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a b s t r a c t

In this paper, we derive several sufficient conditions of the linear combinations of
harmonic univalent mappings to be univalent and convex in the direction of the real axis.
Furthermore, some illustrative examples and imagine domains of the linear combinations
satisfying the desired conditions are enumerated.
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1. Introduction and preliminaries

A complex-valued harmonic mapping f in the open unit disk D := {z ∈ C : |z| < 1} has a canonical decomposition
f = h+ g , where h and g are analytic functions in D. We call h the analytic part and g the co-analytic part of f , respectively.
Throughout this paper, we will discuss harmonic mappings that are univalent and sense-preserving in D. A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that |g ′

| < |h′
|, or equivalently if h′(z) ≠ 0

and the dilatation ω = g ′/h′ has the property |ω| < 1 in D (see [1,2]). For some recent investigations on planar harmonic
mappings, see (for example) the earlier works [3–34] and the references cited therein.

Denote by SH the class of functions f of the form f = h + g which are harmonic univalent and sense-preserving in D,
normalized so that f (0) = fz(0) − 1 = 0. Such functions can be written as

f (z) = h(z) + g(z) = z +

∞
n=2

anzn +

∞
n=1

bnzn.

The classical family S of analytic univalent and normalized functions inD is a subclass of SH with g(z) ≡ 0. For convenience,
we denote

S0
H = {f ∈ SH : b1 = fz(0) = 0}.

Clearly, we have the relationship S ⊂ S0
H ⊂ SH .

The shear construction is also essential to the present work as it allows one to study harmonic mappings through their
related analytic functions (see [35–38]). A domain Ω ∈ C is said to be convex in the direction of eiβ , if for all a ∈ C, the
set Ω ∩ {a + teiβ : t ∈ R} is either connected or empty. Specifically, a domain is convex in the direction of the imaginary
(or real) axis if all lines parallel to the imaginary (or real) axis have a connected intersection with the domain. The shear
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construction produces a harmonic univalent function which maps D onto a region convex in the direction of the real axis, it
relies on the following result due to Clunie and Sheil-Small [1].

Theorem A. A harmonic function f = h + g locally univalent in D is a univalent mapping of D onto a domain convex in the
direction of the real axis if and only if h − g is a conformal univalent mapping of D onto a domain convex in the direction of the
real axis.

The following result determines whether a function f maps D onto a domain convex in the direction of the imaginary
axis.

Theorem B (See [37]). Suppose f is analytic and non-constant in D. Then

ℜ

1 − z2


f ′(z)


= 0 (z ∈ D)

if and only if

(1) f is univalent in D;
(2) f is convex in the direction of the imaginary axis;
(3) there exists two points z ′

n and z ′′
n converging to z = 1 and z = −1, respectively, such that

lim
n→∞

ℜ

f (z ′

n)


= sup
|z|<1

ℜ (f (z)) ,

lim
n→∞

ℜ

f (z ′′

n )


= inf
|z|<1

ℜ(f (z)).
(1)

A commonway to try to construct new functions with a given property is to take the linear combination of two functions
with that property. Let f1 = h1 + g1 and f2 = h2 + g2 be two harmonic univalent mappings in D, we construct a new
harmonic mapping

f3 = tf1 + (1 − t)f2 = [th1 + (1 − t)h2] + [tg1 + (1 − t)g2] = h3 + g3 (2)

with the dilatation ω3 = g ′

3/h
′

3.
In a recent monograph, by using Theorem B, Dorff [39, p. 242] proved the following sufficient condition for the linear

combination f3 = tf1 + (1 − t)f2 to be univalent and convex in the direction of the imaginary axis. Moreover, one can find
in [40] regarding the applications of this result.

Theorem C. Let f1 = h1 + g1 and f2 = h2 + g2 be univalent harmonic mappings convex in the direction of the imaginary axis
and ω1 = ω2. If f1 and f2 satisfy the conditions given by Eq. (1), then f3 = tf1 + (1 − t)f2 (0 5 t 5 1) is univalent and convex in
the direction of the imaginary axis.

The following two lemmas are required in the proof of our main results, which are due to Pommenrenke [41] and Clunie
and Sheil-Small [1], respectively.

Lemma 1. Let f be an analytic function in D with f (0) = 0 and f ′(0) ≠ 0. Suppose also that

ϕ(z) =
z

(1 + zeiθ )(1 + ze−iθ )
(θ ∈ R). (3)

If

ℜ


zf ′(z)
ϕ(z)


> 0 (z ∈ D),

then f is convex in the direction of the real axis.

Lemma 2. Let Ω ⊂ C be a domain convex in the direction of the real axis. Also let p be a real-valued continuous function in Ω .
Then the mapping ω → ω + p(ω) is univalent in Ω if and only if it is locally univalent. If it is univalent, then its range is convex
in the direction of the real axis.

In the present paper, we aim at deriving several sufficient conditions on f1 and f2 for the linear combination f3 =

tf1 + (1− t)f2 to be univalent and convex in the direction of the real axis. Some examples are also presented to demonstrate
our main results.

2. Main results

We begin by stating the following result.
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Theorem 1. Let fj = hj + gj ∈ SH (j = 1, 2) with ω1 = ω2. Suppose also that Fj = hj − gj (j = 1, 2) satisfy the conditions

ℜ


zF ′

j (z)

ϕ(z)


> 0 for all z ∈ D, where ϕ is given by Eq. (3). Then f3 = tf1 + (1 − t)f2 (0 5 t 5 1) is univalent and convex in the

direction of the real axis.

Proof. By noting that g ′

1 = ω1h′

1 and g ′

2 = ω2h′

2 = ω1h′

2, we have

ω3 =
tg ′

1 + (1 − t)g ′

2

th′

1 + (1 − t)h′

2
=

tω1h′

1 + (1 − t)ω1h′

2

th′

1 + (1 − t)h′

2
= ω1,

which implies that f3 is locally univalent.
Next, we show that f3 is convex in the direction of the real axis. Since f1, f2 ∈ SH , then Fj = hj − gj (j = 1, 2) are analytic

functions in D. By virtue of

ℜ

 z(h′

j − g ′

j )

ϕ(z)


> 0 (z ∈ D; j = 1, 2),

we know that

ℜ


z(h′

3 − g ′

3)

ϕ(z)


= ℜ


z

ϕ(z)


t

h′

1 − g ′

1


+ (1 − t)


h′

2 − g ′

2


= tℜ


z

ϕ(z)


h′

1 − g ′

1


+ (1 − t)ℜ


z

ϕ(z)


h′

2 − g ′

2


> 0.

Hence, by Lemma 1, we know that h3 − g3 is convex in the direction of the real axis. Moreover, by Theorem A, we deduce
that f3 is univalent and convex in the direction of the real axis. �

Next, we generalize Theorem 1 as follows.

Corollary 1. Let fj = hj + gj (j = 1, 2, . . . , n) be harmonic univalent mappings in D with ω1 = ω2 = · · · = ωn. Suppose

also that Fj(z) = hj − gj (j = 1, 2, . . . , n) satisfy the conditions ℜ


zF ′

j (z)

ϕ(z)


> 0 for all z ∈ D, where ϕ is given by Eq. (3).

Then F = t1f1 + · · · + tnfn is univalent and convex in the direction of the real axis, where 0 5 tj 5 1 (j = 1, 2, . . . , n) and
t1 + t2 + · · · + tn = 1.

Theorem 2. Let fj = hj + gj ∈ SH (j = 1, 2) be harmonic univalent mappings convex in the direction of the real axis. Suppose

also that ℜ


(1 − ω1ω2)h′

1h
′

2


= 0. Then f3 = tf1 + (1 − t)f2 ∈ SH (0 5 t 5 1) is convex in the direction of the real axis.

Proof. For g ′

1 = ω1h′

1 and g ′

2 = ω2h′

2 satisfy the conditions |ωj| < 1 (j = 1, 2), we have

|ω3| =

 tg ′

1 + (1 − t)g ′

2

th′

1 + (1 − t)h′

2

 =
|tω1h′

1 + (1 − t)ω2h′

2|

|th′

1 + (1 − t)h′

2|
. (4)

By assumption, we know that

|th′

1 + (1 − t)h′

2|
2
− |tω1h′

1 + (1 − t)ω2h′

2|
2

= (th′

1 + (1 − t)h′

2)(th
′

1 + (1 − t)h′

2)

− (tω1h′

1(z) + (1 − t)ω2h′

2)(tω1h′

1 + (1 − t)ω2h′

2)

= t2(1 − |ω1|
2)|h′

1|
2
+ (1 − t)2(1 − |ω2|

2)|h′

2|
2

+ 2t(1 − t)ℜ((1 − ω1ω2)h′

1h
′

2) > 0,

hence |ω3| < 1, which implies that f3 is locally univalent.
Now, we show that f3 ∈ SH . For

f1(z) = z +

∞
n=2

anzn +

∞
n=1

bnzn ∈ SH

and

f2(z) = z +

∞
n=2

Anzn +

∞
n=1

Bnzn ∈ SH ,
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we get

f3(z) = tf1(z) + (1 − t)f2(z)

= t


z +

∞
n=2

anzn +

∞
n=1

bnzn


+ (1 − t)


z +

∞
n=2

Anzn +

∞
n=1

Bnzn


= z +

∞
n=2

[tan + (1 − t)An] zn +

∞
n=1

[tbn + (1 − t)Bn] zn ∈ SH .

By TheoremA, we know that Fj = hj−gj (j = 1, 2) is univalent in D and thatΩj = Fj(D) are domains convex in the direction
of the real axis. Then fj = Fj + 2ℜ(gj) and

fj

F−1
j (w)


= w + 2ℜ


gj(F−1

j (w))


= w + qj(w) (j = 1, 2),

where qj(w) (j = 1, 2) are real-valued continuous functions. Thus, we know that

f3

F−1
3 (w)


= tf1


F−1
1 (w)


+ (1 − t)f2


F−1
2 (w)


= t[w + q1(w)] + (1 − t)[w + q2(w)]

= w + [tq1(w) + (1 − t)q2(w)]

= w + q3(w)

is univalent in Ω . Moreover, by Lemma 2, we conclude that f3 is univalent in Ω and its range is a domain convex in the
direction of the real axis. �

Theorem 3. Let fj = hj + gj ∈ SH with hj + gj =
z

1−z for j = 1, 2. Then f3 = tf1 + (1 − t)f2 (0 5 t 5 1) is univalent and
convex in the direction of the real axis.

Proof. Since hj + gj =
z

1−z and g ′

j = ωjh′

j for j = 1, 2, we get

h′

j =
1

(1 + ωj)(1 − z)2
(j = 1, 2).

It follows that

|ω3| =

 tg ′

1 + (1 − t)g ′

2

th′

1 + (1 − t)h′

2

 =

 tω1h′

1 + (1 − t)ω2h′

2

th′

1 + (1 − t)h′

2

 =
|tω1 + (1 − t)ω2 + ω1ω2|

|1 + (1 − t)ω1 + tω2|
. (5)

Now, we show that |ω3| < 1. Let

ωj := ρj(cos θj + i sin θj) (0 5 ρj < 1; j = 1, 2).

Suppose also that

φ(t) = |1 + (1 − t)ω1 + tω2|
2
− |tω1 + (1 − t)ω2 + ω1ω2|

2

=
[1 + (1 − t)ρ1 cos θ1 + tρ2 cos θ2] + i[(1 − t)ρ1 sin θ1 + tρ2 sin θ2]

2 −
[tρ1 cos θ1 + (1 − t)ρ2 cos θ2

+ ρ1ρ2 cos(θ1 + θ2)] + i[tρ1 sin θ1 + (1 − t)ρ2 sin θ2 + ρ1ρ2 sin(θ1 + θ2)]
2

= [1 + (1 − t)ρ1 cos θ1 + tρ2 cos θ2]
2
+ [(1 − t)ρ1 sin θ1 + tρ2 sin θ2]

2

− {[tρ1 cos θ1 + (1 − t)ρ2 cos θ2 + ρ1ρ2 cos(θ1 + θ2)]
2

+ [tρ1 sin θ1 + (1 − t)ρ2 sin θ2 + ρ1ρ2 sin(θ1 + θ2)]
2
}

= [1 + (1 − t)2ρ2
1 + t2ρ2

2 + 2t(1 − t)ρ1ρ2 cos(θ1 − θ2) + 2(1 − t)ρ1 cos θ1 + 2tρ2 cos θ2]

− [t2ρ2
1 + (1 − t)2ρ2

2 + ρ2
1ρ

2
2 + 2t(1 − t)ρ1ρ2 cos(θ1 − θ2) + 2(1 − t)ρ1ρ

2
2 cos θ1 + 2tρ2

1ρ2 cos θ2]

= [2ρ2 cos θ2(1 − ρ2
1 ) − 2ρ1 cos θ1(1 − ρ2

2 ) + 2(ρ2
2 − ρ2

1 )]t + (1 − ρ2
2 )(ρ

2
1 + 2ρ1 cos θ1 + 1).

Then, we know that φ(t) is a continuous and monotone function of t in the interval [0, 1].
Moreover, we observe that

φ(0) = (1 − ρ2
2 )(ρ

2
1 + 2ρ1 cos θ1 + 1) = (1 − ρ2

2 )[(ρ1 + cos θ1)
2
+ sin2 θ1] > 0,

and

φ(1) = (1 − ρ2
1 )[(ρ2 + cos θ2)

2
+ sin2 θ2] > 0,

which implies that φ(t) > 0 for all t ∈ [0, 1]. It follows that |ω3| < 1, and f3 is locally univalent.
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In what follows, we prove that f3 is convex in the direction of the real axis. Note that

h′

j − g ′

j = (h′

j + g ′

j )

h′

j − g ′

j

h′

j + g ′

j


= (h′

j + g ′

j )


1 − ωj

1 + ωj


=

pj
(1 − z)2

(j = 1, 2),

where pj =
1−ωj
1+ωj

(j = 1, 2) satisfy the conditions ℜ(pj) > 0. Thus, by setting

ϕ(z) :=
z

(1 − z)2
,

we have

ℜ


z(h′

3 − g ′

3)

ϕ(z)


= ℜ


z

ϕ(z)
[t(h′

1 − g ′

1) + (1 − t)(h′

2 − g ′

2)]


= tℜ


(1 − z)2(h′

1 − g ′

1)

+ (1 − t)ℜ


(1 − z)2(h′

2 − g ′

2)


= tℜ(p1) + (1 − t)ℜ(p2) > 0.

Therefore, by Lemma 1, we know that h3 − g3 is convex in the direction of the real axis. Furthermore, by Theorem A, we
deduce that f3 is univalent and convex in the direction of the real axis. The proof of Theorem 3 is thus completed. �

We observe that f = h + g is an asymmetric vertical strip mapping if

h + g =
1

2i sin θ
log


1 + zeiθ

1 + ze−iθ


(0 < θ < π).

Thus, Theorem 3 can be stated in terms of the asymmetric vertical strip mappings instead of the right half-plane mappings.

Corollary 2. Let fj = hj + gj ∈ SH (j = 1, 2) with

hj + gj =
1

2i sin θ
log


1 + zeiθ

1 + ze−iθ


(j = 1, 2 ; 0 < θ < π).

Then f3 = tf1 + (1 − t)f2 (0 5 t 5 1) is univalent and convex in the direction of the real axis.

3. Two examples

In this section, we give two examples to illuminate our main results.

Example 1. Consider the functions

f1 = z −
1
2
z2, f2 = z +

1
3
z3,

and

f3 = tf1 + (1 − t)f2.

Obviously, f1, f2 ∈ SH , ω1 = −z, ω2 = z2 and ω3 = −tz + (1 − t)z2. Then we have

|ω3| 5 t|z| + (1 − t)|z|2 < t|z| + (1 − t)|z| < |z| < 1,

and

ℜ


(1 − ω1ω2)h′

1h
′

2


= ℜ


1 + |z|2z


= 0,

which are satisfied by the conditions of Theorem 2. So f3 is univalent and convex in the direction of the real axis. The images of D
under f1 and f2 are shown in Figs. 1 and 2, respectively, the image of D under f3 with t = 1/3 is presented in Fig. 3.

Example 2. Let f1 = h1 + g1, where h1 + g1 =
z

1−z and ω1 = z. Then we have

h1 =
1
4
log

1 + z
1 − z

+
1
2

z
1 − z

,

and

g1 = −
1
4
log

1 + z
1 − z

+
1
2

z
1 − z

.
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Fig. 1. Image of D under f1 = z −
1
2 z

2 .

Fig. 2. Image of D under f2 = z +
1
3 z

3 .

Fig. 3. Image of D under f3 =
1
3 f1 +

2
3 f2 .

Suppose also that f2 = h2 + g2, where h2 + g2 =
z

1−z and ω2 = −z2. Then we get

h2 =
1
8
log

1 + z
1 − z

+

3
4 z −

1
2 z

2

(1 − z)2
,

and

g2 = −
1
8
log

1 + z
1 − z

+

1
4 z −

1
2 z

2

(1 − z)2
.

Since f1 and f2 satisfy the conditions of Theorem 3 (Figs. 4 and 5), we know that f3 = tf1 + (1 − t)f2 (0 5 t 5 1) is convex in
the direction of the real axis, the image of D under f3 with t = 1/2 is shown in Fig. 6.
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Fig. 4. Image of D under f1 .

Fig. 5. Image of D under f2 .

Fig. 6. Image of D under f3 =
1
2 f1 +

1
2 f2 .
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