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Abstract

An optimal control problem for continuous time systems described by a spe-
cial class of multi-valued mappings and quasi-concave utility functions is con-
sidered. The objective is defined as an analogue of the terminal functional
defined over an infinite time horizon. An upper bound of this functional over
all solutions to the system is established. The turnpike property is proved
which states that all optimal solutions converge to some unique optimal sta-
tionary point.

Keywords: turnpike property, differential inclusions, optimal control,
terminal functional, asymptotic stability
2000 MSC: 49J24,, 37C70.

1. Introduction

In this paper the turnpike property is investigated for a special class of
non-convex optimal control problems in continuous time. Simple put this
property states that, regardless of initial conditions, all optimal trajecto-
ries spend most of the time within a small neighborhood of some optimal
stationary point when the planning period is long enough. For a classifica-
tion of different definitions of the turnpike property, we refer the reader to
[1, 5, 13, 16, 24], and also [2] for the so called exponential turnpike property.
Possible applications in Markov Games can be found in a recent study [11].

Many approaches have been developed when considering continuous time
and discrete time systems. The type of functional involved turns out to be
very crucial in the proof of the turnpike property. Discounted and undis-
counted integrals are the most commonly studied functionals. Among the
most successful approaches developed for these types of functionals, we men-
tion the approaches developed by Rockafellar [21, 22] and by Scheinkman,
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Brock and collaborators (see, for example, [12]). Several other approaches in
this area have been developed including those considering special classes of
problems (e.g. [10, 17, 23, 25]). An interesting class of control problems con-
sidered in [8, 9] involves long run average cost functions where the asymptotic
behaviour of optimal solutions is defined in terms of a probability measure.

This paper considers a special class of terminal functionals defined as a
lower limit at infinity of utility functions. This approach is introduced in
[14] where stability results are established for some classes of non-convex
problems with applications to environment pollution models. This class of
terminal functionals is also used to establish the turnpike theory in terms of
statistical convergence ([15, 18]) and A-statistical convergence ([4]), where
the convergence of optimal trajectories to some stationary point is proved
in the sense of “weak” convergence while ordinary convergence may not be
true.

In this paper the turnpike property is established for optimal control
problems involving continuous time systems described by differential inclu-
sions. It generalizes some results from [14] obtained for a particular macroe-
conomic model of air pollution and establishes the turnpike property for a
much broader class of optimal control problems by relaxing the assumptions
imposed on the set of stationary points as well as on the utility function.

In this study the set of stationary points is not assumed to be bounded as
required in the proof of the turnpike property in [14]. Moreover, the utility
function is assumed to be quasi concave (instead of concavity in [14]). Obvi-
ously, a concave function is also quasi concave but not vice versa; for example,
any monotonically increasing or decreasing function is quasi concave. Note
that utility functions are often used to describe preferences that are usually
assumed to be convex. If a preference relation is given by a continuous utility
function, then this preference is convex if and only if the utility function is
quasi concave. In this sense, the class of quasi concave utility functions is
in some meaningful sense the largest class of functions representing convex
preferences.

The assumptions and techniques used in this paper are essentially differ-
ent from those developed for discrete systems in [4, 15, 18] where the main
assumptions involve both the multi-valued mapping and the utility function.
The main assumptions of this paper are imposed on the multi-valued map-
ping trying to keep (as much as possible) the utility function arbitrary. In
this way we establish the class of multi-valued mappings (called Class A) for
which the turnpike property is true for any quasi concave utility function.



The reminder of the article is organized as follows. In the next sec-
tion we formulate the problem and provide the notations and assumptions
used throughout the paper. Section 3 presents the main results of the pa-
per demonstrated with examples. Some preliminary results are provided in
Section 4. The main theorems are proved in Section 5.

2. Problem formulation and assumptions

Consider the system
(t) € a(x(t)), ae t>0; (1)

where z is an element of the Euclidean space R"™. The multi-valued mapping
a is defined on a convex closed set D, with non-empty interior, has compact
images and is upper semi-continuous (u.s.c.) in the Hausdorff metric. The
assumption that D, has a non-empty interior is not restrictive; otherwise
one could consider system (1) in a subspace of R™ (the affine hull of D,)
by reducing the dimensionality of the space where the corresponding multi-
valued mapping has a non-empty interior.

We will use the notation a(A) = Uzeaa(x) and, given a point x, we do
not distinguish between a(z) and a({z}). Throughout the paper, “-”, “co”
and “int” stand for the scalar product, convex hull and interior, respectively.

2.1. Solutions to (1)

An absolutely continuous function x = x(t),t > 0, satisfying (1) is called
a solution. We assume that system (1) has a bounded solution defined on an
infinite horizon [0,00). This is not a restrictive assumption and is satisfied
for many practical models. Denote by X the set of all bounded solutions to
(1); that is, for every x € X there exists Ky < oo such that

lx(t)|| < Kx, Y tel0,00). (2)

The existence of solutions to (1) is not a focus of this paper; we refer to
[7] (Chapter 2, Section 7) for the related results. Here we just note that the
existence of solutions defined on some small interval [0, £] can be guaranteed,
for example, by assuming that (a) mapping a has convex compact images
and is upper semi-continuous; or alternatively, (b) mapping a has compact
images and is continuous.



Note that condition (2) means each particular solution is bounded, while
the number K is not assumed to be uniformly bounded on the set of solutions
X. For example, in the Ramsey growth model ([20]) where a(x) = {\ f(z) —
dx: A€0,1]}, z is capital, § > 0 and f(x) : [0,00) — [0, 00) is a concave
(production) function satisfying f’(z) — 0 as x — oo, the set D, = [0, 00)
is unbounded and there exists a bounded solution from any initial point
z(0) € D,.

2.2. Class of multi-valued mappings A

We define a class of mappings a, denoted by A, satisfying the following
condition: given any set A C D,

if 0 €coa(A) then FrecoA: 0¢€coa(z). (A)

Clearly if a has convex images then the condition (A) can be represented
as:

0€coa(A) = 0€alcoA). (A°)

This class of mapping was introduced in [14] when considering a particular
model of air pollution control. The class A is quite broad; we provide here
two examples that are commonly studied in the literature.

1: Convex mappings. Denote the graph of mapping a by

grapha 2 {(z,y): 2 €D,, y € a(x)}.

It is easy to verify that if grapha is a convex set then condition (A) holds.
Note that the mappings with convex graphs are very important in many

applications. Macroeconomic models are usually convex ([13, 16]); for exam-

ple, the Ramsey growth model is one of the most studied convex models.

2: Linear mappings. Consider linear systems where mapping a is given
by
a(r) = {Bx + Cu; uweU}.
Here B and C' are n x n and n X r matrices and U C R" is any given set

(not necessarily convex). Again, it is not difficult to verify that condition
(A) holds without imposing any assumptions on matrices B, C' and set U.



Indeed, let 0 € coa(A) for some set A C R"™. Then, there are points z; € A,
u; € U and numbers \; > 0,4 =1, k, satisfying

k

k
0= Z)‘i (Bz; + Cu;) and Z)‘i =1

i=1 i=1

Denoting x = Zle Xix; € coA and y; = Bx + Cu; € a(x), we have

k k k
i=1

i=1 i=1
This means that 0 € coa(z); that is, a € A.

2.3. Stationary points

Note that a stationary point is usually defined by the relation 0 € a(z).
In this paper we will use a different definition given by

Definition 2.1. Point x is called a stationary point if 0 € coa(z).

This definition in some sense defines a “generalized stationary point”;
however, for the sake of simplicity we use the term “stationary point”. The
meaning of such a stationary point is discussed below (see also Example 3.5
in Section 3).

Clearly, if 0 € coa(Z) but 0 ¢ a(z), then the constant function x(t) = 7 is
not a (stationary) trajectory starting from z. However, if in addition mapping
a is Lipschitz continuous then (see [6]) given any 7' > 0 and any small € there
is a trajectory Z(t) such that z(0) = & and ||Z(¢) — Z|| < € for all t € [0,T.
In other words, in this case Z is “almost” a stationary point. Although this
result requires Lipschitz continuity of a (otherwise it may not be true; for a
counterexample when a is only u.s.c. see [19]) we consider the points defined
by Definition 2.1 as stationary points.

We denote the set of stationary points by

M=2{zxeD,: 0€coalx)}.

We will show that if a € A and X # () then the set M is not empty. Moreover,
from upper-semi continuity of a it will follow that M is a closed set.



2.4. Objective Functional

Given a continuous function u : D,, — R!, consider the following objective

Maximize : J(x) = liminf u(z(t)). (3)
t—o0
For the sake of simplicity we assume D, C int D,,. The main results of the
paper are obtained under the assumption that function w is quasi-concave or
strictly quasi-concave on D, as defined below (see, for example, [3]).

Definition 2.2. The function u is called quasi-concave if for every 1 # o
u(Ary + (1 — N)xe) > min{u(zy), u(xs)}, VA€ (0,1).
If the above inequality is strong, u(x) is called strictly quasi-concave.

As mentioned above, the class of quasi concave utility functions is the
largest class of functions representing convex preferences. A concave func-
tion is also quasi concave but not vice versa; for example, any monotonically
increasing or decreasing function is quasi concave. The following is two exam-
ples for quasi concave functions in practical applications that are generated
from simple concave utility functions:

e if g(x) is concave and h(g) is strictly increasing then u(x) = h(g(z)) is
quasi concave;

o if g;(z),i =1,---,m, are concave then u(x) = max;_; ..., ¢;(z) is quasi
concave.

For example, a utility function in the form w(z) = max;—y ..., a; In(k;x +
b;), a;, ki, b; > 0, is considered in [26] to describe the fairness in a general
telecommunications network.

Summarizing the above, we consider problem (1),(3) under the following
assumptions:

(i) multi-valued mapping a is defined on convex closed set D, with non-
empty interior, has compact images and is upper semi-continuous in
the Hausdorff metric;

(ii) there exists a bounded solution defined on [0, c0); that is, X # (J;



(iii) function w is continuous on D,,, where D, C int D,,.

Note that D, is not necessarily the whole space R™. For the sake of sim-
plicity, the assumptions (i)-(iii) are not mentioned in the theorems and
lemmas below. Rather we emphasize the major assumptions, such as a € A
and the quasi-concavity of function w.

3. Main results

Under the assumptions of the theorems below, we will show the set of
stationary points M is non-empty. We denote

*

x* € M is called an optimal stationary point (o.s.p.) if u(z*) = u*.

Given solution x = z(t) we denote by P(x) the set of w-limit points
defined by
P(x) £ {¢: x(ty) — & for some t;, — 0o} (5)

Since solutions are bounded, the set P(x) is bounded and closed for every
x € X.

Theorem 3.1. (Upper bound of the functional) Assume that a € A and
the function u is quasi-concave. Then

J(x) <u* for all solutions x € X. (6)

Note that in this theorem, M is not necessarily bounded. Moreover, it
might be that u* = cc.

The proof of Theorem 3.1 is based on Lemma 4.2 in Section 4 which states
that if a € A then for every bounded solution x the following relation holds:

coP(x)NM #0. (7)

This relation in particular means M # (). The following question related to

the class A and relation (7) is of interest. Given a bounded solution x, can
(7) be satisfied if a ¢ A?



It appears quite reasonable to expect that on the plane the convex hull
of the w-limit set of any bounded solution should contain some stationary
point; that is, relation (7) should hold in R? (we do not have proof for this
statement). However the following example shows that this is not the case
for R", n > 3, where relation (7) may not be satisfied for some bounded
solution x if a ¢ A.

Example 3.2. Consider system (1) where
a(z,y,z) = {(—~y, 2,1 —2® —y*) : (z,y,2) € R}
The solution from the initial point (1,0,0) can be obtained as follows:
x(t) = cos(t), y(t) =sin(t), z(t) =0, t € [0,00).
This solution is bounded and its w-limit set is given by
P={(z,y,2): 2=0, 2> +y* =1}

It easy to verify that the set coP = {(z,y,2) : 2 =0, 2> +y* < 1}
does not contain any stationary point; that is (7) does not hold. Indeed, first
we note that for any (z,vy,z) the set a(z,y,2) is a singleton which means
that the relation 0 € coa(z,y,2) is equivalent to 0 = a(z,y,2). Now let
(2,9, %) = a(z,y, 2). Clearly, if 2?+y* = 1 either & # 0 or y # 0; on the other
hand, if 22 4+ y* < 1 then 2 # 0. Thus, 0 € a(x,y, 2) for all (z,y,2) € co P.

Now we show that the mapping a does not belong to class A. Since the
images of a are convex (i.e. singleton) we verify condition (A°).

Consider the set of two points A = {(1,0,0), (—1,0,0)} C P. We have
a(1,0,0) = (0,1,0), a(—1,0,0) = (0, —1,0), and therefore

(0,0,0) % a(1,0,0) + %a(—l, 0,0 € coa(A).
However, (0,0,0) ¢ a(co A). Indeed, for any A € [0,1] for the points
(Tx,Yns 2a) = A(1,0,0) + (1 = X\)(—=1,0,0) = (2A —1,0,0) € co A
we have
a(@x, yr, ) = (0,2A — 1,1 — (2 — 1)*) # (0,0,0), VA€ [0,1]
which means that a ¢ A.

This example shows that the assumption a € A is important for (7) and
therefore for Theorem 3.1. Now we formulate the turnpike theorem.
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Theorem 3.3. (Turnpike property) Assume that a € A, function u is
strictly quasi-concave and there exists a unique o.s.p. x*. Then any solution
x € X satisfying J(x) = u(z*) (i.e. optimal by Theorem 3.1) converges to
x*; that is,

lim z(t) = 2", VxeX, J(x)=u(z"). (8)

t—00

Note that any continuous and strictly quasi-concave function achieves its
maximum on a convex compact set at a unique point. This means that if
the set of stationary points M is bounded and convex the assumption about
the existence and uniqueness of z* can be removed. Thus from Theorem 3.3
we have

Corollary 3.4. Assume thata € A and M is nonempty, convex and bounded.
Then given any strictly quasi-concave function u, there exists a unique 0.s.p.
x* and (8) holds.

This corollary generalizes Theorem 1 from [14] where utility function w is
assumed to be strictly concave on R".

Note that o.s.p. z* does not necessarily satisfy 0 € a(x*) even if it attracts
all optimal solutions. We demonstrate this fact on the next example where
the equality J(x) = u(x*) is satisfied (thus x is optimal and converges to z*
by Theorem 3.3); however 0 ¢ a(z*). In this example, there is no stationary
point x satisfying 0 € a(x); that is, M = {z*} and 0 € coa(z").

Example 3.5. Let
a(x,y):{(l—x,—l),(l—x, 1)} and U(ZE,y):I—yQ, V(.’L',y) ERQ'

It can easily be verified that mapping a is in Class A. Indeed, if (0,0) €
coa(A) then A contains at least two points (x1,y1) and (x9,ys) with 2 <
1 < my; that is, 1 = Axp + (1 — A) 25 for some A € [0,1]. In this case,
(0,0) € coa(1,yy), where yx = Ays + (1 — A) yo and (1,y,) € co A; that is,
(A) holds.

Moreover, (0,0) € coa(1,y) for all y; that is, M = {(1,y) : y € (—00, 00)}.
Clearly, function u is strictly quasi-concave (but not strictly concave) and
(1,0) is a unique optimal stationary point:

(1,0) = argmax{u(x,y) : (x,y) € M}, v =u(1,0)=1.

9



Consider an arbitrary solution (z(t),y(t)) starting from an initial point
(2%, y%). We have x(t) = 1+ (2" — 1)exp(—t) and therefore x(t) — 1 as
t — oo.

It is not difficult to construct a function y(t) satisfying y(0) = y°, y(¢) €
{=1,1} for almost all £ > 0, such that y(t) — 0 as t — oo. In this case,
(x(t),y(t)) = (1,0) as t — oo, and therefore (x(t), y(t)) is an optimal solution
with the maximum possible objective function value uv* = 1. Then, Theorem
3.3 ensures that all optimal solutions, not depending on the initial state,
converge to the unique o.s.p. (1,0).

On the other hand, (0,0) ¢ a(1,0); that is, (z(¢),y(t)) = (1,0) is not a
solution to the differential inclusion given by mapping a(z,y).

4. Preliminary lemmas

_ Throughout the paper, given closed set B the notations V(B,¢e) and
V(B,¢) stand for the open and closed e-neighborhood of B C R" :

V(B,e)={z € R": p(z,B) <e}, V(B,e)={re€R": p(z,B) <e}
where p(z, B) = mingep ||z — y|| is the distance from = to the set B.

The following lemma directly follows from the definition of class A; that
is, from condition (A) (see also Lemma 2, [14]).

Lemma 4.1. Assume that mapping a € A and that B C R" is a convex set.
Then
0¢coa(x), Ve B = 0¢coa(B). 9)

The next lemma is proved in [14] (Lemma 3), by assuming that the set
M is bounded. In fact it is also true if M is unbounded. We provide this
lemma with its proof for the completeness of the presentation.

Lemma 4.2. Assume that a € A. Then for every solution x € X the follow-

ing relation holds:
co P(x) N M # 0. (10)
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Proof. On the contrary assume that the intersection in (10) is empty for some
solution x € X. Since both sets co P(x) and M are closed and in addition
P(x) is bounded, there is £ > 0 such that V(co P(x),e) N M = ; that is,

0 ¢ coa(z), Yz € V(co P(x),¢).
From Lemma 4.1 we have
0 ¢ coa(V(co P(x),¢)).

Now, since a is upper-semi continuous, the set a(V (co P(x),¢)) is compact.
Then, there are ¢ € R" and ¢ > 0 such that

q-y>0>0, Yy € coa(V(coP(x),¢)).

Since P(x) is the set of w-limit points of x(¢), there is £. > 0 such that the
inclusion z(t) € V(P(x),¢) holds for all ¢t > t.. Then

q-x(t) =9, ae t>t.

or
q-xz(t) = +/q t(s)ds > q-x(t.) +0(t —t.) — 00, ast— oo,

which means that z(¢) is not bounded. This is a contradiction.
O

For the rest of paper, we will assume that a € A, solution x € X is fixed
and u is a given strictly quasi-concave function. Lemma 4.2 in particular
implies M # (). We will also assume that o.s.p. x* exists and is unique:

* _ _ *
u(x™) = Igé%(’d(&l?) =u".

Denote o
Q2 {zeD,: ||| <Ky},

where K, = max{|z*||, Kx} and K, satisfies (2). We note that € is convex
with non-empty interior and

{z(t), t € ]0,00)} U P(x) C .
Consider the set
2 {xeQ: ulx)>u'}) (11)

Clearly, L is a non-empty closed bounded set and x* € L.

11



Lemma 4.3. Assume that a € A, function u is strictly quasi-concave and
there exists a unique o0.s.p. x*. Then there is a non-zero vector p € R™ such
that

p-(x—2")>0, VreLx#a" (12)

Proof. Consider
L 2 {xeD,: ulx)>u}. (13)

Since u is strictly quasi-concave the set L is convex and L C L. In particular,
x* € L. Now if z* € int £, then z* = (21 + x2)/2 for some x1, x5 € L. In this
case we have

w(z™) > min{u(xy), u(ze)} > u”

which is a contradiction. Thus, z* belongs to the boundary of the convex set
L; that is, there exists a non-zero vector p € R" such that

p-(x—2")>0, VrelLl. (14)

Now, we show (12). On the contrary, assume that it is not true; that is,
for some & € L, # x* the relation p- (Z —2*) = 0 holds. Then for the point
¥ = (z+2%)/2 € L we have

p- (2 —2*) =0, and w(2’) > min{u(z),u(z")} > u*.

Since z*,7 € Q C D, C int D, we have z’ € int D,,. On the other hand, u
is continuous. Then, there is a sufficiently small A > 0 such that

¥ —A\p €D,, and u(z' — \p) > u*.

This in particular means 2’ — Ap € L. Thus, from the relation p- (' —2*) = 0
we have p - (' — A\p — 2*) < 0. This contradicts (14).
O

For given positive number § we define
Bs={xeL: p-(zv—2z") >} (15)

Here, p is defined in Lemma 4.3. Clearly, if not empty, Bs is a convex set
and x* ¢ Bj for § > 0. According to the assumption that o.s.p. * is unique,
the set Bs does not contain any stationary points: 0 ¢ coa(x), Vr € Bs.

12



Then by Lemma 4.1 we have 0 ¢ coa(Bs). Since coa(Bs) is convex and
compact, there is a non-zero vector ¢s € R", for the sake of simplicity we
assume ||¢gs|| = 1, and €5 > 0, such that

qs -y > €5, Yy € coa(By). (16)

We also denote
P(; = P(X) N Bg. (17)

Lemma 4.4. Assume that all assumptions in Lemma 4.3 hold. In addition
let P(x) C L and P(x) N By # 0 for some ' > 0. Then for all § € (0,¢'/2]
the following relations hold

. i -1): 1
max (g5 - ©) > min(gs - v); (18)

p-(x—2a")=0, forallxe (argmax(gs-x)) U (argmin(gs-x)). (19)
z€Ps x€ Py

Proof. Take any z € Py and let § € (0,0'/2].

(i) Since z is a limit point of x(t), there is t;, — oo such that z(t) — z.
From (16) we have g5 -y > &5 > 0 for all y € a(2). Since a is us.c., there is a
sufficiently small neighborhood V(z, ) of z such that

G-y >e5/2>0 foralyealV(z,7)). (20)

Noticing that z € By implies p - (z — 2*) > ¢’ > 24, the number v > 0 can
be chosen so small that

p-(r—a*) >4, VreV(zn). (21)
In addition, there are £ > 0 and 7 > 0 such that
x(t) € V(z,y) forall te& [ty —n,t,+n], tp >t (22)

Then from (20) we have

tp+n
qs - w(ty +n) = qs - x(ty) +/ qs - £(s) ds > qs - x(ty) +nes/2.

173
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For any convergent subsequence z(t, + 1) — &' by taking limit we obtain
G-I >qs- 24 nes/2> g5 2.

Clearly, #' € P(x) C L. Moreover, from (21), (22) we have p- (! —2*) > §
and therefore 2! € P;. On the other hand 2z € By C Bs which implies z € Ps.
Thus, the inequality gs - ' > ¢s - z holds at two different points 7!, 2 € Py;
that is, (18) is true.

(i) Now we prove (19) for the set argmax{qs -« : = € Ps}. On the
contrary assume that

p-(z—a")>¢ forsome z€argmax{g -z: x¢€ Ps}.

Similar to the case (i), since, zs € P; C Bs from (16) the relation gs -
y > &5 > 0 holds for all y € a(z). And then there is a sufficiently small
neighborhood V/(z,7v) of z such that (20) holds.

Now, since p - (z — 2*) > ¢ the number 7 > 0 can be chosen so small
that (21) holds. Then, following the steps in the case (i), we can construct a
point Z* € Pj for which the inequality gs - 2! > ¢s - 2 holds. This contradicts
z €argmax{qs -z : x € Ps}.

(iii) The proof of relation (19) for any point z € argmin{gs-x : = € Ps}
is similar. In this case, we repeat the above procedure by considering any
convergent subsequence z(ty, —n) — &2, Then from

tp—n
qs - x(ty — 1) = q5 - () +/ g5 - (s)ds < qs - x(ty) —nes/2

tg
we have
@G < qz—nes/2<qs- 2

It can be verified that 7> € Ps5. Then the above inequality contradicts the
assumption that z € argmin{qs - x : = € Ps}.
O

Finally, we formulate the following simple property that is provided with
the proof for the completeness of the presentation.

14



Lemma 4.5. Assume that the sequence q, converges to q and the sequence
of compact sets Py converges to a compact set P in the Hausdorff metric.
Then

\ e i e ) = i,
A e o) = nplare) and i gl ) = pple 9

Proof. Denote §, = max,ep, (qx - ¥) and § = max,ep(q- ). Let 7 € P such
that & = ¢-2. Consider any limit point of &; say &, — . We show that & = &.

Let xy,, € P, such that & = qx, -z, and for sake of simplicity let
zy, — x°. Clearly 2° € P. Then by taking limit we have

£ =q-2° <max(q-z) =& (23)

zeP
On the other hand, since £ € P and P, converges to P in the Hausdorff

metric, there is a sequence zj, € Py, such that z;, — 2. Then,

= max(qr - T) > qr. * Tk,
&k, xePki(Qk” ) >k, - T,

and by taking limit we have £ > q-& =& This, together with (23) implies
§=¢

The second assertion with “min” follows from the first one by replacing
qr, with (—q).

U
Below we consider small numbers § satisfying ¢ < §’/2 as in Lemma 4.4.

Lemma 4.6. Assume that all assumptions in Lemma 4.4 hold. If g5, — q
as Op 4 0, then
q-(x—2%)=0, Vxe Px). (24)
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Proof. Consider the sets Pj, defined by (17) and for the sake of simplicity
assume that o, > 0y > .... Clearly Bs, C Bs, C ..., and therefore P5, C
Ps, C...C P(x).

Take any sequence z;, € argmax{gs, -z : = € Ps, }. From Lemma 4.4
it follows that the relation p - (25, — 2*) = 0; holds. Thus any limit point
2" of zs, satisfies 2’ € P(x) and p- (2 — 2*) = 0. Then from (12) we obtain
2" = x*. Therefore any limit point 2’ of the sequence z;, coincides with z*;
that is, z;, — x™.

We show that P5, — P(x) in the Hausdorff metric. On the contrary
assume that there exist Z € P(x) and a small number ¢ > 0, for which
V(Z,e) N Ps, = 0 for all k. This implies z5, ¢ V(z,¢); that is, & # z*. On
the other hand the relation p- (Z —2*) = 0 holds. This contradicts (12) since
T € P(x)C L.

Therefore P5, — P(x) in the Hausdorff metric. Then from Lemma 4.5
we obtain

Jim max(gs, - x) = max(q- ). (25)

On the other hand

: — ] . g . *
I, e DGyt ) =00

This relation together with (25) implies max,cp(q-x) = ¢-z*. In a similar
way it can be proved that min,cp(q- ) = ¢ - 2*. Thus (24) is true.
]

5. Proofs of main theorems

5.1. Proof of Theorem 3.1

Since function w is continuous it is not difficult to show that for any
solution x € X the representation

J(x) = liminf t)) = mi : 26
(x) = lim infu(z(1)) zgg&)U(w) (26)

is true (see similar results in terms of the statistical limit [18] and A-statistical
limit [4]). In addition, from Lemma 4.2 we know that co P(x)N M # (). Then
since w is quasi-concave, we obtain

*

J(x) = min u(x) = min wu(x) < min  wu(r) < supu(z) =u".

r€P(x) x€co P(x) z€co P(x)NM zeM

16



The theorem is proved.

5.2. Proof of Theorem 3.3

Consider any optimal solution x = z(t) satisfying J(x) = u*. From
Lemma 4.3 it follows that M # (). By the assumption of theorem, o.s.p.
x* € M is unique. Note that u* = u(z*) and (26) implies

u(z) >u*, Vre P(x).

This in particular means that P(x) C L. Since u is strictly quasi-concave,
the set L is convex and therefore co P(x) C L. Moreover, LN M = {z*} and
coP(x) N M # () (Lemma 4.2). Thus z* € co P(x).

We claim that 2* € P(x). Indeed, otherwise, * =Y. \; z;, where \; > 0,
> ;A =1and 2 € P(x). Since u is strictly quasi-concave

ut = wu(z") > minu(z;) > u®.
3

This is a contradiction.
Thus, z* € P(x). To prove the theorem, we need to show that P(x) \

{z*} = 0.

On the contrary, assume that 2’ € P(x) and 2z’ # z*. Denote ¢’ = p- (2' —
x*). The relation (12) implies ' > 0. From Lemma 4.4, for all 6 € (0,¢’/2]
the inequality (18) holds; that is,

max(gs - #) > min(gs - ), Vé € (0,6'/2]. (27)

Recall that ||gs|| = 1 and (16) holds.
Consider a sequence 8, — 0 such that g5, — ¢'. Clearly, ||¢*|| = 1 and
according to Lemma 4.6

¢ -(r—2")=0, Vre Px). (28)

(i).  We observe that, g5 # &¢* for all numbers £ and § € (0,8/2];
otherwise, since Ps C P(x) the relation (27) contradicts (28). Denote

2

qs (% & q1)7 where § = q1 *qs-

B 1
llas — & ¢t

It is not difficult to verify that, for all § € (0, ¢’ /2] the following two conditions
hold:

17



e ¢ -q' =0
o [lg3|l = 1.

Consider any point point 2§ € arg max,cp,(gs - ). From (28) we know
that ¢' - 2z} = ¢ -2* = ¢' -z for all x € P; C P(x). Then, we have

1

To—&dl [(g5 - 25) — &1 (q" - 25)]

2 1
as - 25 =

1 1 *
TR gg}){f(q(s-x) —& (¢ o)

_ 1 . B )
— m gg}%{ [(QtS —&iq ) . 1‘] =X I;g}%((qé l‘)

A similar relation can be obtained for any point 2} € argmingep,(gs - ) to
show that ¢? - z} = min,ep,(qi - ). Therefore,

z; € argmax(gi - ) and 2z} € argmin(g; - z).
z€Ps zePs

Now we note that for the points z} and 23 the relation (19) holds. This
means that Lemma 4.6 can be applied to the sequence qgk.

Consider any convergent subsequence gi, — ¢*. Clearly ¢* - ¢" = 0 and
4% = 1. Lemma 4.6 states that

P (z—2%)=0, VrecP(x). (29)

(ii). Now, if the relation gs = A;¢* + Xag® holds for some A, Ay, then
from (28) and (29) it follows that qs -z = A\1¢' - 2* + \ag® - * = const for all
x € P(x). This contradicts (27). Then, similar to ¢, we define

q@ = 1
"&b — &

Then it can be shown that, for all § € (0,0’/2] the following two conditions
hold:

(% —-& ql —& CIQ)» where § = ql “qs, &2 = q2 *qs-

* 3-q¢'=q}- =0

o gl =1

18



Moreover,
z; € argmax(q; - x) and 2z} € argmin(g; - z).
x€ Py x€Ps

Then, again we can apply Lemma 4.6 to the sequence qgk. Taking a convergent
subsequence qf;’k — ¢, we ensure that [|¢®|| =1, ¢*-¢' =0, for i = 1,2 and

¢ (r—2*)=0, Vze Px).

(iii).  We can continue this procedure by constructing n pairwise or-
thogonal unit vectors ¢, i = 1,2, ..., n, such that the following relation holds
¢ - (r—2*)=0 VreP(x)CR", i=12,...,n (30)

This contradicts the assumption that 2’ € P(x) and 2’ # a*.
The theorem is proved.
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