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a b s t r a c t

Everitt and Markus characterized the domains of self-adjoint operator realizations of
very general even and odd order symmetric ordinary differential equations in terms of
Lagrangian subspaces of symplectic spaces. Recently, for the even order case with real
coefficients,Wang, Sun and Zettl constructed limit-circle (LC) solutions andHao,Wang, Sun
and Zettl characterized the self-adjoint domains in terms of LC solutions. These LC solutions
are higher order analogues of the celebrated Titchmarsh–Weyl limit-circle solutions in the
second-order case. This LC characterization has been used to obtain information about the
discrete, continuous, and essential spectra of these operators. In this paper we investigate
the connection between these two very different kinds of characterizations and thus add
themethods of symplectic geometry to the techniques available for the investigation of the
spectrum of self-adjoint operators.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Given a symmetric (formally self-adjoint) differential expression M of even or odd order and a positive weight function
w, the well known GKN Theorem (named after Glazman, Krein and Naimark) characterizes all self-adjoint realizations of
the equation

My = λw y on J = (a, b), − ∞ ≤ a < b ≤ ∞, (1.1)

in theHilbert spaceH = L2(J, w). Eq. (1.1) generates aminimal operator Tmin and amaximal operator Tmax inH with domains
Dmin and Dmax, respectively.

Theorem 1 (GKN). Assume the deficiency indices d+ and d− of Tmin are equal: d+ = d− = d. A linear submanifold D(T ) of
Dmax is the domain of a self-adjoint extension T of Tmin if and only if there exist functions w1, w2, . . . , wd in Dmax satisfying the
following conditions:

(i) w1, w2, . . . , wd are linearly independent modulo Dmin;
(ii) [wi, wj](b) − [wi, wj](a) = 0, i, j = 1, . . . , d;
(iii) D(T ) = {y ∈ Dmax : [y, wj](b) − [y, wj](a) = 0, j = 1, . . . , d}.

Here [·, ·] denotes the Lagrange bracket associated with (1.1).
Note that the GKN characterization depends on maximal domain functions wj, j = 1, . . . , d. These functions depend on

the coefficients of the differential equation and this dependence is implicit and complicated (see [1–5]).
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In 1999 Everitt and Markus [6], using methods from symplectic algebra and geometry, characterized these self-adjoint
domains in terms of Lagrangian subspaces of symplectic spaces. Below we refer to this as the GKN–EM or just the EM
characterization.

In 2009 Wang et al. [7], using a method introduced by Sun [8], constructed LC solutions and used these to characterize
the self-adjoint domains in terms of LC solutions (rather than maximal domain functions) for even order equations with
real-valued coefficients and one regular endpoint. This was extended by Hao et al. in [9] to two singular endpoints.

Below we refer to these results in [7,9] as the LC characterization. In [10–12] (see also [13]), the LC characterization has
been used to obtain information about the discrete, continuous, and essential spectra of these operators.

In this paper we investigate the connection between these EM and LC characterizations. We find a one-to-one
correspondence between the two characterizations for each class of operators determined by strictly separated, totally
coupled, and mixed boundary conditions. This adds methods from symplectic algebra and geometry to the arsenal of
weapons available for the investigation of the spectrum of self-adjoint differential operators. As a first step in this direction
we find a necessary symplectic geometry condition for a real number λ to be an eigenvalue of a self-adjoint realization of
Eq. (1.1).

The organization of this paper is as follows: This Introduction is followed by a discussion of symmetric expressions in
Section 2. Sections 3 and 4 discuss the LC and EM characterizations, Section 5 contains our results ‘connecting’ these two
quite different characterizations and Section 6 uses the EM characterization to find a necessary condition – expressed in
terms of symplectic geometry – for a real number λ to be an eigenvalue of some self-adjoint realization.

2. Symmetric expressions

In this section we briefly review quasi-differential symmetric expressions of even order with real coefficients. These
generate symmetric differential operators and it is these operators and their self-adjoint extensions which are our primary
interest in this paper. For a more comprehensive discussion of quasi-differential equations, the reader is referred to [14,15]
in the scalar coefficient case and to [16–18] for the general case with matrix coefficients.

Let J = (a, b) be an interval with −∞ ≤ a < b ≤ ∞ and let n = 2k be a positive even integer. For a given set S,Mn(S)
denotes the set of n × n complex matrices with entries from S.

Let

Zn(J, R) := {Q = (qrs)nr,s=1,

qr,r+1 ≠ 0 a.e. on J, q−1
r,r+1 ∈ Lloc(J, R), 1 ≤ r ≤ n − 1,

qrs = 0 a.e. on J, 2 ≤ r + 1 < s ≤ n;
qrs ∈ Lloc(J, R), s ≠ r + 1, 1 ≤ r ≤ n − 1}. (2.1)

Let Q ∈ Zn(J, R). We define

V0 := {y : J → C, y is measurable} (2.2)

and

y[0]
:= y (y ∈ V0). (2.3)

Inductively, for r = 1, . . . , n, we define

Vr = {y ∈ Vr−1 : y[r−1]
∈ (ACloc(J))}, (2.4)

y[r]
= q−1

r,r+1


y[r−1]′

−

r
s=1

qrsy[s−1]


(y ∈ Vr), (2.5)

where qn,n+1 := 1, and ACloc(J) denotes the set of complex-valued functions which are absolutely continuous on all compact
subintervals of J . Finally we set

M y = MQ y := (−1)ky[n], (y ∈ Vn). (2.6)

The expressionM = MQ is called the quasi-differential expression associated with Q . For Vn we also use the symbols V (M)
and D(Q ). The function y[r] (0 ≤ r ≤ n) is called the rth quasi-derivative of y. Since the quasi-derivative depends on Q , we
sometimes write y[r]

Q instead of y[r] to indicate this dependence.
We now define symmetric expressions.

Definition 1. Let Q ∈ Zn(J, R) and letM = MQ be defined as above. Assume that

Q = −E−1Q ∗E, where E = En = ((−1)rδr,n+1−s)
n
r,s=1. (2.7)

ThenM = MQ is called a symmetric differential expression.
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Let w ∈ Lloc(J) be positive a.e. on J . For Q ∈ Zn(J, R) we study self-adjoint realizations of the equation

My = MQ y = λwy on J = (a, b) (2.8)

in the Hilbert space

H = L2(J, w)

with its usual inner product

⟨y, v⟩w :=


J
y v w.

The maximal and minimal operators associated with a symmetric expression Q and a positive weight function w in the
Hilbert space H are defined as follows:

Definition 2. AssumeQ ∈ Zn(J, R) satisfies (2.7) and letM = MQ be the associated symmetric expression. Letw ∈ Lloc(J, R)
be positive a.e. on J . Define

Dmax = {y ∈ L2(J, w) : y ∈ D(Q ), w−1My ∈ L2(J, w)},

Tmax y = w−1My, y ∈ Dmax.

Tmin = T ∗

max,

Dmin = D(Tmin). (2.9)

Lemma 1. Let Tmin and Tmax be defined as above. Then Dmin and Dmax are dense in H, Tmin and Tmax are closed operators in
H, T ∗

min = Tmax, Tmin = T ∗
max and Tmin is a symmetric operator in H.

Proof. This is well known; see [15] or [16]. �

Lemma 2 (Lagrange Identity). Assume Q ∈ Zn(J, R) satisfies (2.7) and let M = MQ be the corresponding differential expression.
Then for any y, z ∈ D(Q ) we have

zMy − yMz = [y, z]′, (2.10)

where

[y, z] = (−1)k
n−1
r=0

(−1)n+1−r z[n−r−1] y[r]
= (−1)k(Z∗EY ), (2.11)

Y =


y

y[1]

...

y[n−1]

 , Z =


z

z[1]

...

z[n−1]

 . (2.12)

Proof. See [15] or [16]. �

Lemma 3. For any y, z in Dmax we have c

c1
{z̄My − yMz} = [y, z](c) − [y, z](c1), (2.13)

where c, c1 ∈ J = (a, b).

Proof. This follows from (2.10) by integration. �

Lemma 4. For any y, z in Dmax we have b

a
{z̄My − yMz} = [y, z](b) − [y, z](a).

Proof. This follows from (2.13) by taking limits as c1 → a, c → b. That the limits exist and are finite can be seen from the
definition of Dmax; see (2.9). �
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Remark 1. Lemma 4 shows that for any y, z in Dmax, the Lagrange brackets [y, z](b) = limc→b[y, z](c), c ∈ (a, b) and
[y, z](a) = limc1→a[y, z](c1), c1 ∈ (a, b) exist and are finite. These finite limits play the roles of the quasi-derivatives
y[r](a), y[r](b) in the regular case; see Theorem 4.

Corollary 1. If M y = λw y and M z = λw z on some interval (α, β) ∈ (a, b), then [y, z] is constant on (α, β).

Proof. This follows directly from (2.10). �

Definition 3 (Regular Endpoints). Let Q ∈ Zn(J, R), J = (a, b). The expression M = MQ is said to be regular at a if for some
c, a < c < b, we have

q−1
r,r+1 ∈ L(a, c), r = 1, . . . , n − 1;

qrs ∈ L(a, c), 1 ≤ r, s ≤ n, s ≠ r + 1.

There is a similar definition for the endpoint b.

Now we state an important lemma about the deficiency index d of the minimal operator Tmin.

Lemma 5. Let M be an even order symmetric differential expression with real coefficients. Let a ≤ α < β ≤ b. The number d of
linearly independent solutions of

M y = λ w y on (α, β) (2.14)

lying in L2((α, β),w) is independent of λ ∈ C, provided Im(λ) ≠ 0. If one endpoint of (α, β) is regular and the other is singular
then the inequalities

k ≤ d ≤ 2k = n (2.15)

hold; for λ ∈ R, the number of linearly independent solutions of (2.14) lying in L2((α, β),w) is less than or equal to d.
Let c ∈ (a, b) = J . If d1 is the deficiency index on (a, c), d2 is the deficiency index on (c, b) and d is the deficiency index on

(a, b), then

d = d1 + d2 − n. (2.16)

Proof. See [9,18]. �

Remark 2. With a suitable choice of M in Lemma 5, any value of d in the range given by (2.15) can be achieved.

The domain of the minimal operator can be characterized as follows:

Lemma 6. The minimal domain Dmin on (a, b) consists of all functions y ∈ Dmax = Dmax(a, b) which satisfy

[y, z](b) = 0 = [y, z](a), (2.17)

for all z ∈ Dmax.

Proof. See [18, Theorem 3.11, p. 49]. �

3. The LC characterization

Von Neumann’s formula [19, 8, p.30] is fundamental in the study of adjoints of symmetric operators in abstract Hilbert
space, and in particular for the study of self-adjoint extensions of unbounded symmetric operators. In the case of ordinary
differential operators the deficiency spacesNλ andNλ [19, p. 26] are finite dimensional and thus linear algebra can be used in
these studies. If A is theminimal operator Tmin = Tmin(M) generated by a symmetric differential expressionM , then A∗ is the
maximal operator Tmax = Tmax(M). In this section, for the benefit of the reader, we briefly review the recently established
far reaching extension by Hao et al. [9] of the Von Neumann formula for very general even order symmetric differential
expressionsM on an interval (a, b) with two singular endpoints and arbitrary deficiency index d. In [7,9] this theorem plays
a critical role in the construction of LC and LP solutions at each singular endpoint.

In Section 4 we review the EM characterization. This then puts us in a position to discuss the connection between the EM
and LC characterizations in Section 5.

We start with the Wang et al. [7] (see also [9]) construction of LC solutions.
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Theorem 2. Let M be a symmetric differential expression of even order with real coefficients on (a, b) defined by Definition 1; let
c ∈ (a, b). Consider the equation

My = λwy. (3.1)

Let d1 denote the deficiency index of (3.1) on (a, c) and d2 the deficiency index of (3.1) on (c, b). Assume that for someλ = λ1 ∈ R
(3.1) has d1 linearly independent solutions on (a, c) which lie in L2((a, c), w) and that for some λ = λ2 ∈ R (3.1) has d2 linearly
independent solutions on (c, b) which lie in L2((c, b), w). Then:

(1) There exist d1 linearly independent real-valued solutions u1, . . . , ud1 of (3.1) with λ = λ1 on (a, c) which lie in
L2((a, c), w).

(2) There exist d2 linearly independent real-valued solutions v1, . . . , vd2 of (3.1) with λ = λ2 on (c, b) which lie in
L2((c, b), w).

(3) For m1 = 2d1 −2k the solutions u1, . . . , ud1 can be chosen such that the m1 ×m1 matrix U = ([ui, uj](c)), 1 ≤ i, j ≤ m1,
is given by

U = (−1)k+1Em1 . (3.2)

(4) For m2 = 2d2 − 2k the solutions v1, . . . , vd2 on (c, b) can be chosen such that the m2 ×m2 matrix V = ([vi, vj](c)), 1 ≤

i, j ≤ m2, is given by

V = (−1)k+1Em2 . (3.3)

(5) For every y ∈ Dmax(a, b) we have

[y, uj](a) = 0, for j = m1 + 1, . . . , d1. (3.4)

(6) For every y ∈ Dmax(a, b) we have

[y, vj](b) = 0, for j = m2 + 1, . . . , d2. (3.5)

(7) For 1 ≤ i, j ≤ d1, we have

[ui,uj](a) = [ui,uj](c). (3.6)

(8) For 1 ≤ i, j ≤ d2, we have

[vi,vj](b) = [vi,vj](c). (3.7)

(9) The solutions u1, . . . , ud1 can be extended to (a, b) such that the extended functions, also denoted by u1, . . . , ud1 , satisfy
uj ∈ Dmax(a, b) and uj is identically zero in a left neighborhood of b, j = 1, . . . , d1.

(10) The solutions v1, . . . , vd2 can be extended to (a, b) such that the extended functions, also denoted by v1, . . . , vd2 , satisfy
vj ∈ Dmax(a, b) and vj is identically zero in a right neighborhood of a, j = 1, . . . , d2.

Proof. See Theorem 4.1 in [9]. �

Remark 3. This theorem assumes that there exist d linearly independent solutions in H for some real value of the spectral
parameter λ. This is a weak additional hypothesis, since if it does not hold, then the essential spectrum covers the whole
real line and any eigenvalue is embedded in the essential spectrum and its dependence on the boundary conditions in this
case seems to be coincidental.

Definition 4 (LC and LP Solutions). Let the hypotheses and notation of Theorem 2 hold. The solutions u1, . . . , um1 and
v1, . . . , vm2 are called LC solutions at the endpoints a and b, respectively. The solutions um1+1, . . . , ud1 and vm2+1, . . . , vd2
are called LP solutions at a and b, respectively.

Next we discuss representations of the maximal domain [9]. We believe that these are of independent interest.

Theorem 3. Let the notation and hypotheses of Theorem 2 hold. Then

Dmax(a, b) = Dmin(a, b) ⊕ span{u1, . . . , um1} ⊕ span{v1, . . . , vm2}. (3.8)

Proof. See [9] for the proof. �

The next theorem characterizes all self-adjoint operator realizations of Eq. (3.1) in the space L2(J, w) where J = (a, b)
and w is a positive weight function.
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Theorem 4 (Hao, Sun, Wang and Zettl). Let the hypotheses and notation of Theorem 2 hold. Let d = d1 + d2 − n. Then d is the
deficiency index of (3.1) on (a, b). Let m1 = 2d1 − 2k, and let u1, . . . , um1 be real-valued LC solutions of Eq. (3.1) with λ = λ1
on (a, c) as constructed in Theorem 2; let m2 = 2d2 −2k and let v1, . . . , vm2 be real-valued LC solutions of Eq. (3.1)with λ = λ2
on (c, b) as constructed in Theorem 2. (See also Remark 4.) A linear submanifold D(T ) of Dmax(a, b) is the domain of a self-adjoint
extension T of Tmin(a, b) if and only if there exists a complex d × m1 matrix A and a complex d × m2 matrix B such that the
following three conditions hold:

rank(A : B) = d; (3.9)

AEm1A
∗

= BEm2B
∗
; (3.10)

D(T ) =

y ∈ Dmax : A

 [y, u1](a)
...

[y, um1 ](a)

 + B

 [y, v1](b)
...

[y, vm2 ](b)

 =

0
...
0


 . (3.11)

The Lagrange brackets in (3.11) have finite limits.

Theorem 4 is stated for the case where both endpoints are singular. It reduces to the case where one endpoint is regular
or both are; see [9] for the specific forms of Theorem 4 for these cases.

Remark 4 (LC and LP Solutions). It is clear from Theorems 2 and 4 that the LC solutions contribute to the determination of
the self-adjoint boundary conditions and the LP solutions do not. Nevertheless, the LP solutions play an important role in
the study of the continuous spectrum (see [10]) and in the approximation of singular problems with regular ones. We plan
to investigate these implications further in a subsequent paper.

4. The EM characterization

In this section we present the EM characterization. First, for the convenience of the reader, we recall some definitions on
symplectic spaces. These are taken from the Everitt–Markus monograph [6] (see also [20]).

4.1. Complex symplectic spaces

Definition 5. A complex symplectic space S is a complex linear space, with a prescribed symplectic form [:], namely a
sesquilinear form

(i) u, v → [u : v], S × S → C, so [c1u + c2v : w] = c1[u : w] + c2[v : w],

which is skew-Hermitian,

(ii) [u : v] = −[v : u], so [u : c1v + c2w] = c̄1[u : v] + c̄2[u : w],

and which is also non-degenerate,

(iii) [u : S] = 0 implies u = 0,

for all vectors u, v, w ∈ S and complex scalars c1, c2 ∈ C.

Definition 6. A linear submanifold L in the complex symplectic space S is called Lagrangian in the case where [L : L] = 0,
that is,

[u : v] = 0 for all vectors u, v ∈ L.

Furthermore, a Lagrangian manifold L ⊂ S is said to be complete in the case where

u ∈ S and [u : L] = 0 imply u ∈ L.

Definition 7. In a complex symplectic space S, with symplectic form [:], and finite dimension D ≥ 1, define the following
symplectic invariants of S:

p = max{complex dimension of linear subspace whereon ℑ[v : v] ≥ 0},
q = max{complex dimension of linear subspace whereon ℑ[v : v] ≤ 0}.

(p, q) is called the signature of S, consisting of a pair of integers: the positivity index p ≥ 0 and the negativity index q ≥ 0.
In addition, we define the Lagrangian index ∆ and the excess Ex of S:

∆ = max{complex dimension of Lagrangian subspace of S},
Ex = p − q, excess of positivity over negativity index of S.

These symplectic invariants of S are each defined intrinsically in terms of the symplectic structure on S.
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Definition 8. Let S be a complex symplectic space with symplectic form [:]. Then linear subspaces S− and S+ are symplectic
ortho-complements in S, written as

S = S− ⊕ S+,

for the case

(i) S = span{S−, S+}, (ii) [S− : S+] = 0.

In these cases S− ∩ S+ = 0, so S is the direct sum of S− and S+.

4.2. Complex symplectic spaces related to differential expressions

Next we define and investigate the structures of a complex symplectic space S̃, with its Lagrangian subspaces L̃, which
arise in connection with boundary value problems associated with symmetric differential expressionsM and Eq. (3.1):

My = λwy on J = (a, b), − ∞ ≤ a < b ≤ ∞

in the Hilbert space H = L2(J, w) where w ∈ Lloc(J) is positive a.e. on J . Let Tmin, Tmax, Dmin, Dmax be defined as in (2.9).
Define the endpoint space by

S̃ = Dmax/Dmin;

then the endpoint space S̃ becomes a complex symplectic (d+
+ d−)-space, with the symplectic product [:] inherited from

Dmax as follows:

[f̃ : g̃] = [f + Dmin : g + Dmin] := [f : g],

where the skew-Hermitian form [f : g] is defined for f , g ∈ Dmax by

[f : g] = ⟨M(f ), g⟩ − ⟨f ,M(g)⟩ = [f , g]ba.

Hence

Dmin = {f ∈ Dmax : [f : Dmax] = 0}.

Lemma 7. The symplectic invariants of a complex vector space S̃ with the skew-Hermitian form [:] defined above satisfy

p = q = d, dim S̃ = 2d, and Ex = 0.

Here d is the deficiency index of My = λwy on (a, b). Furthermore, there exist complete Lagrangian subspaces L̃ of S̃.

Proof. From Proposition 1 in [6], we know that the symplectic invariants of a complex vector space S̃ are related to the
deficiency indices d± of a symmetric differential expressionM by p = d+, q = d−; also note that d+

= d−
= d, so we have

p = q = d, dim S̃ = 2d, and Ex = 0. Then from Ex = 0 and Theorem 2 in [20], there exist complete Lagrangian subspaces
L̃ of S̃. �

The next theoremgives the Everitt–Markus characterization [6] of self-adjoint domains in terms of Lagrangian subspaces.

Theorem 5 (GKN–EM). Let M be a symmetric differential expression studied in Eq. (3.1), and let d denote the deficiency index
of My = λwy on (a, b); then there exists a natural one-to-one correspondence between the set {T } of all self-adjoint operators
T on D(T ) generated by M and the set {L̃} of all Lagrangian d-spaces L̃ in the complex symplectic 2d-space S̃ = Dmax/Dmin.
Namely, take the correspondence T ↔ L as given by the injective surjection which is defined in terms of the natural projection
Ψ : Dmax → S̃, according to

ΨD(T ) = L̃, and D(T ) = Ψ −1L̃.

Hence we conclude that

f ∈ D(T ) if and only if f̃ ∈ L̃,

or that D(T ) is precisely the pre-image of L̃ under the natural projection

Ψ : D(T )(⊂ Dmax) → L̃ ⊂ S̃, that is ,D(T )/Dmin = L̃.

Proof. See [6] for a proof. �
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5. The connection between the LC and EM characterizations

In this section we investigate the connection between the EM and LC characterizations discussed in Sections 3 and 4.
Firstly, we give the specific structure of the complex symplectic spaces S̃ in terms of real-parameter square-integrable
solutions of the differential equation (3.1). Secondly, we describe the self-adjoint domains and the complete Lagrangian
subspaces L̃ of S̃. Thirdly, we study the structures of all the strictly separated,mixed and totally coupled complete Lagrangian
subspaces.

5.1. Complex symplectic spaces and LC solutions

Consider a symmetric quasi-differential expression M of even order with real-valued coefficients on J , defined by
Definition 1; let S̃ := Dmax/Dmin be the prescribed complex symplectic space. We now investigate the connection between
the structure of this space and LC solutions.

Theorem 6. Let the notation and hypotheses of Theorem 2 hold, and let S̃ = Dmax/Dmin be the complex vector space defined
above. Then:
(1) S̃ = span{ũ1, . . . , ũm1 , ṽ1, . . . , ṽm2}.
(2) S̃ is the complexification of the unique real symplectic space R2d.
(3) S̃ is symplectically isomorphic to a complex symplectic space C2d.
(4) For the basis {ũ1, . . . , ũm1 , ṽ1, . . . , ṽm2}, let

H =


−Um1×m1 0

0 Vm2×m2


;

then H is a skew-Hermitian matrix, and for every f̃ = (f1, . . . , fm1 , ḟ1, . . . , ḟm2) and g̃ = (g1, . . . , gm1 , ġ1, . . . , ġm2) in S̃,

[f̃ : g̃] = (f1, . . . , fm1 , ḟ1, . . . , ḟm2)H(g1, . . . , gm1 , ġ1, . . . , ġm2)
∗.

Here U is defined by (3.2) and V is defined by (3.3) in Theorem 2.

Proof. By Von Neumann’s formula and Theorem 3, we obtain (1); from Theorem 1 in [20] and Lemma 7, we obtain (2); from
example 1 in [20], (3) follows. Now, to prove (4): For every f̃ , g̃ ∈ S̃,

[f̃ : g̃] = [f1u1 + · · · + fm1um1 + ḟ1v1 + · · · + ḟm2vm2 : g1u1 + · · · + gm1um1 + ġ1v1 + · · · + ġm2vm2 ]

= (f1, . . . , fm1 , ḟ1, . . . , ḟm2) ·


[u1 : u1] · · · [u1 : um1 ] [u1 : v1] · · · [u1 : vm2 ]

· · · · · · · · · · · · · · · · · ·

[um1 : u1] · · · [um1 : um1 ] [um1 : v1] · · · [um1 : vm2 ]

[v1 : u1] · · · [v1 : um1 ] [v1 : v1] · · · [v1 : vm2 ]

· · · · · · · · · · · · · · · · · ·

[vm2 : u1] · · · [vm2 : um1 ] [vm2 : v1] · · · [vm2 : vm2 ]


× (g1, . . . , gm1 , ġ1, . . . , ġm2)

∗

= (f1, . . . , fm1 , ḟ1, . . . , ḟm2)


−([ui, uj](a)) 0

0 ([vi, vj](b))


(g1, . . . , gm1 , ġ1, . . . , ġm2)

∗

= (f1, . . . , fm1 , ḟ1, . . . , ḟm2)


−Um1×m1 0

0 Vm2×m2


(g1, . . . , gm1 , ġ1, . . . , ġm2)

∗

= (f1, . . . , fm1 , ḟ1, . . . , ḟm2)H(g1, . . . , gm1 , ġ1, . . . , ġm2)
∗.

It is easy to prove that H is a skew-Hermitian matrix. �

Theorem 7. Let the notation and hypotheses of Theorem 2 hold, and let S̃ = Dmax/Dmin be the complex vector space defined
above. Assume that

S̃− = {f̃ ∈ S̃ : [f , v1](b) = · · · = [f , vm2 ](b) = 0},

S̃+ = {f̃ ∈ S̃ : [f , u1](a) = · · · = [f , um1 ](a) = 0}.

Then

S̃− = span{ũ1, ũ2, . . . , ũm1},

S̃+ = span{ṽ1, ṽ2, . . . , ṽm2},

and S̃ = S̃− ⊕ S̃+.
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Proof. Now we prove that S̃− = span{ũ1, ũ2, . . . , ũm1}. For every f̃ ∈ S̃−, of course f̃ ∈ S̃, so it can be written as

f̃ = a1ũ1 + · · · + amũm1 + ȧ1ṽ1 + · · · + ȧm2 ṽm2 ,

notice that [f , v1](b) = · · · = [f , vm2 ](b) = 0, then ȧ1 = · · · = ȧm2 = 0. Therefore

S̃− ⊆ span{ũ1, ũ2, . . . , ũm1}.

On the other hand, if f̃ ∈ span{ũ1, ũ2, . . . , ũm1 , }, then [f , vj](b) = 0. Therefore

span{ũ1, ũ2, . . . , ũm1} ⊆ S̃−.

So S̃− = span{ũ1, ũ2, . . . , ũm1}.
Similarly, we can prove S̃+ = span{ṽ1, ṽ2, . . . , ṽm2}.
For every f̃ =

m1
i=1 aiũi ∈ S̃− and g̃ =

m2
j=1 bjṽj ∈ S̃+, from part (4) in Theorem 6,

[f̃ : g̃] = (a1, . . . , am1 , 0, . . . , 0)H(0, . . . , 0, b1, . . . , bm2)
∗

= (a1, . . . , am1 , 0, . . . , 0)


−Um1×m1 0
0 Vm2×m2


(0, . . . , 0, b1, . . . , bm2)

∗

= 0,

i.e. [S̃− : S̃+] = 0; then combining with part (1) in Theorem 6, we obtain S̃ = S̃− ⊕ S̃+. �

Since the symplectic form induced by the Lagrange bracket [:] is non-degenerate on S̃− and S̃+, we have the following
corollary:

Corollary 2. Each of S̃− and S̃+ is itself a complex symplectic space. Specifically, S̃− is symplectically isomorphic to Cm1 , with
[:] defined by the skew-Hermitian matrix −U, and S̃+ is symplectically isomorphic to Cm2 , with [:] defined by skew-Hermitian
matrix V .

Furthermore, let D±, p±, q±, ∆±, Ex± denote the corresponding symplectic invariants for S̃±; then

D− = m1, p− = q− = ∆− =
m1

2
, Ex− = 0,

D+ = m2, p+ = q+ = ∆+ =
m2

2
, Ex+ = 0.

Proof. From (4) in Theorem 6 and Theorem 1 in [20], the conclusions follow. �

5.2. The representation of complete Lagrangian subspaces

In this subsection, we will give the description of self-adjoint domains D(T ) in terms of complex symplectic geometry.
Also, the specific form of the complete Lagrangian subspace L̃ = D(T )/Dmin is given.

Theorem 8. Let the notation and hypotheses of Theorem 2 hold. Let d = d1 + d2 − n. Then d is the deficiency index of (1.1) on
(a, b). A linear submanifold D(T ) of Dmax is the domain of a self-adjoint extension T of Tmin if and only if there exist 2d vectors
αi = (ai1, . . . , aim1) ∈ Cm1 , and βi = (bi1, . . . , bim2) ∈ Cm2 , i = 1, . . . , d, such that

γi = (−ai1, . . . ,−aim1 , bi1, . . . , bim2) ∈ C2d are linearly independent; (5.1)

[γi : γj] = 0; (5.2)

D(T ) = {y ∈ Dmax : [y : wi] = 0, wi = γ̄iW , i = 1, . . . , d}, (5.3)

where γ̄i = (−āi1, . . . ,−āim1 , b̄i1, . . . , b̄im2), W = (u1, . . . , um1 , v1, . . . , vm2)
T .

Proof. From Theorem 4, D(T ) is the domain of a self-adjoint extension T of Tmin if and only if there exists complex
matrices Ad×m1 and Bd×m2 such that the conditions (3.9)–(3.11) hold. Denote each row vector of Ad×m1 and Bd×m2 by
αi and βi, i = 1, . . . , d; then there exist such complex matrices Ad×m1 and Bd×m2 if and only if there exist 2d vectors
αi = (ai1, . . . , aim1) ∈ Cm1 and βi = (bi1, . . . , bim2) ∈ Cm2 , i = 1, . . . , d. Now we prove that conditions (5.1)–(5.3) in
this Theorem 8 are equivalent to conditions (3.9)–(3.11) in Theorem 4. First, let γi = (−αi, βi); then

(−αi, βi)d×2d = (A : B)


−Im1 0
0 Im2


,

where Im1 and Im2 are identity matrices.
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So rank(A : B) = d if and only if γi ∈ C2d, i = 1, . . . , d, are linearly independent.
Second, from U = (−1)k+1Em1 , V = (−1)k+1Em2 , we have

AEm1A
∗

= BEm2B
∗

⇐⇒ AUA∗
= BVB∗

⇐⇒ (αiUα∗

j ) = (βiVβ∗

j ).

Note that

αiUα∗

j = −[αi : αj], βiVβ∗

j = [βi : βj],

and

[γi : γj] = γiHγ ∗

j = [αi : αj] + [βi : βj].

So

AEm1A
∗

= BEm2B
∗ if and only if [γi : γj] = 0.

Third, from the symplectic form [:] in S̃, we have

A

 [y, u1](a)
...

[y, um1 ](a)

 + B

 [y, v1](b)
...

[y, vm2 ](b)

 =

[y : −ᾱ1υ]

...
[y : −ᾱdυ]

 +

[y : β̄1ϑ]

...

[y : β̄dϑ]

 ,

where υ = (u1, . . . , um1)
T , ϑ = (v1, . . . , vm2)

T . Let wi = −ᾱiυ + β̄iϑ; then wi = γ̄iW . Obviously, condition (3.11) holds
if and only if (5.3) holds. �

Remark 5. In Theorem 8, the description of a self-adjoint domain D(T ) is given in terms of a direct sum decomposition
S̃ = S̃− ⊕ S̃+.

Note that [γi : γj] here is the symplectic product in C2d, since S̃ is symplectically isomorphic to C2d, we do not distinguish
it from its corresponding element in S̃.

Since there exists a natural one-to-one correspondence between the set {T } of all self-adjoint extensions T of Tmin and
the set {L̃} of all complete Lagrangian subspaces L̃, let us consider the specific form of the complete Lagrangian subspace
associated with self-adjoint domains D(T ) which are described in Theorem 8 in terms of symplectic geometry.

Theorem 9. Let M be a symmetric differential expression on J, let the notation and hypotheses of Theorem 2 hold, and assume
that a linear submanifold D(T ) of Dmax is the domain of a self-adjoint extension T of Tmin; then:

(1) L̃ = D(T )/Dmin is a complete Lagrangian subspace of S̃ = Dmax/Dmin.
(2) L̃ = span{w̃1, . . . , w̃d}, w1, . . . , wd ∈ Dmax, where

w̃i = γ̄iW̃ , i = 1, . . . , d. (5.4)

Here W̃ = (ũ1, . . . , ũm1 , ṽ1, . . . , ṽm2)
T , and γi, i = 1, . . . , d, satisfy conditions (5.1) and (5.2).

Proof. We obtain (1) directly from the GKN–EM Theorem. Next we prove (2).
Firstly, we prove thatw1, . . . , wd are linearly independent modulo Dmin. Assume that this does not hold; then there exist

constants c1, . . . , cd, not all zero, such that

ζ =

d
i=1

ciwi ∈ Dmin,

since Dmin = {f ∈ Dmax : [f : Dmax] = 0}; so

(0, . . . , 0) = ([ζ : u1], . . . , [ζ : um1 ]) = (c1, . . . , cd)(−āij)d×m1Um1×m1 .

Notice that U is nonsingular; so

(c1, . . . , cd)(−āij)d×m1 = 0.

Similarly, we have

(c1, . . . , cd)(b̄ij)d×m2 = 0.
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So

(c1, . . . , cd)(γ̄1, . . . , γ̄d)
T

= 0.

Note that c1, . . . , cd, are not all zero; so γi, i = 1, . . . , d, are linearly dependent, and this contradicts the condition (5.1) in
Theorem 8. So w1, . . . , wd are linearly independent modulo Dmin.

Secondly, we prove that [wi : wj] = 0, i.e. wi ∈ D(T ), i, j = 1, . . . , d. We have

[wi : wj] = [γ̄iW̃ : γ̄jW̃ ] = γ̄iHγ̄j = [γ̄i : γ̄j],

and from (5.2)

[γ̄i : γ̄j] = [γi : γj] = 0 = [γi : γj],

so [wi : wj] = 0, i, j = 1, . . . , d, and from (5.3), w1, . . . , wd ∈ D(T ); then from the GKN–EM Theorem, w̃1, . . . , w̃d ∈ L̃.
And from Theorem 2 in [20], we know that a complete Lagrangian subspace L̃, dim L̃ = ∆ = d, has the form L̃ =

span{w̃1, . . . , w̃d}. �

From Theorem 9, we get other descriptions of the self-adjoint domains D(T ) as follows:

Corollary 3. Let the notation and hypotheses of Theorem 2 hold, and assume T is a self-adjoint extension of Tmin; then

D(T ) = c1w1 + · · · + cdwd ⊕ Dmin

where wi, i = 1, . . . , d, are given in (5.3), and ci ∈ C.

5.3. The classification of complete Lagrangian subspaces

From [6,20] we know that the complete Lagrangian subspaces can be divided into three mutually exclusive classes:
strictly separated, totally coupled and another type which we define as mixed. In this subsection, we will give the specific
descriptions of all three forms of the corresponding complete Lagrangian subspaces. Note that in this subsection the Balanced
Intersection Principle plays an important role: it provides an algebraic criterion for describing and classifying the three
different kinds of self-adjoint boundary conditions.

Definition 9. Consider the complex symplectic space

S = S− ⊕ S+ with [S− : S+] = 0,

with finite dimension D ≥ 1. Let p±, q±, ∆±, Ex± denote the corresponding symplectic invariants for S±. Assume D =

2∆, Ex = 0 (so Ex− = −Ex+).
For each Lagrangian ∆-space L ⊂ S define the coupling grade of L:

grade L = ∆− − dim L ∩ S− = ∆+ − dim L ∩ S+.

Also define the necessary coupling of L:

Nec-coupling L = ∆ − dim L ∩ S− − dim L ∩ S+ = 2grade L + |Ex±|,

and note that |Ex−| = |Ex+| = |Ex±| since Ex = 0.

Definition 10. Consider the complex symplectic space

S = S− ⊕ S+ with [S− : S+] = 0,

with finite dimension D = 2∆ and excess Ex = 0 (so Ex− = Ex+).
A non-zero vector v ∈ S is separated at the left in the case where v ∈ S−; v ∈ S is separated at the right in the case

where v ∈ S+; and v is coupled otherwise. If S− = 0 (or S+ = 0), then no such v is coupled.
For any Lagrangian ∆-space L ∈ S, a basis for L is minimally coupled if it contains exactly Nec-coupling L vectors, each of

which is coupled.
A Lagrangian ∆-space L ∈ S is

strictly separated if Nec-coupling L = 0,

or

totally coupled if Nec-coupling L = ∆.
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Theorem 10. Let S̃ = Dmax/Dmin be the complex vector space as defined in Section 4, having a prescribed direct sum
decomposition

S̃ = S̃− ⊕ S̃+ with [S̃− : S̃+] = 0.

Then for each complete Lagrangian subspace L̃ ⊂ S̃, the Balanced Intersection Principle holds:

0 ≤
m1

2
− dim L̃


S̃− =

m2

2
− dim L̃


S̃+ ≤ min

m1

2
,
m2

2


.

Proof. Note that

D = 2∆, Ex = 0 and ∆− =
m1

2
, ∆+ =

m2

2
.

Then this theorem is a specific case of Theorem 4 (the Balanced Intersection Principle) in [20]. �

Theorem 11. Consider the complex symplectic space S̃ = Dmax/Dmin, having a prescribed direct sum decomposition

S̃ = S̃− ⊕ S̃+ with [S̃− : S̃+] = 0.

Then for each integer l = 0, 1, 2, . . . ,min{
m1
2 ,

m2
2 }, there exists a complete Lagrangian subspace L̃l with

grade L̃l = l.

Proof. From Lemma 7 and Corollary 2, the symplectic invariants of the complex symplectic spaces S̃ and S̃± satisfy

D = 2∆, Ex = 0 and Ex− = Ex+ = 0, ∆ = ∆− + ∆+.

Obviously this is a special case of Theorem 4 (the Balanced Intersection Principle) in [20]. �

Note that the Balanced Intersection Principle is one of the major results of the Everitt–Markus monograph [6], and it
provides an algebraic criterion for describing and classifying the different kinds of self-adjoint boundary conditions.

Theorem 12. Consider the complex symplectic space S̃ = S̃− ⊕ S̃+; then the complete Lagrangian subspace L̃ ⊂ S̃ is strictly
separated if and only if any one of the following conditions holds:

(1) grade L̃ = 0.
(2) There exists a basis w̃i = γ̄iW̃ , i = 1, . . . , d, for L̃ such that

γi =


(−ai1, . . . ,−ai,m1 , 0, . . . , 0), 1 ≤ i ≤

m1

2
,

(0, . . . , 0, bi1, . . . , bi,m2),
m1

2
+ 1 ≤ i ≤ d,

where γi, i = 1, . . . , d, are linearly independent and satisfy (5.1) and (5.2).

Proof. Assume a complete Lagrangian subspace L̃ is strictly separated, and note that Ex± = 0; so

0 = Nec-coupling L̃ = 2grade L̃,

which is necessary and sufficient for condition (1). Hencewe need only show that conditions (1), (2) are logically equivalent.
If the γi satisfy (2), then it is clear that

w̃i ∈ S̃−, i = 1, . . . ,
m1

2
, w̃i ∈ S̃+, i =

m1

2
+ 1, . . . , d,

and hence

L̃ ∩ S̃− =
m1

2
, L̃ ∩ S̃+ =

m2

2
,

and so grade L̃ = 0.
Conversely, if L̃ is 0-grade then

dim L̃ = d, dim L̃ ∩ S̃− =
m1

2
, dim L̃ ∩ S̃+ =

m2

2
.

So there exist ai,j ∈ C, i = 1, . . . , m1
2 , j = 1, . . . ,m1, and bk,l ∈ C, k = 1, . . . , m2

2 , l = 1, . . . ,m2, and

L̃ = span{−ā11ũ1 − · · · − ā1,m1 ũm1 , . . . ,−ām1
2 ,1ũ1 − · · · − ām1

2 ,m1
ũm1

b̄m1
2 +1,1ṽ1 + · · · + b̄m1

2 +1,m2
ṽm2 , . . . , b̄d,1ṽ1 + · · · + b̄d,m2 ṽm2}.



656 S. Yao et al. / J. Math. Anal. Appl. 397 (2013) 644–657

Define

γi = (−ai1, . . . ,−aim1 , bi1, . . . , bim1) ∈ C2d, i = 1, . . . , d

and let w̃i = γ̄iW̃ , i = 1, . . . , d, be the basis which spans L̃ as above. Then γi =


(−ai1, . . . ,−ai,m1 , 0, . . . , 0), 1 ≤ i ≤

m1
2

,

(0, . . . , 0, bi1, . . . , bi,m2 ),
m1
2

+ 1 ≤ i ≤ d.

�

Theorem 13. Consider the complex symplectic space

S̃ = S̃− ⊕ S̃+ with [S̃− : S̃+] = 0.

Then a complete Lagrangian subspace L̃ ⊂ S̃ is totally coupled if and only if either one of the following conditions holds:
(1) m1 = m2 = m and grade L̃ =

m
2 .

(2) Every basis w̃i = γ̄iW̃ , i = 1, . . . , d, of L̃ is of the form

γi = (−ai1, . . . ,−ai,d, bi1, . . . , bi,d) 1 ≤ i ≤ d,

where the γi, i = 1, . . . , d, are linearly independent and satisfy (5.1) and (5.2).

Proof. This is similar to the proof of Theorem 12 and hence omitted. �

Remark 6. Note that only whenm1 = m2, i.e. d1 = d2, is it possible that there exists a totally coupled complete Lagrangian
subspace.

Definition 11. We say that a complete Lagrangian subspace L̃ is mixed if it is neither strictly separated nor totally coupled.

Theorem 14. Consider the complex symplectic space

S̃ = S̃− ⊕ S̃+ with [S̃− : S̃+] = 0.

If m1 ≠ m2, then a complete Lagrangian subspace L̃ ⊂ S̃ is mixed if and only if either one of the following two conditions
holds:
(1) grade L̃ = k, 0 < k ≤ min{

m1
2 ,

m2
2 }.

(2) There exists a basis w̃i = γ̄iW̃ , i = 1, . . . , d, for L̃ such that

γi =


(−ai1, . . . ,−ai,m1 , 0, . . . , 0), 1 ≤ i ≤

m1

2
− k,

(−ai1, . . . ,−ai,m1 , bi1, . . . , bi,m2),
m1

2
− k + 1 ≤ i ≤

m1

2
+ k,

(0, . . . , 0, bi1, . . . , bi,m2),
m1

2
+ k + 1 ≤ i ≤ d.

And if m1 = m2 = m, we should only change condition (1) to 0 < k < m
2 .

Here the γi, i = 1, . . . , d, satisfy (5.1), (5.2). And for m1
2 − k + 1 ≤ i ≤

m1
2 + k,

(−ai1, . . . ,−ai,m1) ≠ (0, . . . , 0), (bi1, . . . , bi,m2) ≠ (0, . . . , 0).

Proof. This is similar to the proof of Theorem 12. �

Remark 7. Assume L̃ is mixed, and gradeL̃ = k; then there exists a basis for L̃ containing:

exactly 2k vectors, each of which is coupled;

exactly
m1

2
− k vectors, each of which is separated at the left;

exactly
m2

2
− k vectors, each of which is separated at the right.

Note that because of the Balanced Intersection Principle, the number of vectors which are coupled in the basis is even;
specifically it is 2k.

Remark 8. From the GKN–EM Theorem and the equivalence of Theorems 4 and 8, we may conclude that when a complete
Lagrangian subspace L̃ is strictly separated, totally coupled or mixed, the self-adjoint boundary condition is correspondingly
separated, coupled or mixed as defined in [21]. Thus the Everitt–Markus definitions of strictly separated, totally coupled,
and mixed self-adjoint boundary conditions, defined in terms of subspaces of a symplectic space, correspond exactly to the
Hao–Sun–Wang–Zettl definitions of separated, coupled, and mixed self-adjoint boundary conditions defined in terms of LC
solutions and matrices A, B as in Theorem 2.
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6. The EM characterization and eigenvalues

Let M be a symmetric even order differential expression with real-valued coefficients on J and assume that T is a self-
adjoint extension of Tmin. Then a necessary symplectic geometry condition for a real number λ to be an eigenvalue of a
self-adjoint realization ofM is given by the next theorem.

Theorem 15. Let the notation and hypotheses of Theorem 2 hold. If λ0 ∈ R is an eigenvalue of a self-adjoint extension T of Tmin,
and y0 is an eigenfunction of λ0, then y0 satisfies the differential equation My = λ0wy on J = (a, b), and further satisfies

[y0 : wi] = 0, i = 1, . . . , d,

where

wi = γ̄iW , i = 1, . . . , d.

Here the γ̄i = (−āi1, . . . ,−āim1 , b̄i1, . . . , b̄im2) satisfy the conditions (5.1) and (5.2); W = (u1, . . . , um1 , v1, . . . , vm2)
T .

Proof. If y0 is an eigenfunction of T , then y0 is a solution of the differential equationMy = λ0wy and y0 ∈ D(T ). Combining
this with Theorem 8, we get

[y0 : wi] = 0 i = 1, . . . , d. �
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