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In this paper, we investigate the following Kirchhoff type problem:

⎧⎪⎪⎨
⎪⎪⎩

(
α

∫
RN

(
|∇u|2 + u2)dx + β

)
(−Δu + u) = |u|p−2u in RN ,

u ∈ H1(RN
)
,

(Pα,β)

where N ≥ 1, 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2) and α, β
are two positive parameters. By studying the decomposition of the Nehari manifold 
to (Pα,β) and using the scaling technique, we give a total description on the positive 
solutions to (Pα,β). We also make an observation on the sign-changing solutions to 
(Pα,β) in the current paper.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following Kirchhoff type problem:
⎧⎪⎪⎨
⎪⎪⎩

(
α

∫
RN

(
|∇u|2 + u2)dx + β

)
(−Δu + u) = |u|p−2u in RN ,

u ∈ H1(RN ),
(Pα,β)

where N ≥ 1, 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2) and α, β > 0 are two parameters.
It is well-known that (P0,1) is the basic Schrödinger equation, which has exactly one positive solution up 

to a translation and infinitely many sign-changing solutions. The unique positive solution is radial symmetric 
and is also the unique least energy solution to (P0,1), while the energy values of the sign-changing solutions 
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go to infinity. On the other hand, to the best of our knowledge, for the Kirchhoff type problem (Pα,β), only 
the existence result of one positive solution with N = 1, 2, 3 and p ∈ (4, 2∗) was established in [2] by Alves 
and Figueiredo. Simultaneously, in recent years, the Kirchhoff type problems in the whole space RN with 
N = 1, 2, 3 have been studied widely by the variational methods since then the nice work [8], and various 
existence results of the solutions to such problems were established, see for example [2,3,6,7,9–13] and the 
references therein. Inspired by the above facts, the purpose of the current paper is to make a detailed 
description on the solutions of (Pα,β).

Let us give some notations before we state our results. We respectively denote the unique positive solution 
and infinitely many sign-changing solutions of (P0,1) by ψ and {ϕn}. Then ψ is the unique least energy 
solution of (P0,1) and J(ϕn) → +∞ as n → +∞, where J(u) = 1

2‖u‖2 − 1
p‖u‖pp is the corresponding 

functional to (P0,1), ‖ · ‖ and ‖ · ‖p are the usual norms in H1(RN ) and Lp(RN ), respectively. Without loss 
of generality, we assume J(ϕn) < J(ϕn+1) for all n ∈ N. Then it is well-known that 0 <

√
2‖ψ‖ < ‖ϕ1‖ <

· · · < ‖ϕn‖ < · · · with ‖ϕn‖ → +∞ as n → +∞. For each β > 0, let us denote

α1 = 1
‖ψ‖2 , α1(β) = (p− 2)β

(4 − p)‖ψ‖2

(
4 − p

2β

) 2
p−2

, (1.1)

α̃n = 1
‖ϕn‖2 , α̃n(β) = (p− 2)β

(4 − p)‖ϕn‖2

(
4 − p

2β

) 2
p−2

. (1.2)

Then it is easily see that 1
2α1 > α̃1 > · · · > α̃n > · · · and 1

2α1(β) > α̃1(β) > · · · > α̃n(β) > · · · with both 
α̃n → 0 and α̃n(β) → 0 as n → +∞.

Now, our first result can be stated as follows.

Theorem 1.1. Assume α, β > 0 and n ∈ N. Then we have the following.

(a1) If N = 1, 2, 3 and p ∈ (4, 2∗), then (Pα,β) has exactly one positive solution uα,β up to a translation. 
Furthermore, (Pα,β) has infinitely many sign-changing solutions {viα,β}.

(a2) If N = 1, 2, 3 and p = 4, then (Pα,β) has exactly one positive solution ũα,β for α ∈ (0, α1) and no 
positive solution for α ∈ [α1, +∞) up to a translation. Furthermore, (Pα,β) has at least n sign-changing 
solutions {ṽiα,β} for α ∈ (0, α̃n).

(a3) If p ∈ (2, 4) ∩ (2, 2∗), then (Pα,β) has exactly two positive solutions u1
α,β and u2

α,β for α ∈ (0, α1(β)), 
exactly one positive solution u0

α,β for α = α1(β) and no positive solution for α ∈ (α1(β), +∞) up 

to a translation. Furthermore, (Pα,β) has at least 2n sign-changing solutions {v1,i
α,β} and {v2,i

α,β} for 
α ∈ (0, α̃n(β)) and at least 2n − 1 sign-changing solutions {v1,i

α,β}, {v
2,i
α,β} and v0,n

α,β for α = α̃n(β).
(a4) If N = 1, 2, 3, p = 4 and α ≥ 1

2α1 or p ∈ (2, 4) ∩ (2, 2∗) and α ≥ 1
2α1(β), then (Pα,β) has no 

sign-changing solution.

Remark 1.1. By checking the proof of Theorem 1.1, we can see that the positive solutions of (Pα,β) obtained 
by this theorem are all radial symmetric up to a translation. Furthermore, this theorem gives a total 
description on the existence and nonexistence of the positive solutions to (Pα,β). It is also worth to point 
out that Theorem 1.1 seems to be the first result for the Kirchhoff type problems in the high dimensions 
(N ≥ 5).

Since the solutions obtained by Theorem 1.1 are dependent on the parameters α and β, it is natural to 
discuss the concentration behaviors for α and β vary. Note that α is the parameter of the Kirchhoff type 
non-local term, so we mainly study the concentration behaviors of the solutions to (Pα,β) for α. Our result 
on this topic can be stated as follows.
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Fig. 1. Case of p ∈ (4, 2∗).

Fig. 2. Case of p = 4.

Theorem 1.2. Assume α, β > 0. Then we have the following.

(b1) If N = 1, 2, 3 and p ∈ (4, 2∗), then limα→0+ uα,β = β
1

p−2ψ and limα→0+ viα,β = β
1

p−2ϕi in H1(RN ), 
while limα→+∞ ‖uα,β‖ = limα→+∞ ‖viα,β‖ = +∞ for all i ∈ N. Furthermore, ‖uα,β‖ and ‖viα,β‖ are all 
strictly increasing functions for α and 

√
2‖uα,β‖ < ‖v1

α,β‖ < · · · < ‖viα,β‖ < · · · with limi→+∞ ‖viα,β‖ =
+∞.

(b2) If N = 1, 2, 3 and p = 4, then limα→0+ ũα,β = β
1
2ψ and limα→0+ ṽiα,β = β

1
2ϕi in H1(RN ), while 

limα→α−
1
‖ũα,β‖ = limα→α̃−

i
‖ṽiα,β‖ = +∞ for all i ∈ N. Furthermore, ‖ũα,β‖ and ‖ṽiα,β‖ are all 

strictly increasing functions for α and 
√

2‖ũα,β‖ < ‖ṽ1
α,β‖ < · · · < ‖ṽiα,β‖ for α ∈ (0, α̃i) and all i ∈ N.

(b3) If p ∈ (2, 4) ∩ (2, 2∗), then limα→0+ u1
α,β = β

1
p−2ψ and limα→0+ v1,i

α,β = β
1

p−2ϕi in H1(RN ) and 

limα→0+ ‖u2
α,β‖ = +∞ and limα→0+ ‖v2,i

α,β‖ = +∞, while limα→α1(β)− u1
α,β = limα→α1(β)− u2

α,β = u0
α,β

and limα→α̃i(β)− v1,i
α,β = limα→α̃i(β)− v2,i

α,β = v0,i
α,β for all i ∈ N in H1(RN ). Furthermore, ‖u1

α,β‖ and 

‖v1,i
α,β‖ are strictly increasing functions for α, ‖u2

α,β‖ and ‖v2,i
α,β‖ are strictly decreasing functions for 

α and 
√

2‖u1
α,β‖ < ‖v1,1

α,β‖ < · · · < ‖v1,i
α,β‖ < ‖v2,i

α,β‖ < · · · < ‖v2,1
α,β‖ < ‖u2

α,β‖ for α ∈ (0, αi(β)) and all 
i ∈ N.

According to Theorem 1.2, we can illustrate the concentration behaviors of the solutions to (Pα,β) ob-
tained by Theorem 1.1 with Figs. 1–3.
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Fig. 3. Case of p ∈ (2, 4).

In this paper, we also make some estimates on the energy values of the solutions to (Pα,β) obtained by 
Theorem 1.1. Let Iα,β(u) ∈ C2(H1(RN ), R) be the corresponding functional to (Pα,β), which is given by

Iα,β(u) = α

4 ‖u‖
4 + β

2 ‖u‖
2 − 1

p
‖u‖pp. (1.3)

Now, our result for the energy values of the solutions to (Pα,β) can be stated as follows.

Theorem 1.3. Assume α, β > 0. Then we have the following.

(c1) If N = 1, 2, 3 and p ∈ (4, 2∗), then uα,β is the unique ground state solution of (Pα,β). Furthermore, 
2Iα,β(uα,β) + (p−4)α

2p ‖uα,β‖4 < Iα,β(v1
α,β) < · · · < Iα,β(viα,β) < · · · with Iα,β(viα,β) → +∞ as i → +∞.

(c2) If N = 1, 2, 3 and p = 4, then ũα,β is the unique ground state solution of (Pα,β) for α ∈ (0, α1). 
Furthermore, 2Iα,β(uα,β) < Iα,β(v1

α,β) < · · · < Iα,β(viα,β) for α ∈ (0, α̃i) and all i ∈ N.
(c3) If p ∈ (2, 4) ∩ (2, 2∗), then u2

α,β is the unique ground state solution of (Pα,β) with Iα,β(u2
α,β) < 0

for α ∈ (0, 2
p

p−2 p−
2

p−2α1(β)), Iα,β(u2
α,β) = 0 for α = 2

p
p−2 p−

2
p−2α1(β) and Iα,β(u2

α,β) > 0 for 
α ∈ (2

p
p−2 p−

2
p−2α1(β), α1(β)) and u1

α,β is the unique solution of (Pα,β) satisfying Iα,β(u1
α,β) =

infu∈S∗ supt≥0 Iα,β(tu) with Iα,β(u1
α,β) ∈ (0, (p−2)2β2

4p(4−p)α ), where

S∗ =
{
u ∈ H1(RN

)
\{0} | S(u) < D(α, β, p)

}
(1.4)

and

S(u) =
(

‖u‖
‖u‖p

) 2p
4−p

and D(α, β, p) = 4 − p

2β

(
p− 2
2α

) p−2
4−p

. (1.5)

Furthermore, for α ∈ [2
p

p−2 p−
2

p−2α1(β), α1(β)), u2
α,β is a local minimum point of Iα,β(u) and for α ∈

(0, 2
p

p−2 p−
2

p−2α1(β)), u2
α,β is a global minimum point of Iα,β(u) with Iα,β(u2

α,β) → −∞ as α → 0+ and 

2Iα,β(u1
α,β) − (4−p)α

2p ‖u1
α,β‖4 < Iα,β(v1,1

α,β) < · · · < Iα,β(v1,i
α,β) < (p−2)2β2

4p(4−p)α and Iα,β(u2
α,β) < Iα,β(v2,1

α,β) <

· · · < Iα,β(v2,i
α,β) < (p−2)2β2

4p(4−p)α for α ∈ (0, αi(β)) and all i ∈ N, while Iα,β(u0
α,β) = Iα,β(v0,i

α,β) = (p−2)2β2

4p(4−p)α
for all i ∈ N.
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Remark 1.2.

(1) We point out that Theorem 1.3 gives the total description on the energy values of the positive solutions 
to (Pα,β). Our result on energy estimates for the sign-changing solutions to (Pα,β) with N = 1, 2, 3
and p ∈ (4, 2∗) is much more precise than the corresponding result in [9]. Moreover, Theorem 1.3 seems 
to be the first result on the estimates of energy values for the sign-changing solutions to (Pα,β) with 
p ∈ (2, 4) ∩ (2, 2∗).

(2) For α, β > 0, let Qα,β = {u ∈ H1(RN ) | u is a solution of (Pα,β)}, then by checking the proof of 
Theorem 1.3 (see Lemma 4.10 for details), we can see that ∂Qα,β = {u0

α,β , u
1
α,β , u

2
α,β}.

(3) By Theorem 1.3, we see that u2
α,β is a local minimum point of Iα,β(u) in H1(RN ) for α ∈ (0, α1(β)), 

and 0 is clearly a local minimum point of Iα,β(u) in H1(RN ) for all α > 0 due to 2 < p < 2∗. Therefore, 
u2
α,β and 0 are also local minimum points of the functional I+

α,β(u) in H1
r (RN ), where

I+
α,β(u) = α

4 ‖u‖
4 + β

2 ‖u‖
2 − 1

p

∫
RN

(
u+)pdx

and H1
r (RN ) = {u ∈ H1(RN ) | u is radial symmetric}. Note that H1

r (RN ) is compactly embedded into 
Lp(RN ) for p ∈ (2, 2∗), so by the symmetric criticality principle of Palais and the maximum principle, 
we have I+

α,β(u1
α,β) = infh∈Γ supt∈[0,1] I

+
α,β(h(t)) and (I+

α,β)′(u1
α,β) = 0 in H−1

r (RN ), where

Γ =
{
h ∈ C

(
[0, 1], H1

r

(
RN

))
| h(0) = 0, h(1) = u2

α,β

}
and H−1

r (RN ) is the dual space of H1
r (RN ). It follows that for all α ∈ (0, α1(β)), u1

α,β is a mountain 
pass solution of the following equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
α

∫
R3

(
|∇u|2 + u2)dx + β

)
(−Δu + u) = up−1 in RN ,

u > 0 in RN ,

u ∈ H1
r

(
RN

)
.

(1.6)

Since (Pα,β) has no sign-changing solution for α ≥ 1
2α1(β) and p ∈ (2, 4) ∩ (2, 2∗) by Theorem 1.1, we 

can similarly conclude that for α ∈ [ 12α1(β), α1(β)), u1
α,β is a mountain pass solution of the following 

equation
⎧⎪⎨
⎪⎩

(
α

∫
R3

(
|∇u|2 + u2)dx + β

)
(−Δu + u) = |u|p−2u in RN ,

u ∈ H1
r

(
RN

)
.

(1.7)

However, S∗ is not homeomorphic to the unit sphere of H1(RN ) and even not weakly low semi-continuous 
on H1(RN ), hence we are not sure whether u1

α,β is a mountain pass solution of (Pα,β) for p ∈ (2, 4) ∩
(2, 2∗) and α ∈ (0, α1(β)) in general due to Theorem 1.3.

The remaining part of this paper will be devoted to the proofs of Theorems 1.1 to 1.3 and will be organized 
as follows. In Section 2, we follow the idea of [1] to study the existence and nonexistence of the solutions to 
(Pα,β) and give the proof of Theorem 1.1. In Section 3, we will discuss the concentration behaviors of the 
solutions obtained in Theorem 1.1 by applying the implicit function theorem. Simultaneously, we will also 
show Theorem 1.2 in this section. In Section 4, we turn to give some estimates on the energy values of the 
solutions obtained in Theorem 1.1 by studying the decomposition of the Nehari manifold to Iα,β(u), while 
Theorem 1.3 will also be proved in this section.
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2. The existence of solutions

The main task in this section is to investigate the existence of solutions to (Pα,β). This task will be 
finished essentially by the following two observations on the relation between (Pα,β) and (P0,1), which are 
inspired by [1].

Lemma 2.1. Suppose u is a solution of (Pα,β) for α, β > 0 and 2 < p < 2∗. Then there exists a unique 
sα,β(u) > 0 such that sα,β(u)u is a solution of (P0,1).

Proof. Let ϕs = su for s > 0. Since u is a solution of (Pα,β), we have

−Δϕs + ϕs = s

α‖u‖2 + β
|u|p−2u = s2−p

α‖u‖2 + β
|ϕs|p−2ϕs.

Note that α, β > 0 and 2 < p < 2∗, there exists a unique sα,β(u) > 0 such that [sα,β(u)]2−p = α‖u‖2 + β. 
It follows that sα,β(u)u is a solution of (P0,1). �
Lemma 2.2. Suppose α, β > 0, p ∈ (2, 2∗) and φ is a solution of (P0,1). Then we have the following.

(1) If N = 1, 2, 3 and p ∈ (4, 2∗), then there exists exactly one constant rα,β,p > 0 such that rα,β,pφ ∈ Dφ, 
where Dφ = {rφ | r > 0, rφ is a solution of (Pα,β)}.

(2) If N = 1, 2, 3 and p = 4, then ( β
1−α‖φ‖2 ) 1

2φ is the unique one in the set Dφ for α ∈ (0, ‖φ‖−2) and 
Dφ = ∅ for α ∈ [‖φ‖−2, +∞).

(3) If p ∈ (2, 4) ∩ (2, 2∗), then for α ∈ (0, αφ), there exist exactly two constants r1
α,β,p, r

2
α,β,p > 0 such that 

{riα,β,pφ} ⊂ Dφ, for α = αφ, ( 2β
4−p )

1
p−2φ is the unique one in the set Dφ and for α ∈ (αφ, +∞), Dφ = ∅, 

where

αφ = (p− 2)β
(4 − p)‖φ‖2

(
4 − p

2β

) 2
p−2

. (2.1)

Proof. Since φ is a solution of (P0,1), by a direct calculation, we can see that

(
α‖rφ‖2 + β

)
(−Δrφ + rφ) = fα,β,p(r)|rφ|p−2rφ,

where fα,β,p(r) = α‖φ‖2r4−p + βr2−p. It follows that rφ is a solution of (Pα,β) if and only if fα,β,p(r) = 1.
(1) If p > 4, then by a direct calculation we can see that dfα,β,p(r)

dr < 0 on (0, +∞). On the other hand, it is 
easily see that limr→0+ fα,β,p(r) = +∞ and limr→+∞ fα,β,p(r) = 0. Hence, there exists a unique rα,β,p > 0
such that fα,β,p(rα,β,p) = 1, which implies rα,β,pφ is the unique one in Dφ.

(2) If p = 4, then by a direct calculation we can show that fα,β,4(r) = 1 if and only if α ∈ (0, ‖φ‖−2) and 
r = ( β

1−α‖φ‖2 ) 1
2 . It follows that ( β

1−α‖φ‖2 ) 1
2φ is the unique one in the set Dφ for α ∈ (0, ‖φ‖−2) and Dφ = ∅

for α ∈ [‖φ‖−2, +∞).
(3) For the case of p ∈ (2, 4), by a direct calculation, we can see that dfα,β,p(r)

dr < 0 on (0, r0
α,β,p), 

dfα,β,p(r)
dr > 0 on (r0

α,β,p, +∞) and dfα,β,p(r)
dr = 0 for r = r0

α,β,p, where r0
α,β,p = ( (p−2)β

(4−p)α‖φ‖2 ) 1
2 . It follows that

min
r>0

fα,β,p(r) = fα,β,p
(
r0
α,β,p

)
= α

αφ
,

where αφ is given by (2.1). Since limr→0+ fα,β,p(r) = limr→+∞ fα,β,p(r) = +∞, there exist unique 0 <
r1
α,β,p < r0

α,β,p < r2
α,β,p such that fα,β,p(riα,β,p) = 1 when α ∈ (0, αφ), fα,β,p(r) > 1 for all r > 0 when 
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α ∈ (αφ, +∞) and fα,β,p(r) = 1 if and only if r = r0
α,β,p when α = αφ. It follows that r1

α,β,pφ and r2
α,β,pφ

are the exactly two points in Dφ for α ∈ (0, αφ), ( (p−2)β
(4−p)α‖φ‖2 ) 1

2φ is the unique one in the set Dφ for α = αφ

and Dφ = ∅ for α ∈ (αφ, +∞). Note that ( (p−2)β
(4−p)α‖φ‖2 ) 1

2 = ( 2β
4−p )

1
p−2 if fα,β,p(r0

α,β,p) = 1, so ( 2β
4−p )

1
p−2φ is 

the unique one in the set Dφ for α = αφ. �
Note that ψ is the unique positive solution of (P0,1) up to a translation, by Lemmas 2.1 and 2.2, we can 

obtain the following existence and nonexistence results for the positive solutions of (Pα,β).

Proposition 2.1. Suppose α, β > 0 and p ∈ (2, 2∗). Then we have the following.

(1) If N = 1, 2, 3 and p ∈ (4, 2∗), then (Pα,β) has exactly one positive solution up to a translation.
(2) If N = 1, 2, 3 and p = 4, then (Pα,β) has exactly one positive solution up to a translation for α ∈ (0, α1)

and no positive solution for α ∈ [α1, +∞), where α1 is given by (1.1).
(3) If p ∈ (2, 4) ∩ (2, 2∗), then (Pα,β) has exactly two positive solutions for α ∈ (0, α1(β)) and exactly one 

positive solution for α = α1(β) up to a translation. Furthermore, (Pα,β) has no positive solution for 
α ∈ (α1(β), +∞), where α1(β) is given by (1.1).

Recall that {ϕn} is a sequence of sign-changing solutions for (P0,1) satisfying ‖ϕn‖ < ‖ϕn+1‖ for all 
n ∈ N, we can obtain the following existence results for the sign-changing solution of (Pα,β) by applying 
Lemmas 2.1 and 2.2.

Proposition 2.2. Suppose α, β > 0, n ∈ N and p ∈ (2, 2∗). Then we have the following.

(1) If N = 1, 2, 3 and p ∈ (4, 2∗), then (Pα,β) has infinitely many sign-changing solutions.
(2) If N = 1, 2, 3 and p = 4, then (Pα,β) has at least n sign-changing solutions for α ∈ (0, α̃n), where α̃n is 

given by (1.2).
(3) If p ∈ (2, 4) ∩ (2, 2∗), then (Pα,β) has at least 2n sign-changing solutions for α ∈ (0, α̃n(β)) and 2n − 1

sign-changing solutions for α = α̃n(β), where α̃n(β) is given by (1.2).

Note that for every sign-changing solutions of (P0,1), denoted by u, we have ‖u‖2 > 2‖ψ‖2. By using the 
similar arguments as used in (3) of Proposition 2.2, we can obtain the following nonexistence result of the 
sign-changing solutions to (Pα,β).

Proposition 2.3. Assume α, β > 0. Then we have the following.

(1) If N = 1, 2, 3, p = 4 and α ≥ 1
2α1, then (Pα,β) has no sign-changing solution.

(2) If p ∈ (2, 4) ∩ (2, 2∗) and α ≥ 1
2α1(β), then (Pα,β) has no sign-changing solution.

Now, we can give a proof of Theorem 1.1.

Proof of Theorem 1.1. It follows immediately from Propositions 2.1–2.3. �
3. The concentration behaviors of solutions

In this section, we will discuss the concentration behaviors of solutions to (Pα,β) obtained by Theorem 1.1. 
Since (Pα,β) can be seen as (P0,1) coupled with a Kirchhoff type non-local term, we mainly concern with the 
concentration behaviors for α, which is the parameter on the non-local term. When N = 1, 2, 3 and p = 4, 
the solutions of (Pα,β) obtained by Theorem 1.1 are much more simple than other cases due to Lemma 2.2. 
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On the other hand, since 0 < 2‖ψ‖2 < ‖ϕ1‖2 < · · · < ‖ϕn‖2 < · · · with ‖ϕn‖2 → +∞ as n → +∞, the 
concentration behaviors of the solutions in this case is very clear and can be stated as follows.

Proposition 3.1. Assume α, β > 0, N = 1, 2, 3 and p = 4. Then limα→0+ ũα,β = β
1
2ψ and limα→0+ ṽiα,β =

β
1
2ϕi in H1(RN ), while limα→α−

1
‖ũα,β‖ = limα→α̃−

i
‖ṽiα,β‖ = +∞ for all i ∈ N. Furthermore, ‖ũα,β‖ and 

‖ṽiα,β‖ are all strictly increasing functions for α and 
√

2‖ũα,β‖ < ‖ṽ1
α,β‖ < · · · < ‖ṽiα,β‖ for α ∈ (0, α̃i) and 

all i ∈ N, where ũα,β = ( β
1−α‖ψ‖2 ) 1

2ψ and ṽiα,β = ( β
1−α‖ϕi‖2 ) 1

2ϕi.

In the following of this section, we will study the concentration behaviors of the solutions to (Pα,β)
obtained by Theorem 1.1 in the other two cases:

(a) N = 1, 2, 3 and p ∈ (4, 2∗);
(b) p ∈ (2, 4) ∩ (2, 2∗).

We first consider the case (a). By Lemma 2.2, the unique positive solution of (Pα,β) obtained by The-
orem 1.1 in this case can be described as rα,β,pψ, where rα,β,p > 0 is given in Lemma 2.2. On the other 
hand, due to Lemmas 2.1 and 2.2, sign-changing solutions of (Pα,β) obtained by Theorem 1.1 can also be 
denoted by {r̃nα,β,pϕn}, where r̃nα,β,p satisfies α‖ϕn‖2[r̃nα,β,p]4−p + β[r̃nα,β,p]2−p = 1 for all n ∈ N. In order to 
get a better understanding of the concentration behaviors in this cases, we respectively re-denote rα,β,p and 
r̃nα,β,p by rβ,p(α) and r̃nβ,p(α) and consider them as functions for α. Then we have the following.

Lemma 3.1. Suppose α, β > 0, N = 1, 2, 3 and p ∈ (4, 2∗). Then rβ,p(α) and {r̃nβ,p(α)} are all strictly 

increasing functions on [0, +∞) with rβ,p(0) = r̃nβ,p(0) = β
1

p−2 and limα→+∞ rβ,p(α) = limα→+∞ r̃nβ,p(α) =
+∞. Moreover, rβ,p(α) < r̃1

β,p(α) < · · · < r̃nβ,p(α) < · · · for all α > 0.

Proof. Clearly, rβ,p(0) = r̃nβ,p(0) = β
1

p−2 . In what follows, let us consider the following function

gβ,p(α) = α‖ψ‖2[rβ,p(α)
]4−p + β

[
rβ,p(α)

]2−p
.

By Lemma 2.2, gβ,p(α) ≡ 1 for α ≥ 0. It follows from the implicit function theorem that

d[rβ,p(α)]
dα

= ‖ψ‖2[rβ,p(α)]3−p

(p− 4)α‖ψ‖2[rβ,p(α)]2 + (p− 2)β ≥ β
5−p
p−2 ‖ψ‖2

(p− 2) > 0,

which then implies that rβ,p(α) is a strictly increasing function on [0, +∞). Thus, we must have 
limα→+∞ rβ,p(α) = +∞. The same properties of r̃nβ,p(α) can be obtained in a similar way by consider-
ing functions

g̃nβ,p(α) = α‖ϕn‖2[r̃nβ,p(α)
]4−p + β

[
r̃nβ,p(α)

]2−p
.

It remains to show that rβ,p(α) < r̃1
β,p(α) and r̃nβ,p(α) < r̃n+1

β,p (α) for all α > 0 and n ∈ N. We only give the 
proof of rβ,p(α) < r̃1

β,p(α) for all α > 0, since r̃nβ,p(α) < r̃n+1
β,p (α) for all α > 0 and n ∈ N can be obtained in 

a similar way. For every φ ∈ H1(RN ), we consider the following function

hβ,p,φ(α, r) = α‖φ‖2r4−p + βr2−p. (3.1)

Clearly hβ,p,ψ(α, rβ,p(α)) = hβ,p,ϕ1(α, ̃r1
β,p(α)) = 1. On the other hand, since 2‖ψ‖2 < ‖ϕ1‖2, we can see 

that hβ,p,ϕ1(α, rβ,p(α)) > 1 for all α > 0. Note that ∂hβ,p,ϕ1 (α,r)
∂r < 0 on [0, +∞) × (0, +∞), we must have 

r̃1
β,p(α) > rβ,p(α) for all α > 0. �
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By Lemma 3.1, the concentration behaviors of the solutions to (Pα,β) obtained by Theorem 1.1 in the 
case (a) can be stated as follows.

Proposition 3.2. Assume α, β > 0, N = 1, 2, 3 and p ∈ (4, 2∗). Then limα→0+ uα,β = β
1

p−2ψ and 
limα→0+ viα,β = β

1
p−2ϕi in H1(RN ), while limα → +∞‖uα,β‖ = limα→+∞ ‖viα,β‖ = +∞ for all i ∈ N. 

Furthermore, ‖uα,β‖ and ‖viα,β‖ are all strictly increasing functions for α and 
√

2‖uα,β‖ < ‖v1
α,β‖ < · · · <

‖viα,β‖ < · · · with limi→+∞ ‖viα,β‖ = +∞, where uα,β = rα,β,pψ and viα,β = r̃iα,β,pϕi.

It remains to study the concentration behaviors of the solutions obtained by Theorem 1.1 in the case (b). 
Also by Lemmas 2.1 and 2.2, the solutions of (Pα,β) obtained by Theorem 1.1 in this case can be denoted 
by {r̃i,kα,β,pϕk}k=1,···,2n (i = 1, 2) when α ∈ (α̃n+1(β), α̃n(β)) and by {r̃i,kα,β,pϕk}k=1,···,2n−2 (i = 1, 2) and 

( 2β
4−p )

1
p−2ϕn when α = α̃n(β) for all n ∈ N. Furthermore, r̃i,kα,β,p satisfies α‖ϕk‖2[r̃i,kα,β,p]4−p+β[r̃i,kα,β,p]2−p = 1

for all i = 1, 2 and k ∈ N. Positive solutions of (Pα,β) in this case are riα,β,pψ (i = 1, 2) for α ∈ (0, α1(β))
and ( 2β

4−p )
1

p−2ψ for α = α1(β). As in the case (a), we respectively re-denote riα,β,p and r̃i,kα,β,p by riβ,p(α) and 

r̃i,kβ,p(α) and consider them as functions of α. Then we have the following.

Lemma 3.2. Suppose α, β > 0 and p ∈ (2, 4) ∩ (2, 2∗). Then we have the following.

(1) On (0, α1(β)), r1
β,p(α) is a strictly increasing function and r2

β,p(α) is a strictly decreasing func-
tion. Moreover, limα→0+ r1

β,p(α) = β
1

p−2 and limα→0+ r2
β,p(α) = +∞, while limα→α1(β)− r1

β,p(α) =
limα→α1(β)− r2

β,p(α) = ( 2β
4−p )

1
p−2 .

(2) For every k ∈ N, r̃1,k
β,p(α) is a strictly increasing function and r̃2,k

β,p(α) is a strictly decreasing func-
tion on (0, α̃k(β)). Moreover, it holds that limα→α̃k(β)− r̃1,k

β,p(α) = limα→α̃k(β)− r̃2,k
β,p(α) = ( 2β

4−p )
1

p−2 , 
limα→0+ r̃1,k

β,p(α) = β
1

p−2 and limα→0+ r̃2,k
β,p(α) = +∞.

(3) For every k ∈ N, r1
β,p(α) < r̃1,1

β,p(α) < · · · < r̃1,k
β,p(α) < r̃2,k

β,p(α) < · · · < r̃2,1
β,p(α) < r2

β,p(α) on (0, α̃k(β)).

Proof. (1) Consider functions

giβ,p(α) = α‖ψ‖2[riβ,p(α)
]4−p + β

[
riβ,p(α)

]2−p
, i = 1, 2.

By Lemma 2.2, giβ,p(α) ≡ 1 on (0, α1(β)). Then by the implicit function theorem, we have

d[riβ,p(α)]
dα

=
‖ψ‖2[riβ,p(α)]3−p

(p− 4)α‖ψ‖2[riβ,p(α)]2 + (p− 2)β
.

Since r2
β,p(α) > r0

β,p(α) = ( (p−2)β
(4−p)α‖ψ‖2 )1/2 > r1

β,p(α), we can see that d[r1
β,p(α)]
dα > 0 and 

d[r2
β,p(α)]
dα < 0 on 

(0, α1(β)). It follows that r1
β,p(α) is strictly increasing and r2

β,p(α) is strictly decreasing on (0, α1(β)). By the 

fact that r2
β,p(α) > r0

β,p(α) = ( (p−2)β
(4−p)α‖ψ‖2 )1/2 on (0, α1(β)) once more, it is easily see that limα→0+ r2

β,p(α) =
+∞. On the other hand, note that α1(β)‖ψ‖2r4−p + βr2−p = 1 if and only if r = ( (p−2)β

(4−p)α‖ψ‖2 )1/2, where 

α1(β) is given by (1.1), we must have that limα→α1(β)− r1
β,p(α) = limα→α1(β)− r2

β,p(α) = ( (p−2)β
(4−p)α‖ψ‖2 )1/2 =

( 2β
4−p )

1
p−2 . Since r1

β,p(α) is a bounded function on (0, α1(β)), we can easily see that limα→0+ r1
β,p(α) = β

1
p−2 .

(2) Due to the definition of α̃k(β) and α1(β), the proof is quite similar to (1) by considering functions

g̃i,kβ,p(α) = α‖ϕk‖2[r̃i,kβ,p(α)
]4−p + β

[
r̃i,kβ,p(α)

]2−p
, i = 1, 2.

(3) Let hβ,p,ψ(r) be the function given by (3.1). Then it is easily see that for i = 1, 2, hβ,p,ϕ1(α, ̃r
i,1
β,p(α)) = 1. 

Since ‖ϕ1‖ >
√

2‖ψ‖, we can see that hβ,p,ψ(α, ̃ri,1 (α)) < 1 on (0, α̃1(β)). Note that hβ,p,ψ(α, riβ,p(α)) =
β,p
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fα,β,p(riβ,p(α)) = 1 for i = 1, 2 and dfα,β,p(r)
dr < 0 on (0, r0

α,β,p) and dfα,β,p(r)
dr > 0 on (r0

α,β,p, +∞), by the 

conclusions of (1) and (2), we must have r1
β,p(α) < r̃1,1

β,p(α) < r̃2,1
β,p(α) < r2

β,p(α) on (0, α̃1(β)). A similar ar-
gument implies that r̃1,k

β,p(α) < r̃1,k+1
β,p (α) < r̃2,k+1

β,p (α) < r̃2,k
β,p(α) on (0, α̃k(β)) for all k ∈ N, which completes 

the proof. �
By Lemma 3.2, for every k ∈ N, we must have 2‖r1

β,p(α)ψ‖2 < ‖r̃1,1
β,p(α)ϕ1‖2 < · · · < ‖r̃1,k

β,p(α)ϕk‖2 on 

(0, α̃k(β)). On the other hand, (α‖r̃2,k
β,p(α)ϕk‖2 + β)[r̃2,k

β,p(α)]2−p = 1 and r̃2,k+1
β,p (α) < r̃2,k

β,p(α) on (0, α̃k(β)), 
so we must have ‖r̃2,k+1

β,p (α)ϕk+1‖2 < ‖r̃2,k
β,p(α)ϕk‖2 on (0, α̃k(β)) since p > 2. A similar argument implies 

that we also have ‖r̃2,1
β,p(α)ϕ1‖2 < ‖r2

β,p(α)ψ‖2 on (0, α̃k(β)). Thus, we have 
√

2‖r1
β,p(α)ψ‖ < ‖r̃1,1

β,p(α)ϕ1‖ <

· · · < ‖r̃1,k
β,p(α)ϕk‖ < ‖r̃2,k

β,p(α)ϕk‖ < · · · < ‖r̃2,1
β,p(α)ϕ1‖ < ‖r2

β,p(α)ψ‖ on (0, α̃k(β)). Now, the concentration 
behaviors of the solutions obtained by Theorem 1.1 in the case (b) can be stated as follows.

Proposition 3.3. Assume α, β > 0 and p ∈ (2, 4) ∩ (2, 2∗). Then limα→0+ u1
α,β = β

1
p−2ψ and limα→0+ v1,i

α,β =
β

1
p−2ϕi in H1(RN ) and limα→0+ ‖u2

α,β‖ = +∞ and limα→0+ ‖v2,i
α,β‖ = +∞, while limα→α1(β)− u1

α,β =
limα→α1(β)− u2

α,β = u0
α,β and limα→α̃i(β)− v1,i

α,β = limα→α̃i(β)− v2,i
α,β = v0,i

α,β in H1(RN ) for all i ∈ N. Fur-
thermore, ‖u1

α,β‖ and ‖v1,i
α,β‖ are strictly increasing functions for α, ‖u2

α,β‖ and ‖v2,i
α,β‖ are strictly decreasing 

functions for α and 
√

2‖u1
α,β‖ < ‖v1,1

α,β‖ < · · · < ‖v1,i
α,β‖ < ‖v2,i

α,β‖ < · · · < ‖v2,1
α,β‖ < ‖u2

α,β‖ for α ∈ (0, αi(β))
and all i ∈ N, where uk

α,β = rkβ,p(α)ψ, vk,iα,β = r̃k,iβ,p(α)ϕi, u0
α,β = ( 2β

4−p )
1

p−2ψ and v0,i
α,β = ( 2β

4−p )
1

p−2ϕi, k = 1, 2
and i ∈ N.

We close this section by

Proof of Theorem 1.2. It follows immediately from Propositions 3.1–3.3. �
4. The energy of solutions

In this section, we will make some observations on the energy values of the solutions to (Pα,β) obtained 
by Theorem 1.1. It is well-known that the solution of (Pα,β) is the critical point of the C2 functional Iα,β(u), 
which is given by (1.3). Let Nα,β = {u ∈ H1(RN )\{0} | I ′α,β(u)u = 0} be the Nehari manifold to Iα,β(u). 
Then every nonzero critical point of Iα,β(u) lies in Nα,β .

In [2], Alves and Figueiredo proved that infNα,β
Iα,β(u) = mα,β > 0 and there exists a solution of (Pα,β)

with α, β > 0 and p ∈ (4, 2∗) for N = 1, 2, 3 such that its energy Iα,β(u) equals to mα,β . In what follows, 
let us give an estimate on the energy values of sign-changing solutions to (Pα,β) in this case.

Lemma 4.1. Suppose N = 1, 2, 3. If u is a sign-changing solution of (Pα,β) with α, β > 0 and 4 < p < 2∗, 
then Iα,β(u) > 2mα,β + (p−4)α

2p ‖rβ,p(α)ψ‖4. In particular, Iα,β(r̃kβ,p(α)ϕk) > 2mα,β + (p−4)α
2p ‖rβ,p(α)ψ‖4 for 

all k ∈ N. Moreover, Iα,β(r̃kβ,p(α)ϕk) increases to +∞ as k → +∞.

Proof. Since u is a sign-changing solution of (Pα,β), by Lemma 2.1, sα,β(u)u is a sign-changing solution 
of (P0,1) for some sα,β(u) > 0. It follows that 2‖ψ‖2 < ‖sα,β(u)u‖2. Now, by Lemma 2.2 and a similar 
argument as used in Lemma 3.1, we can conclude that 2‖rβ,p(α)ψ‖2 < ‖u‖2, which then implies

Iα,β(u) = 2mα,β + (p− 4)α
4p

(
‖u‖4 − 2

∥∥rβ,p(α)ψ
∥∥4)

+ (p− 2)β
2p

(
‖u‖2 − 2

∥∥rβ,p(α)ψ
∥∥2)

= (‖u‖2 − 2‖rβ,p(α)ψ‖2)((p− 4)α
(
‖u‖2 + 2

∥∥rβ,p(α)ψ
∥∥2) + 2β(p− 2)

)

4p
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+ 2mα,β + (p− 4)α
2p

∥∥rβ,p(α)ψ
∥∥4

> 2mα,β + (p− 4)α
2p

∥∥rβ,p(α)ψ
∥∥4

.

On the other hand, since p > 4 and ‖r̃kβ,p(α)ϕk‖ increases to +∞ as k → +∞, Iα,β(r̃kβ,p(α)ϕk) increases to 
+∞ as k → +∞, which completes the proof of this lemma. �

Now, by Proposition 2.1 and Lemma 4.1, we can conclude that rβ,p(α)ψ is the unique ground state 
solution of (Pα,β) with α, β > 0 and p ∈ (4, 2∗) for N = 1, 2, 3 up to a translation. We then estimate the 
energy values of the solutions to (Pα,β) with α, β > 0 and p = 4 for N = 1, 2, 3. By a similar argument 
of Lemma 4.1, we can obtain the following estimate on the energy values of the sign-changing solutions to 
(Pα,β) in this case.

Lemma 4.2. Suppose N = 1, 2, 3. If u is a sign-changing solution of (Pα,β) with p = 4 and α, β > 0, 
then Iα,β(u) > 2mα,β. In particular, if α ∈ (0, α̃n) for some n ∈ N, then Iα,β(r̃kβ,p(α)ϕk) > 2mα,β for 
k = 1, 2, · · · , n. Moreover, Iα,β(r̃kβ,p(α)ϕk) is increasing for k = 1, 2, · · · , n.

In what follows, we will estimate the energy of the positive solution to (Pα,β) in this case. Let us 
first study the decomposition of the Nehari manifold Nα,β for (Pα,β) in this case. It is well-known that 
the decomposition of the Nehari manifold Nα,β is tightly linked to the behavior of the fibering maps 
Tα,β,u(t) = Iα,β(tu), t > 0. T ′

α,β,u(t) = 0 is equivalent to tu ∈ Nα,β . In particular, T ′
α,β,u(1) = 0 if and only 

if u ∈ Nα,β . By applying a similar argument as [2, Lemma 2.3] on Tα,β,u(t) = Iα,β(tu), we can obtain the 
following.

Lemma 4.3. Suppose N = 1, 2, 3, p = 4, α, β > 0 and u ∈ H1(RN )\{0}.

(1) If α‖u‖4 − ‖u‖4
4 ≥ 0, then Tα,β,u(t) is a strictly increasing function on (0, +∞). Furthermore, 

limt→+∞ Tα,β,u(t) = +∞.
(2) If α‖u‖4 − ‖u‖4

4 < 0, then there exists a unique tα,β(u) > 0 such that tα,β(u)u ∈ Nα,β and 
Iα,β(tα,β(u)u) = maxt≥0 Iα,β(tu). Furthermore, it holds that mα,β > 0.

With Lemma 4.3 in hands, we can obtain the following.

Lemma 4.4. Suppose N = 1, 2, 3, p = 4 and β > 0. If 0 < α < S−2
4 , then ( β

1−α‖ψ‖2 ) 1
2ψ is the unique ground 

state solution of (Pα,β) up to a translation, where S4 is given by

S4 = inf
u∈H1(RN )\{0}

‖u‖2

‖u‖2
4
.

Proof. Clearly, mα,β > 0 and ‖u‖2 ≥ βS2
4 for u ∈ Nα,β . It follows that ‖u‖4

4 − α‖u‖4 ≥ β2S2
4 for u ∈ Nα,β , 

which then implies that Nα,β is a natural constraint due to Iα,β(u) ∈ C2. Now, applying the Ekeland 
principle and the implicit function theorem in a standard way (cf. [5]), we can conclude that there exists 
{un} ⊂ Nα,β such that Iα,β(un) = mα,β + on(1) and I ′α,β(un) = on(1) strongly in H−1(RN ). Clearly, {un}
is bounded in H1(RN ). Without loss of generality, we may assume un ⇀ u∗ weakly in H1(RN ) as n → +∞. 
Let vn = un − u∗. Then vn ⇀ 0 weakly in H1(RN ) as n → +∞, which implies I ′α,β(vn) = on(1) strongly in 
H−1(RN ). Note that {vn} is bounded in H1(RN ), we must have I ′α,β(vn)vn = on(1). For the sake of clarity, 
we divide the following proof into two cases.
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Case. 1 α‖vn‖4 − ‖vn‖4
4 ≥ on(1).

Since I ′α,β(vn)vn = on(1), vn = on(1) strongly in H1(RN ) due to α‖vn‖4 −‖vn‖4
4 ≥ on(1). It follows that 

Iα,β(u∗) = mα,β . Note that Iα,β(|u∗|) = Iα,β(u∗) = mα,β and Nα,β is a natural constraint, by a similar 
argument as [4, Theorem 2.3], I ′α,β(|u∗|) = 0 in H−1(RN ). Thanks to the maximum principle, u∗ can be 
chosen positive, which implies that (Pα,β) has a positive ground state solution. Thanks to Proposition 2.1
and Lemma 4.2, ( β

1−α‖ψ‖2 ) 1
2ψ is the unique ground state solution of (Pα,β) up to a translation.

Case. 2 There exists a subsequence of {vn}, still denoted by {vn}, satisfying α‖vn‖4 − ‖vn‖4
4 < −C.

Since α‖vn‖4−‖vn‖4
4 < −C, by Lemma 4.3, there exists {tn} ⊂ N such that tnvn ∈ Nα,β . It follows from 

I ′α,β(vn)vn = on(1) that tn → 1 as n → +∞. This together with un ⇀ u∗ weakly in H1(RN ) as n → +∞, 
implies

mα,β ≤ Iα,β(tnvn) − 1
4I

′
α,β(tnvn)tnvn

= β

4 ‖vn‖
2 + on(1)

= β

4 ‖un‖2 − β

4 ‖u∗‖2 + on(1)

= Iα,β(un) − β

4 ‖u∗‖2 + on(1). (4.1)

Note that Iα,β(un) = mα,β + on(1), (4.1) implies u∗ = 0. On the other hand, since {un} ⊂ Nα,β , ‖un‖ ≥
β1/2S4 for all n ∈ N. Thanks to the Lions lemma [14, Lemma 1.21], there exist R > 0 and {xn} ⊂ R3

satisfying |xn| → +∞ such that

δ = lim sup
n→+∞

∫
BR(xn)

|un|4 > 0.

Let wn(x) = un(x + xn). Then wn ⇀ w∗ �= 0 weakly in H1(RN ) as n → +∞. Denote w̃n = wn − w∗. Then 
I ′α,β(w̃n) = on(1) strongly in H−1(RN ) and {w̃n} is bounded in H1(RN ), which implies I ′α,β(w̃n)w̃n = on(1). 
If α‖w̃n‖4 − ‖w̃n‖4

4 < −C for some subsequence, then by a similar argument as (4.1), we can conclude that 
w∗ = 0, which is impossible. It follows that α‖w̃n‖4−‖w̃n‖4

4 ≥ on(1). This together with I ′α,β(w̃n)w̃n = on(1), 
implies wn = w∗ + on(1) strongly in H1(RN ). Thus, we must have

Iα,β(w∗) = Iα,β(wn) − Iα,β(w̃n) − α

2 ‖w̃n‖2‖w∗‖2 + on(1)

= Iα,β(un) + on(1)

= mα,β .

Since Iα,β(|w∗|) = Iα,β(w∗) and Nα,β is a natural constraint, by a similar argument as [4, Theorem 2.3], we 
have I ′α,β(|w∗|) = 0. Thanks to the maximum principle, w∗ can be chosen to be positive, which implies that 
(Pα,β) has a positive ground state solution. Thanks to Proposition 2.1 and Lemma 4.2, ( β

1−α‖ψ‖2 ) 1
2ψ is the 

unique ground state solution of (Pα,β) up to a translation, which completes the proof. �
Remark 4.1. It is well known that S4 can be achieved by ψ and ‖ψ‖2 = S2

4 . Then by Proposition 2.1 and 
Lemma 4.4, for N = 1, 2, 3, p = 4, β > 0, (Pα,β) has a unique ground state solution if and only if α ∈ (0, α1).

In the final of this section, we will estimate the energy values of the solutions for (Pα,β) with α, β > 0
and p ∈ (2, 4) ∩ (2, 2∗). Since p < 4 and α > 0, it is easily observe the following.
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Lemma 4.5. Suppose α, β > 0 and p ∈ (2, 4) ∩ (2, 2∗). Then Iα,β(u) is conceive on H1(RN ).

Similar to the case of p = 4, we will make an observation on the fibering maps Tα,β,u(t) in this case 
for a better understanding of the energy values of the solutions to (Pα,β). Note that Tα,β,u(t) is C2, so by 
Lemma 4.5, we can divide the Nehari manifold into the following three parts:

N+
α,β =

{
u ∈ Nα,β | T ′′

α,β,u(1) > 0
}
;

N−
α,β =

{
u ∈ Nα,β | T ′′

α,β,u(1) < 0
}
;

N 0
α,β =

{
u ∈ Nα,β | T ′′

α,β,u(1) = 0
}
.

Now, let us begin with

Lemma 4.6. Suppose α, β > 0, p ∈ (2, 4) ∩ (2, 2∗) and u ∈ H1(RN )\{0}. Then we have the following.

(1) If S(u) > D(α, β, p), then T ′
α,β,u(t) > 0 for all t > 0, where S(u) and D(α, β, p) are given by (1.5).

(2) If S(u) = D(α, β, p), then there exists a unique t0α,β(u) > 0 such that t0α,β(u)u ∈ Nα,β. Moreover, 
t0α,β(u)u ∈ N 0

α,β.
(3) If S(u) < D(α, β, p), then there exist unique 0 < t−α,β(u) < t0α,β(u) < t+α,β(u) such that t±α,β(u)u ∈ Nα,β. 

Moreover, t±α,β(u)u ∈ N±
α,β.

Proof. Clearly, T ′
α,β,u(t) = α‖u‖4t3 + β‖u‖2t − ‖u‖pptp−1. Let T ∗

α,β,u(t) = α‖u‖4t2 − ‖u‖pptp−2. Then 
T ′
α,β,u(t) = t(β‖u‖2 + T ∗

α,β,u(t)). By a direct calculation, we can see that T ∗
α,β,u(t) is strictly decreasing 

for 0 < t < t0α,β(u) and strictly increasing for t > t0α,β(u), where

t0α,β(u) =
( (p− 2)‖u‖pp

2α‖u‖4

) 1
4−p

.

It follows that

β‖u‖2 + T ∗
α,β,u(t) ≥ β‖u‖2 + T ∗

α,β,u

(
t0α,β(u)

)
= β‖u‖2

S(u)
(
S(u) −D(α, β, p)

)
.

Now, if S(u) > D(α, β, p), then T ′
α,β,u(t) > 0 for all t > 0. If S(u) = D(α, β, p), then T ′

α,β,u(t) = 0 if and 
only if t = t0α,β(u). Note that

T ′′
α,β,u

(
t0α,β(u)

)
= β‖u‖2 + T ∗

α,β,u

(
t0α,β(u)

)
+ t

[
T ∗
α,β,u

]′(
t0α,β(u)

)
= 0,

so we also have t0α,β(u)u ∈ N 0
α,β . If S(u) < D(α, β, p), then there exist unique 0 < t−α,β(u) < t0α,β(u) < t+α,β(u)

such that T ′
α,β,u(t±α,β(u)u) = 0. Since 0 < t−α,β(u) < t0α,β(u) < t+α,β(u), we can see that

T ′′
α,β,u

(
t−α,β(u)

)
= β‖u‖2 + T ∗

α,β,u

(
t−α,β(u)

)
+ t

(
T ∗
α,β,u

)′(
t−α,β(u)

)
< 0,

and

T ′′
α,β,u

(
t+α,β(u)

)
= β‖u‖2 + T ∗

α,β,u

(
t+α,β(u)

)
+ t

(
T ∗
α,β,u

)′(
t+α,β(u)

)
> 0.

It follows that t±α,β(u)u ∈ N±
α,β . �

By Lemma 4.6, we can see that N±
α,β ⊂ {u ∈ H1(RN ) | S(u) < D(α, β, p)} and N 0

α,β ⊂ {u ∈ H1(RN ) |
S(u) = D(α, β, p)}. The following lemma gives an energy estimate on Nα,β.
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Lemma 4.7. Suppose α, β > 0 and p ∈ (2, 4) ∩ (2, 2∗). If {u ∈ H1(RN ) | S(u) < D(α, β, p)} �= ∅ and 
{u ∈ H1(RN ) | S(u) = D(α, β, p)} �= ∅, then we have the following.

(1) For u ∈ N 0
α,β, we have ‖u‖2 = (p−2)β

(4−p)α and Iα,β(u) = (p−2)2β2

4p(4−p)α .

(2) For u ∈ N−
α,β, we have ‖u‖2 < min{(p−2

2α S
− p

2
p )

1
4−p , (p−2)β

(4−p)α} and Iα,β(u) ∈ (0, (p−2)2β2

4p(4−p)α ), where Sp =

infu∈H1(RN )\{0}
‖u‖2

‖u‖2
p
.

(3) For u ∈ N+
α,β, we have ‖u‖2 > max{( 2β

4−pS
p
2
p )

1
p−2 , (p−2)β

(4−p)α} and Iα,β(u) < (p−2)2β2

4p(4−p)α .

Proof. (1) Let u ∈ {u ∈ H1(RN ) | S(u) = D(α, β, p)}. Then by Lemma 4.6, there exists a unique t0α,β(u) > 0
such that t0α,β(u)u ∈ N 0

α,β . Without loss of generality, we assume t0α,β(u) = 1. Now, we have α‖u‖4+β‖u‖2−
‖u‖pp = 0 and 3α‖u‖4 + β‖u‖2 − (p − 1)‖u‖pp = 0. It follows that (4 − p)α‖u‖2(‖u‖2 − (p−2)β

4−p α) = 0. Since 

u �= 0, we must have ‖u‖2 = (p−2)β
4−p α. Note that Iα,β(u) = (1

4 − 1
p )‖u‖4 + (1

2 − 1
p )‖u‖2 for u ∈ Nα,β , so 

Iα,β(u) = (p−2)2β2

4p(4−p)α .
(2) Let u ∈ {u ∈ H1(RN ) | S(u) < D(α, β, p)}. Then by Lemma 4.6, there exists a unique t−α,β(u) > 0

such that t−α,β(u)u ∈ N−
α,β . Without loss of generality, we assume t−α,β(u) = 1. Now, we have α‖u‖4+β‖u‖2−

‖u‖pp = 0 and 3α‖u‖4 + β‖u‖2 − (p − 1)‖u‖pp < 0. It follows that ‖u‖2 < min{(p−2
2α S

− p
2

p )
1

4−p , (p−2)β
(4−p)α}. On 

the other hand, by a direct calculation, it is easily see that maxt≥0 f(t) = f( (p−2)β
4−p α) = (p−2)2β2

4p(4−p)α , where 

f(t) = (1
4 −

1
p )t2 +(1

2 −
1
p )t. Note that Iα,β(u) = (1

4 −
1
p )‖u‖4 +(1

2 −
1
p )‖u‖2 and ‖u‖2 < (p−2)β

(4−p)α for u ∈ N−
α,β , 

we must have Iα,β(u) < (p−2)2β2

4p(4−p)α . By Lemma 4.6, we can see that t−α,β(u) is the unique maximum point of 
Tα,β(t) on [0, t+α,β(u)]. Hence, we also have Iα,β(u) > 0 for u ∈ N−

α,β .
(3) Similar to the proof of (2). �
By Propositions 2.1 and 2.2, we can see that the solutions of (Pα,β) appear in pairs for β > 0, α ∈

(0, α1(β)] and p ∈ (2, 4) ∩ (2, 2∗) except α ∈ A, where A = {α1(β), α̃1(β), · · · , α̃n(β), · · ·}. The following 
result gives more information for the case of α ∈ A.

Lemma 4.8. Suppose β > 0 and p ∈ (2, 4) ∩ (2, 2∗). Then ( 2β
4−p )

1
p−2ϕn ∈ N 0

α,β for α = α̃n(β) and all n ∈ N. 
In particular, Nα,β = N 0

α,β = {( 2β
4−p )

1
p−2ψ} if α = α1(β).

Proof. If α = α1(β), then by the definition of Sp, it is easily see that S(u) ≥ S
p

4−p
p . Furthermore, it is 

well-known that S(u) = S
p

4−p
p if and only if u = ψ, where ψ is the unique positive solution of (P0,1). It 

follows that ‖ψ‖2 = S
p

p−2
p . On the other hand, since α = α1(β), where α1(β) is given by (1.1), by a direct 

calculation, we can see that D(α1(β), β, p) = ‖ψ‖
2(p−2)
4−p = S

p
4−p
p = S(ψ) < S(u) for u �= ψ. By Lemma 4.6, 

we can see that Nα,β = N 0
α,β = {t0α,β(ψ)ψ}, where t0α,β(ψ) = ( (p−2)‖ψ‖p

p

2α‖ψ‖4 )
1

4−p = ( p−2
2α‖ψ‖2 )

1
4−p . Thanks to 

Lemma 4.7, we must have ( p−2
2α‖ψ‖2 )

1
4−p = ( 2β

4−p )
1

p−2 . On the other hand, by Lemmas 2.2 and 4.6, we can see 
that t0α,β(ϕn)ϕn ∈ N 0

α,β if α = α̃n(β) for all n ∈ N. Since ϕn is a solution of (P0,1), by Lemma 4.7 again, 
we can see that ( 2β

4−p )
1

p−2ϕn ∈ N 0
α,β , which completes the proof. �

In what follows, let us give some estimates on the solutions of (Pα,β) with β > 0, α ∈ (0, α1(β)) and 
p ∈ (2, 4) ∩ (2, 2∗). We start by

Lemma 4.9. Suppose β > 0, α ∈ (0, α1(β)) and p ∈ (2, 4) ∩ (2, 2∗). If u is a sign-changing solution of (Pα,β), 
then 2‖r1

β,p(α)ψ‖2 < ‖u‖2 < ‖r2
β,p(α)ψ‖2.
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Proof. Since u is a sign-changing solution of (Pα,β), by Lemma 2.1, there exists Sα,β(u) > 0 such that 
Sα,β(u)u is a sign-changing solution of (P0,1), which implies ‖Sα,β(u)u‖2 > 2‖ψ‖2. By Lemma 2.2, there exist 
unique r2

β,p(α) > r0
β,p(α) > r1

β,p(α) such that r2
β,p(α)Sα,β(u)u and r1

β,p(α)Sα,β(u)u are two sign-changing 
solutions of (Pα,β). By Lemma 2.2 again, we known that either r1

β,p(α)Sα,β(u) = 1 or r2
β,p(α)Sα,β(u) = 1. 

On the other hand, by a similar argument as (3) of Lemma 3.2, we have r1
β,p(α) < r1

β,p(α) < r2
β,p(α) <

r2
β,p(α). It follows that 2‖r1

β,p(α)ψ‖2 < ‖u‖2. Note that (α‖r2
β,p(α)Sα,β(u)u‖2 + β)[r2

β,p(α)]2−p = 1 and 
(α‖r2

β,p(α)ψ‖2 + β)[r2
β,p(α)]2−p = 1, we also have ‖u‖2 < ‖r2

β,p(α)ψ‖2. �
With Lemma 4.9, we can obtain the following.

Lemma 4.10. Suppose β > 0, α ∈ (0, α1(β)) and p ∈ (2, 4) ∩ (2, 2∗). Then we have the following.

(1) r1
β,p(α)ψ is the unique one achieved m−

α,β. Moreover, ‖r1
β,p(α)ψ‖ = min{‖u‖ | u ∈ Nα,β}, where m−

α,β =
infN−

α,β
Iα,β(u).

(2) r2
β,p(α)ψ is the unique one achieved m+

α,β. Moreover, ‖r2
β,p(α)ψ‖ = max{‖u‖ | u ∈ Nα,β}, where 

m+
α,β = infN+

α,β
Iα,β(u).

Proof. (1) By Lemma 2.2, we have r1
β,p(α) < r0

β,p(α), where r0
β,p(α) = ( (p−2)β

(4−p)α‖ψ‖2 ) 1
2 . It follows from 

Proposition 2.1 that r1
β,p(α)ψ ∈ N−

α,β . Let

m−,R
α,β = inf

N−
α,β∩H1

0 (BR(0))
Iα,β(u),

where BR(0) = {x ∈ RN | |x| ≤ R}. Then it is well-known that there exists u−,R
α,β ∈ N−

α,β ∩ H1
0 (BR(0))

with u−,R
α,β > 0 such that Iα,β(u−,R

α,β ) = m−,R
α,β and I ′α,β(u−,R

α,β ) = 0 in H−1(BR(0)) for all R > 0. By a similar 
argument as [15, Lemma 2.4], we can see that limR→+∞ m−,R

α,β = m−
α,β . On the other hand, by a similar 

argument as used in Lemma 2.1, we can see that there exists Sα,β(u−,R
α,β ) > 0 such that Sα,β(u−,R

α,β )u−,R
α,β = ψR, 

where ψR is the positive solution of the following equation

−ΔψR + ψR = ψp−1
R , ψR ∈ H1

0
(
BR(0)

)
.

It is well-known that ψR is unique and ψR → ψ strongly in H1(RN ) as R → +∞. Note that 
[Sα,β(u−,R

α,β )]2−p = α‖u−,R
α,β ‖2 + β, we can see that {Sα,β(u−,R

α,β )} is bounded away both from 0 and +∞. 
Without loss of generality, we may assume that u−,R

α,β = [Sα,β(u−,R
α,β )]−1ψR → [S−,0

α,β ]−1ψ strongly in 

H1(RN ) as R → +∞ for some [S−,0
α,β ]−1 > 0, which together with I ′α,β(u−,R

α,β ) = 0 in H−1(BR(0)), im-
plies I ′α,β([S−,0

α,β ]−1ψ) = 0 in H−1(R3). By Lemma 2.2, either [S−,0
α,β ]−1 = r1

β,p(α) or [S−,0
α,β ]−1 = r2

β,p(α). 
Since u−,R

α,β ∈ N−
α,β , we have ‖u−,R

α,β ‖2 < (p−2)β
(4−p)α by Lemma 4.7. Therefore, ‖[S−,0

α,β ]−1ψ‖2 ≤ (p−2)β
(4−p)α . Hence, we 

must have [S−,0
α,β ]−1 = r1

β,p(α) by Lemma 2.2 again. It follows that Iα,β(r1
β,p(α)ψ) = m−

α,β . Now, by Proposi-
tion 2.1 and Lemma 4.9, r1

β,p(α)ψ is the unique one achieved m−
α,β and ‖r1

β,p(α)ψ‖ = min{‖u‖ | u ∈ Nα,β}.
(2) Similar to the proof of (1). �
For r1

β,p(α)ψ and r2
β,p(α)ψ, we also have the following.

Lemma 4.11. Suppose β > 0, α ∈ (0, α1(β)) and p ∈ (2, 4) ∩ (2, 2∗). Then

(1) Iα,β(r1
β,p(α)ψ) = infu∈S∗ supt≥0 Iα,β(tu), where S∗ is given by (1.4).

(2) r2
β,p(α)ψ is a local minimum point of Iα,β(u) for α ∈ [2

p
p−2 p−

2
p−2α1(β), α1(β)) and is a global 

minimum point of Iα,β(u) for α ∈ (0, 2
p

p−2 p−
2

p−2α1(β)). Moreover, it holds that m+ > 0 for 
α,β
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α ∈ (2
p

p−2 p−
2

p−2α1(β), α1(β)), m+
α,β = 0 for α = 2

p
p−2 p−

2
p−2α1(β) and m+

α,β < 0 for α ∈
(0, 2

p
p−2 p−

2
p−2α1(β)) with m+

α,β → −∞ as α → 0+.

Proof. (1) It follows immediately from Lemmas 4.6 and 4.10.
(2) Let g(r) = α

4 ‖ψ‖2r2 − 1
pr

p−2 + β
2 . Then by a direct calculation, we can see that g(r0) =

minr≥0 g(r), where r0 = ( 2(p−2)
α‖ψ‖2p )

1
4−p . Since Iα,β(rψ) = ‖ψ‖2r2g(r), by a direct calculation, we 

can see that minr≥0 Iα,β(rψ) < 0 for α ∈ (0, 2
p

p−2 p−
2

p−2α1(β)) and minr≥0 Iα,β(rψ) = 0 for α ∈
[2

p
p−2 p−

2
p−2α1(β), α1(β)). Furthermore, Iα,β(r) > 0 for r > 0 if α ∈ (2

p
p−2 p−

2
p−2α1(β), α1(β)) and 

Iα,β(r) > 0 for r > 0 and r �= r0 if α = 2
p

p−2 p−
2

p−2α1(β). By Lemma 2.2 and (2) of Lemma 4.10, we 
must have m+

α,β > 0 for α ∈ (2
p

p−2 p−
2

p−2α1(β), α1(β)), m+
α,β = 0 for α = 2

p
p−2 p−

2
p−2α1(β) and m+

α,β < 0 for 
α ∈ (0, 2

p
p−2 p−

2
p−2α1(β)). Since

Iα,β(r0ψ) = ‖ψ‖2
(

2(p− 2)
α‖ψ‖2p

) 2
4−p

(
β

2 − 4 − p

2p

(
2(p− 2)
α‖ψ‖2p

) p−2
4−p

)
→ −∞ as α → 0+,

we also have m+
α,β → −∞ as α → 0+ by Lemma 2.2 and (2) of Lemma 4.10 once more. It remains to 

show that r2
β,p(α)ψ is a local minimum point of Iα,β(u) for α ∈ [2

p
p−2 p−

2
p−2α1(β), α1(β)) and is a global 

minimum point of Iα,β(u) for α ∈ (0, 2
p

p−2 p−
2

p−2α1(β)). Without loss of generality, we assume u ∈ H1(RN )
with ‖u‖2 > (p−2)β

(4−p)α and S(u) < D(α, β, p). Then by Lemmas 4.6 and 4.10, there exists t+α,β(u) > 0 such 

that t+α,β(u)u ∈ N+
α,β . Moreover,

Iα,β
(
t+α,β(u)u

)
= min

t>
√

(p−2)β
(4−p)α‖u‖2

Iα,β(tu).

In particular, Iα,β(t+α,β(u)u) ≤ Iα,β(u). Note that Iα,β(r2
β,p(α)ψ) = m+

α,β , we have Iα,β(r2
β,p(α)ψ) ≤ Iα,β(u). 

It follows that r2
β,p(α)ψ is a local minimum point of Iα,β(u) for α ∈ [2

p
p−2 p−

2
p−2α1(β), α1(β)) and is a global 

minimum point of Iα,β(u) for α ∈ (0, 2
p

p−2 p−
2

p−2α1(β)). �
Finally, we give some estimates on the energy values of the sign-changing solutions to (Pα,β) for β > 0, 

α ∈ (0, α̃n(β)) with some n ∈ N and p ∈ (2, 4) ∩ (2, 2∗).

Lemma 4.12. Suppose β > 0, α ∈ (0, α̃n(β)) for some n ∈ N and p ∈ (2, 4) ∩ (2, 2∗). If u is a 
sign-changing solution of (Pα,β), which lies in N−

α,β, then Iα,β(u) > 2m−
α,β − (4−p)α

2p ‖r1
β,p(α)ψ‖4. In 

particular, Iα,β(r̃1,k
β,p(α)ϕ) > 2m−

α,β − (4−p)α
2p ‖r1

β,p(α)ψ‖4 for k = 1, 2, · · · , n. Moreover, we also have 

Iα,β(r̃1,1
β,p(α)ϕ) < · · · < Iα,β(r̃1,k

β,p(α)ϕ) and Iα,β(r̃2,k
β,p(α)ϕ) > · · · > Iα,β(r̃2,1

β,p(α)ϕ).

Proof. Since u is a sign-changing solution of (Pα,β), which lies in N−
α,β, by Lemmas 4.7, 4.9 and 4.10, we have

Iα,β(u) = 2m−
α,β + (p− 4)α

4p
(
‖u‖4 − 2

∥∥r1
β,p(α)ψ

∥∥4)
+ (p− 2)β

2p
(
‖u‖2 − 2

∥∥r1
β,p(α)ψ

∥∥2)

=
(‖u‖2 − 2‖r1

β,p(α)ψ‖2)
4p

(
−(4 − p)α

(
‖u‖2 + 2

∥∥r1
β,p(α)ψ

∥∥2) + 2β(p− 2)
)

+ 2m−
α,β − (4 − p)α

2p
∥∥r1

β,p(α)ψ
∥∥4

> 2m−
α,β − (4 − p)α∥∥r1

β,p(α)ψ
∥∥4

.
2p



564 Y. Wu et al. / J. Math. Anal. Appl. 425 (2015) 548–564
Note that r̃1,k
β,p(α)ϕ are sign-changing solutions of (Pα,β), which lies in N−

α,β for all k ∈ N due to Propo-
sition 2.2 and Lemma 4.7, so we have Iα,β(r̃1,k

β,p(α)ϕ) > 2m−
α,β − (4−p)α

2p ‖r1
β,p(α)ψ‖4 for all k ∈ N. On the 

other hand, it is easily see that Iα,β(u) = (1
4 − 1

p )‖u‖4 + (1
2 − 1

p )‖u‖2 if u is a solution of (Pα,β). Clearly, 
f(t) = (1

4 −
1
p )t2 +(1

2 −
1
p )t is increasing on (0, (p−2)β

4−p α) and decreasing on ( (p−2)β
4−p α, +∞). Now, by Proposi-

tion 2.2, Lemma 4.7 and the concentration behaviors of {r̃i,kβ,p(α)ϕ}, we can see that Iα,β(r̃1,1
β,p(α)ϕ) < · · · <

Iα,β(r̃1,k
β,p(α)ϕ) and Iα,β(r̃2,k

β,p(α)ϕ) > · · · > Iα,β(r̃2,1
β,p(α)ϕ) for all k ∈ N, which completes the proof. �

We close this section by

Proof of Theorem 1.3. The conclusion of (1) follows immediately from the result of [2] and Lemma 4.1. 
The conclusion of (2) follows immediately from Lemmas 4.2 and 4.4. The conclusion of (3) follows from 
Lemmas 4.8 and 4.11–4.12. �
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