J. Math. Anal. Appl. 425 (2015) 548-564

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a Kirchhoff type problem in RY @CmssMark

Yuanze Wu®*, Yisheng Huang”, Zeng Liu ¢

& College of Sciences, China University of Mining and Technology, Xuzhou 221116, PR China
Y Department of Mathematics, Soochow University, Suzhou 215006, PR China
¢ Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, PR China

ARTICLE INFO ABSTRACT
Article history: In this paper, we investigate the following Kirchhoff type problem:
Received 27 September 2014
Available online 12 December 2014
Submitted by Steven G. Krantz (a /(\Vu\Q + u2)dx + 5)(—A“ +u) = |U|7’72u in RN,
P
Keywords: RN (Pass)
Kirchhoff type problem ue H* (RN),

Nontrivial solution
Variational method

where N >1,2<p<2* (2*=2N/(N—-2)if N >3,2*=00if N=1,2) and 0, 8
are two positive parameters. By studying the decomposition of the Nehari manifold
to (Pa,3) and using the scaling technique, we give a total description on the positive
solutions to (Pq,3). We also make an observation on the sign-changing solutions to
(Pa,p) in the current paper.
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1. Introduction

In this paper, we consider the following Kirchhoff type problem:

(a / (IVul® + u?)dz + B) (—Au+u) = [ulP?u  in RY,
RN (Pa,B)
u € HY(RY),

where N > 1,2 <p<2* (2* =2N/(N—-2)if N >3,2* =00 if N =1,2) and o, > 0 are two parameters.

It is well-known that (Pp 1) is the basic Schrodinger equation, which has exactly one positive solution up
to a translation and infinitely many sign-changing solutions. The unique positive solution is radial symmetric
and is also the unique least energy solution to (Py 1), while the energy values of the sign-changing solutions
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go to infinity. On the other hand, to the best of our knowledge, for the Kirchhoff type problem (P, g), only
the existence result of one positive solution with N =1,2,3 and p € (4,2*) was established in [2] by Alves
and Figueiredo. Simultaneously, in recent years, the Kirchhoff type problems in the whole space RY with
N = 1,2,3 have been studied widely by the variational methods since then the nice work [8], and various
existence results of the solutions to such problems were established, see for example [2,3,6,7,9-13] and the
references therein. Inspired by the above facts, the purpose of the current paper is to make a detailed
description on the solutions of (P, g).

Let us give some notations before we state our results. We respectively denote the unique positive solution
and infinitely many sign-changing solutions of (Py 1) by ¢ and {¢,}. Then ¢ is the unique least energy
solution of (Po1) and J(g,) — +o0o as n — +oo, where J(u) = §|ul]* — %Huﬂg is the corresponding
functional to (Py 1), || - || and || - ||, are the usual norms in H'(RN) and LP(RY), respectively. Without loss
of generality, we assume J(¢,) < J(pny1) for all n € N. Then it is well-known that 0 < v/2||¢|| < ||¢1]| <
< < lgn]l < -+ with ||@,|| = +o0 as n — +oo. For each 5 > 0, let us denote

1l =28 (4-p\F

u= e @’ <4—p>||w2( 2 ) ’ (1)
- 1 a — (p_2)5 4_p ﬁ

el PR EAEC) <4—p>||¢n||2< 27 ) ' (12)

Then it is easily see that Jay > ay > -+ > &, > -+~ and 2oy (8) > @1(8) > -+ > @n(B) > -+ with both
apn — 0 and @, (8) — 0 as n — +oo.
Now, our first result can be stated as follows.

Theorem 1.1. Assume o, > 0 and n € N. Then we have the following.

(a1) If N =1,2,3 and p € (4,2%), then (Pq,p) has exactly one positive solution us g up to o translation.
Furthermore, (Py,g) has infinitely many sign-changing solutions {1};6}

(a2) If N =1,2,3 and p = 4, then (Pyp) has exactly one positive solution tq g for a € (0,a1) and no
positive solution for o € [aq,+00) up to a translation. Furthermore, (Pqy.g) has at least n sign-changing
solutions {0}, 5} for a € (0,an).

(az) Ifp € (2,4) N (2,2%), then (Pa,p) has exactly two positive solutions 4, 5 and 4, 5 for a € (0, a1(5)),
exactly one positive solution ﬁg,ﬂ for « = ay1(B) and no positive solution for a € (a1(B),+00) up
to a translation. Furthermore, (Pa,g) has at least 2n sign—chqnging sglutions {Eilﬁ} and {@i’ﬁ} for
a € (0,a,(8)) and at least 2n — 1 sign-changing solutions {ELZB}, {ﬁizﬁ} and Eg”% for a = a,(B).

(as) If N = 1,23, p =4 and o > Ja; orp € (2,4) N (2,2*) and a > 2a1(B), then (Pa,s) has no
sign-changing solution.

Remark 1.1. By checking the proof of Theorem 1.1, we can see that the positive solutions of (P, g) obtained
by this theorem are all radial symmetric up to a translation. Furthermore, this theorem gives a total
description on the existence and nonexistence of the positive solutions to (Pa,). It is also worth to point
out that Theorem 1.1 seems to be the first result for the Kirchhoff type problems in the high dimensions
(N >5).

Since the solutions obtained by Theorem 1.1 are dependent on the parameters « and (3, it is natural to
discuss the concentration behaviors for o and 8 vary. Note that « is the parameter of the Kirchhoff type
non-local term, so we mainly study the concentration behaviors of the solutions to (Pa,3) for a. Our result
on this topic can be stated as follows.
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Fig. 1. Case of p € (4,2%).
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Fig. 2. Case of p = 4.

Theorem 1.2. Assume «, 8 > 0. Then we have the following.

(b1)

If N =1,2,3 and p € (4,2%), then lim,_,0+ Ua,p = ﬁﬁz/) and lim,_,o+ vgﬁ = ﬁﬁgoi in HY(RY),
while limg 4 oo [t gl = lima s oo [0}, 4]l = +00 for alli € N. Purthermore, |[ua,g| and |[v}, gl are all
strictly increasing functions for a and \/2||ua.g|| < [vh gll < - < vl gll < -+ with limy, 4o [|0), 4]l =
~+00.

If N =1,2,3 and p = 4, then lim,_,o+ Uq,g = B2 and lim, o+ 5@75 = B2y; in HY(RYN), while
lim, - [[tapl = lim,, ;- 104, 4l = +oo for all i € N. Furthermore, |[Uap| and |0, gl are all
strictly increasing functions for a and \/2||tq sl < 108 51l < -+ < |19}, BH for o 6 (0,;) and alli € N.
If p € (2,4) N (2,2%), then lim, o+ uaﬁ = BP 2¢) and limg,_,o+ Uaﬁ = BP 2, in Hl(RN) and
lim, o+ |72 sl = +oo and lim,_,q+ ||va ﬁH = +oo while limg_,q, (5)- U ,[3 =limq 0, (8)- U, 5 ﬁ
and lim,_.5,(g)- o} ﬁ = lim,,5,(5)- o2 ﬁ =70 ﬁ for all i € N in HY(RN). Furthermore, ||“a/3|| and
||va’ﬁ\| are strictly increasing functzons for a, ||u? ﬁ|| and ||UQ,B|| are strictly decreasing functions for

_ 1,1 2 21 _

a and V2| 5|l < o511 < - < 03750 < 192750 < - < [l 5]l < @2 5]l for a € (0,0i(8)) and all
ieN.

According to Theorem 1.2, we can illustrate the concentration behaviors of the solutions to (P 5) ob-
tained by Theorem 1.1 with Figs. 1-3.
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Fig. 3. Case of p € (2,4).

In this paper, we also make some estimates on the energy values of the solutions to (P, g) obtained by
Theorem 1.1. Let I g(u) € C*(H*(RY),R) be the corresponding functional to (P, s), which is given by

!
Top(w) = Zlull* + 5 H I” - HUIIP (1.3)
Now, our result for the energy values of the solutions to (P, g) can be stated as follows.

Theorem 1.3. Assume a, 8 > 0. Then we have the following.

(1) If N =1,2,3 and p € (4,2%), then ua p 1s the unique ground state solution of (Pq,g). Furthermore,

210, 5(ta,p) + L5 [ta sl < Tap(h 5) < -+ < Tap(vl 5) < -+ with Lo g(vl, ;) = +00 as i — +o0.
(o) If N = 1,2,3 and p = 4, then Uy p is the unique gmund state solution of (Pa,g) for a € (0,aq).
Furthermore, 21, g(uq g) < I 5( v 5) < < Iap(vl, 5) for a € (0,a;) and all i € N.

(c3) If p € (2,4) N (2,2%), then @, 4 is the unique ground state solution of (Pa,p) with Io (a2 5) < 0
for a € p(O,QPL:?p P*2a1(ﬂ)), Inp(@l g) = 0 for a = 252 p 2a1(ﬂ) and Iap(@l g) > 0 for
a € 27 2p i 2au(B),u(B)) and @ g is the unique solution of (Pap) satisfying Inps(}, z) =

infues, sup;so Log(tu) with In (i} ) € (0, %), where

S, ={ueH (RN)\{O} | S(u) < D(a, B,p) } (1.4)

and

() _dp(po2)
sw= (i) Do = (5F) o

Furthermore, for a € [Qﬁp_%al(ﬂ),al(ﬂ)), ﬂi’ﬁ is a local minimum point of I g(u) and for o €
(0,27 p 720 (B)), T2 %5 15 a global minimum point of I g(u) with I s(72 5) — —o0 as o — 07 and

—2)23
2 (@) — S EL I < Tap(02) < 0 < Tap(0) < e and Las(®5) < Tap(0y)) <
- < Ia,g(vaﬂ) < 5&441) for o € (0,04(B)) and all i € N, while In,5(0, 3) = Iap(0 gﬁ) = g)(i)pi

for all i € N.
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Remark 1.2.

(1) We point out that Theorem 1.3 gives the total description on the energy values of the positive solutions
to (Pq,p). Our result on energy estimates for the sign-changing solutions to (Pag) with N = 1,2,3
and p € (4,2%) is much more precise than the corresponding result in [9]. Moreover, Theorem 1.3 seems
to be the first result on the estimates of energy values for the sign-changing solutions to (Pq,5) with
pE(2,4)N(2,29).

(2) For a,3 > 0, let Qu 3 = {u € H'(RY) | uis a solution of (Ps,)}, then by checking the proof of
Theorem 1.3 (see Lemma 4.10 for details), we can see that 0Qq, 5 = {ﬂg’ﬁ, ﬂi’ﬁ, ﬂi’ﬁ}.

(3) By Theorem 1.3, we see that ﬂiﬁ is a local minimum point of I, g(u) in H*(RY) for a € (0,a1(8)),
and 0 is clearly a local minimum point of I, g(u) in HY(RY) for all & > 0 due to 2 < p < 2*. Therefore,
ﬂi 5 and 0 are also local minimum points of the functional Ict 5(u) in HY(RYN), where

o a0 By e 1 P
a0 = Sl + Sl = [ (w)as
RN
and HY(RY) = {u € HY(RY) | u is radial symmetric}. Note that H!(RY) is compactly embedded into

LP(RYN) for p € (2,2%), so by the symmetric criticality principle of Palais and the maximum principle,
we have I;,@(ﬂi,ﬁ) = infyepsup;epo ) I;B(E(t)) and (I;ﬂ)/(ﬂ}l’ﬁ) =0 in H1(R"Y), where

I'={heC(0,1],H (RY)) | h(0) = 0,h(1) = a2, 5}

and H; ' (RY) is the dual space of H}(R™). It follows that for all a € (0,a1(8)), @}, 4 is a mountain
pass solution of the following equation

<a/(|Vu|2+u2)dx+ﬁ)(—Au—|—u) =uP~! in RY,

’ 1.6
u >0 in RY, (1.6)
ue H(RY).

Since (Pa,s3) has no sign-changing solution for o > 20 (3) and p € (2,4) N (2,2*) by Theorem 1.1, we
can similarly conclude that for v € [1a1(8), a1(8)), ﬂ}x 5 Is a mountain pass solution of the following
equation

(a/(|Vu|2 + u2)dx + B) (—~Au +u) = [ulP"2u  in RV,
R3
u€ H} (RN).

(1.7)

However, S, is not homeomorphic to the unit sphere of H!(R") and even not weakly low semi-continuous
on H*(R™), hence we are not sure whether ”E}xﬂ is a mountain pass solution of (P, g) for p € (2,4) N
(2,2*) and « € (0,1(8)) in general due to Theorem 1.3.

The remaining part of this paper will be devoted to the proofs of Theorems 1.1 to 1.3 and will be organized
as follows. In Section 2, we follow the idea of [1] to study the existence and nonexistence of the solutions to
(Pa,p) and give the proof of Theorem 1.1. In Section 3, we will discuss the concentration behaviors of the
solutions obtained in Theorem 1.1 by applying the implicit function theorem. Simultaneously, we will also
show Theorem 1.2 in this section. In Section 4, we turn to give some estimates on the energy values of the
solutions obtained in Theorem 1.1 by studying the decomposition of the Nehari manifold to I, g(u), while
Theorem 1.3 will also be proved in this section.
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2. The existence of solutions

The main task in this section is to investigate the existence of solutions to (P, g). This task will be
finished essentially by the following two observations on the relation between (P g) and (Pp,1), which are
inspired by [1].

Lemma 2.1. Suppose u is a solution of (Pa,) for o, 8 > 0 and 2 < p < 2*. Then there exists a unique
Sa,p(w) > 0 such that s g(w)u is a solution of (Po1).

Proof. Let ;s = su for s > 0. Since u is a solution of (P, g), we have

2—p

_2u - S
allul]* + 8

—Aps + s = |ul? “»08|p_2905’

s
allul* + 8
Note that «, 3 > 0 and 2 < p < 2*, there exists a unique s, g(u) > 0 such that [s, 5(u)]>? = af|ul|® + 8.
It follows that s, g(u)u is a solution of (Pp1). O

Lemma 2.2. Suppose o, 8> 0, p € (2,2*) and ¢ is a solution of (Po,1). Then we have the following.

(1) If N =1,2,3 and p € (4,2%), then there exists exactly one constant ro g, > 0 such that ro,pp¢ € Dy,
where Dy = {r¢ | r > 0,7¢ is a solution of (Pap)}.

(2) If N =1,2,3 and p = 4, then (W)%qﬁ is the unique one in the set Dy for a € (0, |¢]|72) and
Dy =0 for a € [|6] 2, +x).

(3) If p € (2,4) N (2,2%), then for a € (0,ay), there exist exactly two constants ré’ﬁwp,riﬁ’p > 0 such that

i 2

{Ta,57p¢} C an fora = A, (4_ﬁp
where

)Ti%b is the unique one in the set Dy and for o € (ay,+00), Dy =0,

_ (=28 (4-p\7
=G () 2

Proof. Since ¢ is a solution of (P 1), by a direct calculation, we can see that

(allrdl> + B)(=Aro 4 7¢) = fu (1) Irol"~2ro,

where fo 5.,(r) = ol ¢||?>r*™P + Br?P. It follows that 7¢ is a solution of (P, g) if and only if f, 5,(r) = 1.
(1) If p > 4, then by a direct calculation we can see that dﬂ%’rpm < 0on (0,400). On the other hand, it is
easily see that lim, o+ fo,8,p,(7) = 400 and lim, 4 fa,gp(r) = 0. Hence, there exists a unique 74,3, > 0
such that fo gp(7a,8,p) = 1, which implies 7o g ¢ is the unique one in Dy.
(2) If p = 4, then by a direct calculation we can show that fo g4(r) =1 if and only if o € (0, [|¢||~2) and
r= (%)% It follows that (%)%(b is the unique one in the set Dy, for a € (0,/¢||72) and Dy, = 0
for a € [||p]| 72, +00).

(3) For the case of p € (2,4), by a direct calculation, we can see that df%ﬁm < 0 on (0,72 ; ),

a,B,p
4 (o] dj a — 1
i ‘sf(r) >0 on (r376’p, +00) and Hop.p(r) ‘S‘T”(T) =0 forr = rgﬁ’p, where rg,ﬁ,p = (7(4£€7)a2|)@”2)2. It follows that

(&%

. 0
min fo,55(r) = fa8.0(Fa.p.0) = oy’

where ag is given by (2.1). Since lim, o+ fa,8,p(r) = lim, 1o fa,8,p(1) = +00, there exist unique 0 <

% pp such that fo 5,(rf, 5) = 1 when o € (0,04), fa,p,(r) > 1 for all » > 0 when

1 0
Tagp < Tagp < Ta,Bp
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a € (ag,+00) and fop,(r) = 1 if and only if 7 = ) 5, when a = ay. It follows that 7} 5 ¢ and 2 ;5 ¢

are the exactly two points in Dy for a € (0, o), (%)%Qﬁ is the unique one in the set Dy for o = ay

_ 1, o
and Dy = ) for o € (g, +00). Note that (%)% = (f_ﬁp)p—2 if fa.8p(re5,) =1, 50 (42_*8]0)17—%5 is
the unique one in the set Dy for o = ay. O

Note that ¢ is the unique positive solution of (Pg 1) up to a translation, by Lemmas 2.1 and 2.2, we can
obtain the following existence and nonexistence results for the positive solutions of (P, z).

Proposition 2.1. Suppose «, 5 > 0 and p € (2,2*). Then we have the following.

(1) If N =1,2,3 and p € (4,2%), then (Pa,g) has ezactly one positive solution up to a translation.

(2) If N =1,2,3 and p = 4, then (Py g) has exactly one positive solution up to a translation for o € (0, 1)
and no positive solution for a € [ay,+00), where oy is given by (1.1).

(3) If p € (2,4) N (2,2%), then (Pa,g) has exactly two positive solutions for o € (0,a1(8)) and exactly one
positive solution for oo = a1(B) up to a translation. Furthermore, (Pq g) has no positive solution for
a € (a1(B), +00), where a1 (B) is given by (1.1).

Recall that {¢,} is a sequence of sign-changing solutions for (Pp 1) satisfying |¢on| < ||@n+1]] for all
n € N, we can obtain the following existence results for the sign-changing solution of (P,,g) by applying
Lemmas 2.1 and 2.2.

Proposition 2.2. Suppose o, 8 >0, n € N and p € (2,2*). Then we have the following.

(1) If N =1,2,3 and p € (4,2%), then (Pa,g) has infinitely many sign-changing solutions.

(2) If N=1,2,3 and p =4, then (Pq,g) has at least n sign-changing solutions for a € (0, &y, ), where oy, is
given by (1.2).

(3) If p € (2,4) N (2,2%), then (Pa,p) has at least 2n sign-changing solutions for a € (0, &, (B8)) and 2n — 1
sign-changing solutions for a = &, (8), where a,(B) is given by (1.2).

Note that for every sign-changing solutions of (Py 1), denoted by u, we have ||u||* > 2||¢||?. By using the
similar arguments as used in (3) of Proposition 2.2, we can obtain the following nonexistence result of the
sign-changing solutions to (P g)-

Proposition 2.3. Assume a, > 0. Then we have the following.

(1) If N =1,2,3, p=14 and a > Lo, then (Pa,) has no sign-changing solution.
(2) Ifp € (2,4)N(2,2*) and a > 2a1(B), then (Pa,s) has no sign-changing solution.

Now, we can give a proof of Theorem 1.1.
Proof of Theorem 1.1. It follows immediately from Propositions 2.1-2.3. 0O
3. The concentration behaviors of solutions

In this section, we will discuss the concentration behaviors of solutions to (Pq,g) obtained by Theorem 1.1.
Since (Pa,3) can be seen as (Py,1) coupled with a Kirchhoff type non-local term, we mainly concern with the

concentration behaviors for «, which is the parameter on the non-local term. When N = 1,2,3 and p = 4,
the solutions of (P, g) obtained by Theorem 1.1 are much more simple than other cases due to Lemma 2.2.
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On the other hand, since 0 < 2|[¢]|? < [[¢1]]? < -+ < [|@nll* < --- with ||¢,|> = +o0 as n — +oo, the
concentration behaviors of the solutions in this case is very clear and can be stated as follows.

Proposition 3.1. Assume o, >0, N =1,2,3 and p = 4. Then lim,_,o+ Un,g = ﬁ%w and lim,_,o+ 5&75 =

Bz in HY(RN), while lim, - [|ta,pl] = lim, - 9%, 5ll = +oo for all i € N. Furthermore, ||uq g and

0%, 5l are all strictly increasing functions for a and V2||ta gl < 10 gll < - <0}, gl for a € (0,&) and
‘ ~ 1 ~ 1
all i € N, where Uq g = (Wﬁw and Vg 3 = (I_JW)Q%.

In the following of this section, we will study the concentration behaviors of the solutions to (P g)
obtained by Theorem 1.1 in the other two cases:

(a) N=1,2,3 and p € (4,2%);
(b) p€(2,4)N(2,27).

We first consider the case (a). By Lemma 2.2, the unique positive solution of (P, 5) obtained by The-
orem 1.1 in this case can be described as rq g1, where 745, > 0 is given in Lemma 2.2. On the other
hand, due to Lemmas 2.1 and 2.2, sign-changing solutions of (P, g) obtained by Theorem 1.1 can also be
denoted by {7} 5 ¢n}, where 7% 5  satisfies allon|*[7h 5 1* 77 4 B[ 5,]* 7 =1 for all n € N. In order to
get a better understanding of the concentration behaviors in this cases, we respectively re-denote r g, and
T 5.p by () and 75 () and consider them as functions for a. Then we have the following.

Lemma 3.1. Suppose o, > 0, N = 1,2,3 and p € (4,2). Then rgp(a) and {7} ,(a)} are all strictly
increasing functions on [0, +00) with 1 ,(0) =75 ,(0) = ﬂﬁ and limg 400 7g,p (@) = liMa— 400 75, (@) =
+00. Moreover, rgp(a) < 'Fé,p(a) < <rp(a) <o forall a> 0.

Proof. Clearly, rg,(0) =75 ,(0) = 8 77 . In what follows, let us consider the following function

95.0(@) = all¥|?[rap(@)] 7" + Brpp(@)]* "

By Lemma 2.2, gg ,(a) =1 for @ > 0. It follows from the implicit function theorem that

dlrgp(@)] _ [ 112[rs p()]*7 - 8575 |1l -

dex (P —DalYPrsp(@)?+ (-2~ (p—2)

0,

which then implies that rg,(a) is a strictly increasing function on [0,+00). Thus, we must have
limg 400 7g,p(@) = +00. The same properties of 7 («) can be obtained in a similar way by consider-
ing functions

(@) = alleal? [ ()] "+ B[FE ()] 7.

It remains to show that rg () < ?é’p(a) and 75 (a) < Fg;l(a) for all & > 0 and n € N. We only give the

proof of 13 () < 'Fé’p(a) for all v > 0, since 7 (o) < Fg;l () for all @ > 0 and n € N can be obtained in

a similar way. For every ¢ € H'(RY), we consider the following function
— 2. .4—p 2—p
hgpe(a,m) = allgl|*r* " + pr=-". (3.1)

Clearly hg py(a,r5p(a)) = hppe (a,7h (a)) = 1. On the other hand, since 2[[9[|> < [[¢1]|?, we can see

(ev,r)

that hgp o, (a,rgp(a)) > 1 for all @ > 0. Note that 6}15‘%7

v < 0 on [0,+00) x (0,+00), we must have
:Fé,p(a) >rgp(a) foralla >0. O
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By Lemma 3.1, the concentration behaviors of the solutions to (P, g) obtained by Theorem 1.1 in the
case (a) can be stated as follows.

Proposition 3.2. Assume «,f > 0, N = 1,2,3 and p € (4,2%). Then lim, o+ tqp = ﬂﬁw and
limg 0+ v}, 5 = Brzy; in HY(RY), while lim, — +00||tua.gll = lima—s oo [0}, 4ll = 400 for all i € N.
Furthermore, |luq gl and ||v}, 4| are all strictly increasing functions for o and V2||ua gl < va gll <+ <
||v;5|| < e with limg_ 4 o0 ||v}¥BH = 400, where ua g = o3P and vé,ﬂ = Fé,ﬁ,p%'

It remains to study the concentration behaviors of the solutions obtained by Theorem 1.1 in the case (b).
Also by Lemmas 2.1 and 2.2, the solutions of (P, g) obtained by Theorem 1.1 in this case can be denoted
by {75 ok th=t, 20 (i = 1,2) when o € (Gns1(B), &n(ﬁ)) and by {wfﬁpgpk}k 12 (i = 1,2) and
(f_ﬂp)ﬁgpn when o = &, (8) for all n € N. Furthermore, 7" 75 satisfies ol 7y Bp]4 P4 Bl Bp]2 P=1
for all i = 1,2 and k € N. Positive solutions of (P,,g) in this case are 7}, 5 ¥ (i = 1,2) for a € (0, a1(8))
and (4 =

rﬁ,p( «) and consider them as functions of «. Then we have the following.

)724) for a = a1 (). As in the case (a), we respectively re-denote 7l 5.p a0d ?”‘akﬁ , by 75 () and

Lemma 3.2. Suppose «, 8 > 0 and p € (2,4) N (2,2%). Then we have the following.

(1) On (0,01(P)), r};,p(a) is a strictly increasing function and r%’p(a) is a strictly decreasing func-

tion. Moreover, lim,_,o+ rép( a) = Bﬁ and lim,_,o+ r%7p(a) = 400, while lim,_,q,(5)- r}j’p(a) =

hma%oa(@)_ T%,p(a) (4251,)

(2) For every k € N, rﬁ’p(a) is a strictly increasing function and ?;:];(a) is a strictly decreasing func-
1

tion on (0,ax(B)). Moreover, it holds that lim,_,5, ()~ F/:;:’;(a) = limg_q,(8)- F;:’;(a) = (42fp)ﬁ,

lim, 0+ Fé,’i(a) = 6712 and limg_,o+ Fg’j;(a) = 4o00.
~1,1 1,k 2.k 2,1 ~
(3) For every k €N, rj (o) < Ty pla) <o <rg(a) <7y (a) < - <75 (a) < 75 () on (0,ax(B)).

Proof. (1) Consider functions

g p(@) = a2 [, ()] 7+ B[ (@] * 77, i=1,2.

By Lemma 2.2, g5 (a) =1 on (0,a1(8)). Then by the implicit function theorem, we have

dlrp(@)] _ 911G p ()]*P
da (P = Dal¥|Prh ()] + (0 —2)8°
Since 12_(a) > 19 (a) = (725 )12 5 1L (q), we can see that dlrs.p ()] > 0 and Tﬁ (a” < 0 on
B.p B.p (4=p)af[¥[? B.p\Y)s da

(0,a1(B)). Tt follows that rj () is strictly increasing and rﬁ (@) is strictly decreasing on (0, al(ﬂ)). By the
fact that r%m(a) > 7‘2,;,( a) = (%)1/2 on (0, a1 (3)) once more, it is easily see that lim,_,o+ r%m(a) =

+00. On the other hand, note that ay(8)||¢|>r*~? + Br?=P = 1 if and only if r = (%)1/27 where

a1(B) is given by (1.1), we must have that lim,_q,(5)- 75, (@) = limg_q,(5)- 75,(@) = (%)1/2 =
(2

_p)P%?. Since r%.,yp(a) is a bounded function on (0, @1(3)), we can easily see that lim,_, g+ rﬁyp( a) = Bz,
(2) Due to the definition of ag(8) and «1(f), the proof is quite similar to (1) by considering functions

755 (@) = allpel 2 [F5E @] 77 + B[FE ()], i=1,2.

(3) Let hg p,q(r) be the function given by (3.1). Then it is easily see that fori = 1,2, hg p, o, (a, Wﬁ;(a)) =1.
Since [|p1]| > V2||1]|, we can see that h@,pw(a,ﬁ;;(a)) < 1on (0,a:1(B)). Note that hgpp(a, 75 ,(a)) =
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fopp(rh (@) = 1 for i = 1,2 and df"+f(r) < 0 on (O,raﬁp) and M"() > 0 on (r) 4,,+00), by the

conclusions of (1) and (2), we must have 7"}3 () < Fﬂ’p( o) < rﬂé(a) < Tﬁm( a) on (0,a1(8)). A similar ar-
gument implies that F}; (o) < ré ];'H( ) < N; ];'H( ) < 77[2.3’];(04) on (0,a(8)) for all k € N, which completes
the proof. O

. ~1, ~1.,k
By Lemma 3.2, for every k € N, we must have 2||r[13p( a)|]? < ”TB;( Y12 < - < 75, (a )k on

(0,,(8))- On the other hand, ([ (@)exl|? + 8)[75 5 (@)]* 7 = 1 and 757" () < 7575 (@) on (0, @k(8)),

so we must have ||r2 k+1( Yertl? < Hrﬁ’p( a)erll? on (0,ax(B)) since p > 2. A similar argument implies

that we also have [[757 ()¢1% < [ ,(@)i||* on (0,6 (8)). Thus, we have v/2||r} (a)y]| < |75 (@)1l <

- < P @)exll < ||77§l;( Jorll < -+ < |75 (@]l < [I73,(@)¢ ]| on (0,a4(8)). Now, the concentration

behaviors of the solutions obtained by Theorem 1.1 in the case (b) can be stated as follows.

roposition 3.3. Assume o, 3 > 0 and p € * en lim, o+ U, 5 = 729 and lim,_, o+ 1‘)1’i =
P tion 3.3. A 0 and 2,4)N(2,2*). Thenl (1”3 s
ﬂﬁ%— in H'(RY) and limg_o+ [|72 4| = 400 and limg_o+ ||vaBH = oo, while Mg _q, (g)- U} 5 =
limg_sq, ()~ U253 = To g qnd lim, 5,8~ 0 (117[3 = lim,_,5,(8)- © o2 o = o0 ap in Hl(RN) for all © € N. Fur-
thermore, ||al 4| and ||5-"] are strictly increasing functions for o, ||a2 4| and 72| are strictly decreasing
o, o, a,f 04’5

_1,1 1 _2 —21 _
| <ol < - < ll5gsll < II’UJ@H < < lTy sl < l1a2 ll fora € (0, ai(B))
and all i € N, where 12’;75 = rlgm( ), ’Zzﬁ = ?gp( )i, U 5 = ( )P 2q) andvaﬁ = (1% 25 )P 2p, k=1,2
and i € N.

functions for a and \/§||17(11ﬁ

We close this section by

Proof of Theorem 1.2. It follows immediately from Propositions 3.1-3.3. O
4. The energy of solutions

In this section, we will make some observations on the energy values of the solutions to (P, g) obtained
by Theorem 1.1. It is well-known that the solution of (P, ) is the critical point of the C? functional I, 5(u),
which is given by (1.3). Let NV, 5 = {u € H*(R)\{0} | I}, 5(u)u = 0} be the Nehari manifold to I, g(u).
Then every nonzero critical point of I, g(u) lies in ,/\/'a B-

n [2], Alves and Figueiredo proved that infy;, , o 5(u) = ma,s > 0 and there exists a solution of (Py,g)
w1th a,8>0and p € (4,2*) for N =1,2,3 such that its energy I, g(u) equals to mq,g. In what follows,
let us give an estimate on the energy values of sign-changing solutions to (Pq,g) in this case.

Lemma 4.1. Suppose N = 1,2,3. If u is a sign-changing solution of (Pa,g) with o, 8 >0 and 4 < p < 2%,
then I s (u) > 2mo.5-+ C51% s (@)1 In particular, To 5(7% ,(0)px) > 2mas-+ TS0 s (@)1 for
all k € N. Moreover, Iawg(r&p( a)py) increases to +0o as k — +00.

Proof. Since u is a sign-changing solution of (P, ), by Lemma 2.1, so g(u)u is a sign-changing solution
of (Py1) for some s, g(u) > 0. It follows that 2||%[|? < ||sa.s(u)ul|?>. Now, by Lemma 2.2 and a similar
argument as used in Lemma 3.1, we can conclude that 2||rg ,(a)®||?> < |lu||?, which then implies

—4
I p(u) =2map + %(Hun‘1 - 2||rﬁ7,,(a)¢||4)

O (LI PO

_ (lulP® = 2]rg.p(@)e]?) (v

4p

Da(lull® +2[|rsp()w ) +28(p - 2))
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(p—4Ha

+ 2+ S rsa(@)v]

(p—4)a

> 2my,
Ma,p + %

”7"B7p(0‘)¢’|4~

On the other hand, since p > 4 and ||F[’§,p(a)g0k|| increases to +0o as k — +00, I, g (F’lg,p(a)apk) increases to
400 as k — 400, which completes the proof of this lemma. O

Now, by Proposition 2.1 and Lemma 4.1, we can conclude that rg,(«)y is the unique ground state
solution of (P, ) with o, 8 > 0 and p € (4,2%) for N = 1,2,3 up to a translation. We then estimate the
energy values of the solutions to (P,,z) with o, 8 > 0 and p = 4 for N = 1,2,3. By a similar argument
of Lemma 4.1, we can obtain the following estimate on the energy values of the sign-changing solutions to
(Pa,p) in this case.

Lemma 4.2. Suppose N = 1,2,3. If u is a sign-changing solution of (Pa,p) with p = 4 and o, > 0,
then Iopg(u) > 2ma.g. In particular, if o € (0,ay) for some n € N, then I g(7f ,(@)pr) > 2map for
k=1,2,---,n. Moreover, Iayg(?gyp(a)gpk) is increasing for k =1,2,--- n.

In what follows, we will estimate the energy of the positive solution to (Ps,g) in this case. Let us
first study the decomposition of the Nehari manifold N, s for (P, g) in this case. It is well-known that
the decomposition of the Nehari manifold N, g is tightly linked to the behavior of the fibering maps
Top.u(t) = Lo p(tu), t > 0. T, 5, (t) = 0 is equivalent to tu € Ny 5. In particular, T}, 5 (1) = 0 if and only
if u € N, g. By applying a similar argument as [2, Lemma 2.3] on Ty .4, (t) = Lo 5(tu), we can obtain the
following.

Lemma 4.3. Suppose N =1,2,3, p=4, a,3 >0 and u € H*(RV)\{0}.

(1) If aljul|* = ||ul|f = 0, then Tnp.u(t) is a strictly increasing function on (0,+00). Furthermore,
limt_,_,_oo Ta7ﬁ7u(t) = +00.

allu||® — ||u < 0, then there exists a unique to g(u) > such that to g(u)u € B an

2) I 4 4 0, th h ) ) B 0 h th B Nag d

Io g(ta,p(w)u) = maxy>o Lo g(tu). Furthermore, it holds that mq g > 0.
With Lemma 4.3 in hands, we can obtain the following.

Lemma 4.4. Suppose N =1,2,3, p=4 and > 0. If0 < a < S; ?, then (W)%w is the unique ground
state solution of (Pa.5) up to a translation, where Sy is given by

ul®

Sy = in 5
ueH (RN)\{0} [lull}

Proof. Clearly, m, s > 0 and ||ul|?> > 3S% for u € N, g. It follows that ||ul|f — alu|* > 5257 for u € N, 3,
which then implies that N, g is a natural constraint due to I, g(u) € C?. Now, applying the Ekeland
principle and the implicit function theorem in a standard way (cf. [5]), we can conclude that there exists
{un} C Nap such that Iy g(un) = map + 0, (1) and I, 5(un) = 0,(1) strongly in H~YRN). Clearly, {u,}
is bounded in H!(RY). Without loss of generality, we may assume u,, — u, weakly in H*(RY) as n — +oc.
Let vy, = tn — tx. Then v, — 0 weakly in H'(RY) as n — oo, which implies I/, 5(v,) = 0,(1) strongly in
H~!(R"). Note that {v,} is bounded in H'(R"), we must have I/, 5(v,)v, = 0n(1). For the sake of clarity,
we divide the following proof into two cases.
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Case. 1 af|v,||* — ||[vn|lf > on(1).

Since I, 5(vn)vn = 0,(1), v = 0, (1) strongly in HY(RY) due to al|v,||* = ||vallf > 0n(1). It follows that
I, g(us) = mq,p. Note that I, g(|u.|) = I g(us) = ma,p and N, g is a natural constraint, by a similar
argument as [4, Theorem 2.3, I}, 5(|u«|) = 0 in H~1(RY). Thanks to the maximum principle, u, can be
chosen positive, which implies that (P,,3) has a positive ground state solution. Thanks to Proposition 2.1
and Lemma 4.2, (JW)%TZJ is the unique ground state solution of (P4 g) up to a translation.

Case. 2 There exists a subsequence of {v,,}, still denoted by {v,}, satisfying a||v,||* — ||v.||F < —C.

Since al|v,||* = [lvn||3 < —C, by Lemma 4.3, there exists {t,} C N such that ¢,v, € N, . It follows from
I}, 5(vn)vy = 0, (1) that t, — 1 as n — +oo. This together with u, — u. weakly in HY(RY) as n — +oo,
implies

/

1
Ma,g < Iop(tnvn) — 4 a,ﬂ(tnvn)tnvn
= 2ol + 0u(1)
= Dl = s + 00 1)
_ B e
= La,p(un) = Zlluell” + 0a(1). (4.1)

Note that I, g(un) = ma,p + 0n(1), (4.1) implies u, = 0. On the other hand, since {u,} C Ny g, |lun| >
/28, for all n € N. Thanks to the Lions lemma [14, Lemma 1.21], there exist R > 0 and {z,} C R3
satisfying |z,| — 400 such that

§ = lim sup / u, [* > 0.

n—+00
BR(CEn)
Let wy,(z) = up(x + 2,,). Then w,, — w, # 0 weakly in H*(RY) as n — +o0. Denote w,, = w,, — w,. Then
I}, 5(wy) = 0,(1) strongly in H~Y(RY) and {w,} is bounded in H*(R"), which implies I, s(wy )Wy, = 0, (1).
If o/, ||* — ||wn |7 < —C for some subsequence, then by a similar argument as (4.1), we can conclude that
w, = 0, which is impossible. It follows that a|@,||*—[|@,||1 > 0,(1). This together with I}, 5(w, )W, = 0n(1),
implies w,, = w, + 0, (1) strongly in H'(R"). Thus, we must have

~ o
Lo, p(w.) = Lag(wn) = Las(@n) = 51| [lwe]* + on(1)
= a,B(un)+On(1)

= Mqu,B3-

Since I g(|wy|) = In,g(ws) and N, g is a natural constraint, by a similar argument as [4, Theorem 2.3, we
have I, 5(|w.|) = 0. Thanks to the maximum principle, w. can be chosen to be positive, which implies that
(Pa,p) has a positive ground state solution. Thanks to Proposition 2.1 and Lemma 4.2, (I_Q’W)%qﬁ is the
unique ground state solution of (P,,g) up to a translation, which completes the proof. O

Remark 4.1. It is well known that S; can be achieved by v and ||4||> = S3. Then by Proposition 2.1 and
Lemma 4.4, for N =1,2,3,p =4, 5 > 0, (P, ) has a unique ground state solution if and only if & € (0, aq).

In the final of this section, we will estimate the energy values of the solutions for (P, g) with o, 8 > 0
and p € (2,4) N(2,2%). Since p < 4 and « > 0, it is easily observe the following.
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Lemma 4.5. Suppose o, 3 > 0 and p € (2,4) N (2,2*). Then I, 5(u) is conceive on H'(RY).

Similar to the case of p = 4, we will make an observation on the fibering maps T, 5.,(t) in this case
for a better understanding of the energy values of the solutions to (P, ). Note that T, g, (t) is C?, so by
Lemma 4.5, we can divide the Nehari manifold into the following three parts:

B—{ueNa[ﬂ aﬁu1)>0};
NBf{ueNam a5u1)<0};

(e

Now, let us begin with

Lemma 4.6. Suppose o, 3 >0, p € (2,4) N (2,2*) and u € H*(RN)\{0}. Then we have the following.

(1) If S(u) > D(«, B,p), then T}, 5 ,(t) > 0 for all t > 0, where S(u) and D(«, B,p) are given by (1.5).

(2) If S(u) = D(«, B,p), then there exists a unique t9, 5(u) > 0 such that t, ;(u)u € Nag. Moreover,
tg,ﬁ( )U € Na,ﬁ

(3) If S(u) < D(a, B,p), then there exist unique 0 <t 5(u) < tg’ﬁ(u) < t;ﬁ(u) such that tiﬁ(u)u € Ny .
Moreover, tiﬁ( Ju € N

Proof. Clearly, T}, 5, (t) = allul|*t® + Bllul*t — |ulhtP~". Let T 5, (t) = a||u||41f2 — Jlul/5¢2=2. Then

T, 5.u(t) = t(Bllull* + T} 5 ,(t)). By a direct calculation, we can see that T 5, (t) is strictly decreasing
for 0 <t <t 5(u) and strictly increasing for ¢ >t ;(u), where

. (0~ 2)[ul
fap () = ( 2alJul® )

2
Bl + T 0(0) 2 Bl + T35, (8, 50)) = S (S(0) = Dl o).

It follows that

Now, if S(u) > D(«, 3,p), then T7

wput) > 0foralt>0.1If S(u) = D(a, B,p), then T,
only if ¢ = ), 5(u). Note that

a,B,u

(t) =0 if and

T(;/,ﬁ,u (tg,[;?(u)) = BHUHZ + T* B, u(t ( )) + t[Ta 3, u}l(tg,,é’(u)) = 07

so we also have t0, ﬁ( wyu € N 5.1 S(u) < D(a, B, p), then there exist unique 0 < t,p(u) < 19 5(u) < t;ﬁ (u)

suchthatT&ﬁu( plwu) =0. Since 0 < t_ 5(u ) < td 5(u u) < tt p(u), we can see that

T(;Iﬁ,u (t;,ﬁ(u)) = ﬁ”UHQ + Toc*ﬁ,u (t;, ( )) + t(Ta 3, u) (t;”@(u)) < 07
and
c;/,ﬁ,u(t+ ( )) B”u”2 +To¢*,ﬁ,u( ( )) +t( « ﬁu) (tJr”@’( )) > 0.
It follows that tiﬁ(u)u € J\/’;ﬁ. 0

By Lemma 4.6, we can see that Niﬁ C {ue H'(RY) | S(u) < D(o, B,p)} and NY 5 C {u € H'(RY) |
S(u) = D(a, B,p)}. The following lemma gives an energy estimate on N, g.
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Lemma 4.7. Suppose o, > 0 and p € (2,4) N (2,2%). If {u € H*RY) | S(u) < D(a,B,p)} # 0 and
{ue HY(RY) | S(u) = D(a, B,p)} # 0, then we have the following.

(1) Foru e NY 5, we have |[ul|* = (p= 2)/3 and I, p(u) = (p—2)*5*

" (4-pa 4p(4—p)a’
(2) Foru € N 4, we have |[u]|* < min{(5; p2g" )%v (i 5)5} and I, p(u) € (0, 4(11;(42)1,?&), where S, =

2
lnfueHl(RN)\{O} HUHQ .

P 1 2
(3) Forue N} 3> we have |ul[* > max{(%spz)p 2 (i 35} and I, pg(u) < %

Proof. (1) Let u € {u € H'(RY) | S(u) = D(a, 8,p)}. Then by Lemma 4.6, there exists a unique t9, 5(u) > 0

such that 0, ;(u)u € N ;. Without loss of generality, we assume 0, ;(u) = 1. Now, we have o[ul|*+ 8 ul|* -

lullz = 0 and 3aul[* + Bllul]*> — (p — )ullz = 0. It follows that (4 — p)ol|ul2(Jul|* — L2La) = 0. Since
-2

u # 0, we must have |Jul]? = %a. Note that I, g(u) = (5 — %)||u|\4 +(3 - %)Hu”2 for u € Ny g, so

_ (@=2°p?
Lap(uw) = Spia—pya-

(2) Let u € {u € HY(RY) | S(u) < D(, 3,p)}. Then by Lemma 4.6, there exists a unique t,s(u) >0

such that ¢, 5(u)u € N 5. Without loss of generality, we assume ¢, ;(u) = 1. Now, we have allul*+ Blul]? -
[ul2 = 0 and 3aul* 4+ Bllul®* = (p — D]Jul|b < 0. It follows that [[uf? < min{(&= 25")%7 EZ 12))5} On
F(ee) = T
F() = (5 = D)+ (3 — L)t. Note that Lo p(w) = (5= 2)[|ul*+ (3 = 1) Jul® and [u]]? < E=22 for u € N, 4,
we must have I, g(u) < 512(42)13/)304 By Lemma 4.6, we can see that ¢ 5(u) is the unique maximum point of
Top(t) on [0,t] ;(u)]. Hence, we also have I, g(u) > 0 for u € Nos

(3) Similar to the proof of (2). O

where

the other hand, by a direct calculation, it is easily see that max;>o f(t) =

By Propositions 2.1 and 2.2, we can see that the solutions of (P, g) appear in pairs for § > 0, a €
(0,a1(5)] and p € (2,4) N (2,2%) except o € A, where A = {a1(8),a1(8),- -, n(8), - }. The following
result gives more information for the case of o € A.

Lemma 4.8. Suppose >0 and p € (2,4)N(2,2*). Then (4275p)ﬁ<pn e N 4 for = a,(B) and all n € N.

In particular, Ny g = /\/375 = {(ffp)ﬁiﬁ} if a = a1(B).

Proof. If & = a1(8), then by the definition of S, it is easily see that S(u) > S,f%p. Furthermore, it is
well-known that S(u) = S’ﬁ% if and only if w = ¢, where ¢ is the unique positive solution of (Py1). It
follows that [|1]|? = S,?%. On the other hand, since « = (), where a;(8) is given by (1.1), by a direct
calculation, we can see that D(ay (), 8,p) = == Sﬁ%p = S() < S(u) for u # 1. By Lemma 4.6,
we can see that Nog = N 5 = {t), 5(¥)¢}, where t), 5(¢) = (%)ﬁ = (25\|_w||2) . Thanks to

Lemma 4.7, we must have (52— pﬂ_j”z)ﬁ = (2 )vi’z. On the other hand, by Lemmas 2.2 and 4.6, we can see

i—p
that 1), 5(¢en)en € NO 8 if @« = &, (B) for all n € N. Since ¢,, is a solution of (Py 1), by Lemma 4.7 again,

we can see that ( )P 2, € ND 5> which completes the proof. O

In what follows, let us give some estimates on the solutions of (P, g) with 8 > 0, a € (0,a1(8)) and
€ (2,4)N(2,2%). We start by

Lemma 4.9. Suppose 8> 0, a € (0,a1(8)) and p € (2,4)N(2,2%). If u is a sign-changing solution of (Py ),
then 2[|rs ,(a)dh|* < [lull* < [IrF ,(a)]|*.
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Proof. Since u is a sign-changing solution of (P,,g), by Lemma 2.1, there exists S, g(u) > 0 such that
Sa.5(u)u is a sign-changing solution of (Py 1), which implies || S, g(u)ul|? > 2[j1||?. By Lemma 2.2, there exist
unique 73 (a) > (a) > 75 (a) such that 73 (a)Sa,s(u)u and 75 (a)Sa s(u)u are two sign-changing
solutions of (P,,g). By Lemma 2.2 again, we known that either 7 (a)Sap(u) = 1 or 73 (a)Sq p(u) = 1.
On the other hand, by a similar argument as (3) of Lemma 3.2, we have 75 () < 75 (o) < 75 (o) <
rg’p(a). It follows that 2||7“/13,p(0z)¢||2 < ||ul|?>. Note that (aHf%)p(a)Saﬁ(u)uHQ + 5)[77%,17(0[)]2*? = 1 and
(@llr3 (@I + B3, (@]F7 = 1, we also have [ul? < [, (e[, O

With Lemma 4.9, we can obtain the following.

Lemma 4.10. Suppose § > 0, o € (0,a1(8)) and p € (2,4) N (2,2*). Then we have the following.

(1) 75 ,(@) is the unique one achieved m_, 5. Moreover, ||lry (a)y|| = min{|u|l | u € Nu s}, where m 5, =
ian;B I g(u).
(2) ré’p(a)w is the unique one achieved m:’ﬁ. Moreover, Hrﬁ’p(a)wﬂ = max{||lul]| | v € Ny}, where
+ e
my 5 = mfN;B I g(u).
Proof. (1) By Lemma 2.2, we have rj (a) < 3 (a), where r§ (a) = ((4(’;)%)%. It follows from
Proposition 2.1 that 75 (@) € N 5. Let

my’y = inf I, 5(u),
BN NH(BR(0))

a4

where Br(0) = {z € RY | |z| < R}. Then it is well-known that there exists u;é% € NyzN H}(Br(0))
with u;;;‘ > 0 such that Ia,/g(u;’:) = m;’g’ and Igﬂ(u;é?‘) =0 in H 1(Bg(0)) for all R > 0. By a similar
argument as [15, Lemma 2.4], we can see that limp_, 4o m;/f =mg, s On the other hand, by a similar
argument as used in Lemma 2.1, we can see that there exists Sy, ﬂ(U;;ﬁR ) > 0 such that Sy, B(u;”é% )u;é% = YR,
where g is the positive solution of the following equation

~AYp +Yr =95, r € Hy(Br(0)).

It is well-known that g is unique and g — v strongly in H'(RY) as R — +oo. Note that
[Sa.s(uy’s M2-r = oz||u;g||2 + 3, we can see that {Sag(u;g)} is bounded away both from 0 and +oo.
Without loss of generality, we may assume that u_’é% = [Sap(u, s - 11/)3 — [5;5] L4 strongly in
HY(RY) as R — +oo for some [S g] ' > 0, which together with I/, 5(u, ) = 0 in H *(Bg(0)), im-
plies I/, 5([S, 7’0]*1111) = 0 in H~}(R3). By Lemma 2.2, either [S;’ﬁ}*l = é () or [S;’BO]’1 =13 (a).

Since u_’;; € N, 5, we have [lu, s 2 < (i igi by Lemma 4.7. Therefore, ||[S ﬁ] Lp|I? < (Z 12))6 Hence, we
0

must have [S_ 5}71 = T‘B (@) by Lemma 2.2 again. It follows that I, ,3(7’3 o)) =m 5. Now, by Proposi-

tion 2.1 and Lemma 4.9, 7§ ()4 is the unique one achieved m,, 4 and |} ,(@)¥|| = min{|Jul| | v € No 5}
(2) Similar to the proof of (1). O

For 7 (a)y and 73 (@), we also have the following.

Lemma 4.11. Suppose >0, o € (0,a1(8)) and p € (2,4) N (2,2*). Then

(1) Ia7ﬂ(ré7p(a)w) = infyes, sup;>g la,g(tu), where S, is given by (1.4).
(2) 73 ()¢ is a local minimum point of I, p(u) for a € [2ﬁp_ﬁa1(5),a1(ﬁ)) and is a global
minimum point of I, g(u) for a € (O,Qﬁ]fﬁal(ﬂ)). Moreover, it holds that m;ﬁ > 0 for
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a € (Qﬁpfﬁal(,@),al(ﬁ)), m;ﬁ = 0 for a = Qﬁpfp%?al(ﬁ) and mz’ﬁ < 0 for a €
(072?}%2]77#&1(5)) with miﬁ — —o0 as a — 0.

Proof. (1) It follows immediately from Lemmas 4.6 and 4.10.
(2) Let g(r) = $|¥[*r* — rp 2 4 2. Then by a direct calculation, we can see that g(ro) =

min,>o g(r), where 7y = (a|(\€)¢||§)) =». Since I, 5(r¢) = |[[¢]|*r?g(r), by a direct calculation, we

can see that min,>¢ o g(ry) < 0 for a € (O,Qﬁp_p%al(ﬂ)) and min,>o I, g(ry) = 0 for a €

[2Tz2p7ﬁa1(ﬂ),a1(ﬂ)). Furthermore, Iog(r) > 0 for r > 0 if o € (Zﬁpfﬁal(ﬁ),al(ﬁ)) and

Inpg(r) >0for r > 0and r # rp if @ = 2ﬁp7ﬁa1(ﬁ). By Lemma 2.2 and (2) of Lemma 4.10, we
b2 2

must havepm;ﬂf 0 for o € (27—2p~ P2 a1 (f), 1(P)), miﬁ =0 for a =27-2p~ »—2q;(f) and m;ﬂ < 0 for

a € (0,272p~ »—2ay(f)). Since

Toatrow) = Lol (22 (5 - AP (AEE2) ) oo asa o,

we also have m; 5 — —00 as a — 0% by Lemma 2.2 and (2) of Lemma 4.10 once more. It remains to
show that r3 (a)y is a local minimum point of I, g(u) for o € [2ﬁp7ﬁa1(5)7a1(5)) and is a global

minimum point of I, g(u) for a € (0, 2#1)_%&1(6)). Without loss of generality, we assume u € H'(RY)

with [Jul|? > % and S(u) < D(a, 5,p). Then by Lemmas 4.6 and 4.10, there exists t;ﬁ(u) > 0 such

that ¢ 5(u)u € N ;. Moreover,

I, (t;rvﬁ(u)u) = min I, 5(tu).

(p—2)8
> G pralul®

In particular, Iaﬁ(tl‘ﬁ(u)u) < I p(u). Note that I, 5(r3 ,(@)y) = m{ 5, we have I 5(r3 ,(@)9) < In,p(w).
It follows that 73 (@)1 is a local minimum point of I, s(u) for a € [2$p7ﬁa1(6), a1(8)) and is a global
minimum point of I, g(u) for a € (0, 21)1%21)_%@1(6)). 0

Finally, we give some estimates on the energy values of the sign-changing solutions to (Pa,g) for 8 > 0,
a € (0,a,(B)) with some n € N and p € (2,4) N (2,2%).

Lemma 4.12. Suppose § > 0, a € (0,a,(8)) for some n € N and p € (2,4) N (2,2%). If u is a
sign-changing solution of (Pa,g), which lies in N 5, then Iop(u) > 2m, 5 — M||7"Bp( Y|t In

particular, Iavg(?’é’f;(a)w) > 2mg 5 — (4 p ||r5p( )1/)||4 for k = 1,2,--- n. Moreover, we also have
~1,1 ~1,k ~2,1
Lo p(Tgp(a)p) < -+ <lap(Ty,(a)p) and Ia,ﬁ(%,p( a)p) > -+ > lap(ry,(a)p).

Proof. Since u is a sign-changing solution of (P, ), which lies in No?ﬁ? by Lemmas 4.7, 4.9 and 4.10, we have

(p—4)a

Tagp ) = 2mg 5 = (full = 2] (@)

—2 2 1 2
+ P28l — 2 )

_ (el = 2l p (@)911%)

(=4 = pa(llul® +2||rb ,()8]|") + 28(p - 2))

4p
4 —
w2y - S5 D2k oy
4 _
> am = AP Gy

2p
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Note that ?é’k (@) are sign-changing solutions of (P,,s), which lies in N 5 for all k € N due to Propo-
sition 2.2 and Lemma 4.7, so we have Io g(75 o k( )p) > 2m, 5 — (4 p)o‘||r L(@)]|* for all k € N. On the

other hand, it is easily see that I, g(u) = (i - %)Hu”4 +(3 - ]%)||u||2 if u is a solution of (P, g). Clearly,
ft)=(- l)t2 +(G- l)t is increasing on (0, M «) and decreasing on (Ma +00). Now, by Proposi-

tion 2.2, Lemma 4.7 and the concentration behav1ors of {rﬁ p( a)p}, we can see that I, g(rﬁ p(a)go) <-e <
Iayg(rﬁ’p(a)cp) and Iaﬁ(rﬂ’p(a)go) > > Ia,ﬁ(rﬂ’p(a) ) for all k € N, which completes the proof. O

We close this section by

Proof of Theorem 1.3. The conclusion of (1) follows immediately from the result of [2] and Lemma 4.1.
The conclusion of (2) follows immediately from Lemmas 4.2 and 4.4. The conclusion of (3) follows from
Lemmas 4.8 and 4.11-4.12. O
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