,n , we have σn−1,n > 0.
(iv) En(S) → E1. Since Nn is limited by S so S∗

n = λSn . Let R∗
n and Q ∗

n satisfy

λR1 < R∗
n < λR2,

λQ 1 < Q ∗
n .

Since R∗
n < λR2 < λR3 < · · · < λR,n−1, we have σni < 0 for n �= 1,n. Since Q ∗

n > λQ 1, R∗
n > λR1, and S∗

n > λS1, we have
σn1 > 0. �

The previous results can be extended to m + 3 resources and n species.

Theorem 7. If there are m + 3 resources S, R, Q , P1, . . . , Pm, and n species N1, N2, . . . , Nn, then under the following conditions

λS1 < λS2 < λS3 < · · · < λSn,

λR1 < λRn < λR2 < λR3 < · · · < λR,n−1,

λQ ,n−1 < λQ n < λQ ,n−2 < · · · < λQ 2 < λQ 1,

λP j ,1 < λP j ,2 < λP j ,3 < · · · < λP j ,n, j = 1,2, . . . ,m. (29)

Then the assumption (9a) in corollary can be satisfied. Furthermore, if the eigenvalues defined as in (7) satisfy (9b), (9c), and (9d), then
we have the following stable heteroclinic cycle:

E1(Q ) → E2(Q ) → ·· · → En−2(Q ) → En−1(R) → En(S) → E1.

Proof. The proof of this theorem is similar to that of Theorem 6. We verify the following four cases: (i) Ek(Q ) → Ek+1,
k = 1, . . . ,n − 3, (ii) En−2(Q ) → En−1, (iii) En−1(R) → En , and (iv) En(S) → E1, so that the eigenvalues defined in (7) satisfy
the assumption (9a).

(i) Ek(Q ) → Ek+1. Since Nk is limited by Q , we have Q ∗
k = λQ k . Let S∗

k , R∗
k , and P∗

j,k , j = 1, . . . ,m, satisfy

λS,k+1 < S∗
k < λS,k+2,

λR,k+1 < R∗
k < λR,k+2,

λP j ,k+1 < P∗
j,k < λP j ,k+2. (30)

(ii) En−2(Q ) → En−1. Since Nn−2 is limited by Q we have Q ∗
n−2 = λQ ,n−2. Let S∗

n−2, R∗
n−2, and P∗

j,n−2, j = 1, . . . ,m,
satisfy
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λS,n−1 < S∗
n−2 < λSn,

λR,n−1 < R∗
n−2,

λP j ,n−1 < P∗
j,n−2 < λP j ,n. (31)

(iii) En−1(R) → En . Nn−1 is limited by R , so R∗
n−1 = λR,n−1. Let S∗

n−1, R∗
n−1, and P∗

j,n−1, j = 1, . . . ,m, satisfy

λSn < S∗
n−1,

λQ n < Q ∗
n−1 < λQ ,n−2,

λP j ,n < P∗
j,n−1. (32)

(iv) En(S) → E1. Since Nn is limited by S , S∗
n = λSn . Let S∗

n , R∗
n , and P∗

j,n , j = 1, . . . ,m, satisfy

λRn < R∗
n < λR2,

λQ 1 < Q ∗
n ,

λP j ,1 < P∗
j,n. (33)

The four conditions (30)–(33) imply the assumption (9a). The proof is done. �
6. Discussion

In this paper we consider the existence of a stable heteroclinic cycle connecting one-species equilibria for n species com-
peting for k essential resources in a chemostat model. The significance of the construction is two-fold. First, it is a potential
limit set for the dynamics of the system. Second, it is possible to envision the bifurcation of a very long-period periodic
orbit from such a cycle. The existence of the heteroclinic cycle may indicate the coexistence state of n species in oscillation
form. Li and Smith [10] had conjectured the competitive exclusion principle holds for n species, n > 2, competing for two
essential resources. In Theorem 5 we proved that there exists no heteroclinic cycle for this case which may give a clue
for the future proof of the conjecture. For the case of three essential resources, we construct a stable heteroclinic cycle of
four species in Theorem 4, thus we extend the result of the paper [9] from three species to four species. Furthermore in
Theorem 6 we prove that for three essential resources we are able to construct a stable heteroclinic cycle for any finite
number of species. In fact in Theorem 7, the result can be extended to case of any finite number of species competing for
k resources, k > 3.
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