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transformations on a proper subinterval of the real line does not admit any 2-generator
dense subsemigroups, and then we construct a 3-parameter family of examples of 3-
generator dense subsemigroups.
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1. Introduction

Let F denote the semigroup of real linear fractional transformations from (0,∞) to (0,∞) i.e., maps of the form

f (x) = ax + b

cx + d
; a,b, c,d � 0 and ad − bc �= 0.

The action of F on (0,∞) is naturally related to the action of GL(2,R+) on R2+ via the homomorphism below (here
GL(2,R+) denotes the semigroup of invertible 2 × 2 matrices with nonnegative entries):(

a b
c d

)
�→ ax + b

cx + d
· (1.1)

Following [2], we define the following notions regarding semigroup actions on topological spaces.

Definition 1.1. Let X be a topological space and G be a semigroup acting by continuous functions on X . The action of G
on X is called

(a) hypercyclic, if there exists an element x ∈ X whose G-orbit, defined by {g(x): g ∈ G}, is dense in X ;
(b) topologically transitive, if for every pair of nonempty open subsets U and V of X , there exists g ∈ G so that g(U )∩ V �= ∅;
(c) topologically k-transitive, if the induced action of G on Xk (Cartesian product) is topologically transitive. Topological

2-transitivity is called weak topological mixing.

For an introduction to topological transitivity and mixing properties of operators and semigroups, see [1,5]. If G acts by
open continuous maps on a Baire space X , then topological transitivity and hypercyclicity are equivalent [1]. Hence, in our
settings (the action of F on (0,∞) and the action of GL(2,R+) on R2+), hypercyclicity and topological transitivity are equiv-
alent. On the other hand, a subsemigroup of GL(2,R+) is weakly topologically mixing, if and only if it is dense in GL(2,R+)

(see Proposition 3.6), hence our interest in finding minimally generated dense subsemigroups of F and GL(2,R+).
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Here, the topology of F is the topology of point-wise convergence: a sequence f i ∈ F , i ∈ N, is said to be convergent to
f ∈ F if for every x > 0, we have f i(x) → f (x) as i → ∞. A subset S of F is called dense, if for every f ∈ F there exists a
sequence f i ∈ S , i ∈ N, such that f i → f as i → ∞.

In addition to studying dense subsemigroups of GL(2,R+) and F , we will also study the related problem below, which
was first asked in [8].

Problem. What is the least number of generators that can generate a dense subsemigroup of the set of n × n matrices?

Here, the set of n × n matrices is given its standard topology via identifying n × n matrices with the n2-dimensional
Euclidean space.

Hypercyclicity. G. Costakis et al. [4] showed that there exists a hypercyclic pair of 2 × 2 real matrices. More generally,
(A1, . . . , Ak) is called a hypercyclic k-tuple of commuting n × n matrices A1, . . . , Ak , if there exists an n-vector whose orbit
under the action of the semigroup generated by the Ai ’s, 1 � i � k, is dense in the n-dimensional space. In [6], Feldman
proved that there exists a hypercyclic semigroup generated by n + 1 diagonalizable matrices in dimension n. Costakis et al.
[4] showed that one can find a hypercyclic abelian semigroup of n matrices in dimension n.

It is also worth mentioning that, in every dimension n (real or complex), one can construct a pair of non-commuting
matrices (A, B) such that the orbit of almost every n-vector under the action of the semigroup generated by A and B is
dense [8]. In this paper, we prove a stronger result in dimension 2: we show that, in both real and complex cases, there
exists a pair of 2 × 2 matrices so that the semigroup generated by the pair is dense in the set of all 2 × 2 matrices (see
Examples 3.4 and 5.2).

Dense subgroups. For K = R or C, let SL(2,K) denote the group of 2 × 2 matrices with determinant 1 in the field K.
A subgroup of SL(2,K) is called elementary if the commutator of every two elements of infinite order in the subgroup
has trace 2. Also, a subgroup of SL(2,K) is called discrete if no sequence of distinct elements in the subgroup converges.
Jørgensen [10] studied the non-elementary subgroups of SL(2,K), and proved the following facts among other results:

(i) The complex case: a non-elementary subgroup of SL(2,C) is discrete if and only if each of its subgroups generated by
two elements is discrete.

(ii) The real case: a subgroup of SL(2,R) is discrete if and only if each subgroup generated by one element is discrete.

Jørgensen also proved that every dense subgroup of SL(2,R) has a dense subgroup generated by two elements. In particular,
one concludes that dense 2-generator subgroups of SL(2,R) exist. In this paper, we construct an explicit example of a dense
2-generator subsemigroup of SL(2,R) (see Proposition 4.1).

Here, we mention two statements, which resemble Jørgensen’s result on the existence of 2-generator dense subgroups.
X. Wang [16] has shown that every dense subgroup of the group of orientation preserving Möbius transformations on Sn

has a dense subgroup that is generated by at most n elements, n � 2. A similar statement about the group U (n,1) was
obtained by W. Cao [3]. In each of these settings, one can ask for minimally generated dense subsemigroups.

Dense subsemigroups of S(X). Let X be a locally compact Hausdorff space, and let S(X) denote the semigroup of all
continuous maps from X to X . Then S(X) is a topological semigroup with the compact-open topology. Several authors have
studied dense subsemigroups of S(X). Here, we mention the results of S. Subbiah on the existence of minimally generated
dense subsemigroups of S(Rn). In [14], Subbiah showed that there exist three continuous self-maps of Rn that generate
a dense subsemigroup of S(Rn) in the compact-open topology. In other words, there exist three continuous self-maps of
Rn such that every continuous self-map of Rn can be approximated on any compact set by a suitable composition of the
three self-maps. It was conjectured in [12] that three is the least number of generators of a dense subsemigroup of S(Rn).
However, Subbiah later showed that the conjecture is false at least when n = 1 i.e., S(R) contains a subsemigroup that is
generated by two elements [15].

Description of results. For clarity, we divide the results of this paper into three parts.

(i) The proper-interval case. The minimum number of generators that can generate a hypercyclic subsemigroup of F is 2
(see [7], where a complete list of 2-generator hypercyclic subsemigroups of F is given). It turns out that we need at
least three elements in F to generate a dense subsemigroup of F . We present a three-parameter family of examples of
3-generator dense subsemigroups of F (see Theorem 2.4). We also show that GL(2,R+) does not have any 2-generator
dense subsemigroup, however it has 3-generator dense subsemigroups.

(ii) The full-real-line case. The semigroup generated by only one matrix in GL(2,R) can never be dense or even hypercyclic
(this can be seen by looking at the Jordan normal form of the matrix; see [11,13]). In Section 3, we construct an explicit
example of a pair of real matrices that generates a dense subsemigroup of GL(2,R) (see Example 3.4).
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Let F̄ denote the set of all real linear fractional transformations on R (i.e., maps of the form (ax + b)/(cx + d) with
ad − bc �= 0 and no restriction on the signs of a, b, c, d). The existence of 2-generator dense subsemigroups of GL(2,R)

implies the existence of 2-generator dense subsemigroups of F̄ (see Corollary 3.5).
Moreover, we show that SL(2,R) has 2-generator dense subsemigroups by constructing an explicit example (see Propo-
sition 4.1).

(iii) The complex case. Finally, in Section 5, we prove the existence of uncountably many 2-generator dense subsemigroups
of 2 × 2 complex matrices (see Example 5.2).

2. Dense subsemigroups of F

Let

R(x) = 1 + a

x
and S(x) = x

b
,

where a > 0 and b > 1. Let Λ be the semigroup of real linear fractional transformations generated by R and S i.e.,

Λ = {
Rm1 Sn1 . . . Rmk Snk : ∀i, mi,ni � 0, k � 1

}
,

and let Λ̄ be the closure of Λ in the topology of point-wise convergence on F .

Lemma 2.1. Suppose a > 0 and b > 1. Then, for every (m1, . . . ,mk+1) ∈ Zk+1 , k � 0, we have

bmk+1 x

(bm1 + · · · + bmk )x/a + 1
∈ Λ̄.

Proof. Proof is by induction on k. For k = 0, we need to show that for every m1 ∈ Z, we have bm1 x ∈ Λ̄. For positive integers
m and n, one calculates

Sm R Sn R(x) = b−m(a + x + abnx)

x + a
.

Let l be a fixed integer, and set n = l + m. Then as m → ∞, we have Sm R Sn R(x) → blx/(1 + x/a), and so fl(x) = blx/
(1 + x/a) ∈ Λ̄ for all l ∈ Z. Next, we let l → ∞ to get bm1 x = lim fl Sl−m1 (x) ∈ Λ̄, which proves the basis of the induction.

Now, suppose that the assertion of the lemma is true for k � 0, and let (m1, . . . ,mk+2) ∈ Zk+2. From the inductive
hypothesis, we conclude that g(x) = bmk+1 x/(dx + 1) ∈ Λ̄, where d = (bm1 + · · · + bmk )/a. Then, for l = mk+2 − mk+1, it
follows that

fl g(x) = bmk+2 x

(d + bmk+1/a)x + 1
∈ Λ̄,

and the inductive step is completed. �
Given s > 0, there exists a sequence {mi}∞i=1 of integers so that sa = ∑∞

i=1 bmi . It follows from Lemma 2.1 that

Ts(x) = x

sx + 1
= lim

k→∞
x

(bm1 + · · · + bmk )x/a + 1
∈ Λ̄. (2.1)

On the other hand,

Sm R Sm(x) = 1

bm
+ a

x
→ a

x
,

as m → ∞. Hence,

I(x) = a

x
∈ Λ̄. (2.2)

Lemma 2.2. Suppose that α,β,γ � 0 and 0 � α − βγ � min(1,α2). Then

F (α,β,γ )(x) = αx + β

γ x + 1
∈ Λ̄.
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Proof. It is sufficient to consider the case where α,β,γ > 0 and 0 < α − βγ � min(1,α2). For u, v, w � 0, it follows
from (2.1) and (2.2) that

Tu I T v/a I T w(x) = (1 + v w)x + v

(u + w + uv w)x + 1 + uv
∈ Λ̄.

Now, given α, β ,γ , we set

u = −√
d + 1

β
, v = β√

d
, w = −√

d + α

β
, (2.3)

where d = α − βγ . The conditions on α, β , γ given in the lemma guarantee that u, v, w � 0. These choices of u, v, w are
made so that Tu I T v/a I T w = F (α,β,γ ), and the proof is completed. �

For f (x) = (αx + β)/(γ x + δ) ∈ F with δ �= 0, let

det( f ) = 1

δ2
(αδ − βγ ), σ ( f ) = α2

δ2
·

Let F+ = { f ∈ F : det( f ) > 0}, and for k ∈ Z, let

Uk = {
f ∈ F+: det( f ) � min

(
bk,b−kσ( f )

)}
. (2.4)

Theorem 2.3. Λ̄ ∩ F+ = ⋃
k∈Z

Uk.

Proof. Since U0 ⊆ Λ̄ (by Lemma 2.2) and S−1(x) = bx ∈ Λ̄ by Lemma 2.1, it follows that Uk = S−k U0 ⊆ Λ̄, and so U =⋃
k∈Z

Uk ⊆ Λ̄∩ F+ . It is left to show that Λ̄∩ F+ ⊆ U . First, we show that U is a semigroup under composition. To see this,
let f (x) = (αx + β)/(γ x + 1) ∈ Uk and g(x) = (ux + v)/(wx + 1) ∈ Ul for some k, l ∈ Z. Then

f g(x) = (αu + βw)x + (αv + β)

(γ u + w)x + (γ v + 1)
·

One verifies that

0 < det( f g) = (α − βγ )(u − v w)

(γ v + 1)2
� min

(
bk+l,b−k−l

(
αu + βw

γ v + 1

)2)
,

and so f g ∈ U i.e., U is a semigroup.
Next, a simple calculation shows that for every nonnegative integer k, we have Sk(x) = F (b−k,0,0) ∈ U1 and R Sk R =

F (bk + 1/a,1,1/a) ∈ Uk . Now, every function f in Λ ∩ F+ can be factored into terms of the form R Sk R and Sk , and since
U is a semigroup, it follows that Λ ∩ F+ ⊆ U . Since U is closed in F , we conclude that Λ̄ ∩ F+ ⊆ U , and the proof is
completed. �

An implication of Theorem 2.3 is that the closure of the semigroup of maps generated by R(x) = 1 + a/x and S(x) = x/b
for a > 0 and b > 1 depends only on b, since

⋃
k∈Z

Uk is determined entirely by b.
In the next theorem, we show that 3-generator dense subsemigroups of F exist.

Theorem 2.4. Let a, c > 0 and b > 1 so that ln c/ ln b /∈ Q. Then the semigroup generated by 1 + a/x, x/b, and x/c is dense in F .

Proof. Let U be defined as in (2.4). Suppose that α,β,γ > 0 so that 0 � α − βγ . Since ln c/ ln b /∈ Q, it follows that there
exist a sequence {ki}∞i=1 of integers and a sequence {li}∞i=1 of positive integers so that bki c−li → α. Then, we have

lim
i→∞

min
(
bki c−li ,b−ki cli α2) = α,

and so for i large enough, we have

α − βγ � min
(
bki c−li ,b−ki cli α2),

which in turn implies that

0 � cli α − (
cli β

)
γ � min

(
bki ,b−ki

(
cli α

)2)
.

By Theorem 2.3, we conclude that F (cli α, cli β,γ ) ∈ Λ̄, and so F (α,β,γ ) = c−li F (cli α, cli β,γ ) ∈ Λ̄ as well. The case of β = 0
or γ = 0 follows by using a limiting process.

By composing F (α,β,γ ) with a/x, we deduce that F (u, v, w) ∈ Λ̄ for all u, w � 0 and v > 0. The case of v = 0 can be
dealt with by using another limiting process. �
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3. Dense subsemigroups of GL(2,RRR)

In this section, we prove the existence of 3-generator dense subsemigroups of GL(2,R+) and the existence of 2-generator
dense subsemigroups of GL(2,R).

Proposition 3.1. Suppose that a, c > 0 and b > 1 so that ln c/ ln b /∈ Q. Then the semigroup generated by the matrices

A =
(

1/a a
1/a 0

)
, B =

(
1/b 0

0 b

)
, C =

(
1/c 0

0 c

)
,

is dense in the semigroup of real matrices with nonnegative entries and det = ±1.

Proof. Let X = [q, r; s, t] be a 2×2 matrix with nonnegative entries and det(X) = ±1. We show that there exists a sequence
Di ∈ 〈A, B, C〉 so that Di → X as i → ∞. Without loss of generality, we can assume that t �= 0. The linear fractional maps
associated with A, B , and C are 1 + a2/x, x/b2, and x/c2. By Theorem 2.4, these three linear fractional maps generate a
dense subsemigroup of F . It follows that, for each i � 1, there exists a matrix Di = [αi, βi;γi, δi] ∈ 〈A, B, C〉 so that∣∣∣∣αi

δi
− q

t

∣∣∣∣ +
∣∣∣∣βi

δi
− r

t

∣∣∣∣ +
∣∣∣∣γi

δi
− s

t

∣∣∣∣ <
1

i
· (3.1)

If i is large enough, we deduce from (3.1) that det(X) = det(Di). Hence, there exists λ depending only on X so that∣∣∣∣ 1

δ2
i

− 1

t2

∣∣∣∣ =
∣∣∣∣αiδi − βiγi

δ2
i

− qt − rs

t2

∣∣∣∣ <
λ

i
·

Therefore, δi → t as i → ∞, and consequently αi → q, βi → r, and γi → s by (3.1). In other words, Di → X as i → ∞, and
the lemma follows. �
Corollary 3.2. Suppose that a > 0 and b > 1 > c > 0 so that ln c/ ln b /∈ Q. Then the semigroup generated by the matrices(

1 a
1 0

)
,

(
1 0
0 b

)
,

(
c 0
0 1

)
, (3.2)

is dense in GL(2,R+).

Proof. Let S denote the closure of the semigroup generated by these three matrices. We first show that dI2×2 ∈ S for every
d � 0. Choose sequences of positive integers ki, li so that bki cli → d/a. Then(

0 d
1 0

)
= lim

i→∞

(
cli bki cli a
1 0

)
= lim

i→∞

(
cli 0
0 1

)(
1 a
1 0

)(
1 0
0 bki

)
∈ S,

and so dI2×2 = [0,d;1,0]2 ∈ S . Next, let X be any 2 × 2 matrix with nonnegative entries and μ = det(X) �= 0. Let F̂ =
F/

√
det(F ) for an invertible matrix, and let Ŝ = { F̂ , F ∈ S}. By Proposition 3.1, there exists Di ∈ Ŝ so that Di → X̂ as

i → ∞. Choose di so that di Di ∈ S . Since (
√

μ/di)I2×2 ∈ S , we have

X = √
μ X̂ = lim

i→∞(
√

μ/di)I2×2(di Di) ∈ S,

and so S contains every 2 × 2 matrix with nonnegative entries. �
The following corollary is an immediate consequence of Corollary 3.2.

Corollary 3.3. Suppose that a > 0 and b > 1 > c > 0 so that ln c/ ln b /∈ Q. Then the semigroup generated by the matrices(
1 a
1 0

)
,

(
1 0
0 −b

)
,

(−c 0
0 1

)
, (3.3)

is dense in GL(2,R).

Proof. Let T denote the closure of the semigroup of matrices generated by these three matrices. Then T contains the
closure of the semigroup generated by [1,a;1,0], [1,0;0,b2], and [c2,0;0,1], which contains all real 2 × 2 matrices with
nonnegative entries by Corollary 3.2. It follows that every matrix belongs to T , since every matrix can be written as a
suitable product of [1,0;0,−b], [−c,0;0,1], and a matrix with nonnegative entries. �

Now, we construct an explicit example of a pair of 2 × 2 matrices that generates a dense semigroup in the set of 2 × 2
matrices in the real case.
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Example 3.4. The semigroup of matrices generated by

A =
(

1 1/2
1 0

)
and B =

(
1 0
0 −8/3

)
, (3.4)

is dense in the set of 2 × 2 real matrices.

Proof. One verifies that AB A3 B A = [−2/9,0;0,1] = C , and so 〈A, B〉 = 〈A, B, C〉, which is dense in the set of 2 × 2 real
matrices by Corollary 3.3. �

Recall that F̄ denotes the set of all real linear fractional maps on the extended real line R ∪ {∞} i.e., maps of the form
(ax + b)/(cx + d) with a,b, c,d ∈ R and ad − bc �= 0.

Corollary 3.5. There exists a 2-generator dense subsemigroup of F̄ . In fact, the maps 1 + 1/(2x) and −3x/8 generate a dense sub-
semigroup of F̄ .

Our last result in this section is regarding the weak topological mixing property. In the sequel, let M2×2 denote the set
of all 2 × 2 matrices with real entries.

Proposition 3.6. Let G be a subsemigroup of M2×2 . Then the following statements are equivalent.

(i) The action of G on R2 is weakly topologically mixing.
(ii) The action of G on M2×2 is hypercyclic.

(iii) The set G is dense in M2×2 .

In particular, if A and B are defined as in (3.4), then the action of 〈A, B〉 on R2 is weakly topologically mixing.

Proof. As we mentioned in the introduction, if G acts by open continuous maps on a Baire space (which is the case here),
topological transitivity and hypercyclicity are equivalent i.e., (i) and (ii) are equivalent.

Next, we show that (ii) and (iii) are equivalent. If the action of S is hypercyclic, then there exists a matrix X whose
G-orbit {g X: g ∈ G} is dense in M2×2. Clearly X needs to be invertible, and so the map C �→ C X−1 is a homeomorphism
on M2×2, which maps the G-orbit of X to G . Since the G-orbit of X is dense, it follows that the set G is dense as well i.e.,
(ii) implies (iii). If (iii) holds, then the G-orbit of the identity matrix (being G itself) is dense in M2×2, and so the action of
G is hypercyclic. �

There is an algebraic obstruction to 3-transitivity for the action of M2×2 on R2 [7, Proposition 5.5], and so Proposi-
tion 3.6 is optimal, since it is stating that there exists a 2-generator weakly topologically mixing subsemigroup of M2×2. We
conjecture that in any dimension there exists a pair of matrices that generate a weakly topologically mixing subsemigroup.

4. Dense subsemigroups of SL(2,RRR)

The existence of 2-generator dense subgroups of SL(2,R) has been observed by Jørgensen [10]. In this section, we prove
the existence of 2-generator dense subsemigroups of SL(2,R).

Let F̄+ denote the set of real linear fractional transformations of the form (ax + b)/(cx + d) with a,b, c,d ∈ R and ad −
bc > 0. We repeat the same line of arguments presented in Sections 2 and 3, namely Lemmas 2.1 and 2.2 and Theorems 2.3
and 2.4, and then Proposition 3.1, Corollary 3.2, and finally Example 3.4. The arguments in each step must be modified to
suit the current setting, however these modifications are straightforward and the details are omitted.

Proposition 4.1. The matrices

A =
(

1/
√

2 −√
2

1/
√

2 0

)
and B =

(√
2/3 0
0

√
3/2

)
, (4.1)

generate a dense subsemigroup of SL(2,R).

Proof. Suppose a < 0 and b > 1, and let R(x) = 1 + a/x and S(x) = x/b. Also let Λ̄ denote the closure of the semigroup
generated by R and S in the weak point-wise topology on F̄+ . Proof of Lemma 2.1 (and the discussion thereafter) can be
modified to show that Ts(x) = x/(sx + 1) ∈ Λ̄ for every s � 0. An argument similar to the proof of Lemma 2.2 implies that
(αx + β)/(γ x + 1) ∈ Λ̄ as long as β,γ � 0 � α and 0 � α − βγ � min(1,α2). By composing with blx ∈ Λ̄ for l ∈ Z, we
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conclude that{
αx + β

γ x + δ
: β,γ � 0 < αδ − βγ � min

(
bk,b−kα2δ−2)} ⊆ Λ̄.

Proof of Theorem 2.4 can be modified to show that if a < 0 < c < 1 < b so that ln c/ ln b /∈ Q, then the closure of the
semigroup generated by 1 + a/x, x/b, and x/c contains all maps of the form (αx + β)/(γ x + 1) with α − βγ > 0 and β,γ �
0 � α. To remove the condition β,γ � 0 � α, one needs to compose with a/x ∈ Λ̄ repeatedly, and so 〈1 + a/x, x/b, x/c〉 is
dense in F̄+ .

Next, the proof of Proposition 3.1 shows that for a < 0 < c < 1 < b with ln c/ ln b /∈ Q, the semigroup generated by
A = [1/a,−a;1/a,0], B = [1/b,0;0,b], and C = [1/c,0;0, c] is dense in SL(2,R). Now, we set a = −√

2, b = √
3/2, and

c = √
1/2. One verifies that AB A3 B A = C i.e., 〈A, B, C〉 = 〈A, B〉. It follows that 〈A, B〉 is dense in SL(2,R). �

Recall that PSL(2,R) = SL(2,R)/{±I2×2} is the group of orientation-preserving isometries of H2, the hyperbolic plane.
Let P ∈ H2 and X = (X1, X2) be an orthonormal frame at P . Similarly, let Q ∈ H2 and let Y = (Y1, Y2) be an orthonormal
frame at Y having the same orientation as X . Then there exists an isometry τ such that τ (P ) = Q and τ (Xi) = Yi for
i = 1,2. Hence, we have the following corollary.

Corollary 4.2. There exists a pair of orientation-preserving isometries of H2 so that for every P ∈ H2 and an orthonormal frame X
at P , the orbit of (P , X) under the action of the semigroup of maps induced by the pair is dense in O F (H2), the orthonormal frame
bundle of the hyperbolic plane.

5. Dense subsemigroups of GL(2,CCC)

In this section, we consider the set of 2 × 2 complex matrices and prove a result analogous to Corollary 3.3 in the
complex case. At the end of this section, we prove the existence of examples of 2-generator dense subsemigroups of 2 × 2
complex matrices. In the sequel, i = √−1.

Corollary 5.1. Let a,b, c, u ∈ C such that the following conditions hold.

(i) a,b, c, u �= 0.
(ii) b = ri with r > 1 > |c|.

(iii) The three numbers 1, ln |c|/ ln |b|, arg(c)/2π are rationally independent.

Then the semigroup generated by the matrices

A =
(

u a
1 0

)
, B =

(
1 0
0 b

)
, C =

(
c 0
0 1

)
, (5.1)

is dense in the set of 2 × 2 complex matrices.

Proof. The argument presented in the proof of Lemma 2.1 works in the complex case for R(x) = u + a/x and S(x) = x/b, as
long as a, u �= 0 and |b| > 1. For every complex number s there exists a sequence {m j}∞j=1 of integers so that sa = ∑k

j=1 bm j .

To see this, we note that every positive real number can be written as a series with terms of the form b4k , k ∈ Z, while every
negative real number can be written as a series with the terms of the form b2k , k ∈ Z. Similarly, every purely imaginary
number ti can be written as a series with terms of the form b4k+1, if t > 0, or terms of the form b4k+3 if t < 0. It then
follows from Eq. (2.1) that Ts(x) = x/(sx + 1) ∈ Λ̄ for all s ∈ C. Now, the proof of Lemma 2.2 can be used to show that
(αx + β)/(γ x + 1) ∈ Λ̄ for every α,β,γ ∈ C (in the complex case, Eqs. (2.3) are always solvable if β,α − βγ �= 0. The cases
where β = 0 or α − βγ = 0 can be dealt with by taking limits).

So far, we have shown that the semigroup generated by R(x) = u + a/x and S(x) = x/b is dense in the set of Möbius
transformations (which is isometric to SL(2,C)). The proof of Corollary 3.2 can be used to show that the semigroup gener-
ated by A, B , and C is dense, if we show that the set 〈b, c〉 = {bmcn: m,n ∈ N} is dense in C. Let z be an arbitrary nonzero
complex number. It follows from condition (iii) and the multidimensional Kronecker’s approximation theorem [9, §23.6] that
for any ε > 0 there exist positive integers m,n and an integer L so that∣∣∣∣n

(
arg(c)

2π

)
−

(
arg(z)

2π

)
+ L

∣∣∣∣ < ε, (5.2)

∣∣∣∣n
(

ln |c|
ln |b|4

)
−

(
ln |z|

ln |b|4
)

+ m

∣∣∣∣ < ε. (5.3)

It follows from the inequalities (5.2) and (5.3) that |ln |cnb4m| − ln |z|| < ε|b|4 and |arg(cnb4m) − arg(z) + 2π L| < 2πε . Since
ε was arbitrary, we conclude that 〈b, c〉 is dense in C, and the proof is completed. �
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We are now ready to prove the existence of examples of 2-generator dense subsemigroups of complex 2 × 2 matrices.
Recall that a set F is called cocountable in E if E\F is countable.

Example 5.2. For r > 3, let

b = ri, (5.4)

u = −
(

1

2b

)1/5(
b2 + 2b + 8(b + 4)

√
b2 + 4

)1/5
, (5.5)

a = u2(−b − 2 +
√

4 + b2
)
/(2b), (5.6)

c = 1

2

(
b2 − b + 2 + (−b + 1)

√
b2 + 4

)
. (5.7)

Then there exists a cocountable subset F ⊆ (3,∞) so that, for every r ∈ F , the semigroup generated by the matrices A =
[u,a;1,0] and B = [1,0;0,b] is dense in the set of 2 × 2 complex matrices.

Proof. We have selected a, b, c, and u so that AB A3 B A = C i.e., 〈A, B, C〉 = 〈A, B〉. Thus, we only need to verify the
conditions of Corollary 5.1 for a, b, c, and u. Clearly a, u �= 0 and |b| = r > 1. By direct computation, we have

|c|2 = 1

2

(
r4 − 3r2 + r

√
r2 − 4 − r3

√
r2 − 4

) ∈ (0,1),

for all r > 3.
Now, f (r) = arg(c)/2π and g(r) = ln |c|/ ln |b| are both analytic functions of r ∈ (3,∞). Let H denote the set of r > 3 so

that 1, f (r), g(r) are rationally dependent. We need to show that H is a countable set. On the contrary, suppose that H is
uncountable. For each r ∈ H, there exists a triplet of integers (l(r),m(r),n(r)) �= (0,0,0) so that

l(r) + m(r) f (r) + n(r)g(r) = 0.

The function r �→ (l(r),m(r),n(r)) maps the uncountable set H to the countable set Z3\{(0,0,0)}. It follows that there exist
uncountably many values of r that are mapped to the same triplet (l,m,n) �= (0,0,0), and so the equation

H(r) = l + mf (r) + ng(r) = 0,

has uncountably many solutions for r > 3. Since f and g are analytic functions of r, it follows that H is an analytic function
of r, and so H(r) ≡ 0 for all r > 3. On the other hand, as r → ∞, one shows that f (r) → 1/4 and g(r) → −1, and so
l + m/4 − n = 0. If n �= 0, then

h(r) = g(r) + 1

1/4 − f (r)
= m

n
,

but it is straightforward to check that h(r) is not constant (alternatively, one can check that limr→∞ h(r) = 0, which gives
m = 0, and then because g is not a constant function, it follows that l = n = 0). Hence n = 0, which in turn implies that
l = m = 0, since f is not a constant function. This is a contradiction, and the proof is completed. �

Recall that the Möbius group SL(2,C) is isomorphic to the group of orientation-preserving isometries of H3, the three-
dimensional hyperbolic space. As we noted in the proof of Corollary 5.1, the semigroup generated by the maps R(x) = 1+a/x
and S(x) = x/b is dense in SL(2,C) as long as a �= 0 and b = ri for r > 1. Let P ∈ H3 and X = (X1, X2, X3) be an orthonormal
frame at P . Similarly, let Q ∈ H3 and Y = (Y1, Y2, Y3) be an orthonormal frame at Q having the same orientation as X .
Then, there exists an isometry τ such that τ (P ) = Q and Dτ (Xi) = Yi for i = 1,2,3, where Dτ is the derivative of τ at P .
And so we have the following corollary.

Corollary 5.3. There exists a pair of orientation-preserving isometries on H3 so that for every P ∈ H3 and an orthonormal frame X
at P , the orbit of (P , X) under the action of the semigroup of maps induced by the pair is dense in O F (H3), the orthonormal frame
bundle of the hyperbolic 3-space.

6. Non-existence of 2-generator dense subsemigroups of F

In Section 2, we obtained 3-generator dense subsemigroups for F . In this section, we show that F has no 2-generator
dense subsemigroups. The proper subinterval of R under consideration is (0,∞); however, using a conjugation by a linear
fractional map, the results in this section are valid on any proper subinterval of R. Given a pair of functions f , g ∈ F and a
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positive real number x, the orbit of x under the action of 〈 f , g〉 (the semigroup generated by f and g) is the set

{
f m1 gn1 . . . f mk gnk (x): ∀i, mi,ni � 0; k � 0

}
.

The induced action of f ∈ F on (0,∞)2 is defined by

f (x, y) = (
f (x), f (y)

)
.

We use the same character to denote f and its induced action on (0,∞)2. Let F̂ denote the set of real linear fractional
maps from (0,1) to (0,1). The conjugation θ : (0,∞) → (0,1), defined by θ(x) = 1/(x + 1), gives a one-to-one correspon-
dence between F̂ and F . In particular, 〈 f , g〉 is dense in F if and only if 〈 f̂ , ĝ〉 is dense in F̂ , where f̂ = θ f θ−1 and
ĝ = θ gθ−1.

We prove by contradiction that there are no 2-generator dense subsemigroups in F . Suppose that 〈 f , g〉 is dense in F .
Then 〈 f , g〉 must have dense orbits in (0,∞), and so by the results in [7], there exist a,b, c � 0 so that one of the following
occurs (up to order and a conjugation by a map of the form uxv with u > 0 and v ∈ {1,−1}).

(I) (i) a,b � 1, c � 0, b > 1 if c = 0, and

f (x) = x

x + a
, g(x) = bx + c. (6.1)

(ii) a,b > 1, ln a/ ln b is irrational, and

f (x) = x

a
, g(x) = bx. (6.2)

(II) (i) 0 � c � 1, a > 0, b � 1, b > 1 if c = 0, and

f (x) = a

x + a
, g(x) = bx + c. (6.3)

(ii) a,b � 1 and

f (x) = a

x
, g(x) = bx + 1. (6.4)

(III) 0 � c � 1, a > 0, b � 1, ab � 1 if c = 0, and

f (x) = a

x + a
, g(x) = c + ab

x
. (6.5)

Through the following sequence of lemmas (Lemmas 6.1–6.5), we eliminate all cases.

Lemma 6.1. Suppose that case (I) occurs so that f and g are given by (6.1) or (6.2). Then the induced action of the semigroup 〈 f , g〉
has no dense orbits in (0,∞)2 . In particular, 〈 f , g〉 is not dense in F in these cases.

Proof. In case (I), the functions f and g are both increasing, and so the induced action of 〈 f , g〉 on (0,∞)2 preserves the
regions {(x, y): 0 < x � y} and {(x, y): x � y > 0}. �
Lemma 6.2. Suppose that case (III) occurs so that f and g are given by (6.5). Then the induced action of the semigroup 〈 f , g〉 has no
dense orbits in (0,∞)2 . In particular, 〈 f , g〉 is not dense in F in this case.

Proof. One can easily check that the region {(x, y): k−1 � y/x � k} is invariant under the induced actions of f and g for
every positive k. �
Lemma 6.3. Suppose that the subcase (ii) of case (II) occurs so that f and g are given by (6.4). Then the induced action of the semigroup
〈 f , g〉 has no dense orbits in (0,∞)2 . In particular, 〈 f , g〉 is not dense in F in this case.

Proof. By conjugating f and g via θ(x) = 1/(x + 1), one gets

f̂ (x) = 1 − x

ax − x + 1
and ĝ(x) = x

2x − bx + b
.

We have

Im(ĝ) = [0,1/2], Im( f̂ ĝ) = [
1/(a + 1),1

]
,
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where Im(ĝ) denotes the image of the function ĝ in [0,1]. Since ( f̂ )2 = Id (the identity map), it follows that if ĥ ∈ 〈 f̂ , ĝ〉
and ĥ �= f̂ , Id, then Im(ĥ) ⊆ Im(ĝ) or Im(ĥ) ⊆ Im( f̂ ĝ). It follows that for every (x, y) ∈ [0,1]2 and ĥ ∈ 〈 f̂ , ĝ〉 with ĥ �= f̂ , Id,
we have

∣∣ĥ(x) − ĥ(y)
∣∣ � a

a + 1
·

Hence, the open set {(x, y) ∈ [0,1]2: |x − y| > a/(a + 1)} cannot contain more than two elements of each orbit. However
the orbit of the point (0,1) is dense under the action of F̂ , hence the orbit of (0,1) is dense under the action of any dense
subsemigroup. Since 〈 f̂ , ĝ〉 has no dense orbits, we conclude that it is not dense in F̂ . �
Lemma 6.4. Suppose that the subcase (i) of case (II) occurs so that f and g are given by (6.3) and c �= 0. Then the induced action of
the semigroup 〈 f , g〉 has no dense orbits in (0,∞)2 . In particular, 〈 f , g〉 is not dense in F in this case.

Proof. The conjugation via θ(x) = 1/(x + 1) gives the maps

f̂ = ax − x + 1

2ax − x + 1
and ĝ = θ gθ−1(x) = x

cx − bx + x + 1
.

We have

Im( f̂ ) = [1/2,1] and Im(ĝ) = [
0,1/(c + 1)

]
.

It follows that for every (x, y) ∈ [0,1]2 and ĥ ∈ 〈 f̂ , ĝ〉 with ĥ �= Id, we have

∣∣ĥ(x) − ĥ(y)
∣∣ � max

(
1

2
,

1

c + 1

)
·

If c �= 0, then the open set {(x, y) ∈ [0,1]2: |x − y| > max(1/2,1/(c + 1))} cannot contain more than one element of each
orbit i.e., the orbits are not dense, and so 〈 f , g〉 is not dense in F in this case either. �
Lemma 6.5. Suppose that the subcase (i) of case (II) occurs so that f and g are given by (6.3) and c = 0. Then the induced action of
the semigroup 〈 f , g〉 has no dense orbits in (0,∞)2 . In particular, 〈 f , g〉 is not dense in F in this case.

Proof. Using the conjugation x �→ 1/x, we obtain f̂ (x) = 1 +a/x and ĝ(x) = x/b. Then the lemma follows from Theorem 2.3,
since U does not include every f ∈ F+; for example the map b1/3x does not belong to Uk for any k ∈ Z, and so by
Theorem 2.3, it does not belong to Λ̄. �

Lemmas 6.1 through 6.5 imply our main result in this section.

Theorem 6.6. The set F does not have a 2-generator dense subsemigroup.

7. Orbit closures

In Section 6, we showed that there are no 2-generator dense subsemigroups of F . In this section, we study the induced
action of the semigroup generated by R(x) = 1 + a/x and S(x) = x/b on (0,∞)2, and show that it has no dense orbits in
(0,∞)2.

Theorem 7.2 below describes the orbit closure of (x, y) ∈ (0,∞)2 under the action of 〈R, S〉. It is more appropriate
to give a geometric description of the orbit closures. Given a point A = (x, y) ∈ (0,∞)2, there exists a unique hyperbola
tangential to the line y = x at the origin that connects the origin to A. We denote this hyperbolic segment by H(x, y). Also,
we denote the infinite half-line in (0,∞)2 with slope 1 starting at (x, y) by L(x, y). Finally, let Ω(x, y) denote the closed
region bounded by H(x, y), L(x, y), H(a/x,a/y), and L(a/x,a/y). If x = y, then this region degenerates to the half-line
y = x, and so in this case we set Ω(x, x) = {(t, t); t � 0}. In the sequel, Λ̄ denotes the closure of the semigroup generated
by R(x) = 1 + a/x and S(x) = x/b, where a > 0 and b > 1. We begin with the following lemma.

Lemma 7.1. Let (x, y) ∈ (0,∞)2 . Then for every (u, v) ∈ Ω(x, y), there exists f ∈ Λ̄ so that f (x, y) = (u, v).

Proof. Since Ω(x, y) is invariant under the map I(x) = a/x and I(x) ∈ Λ̄, without loss of generality, we assume that x � y
and u � v . If x = y or u = v , the claim follows from the fact that the orbits of 〈R, S〉 on [0,∞) are all dense (and that (0,0)

belongs to every orbit closure). Thus, suppose that x > y and u > v . Since (u, v) ∈ Ω(x, y), we have

v � max

(
u − x + y,

uxy
)

. (7.1)

ux − uy + xy
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It follows from Lemma 2.2 (by setting α = 1) that maps of the form f (x) = (x + β)/(γ x + 1) belong to Λ̄, where β,γ � 0
and βγ � 1. We choose β and γ so that f (x) = u and f (y) = v . In fact, we need to have

β = xy(−u + v) + uv(x − y)

ux − v y
, γ = x − y − u + v

ux − v y
·

The conditions β,γ � 0 are deduced directly from inequalities u > v and (7.1). The condition βγ � 1 is equivalent to

(ux − v y)2 − (
xy(−u + v) + uv(x − y)

)
(x − y − u + v) � 0,

which can be factorized as (u − v)(v + x)(x − y)(u + y) > 0, which is true, since x > y and u > v . �
Theorem 7.2. Let R(x) = 1 + a/x and S(x) = x/b, where a > 0 and b > 1. Then for any (x, y) ∈ (0,∞)2 , the closure of the orbit of
(x, y) under the action of 〈R, S〉 is given by⋃

k∈Z

Ω
(
bkx,bk y

)
.

Proof. Lemma 7.1 and the fact that bkx ∈ Λ̄, for all k ∈ Z, imply that the set Ω̄ = ⋃
k∈Z

Ω(bkx,bk y) is included in the orbit
closure of (x, y). To show that the orbit closure is included in Ω̄ , it is sufficient to show that Ω̄ is invariant under R and S .
The set Ω̄ is clearly invariant under S . Moreover, we have R(x) = 1 + a/x = M ◦ I(x), where M(x) = x + 1 and I(x) = a/x.
Since Ω̄ is invariant under both I and M , we see that it is invariant under R as well, and the proof is completed. �

Theorem 7.2 shows that the orbits of 〈R, S〉 on (0,∞) are never dense, since for example the points (t,0) for t > 0 do
not belong to Ω(bkx,bk y) for any k ∈ Z and any (x, y) ∈ (0,∞)2. However, in the finite-interval case, dense orbits exist. To
see this, we use the conjugation θ(x) = 1/(x + 1) to move to the interval [0,1], and denote the conjugated maps using the
hat notation.

Proposition 7.3. The orbit of (x, y) ∈ [0,1]2 under the action of the semigroup 〈R̂, Ŝ〉 is dense in [0,1]2 if and only if (x, y) belongs
to the perimeter of the square [0,1]2 except the vertices (0,0) and (1,1).

Proof. The claim that none of the orbits starting from an interior point are dense follows from Theorem 7.2. The orbits
starting from (0,0) and (1,1) are clearly not dense. Since the point (0,1) belongs to the orbit of every point on the
perimeter of [0,1]2 except (0,0) and (1,1), it is sufficient to prove that the orbit of (0,1) is dense. Let Ō denote the
closure of the orbit of (0,1) in [0,1]2. Let u be an arbitrary nonnegative number. It follows from (2.1), after conjugating
by θ , that

T̂u(x) = u(1 − x) + x

(u + 1)(1 − x) + x

belongs to the closure of 〈R̂, Ŝ〉. It follows that ( f (0), f (1)) = (u/(u + 1),1) ∈ Ō , which implies that the segment [0,1]× {1}
is a subset of Ō . By applying R̂ = (1 − x)/(2 − 2x + ax) to this segment, we obtain [0,1/2] × {0} ⊆ Ō . By applying Ŝ to
the segment repeatedly, we get [0,1] × {0} ⊆ Ō . It follows that T̂u([0,1] × {0}) = [u/(u + 1),1] × {u/(u + 1)} ⊆ Ō for any
nonnegative u. And so � = {(x, y) ∈ [0,1]2: x � y} ⊆ Ō . By applying R̂ to �, we get {(x, y) ∈ [0,1]2: y � 1/2} ⊆ Ō , and by
applying Ŝ repeatedly to this latter set, we conclude that [0,1]2 ⊆ Ō . �
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