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Let b ≥ 2 be a positive integer. Let D be a finite subset of Z and {nk}∞k=1 ⊆ N be 
a sequence of strictly increasing numbers. A Moran measure μb,D,{nk} is a Borel 
probability measure generated by the Moran iterated function system (Moran IFS) 
{fk,d(x) = bnk−1−nk (x + d) : d ∈ D, k ∈ N, n0 = 0}. In this paper we study one 
of the basic problems in Fourier analysis associated with μb,D,{nk}. More precisely, 
we give some conditions under which the measure μb,D,{nk} is a spectral measure, 
i.e., there exists a discrete subset Λ ⊆ R such that E(Λ) = {e2πiλx : λ ∈ Λ} is an 
orthonormal basis for L2(μb,D,{nk}).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let μ be a compactly supported Borel probability measure on R. We call μ a spectral measure if there 
exists a discrete set Λ ⊆ R such that E(Λ) = {e2πiλx : λ ∈ Λ} forms an orthonormal basis (Fourier basis) 
for L2(μ). The set Λ is called a spectrum for μ; we also say that (μ, Λ) is a spectral pair. In this paper we will 
study the spectral property of a class of Moran measures μb,D,{nk} on R generated by the Moran iterated 
function system (Moran IFS)

{fk,d(x) = bnk−1−nk(x + d) : d ∈ D, k ∈ N},

where b ≥ 2 is an integer, D is a finite subset of Z, n0 = 0 and {nk}∞k=1 ⊆ N is a strictly increasing sequence. 
In this paper we use N to denote the set of positive integers, and #D to denote the cardinality of the finite 
set D.

More explicitly, the Moran measure μb,D,{nk} considered here can be expressed as the infinite convolution 
product measure
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μb,D,{nk} = δb−n1D ∗ δb−n2D ∗ · · · ∗ δb−nkD ∗ · · · (1.1)

in the weak convergence and is supported on a uniquely nonempty compact set Tb,D,{nk}, which is called 
a Moran set of the Moran IFS {fk,d : d ∈ D, k ∈ N} (see [1,28]). Here, the symbol δD denotes the atomic 
measure

δD = 1
#D

∑
d∈D

δd, (1.2)

where δd is the Dirac point mass measure at the point d and rE = {rx : x ∈ E}. The compact set Tb,D,{nk}
has an explicit expression by the radix expansion

Tb,D,{nk} :=
∞∑
k=1

b−nkD = {
∞∑
k=1

b−nkdk : dk ∈ D}. (1.3)

In general, the Moran sets T (b, D, {nk}) := Tb,D,{nk} behave like a fractal, highly non-linear, and they 
include complicated geometries, and the Moran measures μb,D,{nk} include the classical self-similar measure 
μb,D := μb,D,N and the restriction of 1-dimensional Lebesgue measure L. These Moran sets and Moran 
measures have connections with a number of areas in mathematics, such as harmonic analysis, wavelet 
theory, multifractal analysis, algebraic number theory, dynamical system, and others (see [8,12,26] and the 
references cited therein).

It is well known that the study of spectral measure has a long history. It was attracted more attention 
from Fuglede’s spectral set conjecture [13] in 1974, which said that the d-dimensional Lebesgue measure Ld

restricted on a Borel set Ω ⊆ R
d is a spectral measure if and only if Ω is a translation tile. Although the 

conjecture has been proved to be false by Tao and others in both directions in dimension three or higher 
[17,18,25,30], it is still suggestive in the study of spectral measure.

In recent years, there has been a wide range of interests in expanding the classical Fourier analysis to 
fractal or more general probability measures after the pioneer work of Jorgensen and Pedersen [16] in 1998 
[1–7,9–11,14,15,19–24,27–29,31]. One of the central themes of this area of research involves constructing 
Fourier bases in L2(μ), where μ is a measure which is generated by the iterated function systems. If so, one 
can develop L2-Fourier representation of periodic functions on the real line (or Rd) for general classes of 
fractal measures including μb,D,{nk}. Indeed, there is relatively few classes of fractal spectral measures that 
is known. The aim of this paper is to give some new singular spectral measures.

Recall that a pair (b, D) is called admissible if there exists a finite subset C ⊆ Z such that #D = #C = q

and the matrix

q−1/2[e2πib−1dc]d∈D,c∈C

is unitary (usually the pair (b−1D, C) is called a compatible pair, see Definition 2.2). In R, the well known 
result proved by Łaba and Wang [19] is that if (b, D) is admissible, then μb,D is a spectral measure. Recently, 
An and He [1] proved that μb,D,{nk} is a spectral measure for any increasing sequence {nk}∞k=1 ⊆ N and 
a consecutive digit set D = {0, 1, · · · , r − 1} with r | b. In the present paper, we follow their research to 
consider the spectral property of μb,D,{nk} and formulate the following conjecture.

Conjecture 1.1. Let b ≥ 2 be an integer. Let D be a finite subset of Z such that (b, D) is admissible. Then 
the Moran measure μb,D,{nk} is a spectral measure for any increasing sequence {nk}∞k=1 in N.

In the present paper we will prove that Conjecture 1.1 is true in several cases. We first show that Conjec-
ture 1.1 is true under a condition of Strichartz [16] in Section 3; as a consequence, we obtain Conjecture 1.1
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when the cardinality of the finite digit set D is 2 or 3. Also, we obtain that μb,D,{nk} is a spectral measure for 
certain ‘lacunary’ sequence {nk}∞k=1 in Section 3. We then get a sufficient condition such that Conjecture 1.1
holds in Section 4, in which the condition is inspired by [2]. In the final section, we get that the measure 
μb,D,{nk} is a spectral measure when the sequence {nk}∞k=1 is ultimately periodic (see Definition 5.1).

2. Basic definition and facts

The purpose of the present section is to introduce a basic definition and some facts; see especially 
Proposition 2.1 and Lemma 2.4. The data of compatible pair (Definition 2.2) allows us to create orthogonal 
set and then to check the conditions in Proposition 2.1 in the following sections.

It is known that the Fourier transform plays an important role in the study of spectral measure. 
From (1.1), the Fourier transform μ̂b,D,{nk} of the Moran measure μb,D,{nk} is

μ̂b,D,{nk}(ξ) =
∫

e2πiξxdμb,D,{nk}(x) =
∞∏
k=1

δ̂D(b−nkξ) (ξ ∈ R), (2.1)

where

δ̂D(ξ) =
∫

e2πiξxdδD(x) = 1
#D

∑
d∈D

e2πidξ (ξ ∈ R). (2.2)

Then, it is clear that a discrete set Λ ⊆ R such that the family E(Λ) = {e2πiλx : λ ∈ Λ} is an orthogonal 
system in L2(μb,D,{nk}) if and only if

∑
λ∈Λ

∣∣μ̂b,D,{nk}(ξ + λ)
∣∣2 ≤ 1 (ξ ∈ R). (2.3)

In this case, we also say that Λ is an orthogonal set for μb,D,{nk}.
Let

QΛ(ξ) :=
∑
λ∈Λ

∣∣μ̂b,D,{nk}(ξ + λ)
∣∣2 (ξ ∈ R).

The well known result of Jorgensen and Pedersen [16] shows that QΛ has an entire analytic extension to C
if Λ is an orthogonal set for μb,D,{nk}. The following is a universal test which allows us to decide whether 
an orthogonal set Λ is a spectrum for the measure μb,D,{nk}.

Proposition 2.1. (See [16].) If Λ is an orthogonal set for μb,D,{nk}, then the following statements are equiv-
alent:

(i) The orthogonal set Λ is a spectrum for μb,D,{nk};
(ii) QΛ(ξ) =

∑
λ∈Λ

∣∣μ̂b,D,{nk}(ξ + λ)
∣∣2 = 1, ∀ ξ ∈ R;

(iii) QΛ(ξ) =
∑

λ∈Λ
∣∣μ̂b,D,{nk}(ξ + λ)

∣∣2 = 1, ∀ ξ ∈ (−a, a), a > 0.

The equivalence of (i) and (ii) is a direct consequence of Stone–Weierstrass theorem and Parseval identity, 
while the equivalence of (ii) and (iii) is due to the analytic property of the function QΛ.

Definition 2.2. Let b ≥ 2 be a positive integer, and let D and C be two finite subsets of Z. We say that 
(b−1D, C) forms a compatible pair if #D = #C = q and the matrix
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Hb−1D,C := q−1/2[e2πib−1dc]d∈D,c∈C (2.4)

is unitary, i.e. Hb−1D,CH
∗
b−1D,C = Iq.

Standing hypotheses. Throughout the paper, we will assume that (b−1D, C) is a compatible pair and 
0 ∈ D ∩ C. Given any strictly increasing sequence {nk}∞k=1 ⊆ N, we will always assume that

μk = δb−n1D ∗ · · · ∗ δb−nkD (k ∈ N),

Λk(b, C, {nk}) := bn1−1C + · · · + bnk−1C (k ∈ N),

Λ(b, C, {nk}) :=
{ ∑

finite

bnj−1cj : cj ∈ C, j ∈ N
}
.

It is easy to check that the following proposition holds.

Proposition 2.3. (See [16].) Let b ≥ 2 be a positive integer, D and C be two finite subsets of Z with the same 
cardinality such that (b−1D, C) is a compatible pair and 0 ∈ D ∩ C. Then

(i)
∑

λ∈Λk(b,C,{nk})

∣∣μ̂k(ξ + λ)
∣∣2 = 1 (ξ ∈ R);

(ii) The set Λ(b, C, {nk}) is an infinitely orthogonal set for μb,D,{nk}.

We denote the zero set of the continuous function g by Z(g):

Z(g) = {ξ : g(ξ) = 0}.

The following lemma gives a characteristic of the zero set Z(δ̂D), provided that (b−1D, C) is a compatible 
pair.

Lemma 2.4. Let b ≥ 2 be a positive integer, D and C be two finite subsets of Z with the same cardinality 
such that (b−1D, C) is a compatible pair. Then for each β ∈ Z(δ̂D) there exists c ∈ C depending on β such 
that β + c

b /∈ Z(δ̂D).

Proof. Let D = {d1, · · · , dq} ⊆ Z (q ≤ b). On the contrary, we suppose that there exists β ∈ Z(δ̂D) such 
that β + c

b ∈ Z(δ̂D) for all c ∈ C. Then by (2.2), we have

e2πid1βe2πid1
c
b + · · · + e2πidqβe2πidq

c
b = 0 for all c ∈ C,

which means that the non-zero column vector (e2πid1β , · · · , e2πidqβ)T is the solution of the q×q linear system 
Mx = 0, where M = [e2πidj

c
b ]1≤j≤q,c∈C is a q × q non-singular matrix. This leads to a contradiction. �

3. A condition of Strichartz

In this section we prove, under a condition of Strichartz [16], that μb,D,{nk} is a spectral measure for any 
finite subset D of Z and any strictly increasing sequence {nk}∞k=1 ⊆ Z. Furthermore, we show that μb,D,{nk}
is a spectral measure for any finite digit set D when the strictly increasing sequence {nk}∞k=1 keeps a certain 
gap.

Theorem 3.1. Let b ≥ 2 be a positive integer, D and C be two finite subsets of Z with the same cardinality 
such that (b−1D, C) is a compatible pair and 0 ∈ D ∩ C. If the zero set Z(δ̂b−1D) is disjoint from the set 
T (b, C), then 

(
μb,D,{nk}, Λ(b, C, {nk})

)
is a spectral pair.
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Proof. The proof is identical to Theorem 2.8 of [28]. We know by Theorem 3.1 in [24], that the following 
two statements are equivalent:

(i) Z(δ̂b−1D) 
⋂

T (b, C) = ∅;
(ii) Z(μ̂b,D) 

⋂
T (b, C) = ∅.

Note that Z(μ̂b,D) is closed and T (b, C) is compact. It follows from (ii) that there is a δ > 0 such that 
d(Z(μ̂b,D), T (b, C)) ≥ δ. Here, d denotes the usual metric on the real line R. Since the function μ̂b,D is 
continuous on R, there is an ε > 0 such that

|μ̂b,D(t)|2 > ε, (3.1)

if t ∈ {x ∈ R : d(x, T (b, C)) ≤ 1
2δ}.

Fix ξ ∈ (−1, 1) and set

fk(λ) =
{

|μ̂k(ξ + λ)|2, λ ∈ Λk(b, C, {nk});
0, otherwise,

and

f(λ) =
{

|μ̂b,D,{nk}(ξ + λ)|2, λ ∈ Λ(b, C, {nk}),
0, otherwise.

Then, lim
k→∞

fk(λ) = f(λ) for all λ ∈ Λ(b, C, {nk}). By Proposition 2.3, we have

∑
λ∈Λk(b,C,{nk})

fk(λ) = 1.

Obviously, |δ̂b−nkD| ≤ 1 for k ≥ 1. From (2.1), we have

|μ̂b,D,{nk}(ξ + λ)|2 = |μ̂k(ξ + λ)|2
∞∏
j=1

∣∣δ̂b−nk+jD(ξ + λ)
∣∣2

≥ |μ̂k(ξ + λ)|2
∞∏

j=nk+1

∣∣δ̂b−jD(ξ + λ)
∣∣2

= |μ̂k(ξ + λ)|2
∣∣μ̂b,D(b−(nk+1−1)(ξ + λ))

∣∣2, λ ∈ Λk(b, C, {nk}).

Note that b−(nk+1−1)λ ∈ T (b, C) if λ ∈ Λk(b, C, {nk}). Hence we can choose k0 large enough such that k ≥ k0

implies that 
∣∣b−(nk+1−1)

∣∣ ≤ 1
2δ. Whence from (3.1), we have

fk(λ) ≤ ε−1f(λ), k ≥ k0.

By (2.3), we have

∑
ε−1f(λ) ≤ ε−1 < ∞.
λ∈Λ(b,C,{nk})
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Applying Lebesgue’s dominated convergence theorem to {fk}∞k=1, we obtain that∑
λ∈Λ(b,C,{nk})

∣∣μ̂b,D,{nk}(ξ + λ)
∣∣2 = 1, ξ ∈ (−1, 1).

So by Proposition 2.1, Λ(b, C, {nk}) is a spectrum for μb,D,{nk}. This completes the proof of Theorem 3.1. �
Inspired by the proof of Theorem 3.1, we can determine the following class of sequences {nk}∞k=1 such 

that the measures μb,D,{nk} are spectral measures.

Theorem 3.2. Let b ≥ 2 be a positive integer, and let D be a finite subset of Z such that (b, D) is admissible. 
If there is a K0 ∈ N such that k ≥ K0 implies that nk+1 ≥ nk + N holds for some N (only depending 
on b, D), then 

(
μb,D,{nk}, Λ(b, C, {nk})

)
is a spectral pair.

Proof. We first choose C ⊆ [−b + 2, b − 2] such that (b−1D, C) forms a compatible pair. Next let fk, f be as 
in the proof of Theorem 3.1. By doing the same procedure for fk as in the proof of Theorem 3.1, we obtain 
that

f(λ) ≥ fk(λ)
∣∣μ̂b,D(b−(nk+1−1)(ξ + λ))

∣∣2, λ ∈ Λk(b, C, {nk}).

In order to use Lebesgue’s dominated convergence theorem, it is sufficient to show that there is an ε > 0
such that ∣∣μ̂b,D(b−(nk+1−1)(ξ + λ))

∣∣2 > ε, ∀ λ ∈ Λk(b, C, {nk}), (3.2)

for k large enough and ξ small.
Since μ̂b,D is continuous and μ̂b,D(0) = 1, there exist positive constants ε and δ such that

|μ̂b,D(x)|2 > ε, ∀ x ∈ (−δ, δ). (3.3)

Let N be the integer satisfied that b−(N−2) < δ/2. Note that

b−(nk+1−1)λ ∈ b−(nk+1−1)(bn1−1C + bn2−1C + · · · + bnk−1C)

for any λ ∈ Λk(b, C, {nk}). Hence, it follows from the assumption of the sequence {nk} that∣∣b−(nk+1−1)λ
∣∣ ≤ (b− 1)−1b−(nk+1−nk−2) ≤ (b− 1)−1b−(N−2) < δ/2 (3.4)

holds for k ≥ K0. Whence, from (3.3) and (3.4), the desired result (3.2) holds for all ξ ∈ [−δ/4, δ/4]. By 
Proposition 2.1, we finished the proof of Theorem 3.2. �

The following two examples serve to illustrate Theorem 3.2.

Example 3.3. If the sequence {nk}∞k=1 ⊆ N is Hadamard lacunary, i.e., there exists a constant q > 1 such that 
nk+1 > qnk for all k ∈ N, then the measure μb,D,{nk} is a spectral measure with a spectrum Λ(b, C, {nk}).

Indeed, we know, from the proof of Theorem 3.2, that the condition about the sequence {nk}∞k=1 ⊆ N in 
Theorem 3.2 can be replaced by nk+1 ≥ nk + f(k) for k ∈ N, where f(k) is an increasing sequence. The 
lacunary sequence is contained in the latter case. Also, there are many other sequences, such as classical 
Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, 34, 55, · · ·.
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Example 3.4. The purpose of this example is to show how to determine N in concrete case. Let b = 10, 
and let D = {0, 1, 2, 3, 4}. Let C ⊆ Z such that (b−1D, C) is a compatible pair. So we can check that if 
the sequence {nk}∞k=1 ⊆ N satisfies that nk+1 ≥ nk + 3 eventually, then the measure μb,D,{nk} admits a 
spectrum Λ(b, C, {nk}).

Proof. The proof is similar to that of Theorem 3.2. From (2.1) and (2.2), one has

Z(μ̂10,D) =
∞⋃
k=1

10kZ(δ̂D),

where Z(δ̂D) = {a
5 : a ∈ Z\5Z}. Hence

Z(μ̂10,D) = {10k a5 : k ≥ 1 and a ∈ Z\5Z}

= 2{10ka : k ≥ 0 and a ∈ Z\5Z}.

This means that 2 is the positive and smallest zero of μ̂10,D. Throughout the proof of Theorem 3.2, any 
number in the interval (0, 2) can be chosen as the δ in (3.3). Without loss of generality, we choose δ = 1. It 
follows from (3.4) that the inequality 10−(N−2) < 1/2 implies that N ≥ 3. Hence if the sequence {nk}∞k=1 ⊆ N

satisfies that nk+1 ≥ nk + 3 eventually, then (3.2) holds for all ξ ∈ [−1/4, 1/4]. By Proposition 2.1, the 
corresponding measure μ10,D,{nk} is a spectral measure. �

At the end of this section, we will deal with the spectral property of the measure μb,D,{nk} when the 
cardinality of the finite set is 2 or 3.

Theorem 3.5. Let b ≥ 2 be a positive integer, and let D be a finite subset of Z with the cardinality 2 such 
that (b, D) is admissible. Then for any strictly increasing sequence {nk}∞k=1 ⊆ N, the measure μb,D,{nk} is a 
spectral measure.

Proof. Without loss of generality, we assume that {nk}∞k=1 is a proper subset of N, and D = {0, 1}. Since 
(b, D) is admissible, there exists C = {0, c} ⊆ Z such that (b−1D, C) is a compatible pair, which is equivalent 
to say that 2 × 2 matrix

1√
2

(
1 1
1 e2πi c

b

)

is unitary. This implies that c ∈ b
2 (2Z + 1). Hence b ∈ 2N.

Let b = 2b0, b0 ∈ N. By taking c = b0p with p ∈ 2Z +1, we get a compatible pair (b−1D, C). Furthermore, 
by (2.2) and (1.3), we obtain that

δ̂b−1D(ξ) = 1
2(1 + e2πib−1ξ) = 0 ⇔ ξ ∈ b0(2Z + 1), (3.5)

and

T (b, C) =
{ ∞∑

j=1
b−jcj : cj ∈ C

}
= b0p

{ ∞∑
j=1

b−jcj : cj ∈ {0, 1}
}
⊆ b0p[0,

1
b− 1). (3.6)

Therefore if p = 1, we obtain, from (3.5) and (3.6), that T (b, C) ∩Z(δ̂b−1D) = ∅. By Theorem 3.1, μb,D,{nk}
is a spectral measure. The proof of Theorem 3.5 is complete. �
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Theorem 3.6. Let b ≥ 2 be a positive integer, and let D be a finite subset of Z with the cardinality 3 such 
that (b, D) is admissible. Then for any strictly increasing sequence {nk}∞k=1 ⊆ N, the measure μb,D,{nk} is a 
spectral measure.

Proof. We may assume that D = {0, d1, d2} ⊆ Z. Since (b, D) is admissible, there exists C = {0, c1, c2} ∈ Z

such that (b−1D, C) is a compatible pair, which is equivalent to say that 3 × 3 matrix

Hb−1D,C := 1√
3

⎛⎜⎝ 1 1 1
1 e2πi d1

b c1 e2πi d1
b c2

1 e2πi d2
b c1 e2πi d2

b c2

⎞⎟⎠ (3.7)

is unitary. Because the distinct rows of the matrix Hb−1D,C are mutually orthogonal, we obtain that djck ∈
b(±1

3 + Z) for j, k = 1, 2. Hence b ∈ 3N.
Let b = 3b0, b0 ∈ N. With an easy computation, from (2.2), we have

δ̂D(ξ) = 1
3(1 + e2πid1ξ + e2πid2ξ) = 0 ⇔ ξ ∈ ±1

3 + Z and {d1, d2} ≡ {1, 2} (mod 3).

Hence,

δ̂b−1D(ξ) = 0 ⇔ ξ ∈ b0(±1 + 3Z) and {d1, d2} ≡ {1, 2} (mod 3). (3.8)

Taking C = {0, (3n + 1)b0, (3n − 1)b0}, where n ∈ N ∪ {0}, we obtain that (b−1D, C) is a compatible pair. 
Furthermore,

T (b, C) =
{ ∞∑

j=1
b−jcj : cj ∈ C

}
⊆ (3n + 1)[0, b0

b− 1 ]. (3.9)

It follows from (3.8) and (3.9) that Z(δ̂b−1D) 
⋂
T (b, C) = ∅ if C = {0, b0, −b0}. Then by Theorem 3.1, the 

measure μb,D,{nk} is a spectral measure. The proof of Theorem 3.6 is complete. �
4. Additional assumption on T (b, C ∪ (−C))

In the present section we will prove that μb,D,{nk} is a spectral measure for any increasing sequence 
{nk}∞k=1 ⊆ N under the assumption that 0 ∈ C ⊆ {0, 1, · · · , b − 1} such that each element in the attractor 
T (b, C ∪ (−C)) (see formula (1.3)) has a unique radix expansion in base b. Before stating our main result, 
we first introduce and not include the proof of the following technique lemma, since it follows readily from 
Lemma 3.1 and Lemma 4.3 in [2].

Lemma 4.1. Let b ≥ 2 be a positive integer and D be a finite set of Z. Suppose that C + C ⊆ {0, 1, · · · , b − 1}
such that (b−1D, C) forms a compatible pair. Then there is a positive integer L and an integer set C̃ such 
that (b−1D + b−2D + · · · + b−LD, C̃) is a compatible pair and

Z(μ̂b,D) ∩ T (bL, C̃) = ∅.

Corollary 4.2. Let b ≥ 2 be a positive integer, and D be a finite set of Z. Suppose that 0 ∈ C ⊆ {0, 1, · · · , b −1}
such that (b−1D, C) is a compatible pair and each element in T (b, C ∪ (−C)) has a unique radix expansion 
in base b. Then there is a positive integer L and an integer set C̃ such that (b−1D + b−2D + · · · + b−LD, C̃)
is a compatible pair and

Z(μ̂b,D) ∩ T (bL, C̃) = ∅. (4.1)
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Proof. We will omit the proof, one can see Lemma 3.1 and Lemma 4.3 in [2]. We would like to point out 
that the proof of Lemma 4.3 in [2] is easier with the help of Lemma 2.4 in our setting. The reader may refer 
to [2] for more detail. �

As a consequence of Corollary 4.2, we obtain our main result.

Theorem 4.3. Let b ≥ 2 be a positive integer, D and C be two finite subsets of Z with the same cardinality such 
that (b−1D, C) is a compatible pair and 0 ∈ C ⊆ {0, 1, · · · , b −1}. Suppose that each element in T (b, C∪(−C))
has a unique radix expansion in base b. Then for any strictly increasing sequence {nk}∞k=1 ⊆ N, μb,D,{nk} is 
a spectral measure.

Proof. Given a sequence {nk}∞k=1. We choose L as in Corollary 4.2 and set

Aj :=
(
{nk}∞k=1 − jL

)
∩ (0, L], j ∈ N ∪ {0}.

Then, from properties of compatible pairs (see Lemma 2.2 in [19]) and Corollary 4.2, there exist C̃j ⊆ C̃
such that (

∑
i∈Aj

b−iD, C̃j) form compatible pairs, where C̃ as in Corollary 4.2. Denote by

D̃j =
∑
i∈Aj

bL−iD, j ∈ N ∪ {0}.

Then D̃j ⊆ Z and (b−LD̃j , C̃j) are compatible pairs. It is easy to check that

μb,D,{nk} = δb−LD̃0
∗ δb−2LD̃1

∗ · · · .

The proof to be left only need us to use the same standard approximating method as in Lemma 3.1, but 
we write it down for the sake of completeness.

Fix k ∈ N. Let Γk = C̃0 + bLC̃1 + · · ·+ b(k−1)LC̃k−1 and Γ =
⋃∞

k=1 Γk. We will show that Γ is a spectrum 
for μb,D,{nk}. For the purpose of this, we assume that

νk = δb−LD̃0
∗ δb−2LD̃1

∗ · · · δb−kLD̃k
.

Then, (νk, Γk) are spectral pairs, and Γ is an orthogonal set for μb,D,{nk} as a direct result of compatible 
pairs. According to Proposition 2.3, we have∑

γ∈Γk

∣∣ν̂k(ξ + γ)
∣∣2 = 1 and

∑
γ∈Γ

∣∣μ̂b,D,{nk}(ξ + γ)
∣∣2 ≤ 1 (ξ ∈ R).

Fix ξ ∈ (−1, 1) and set

fk(γ) =
{

|ν̂k(ξ + γ)|2, if γ ∈ Γk;
0, otherwise,

and f(γ) =
{

|μ̂b,D,{nk}(ξ + γ)|2, if γ ∈ Γ;
0, otherwise.

Then lim
k→∞

fk(γ) = f(γ) for γ ∈ Γ. For any γ ∈ Γk, we have b−(k+1)Lγ ∈ T (bL, C̃) and

|μ̂b,D,{nk}(ξ + γ)|2 =
∣∣ν̂k(ξ + γ)

∣∣2 ∏
j>k

∣∣δ̂b−jLD̃j
(ξ + γ)

∣∣2
≥

∣∣ν̂k(ξ + γ)
∣∣2 ∏

j≥1

∣∣δ̂b−kL−jD(ξ + γ)
∣∣2

=
∣∣ν̂k(ξ + γ)

∣∣2∣∣μ̂b,D(b−kL(ξ + γ))
∣∣2.
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From Corollary 4.2, we choose δ, ε to satisfy the following condition

|μ̂b,D(ξ)|2 ≥ ε, for all ξ ∈ (T (bL, C̃))δ, (4.2)

where (T (bL, C̃))δ is the δ-neighborhood of T (bL, C̃). Whence f(γ) ≥ εfk(γ) if b−kL < δ/2. Hence by 
Lebesgue’s dominated convergence theorem and Proposition 2.1, μb,D,{nk} is a spectral measure. The proof 
of Theorem 4.3 is complete. �

In the end of this section, we give a proposition and an example to illustrate Theorem 4.3. The following 
proposition shows that the cardinality of the digit set D is no more than �1

2 (b + 1)� under the assumption 
of Theorem 4.3. Here, the symbol �x� stands for the lower integer part of the real number x.

Proposition 4.4. Let b ≥ 2 be a positive integer, 0 ∈ C ⊆ {0, 1, · · · , b − 1}, and every point in T (b, C ∪ (−C))
has a unique radix expansion in base b, then 2#C ≤ b + 1.

Proof. We first have #A = 2#C − 1. Suppose that #A > b and fix n ≥ 1. Then the set

En := {
n∑

j=1
ajb

−j : aj ∈ A, an �= 0}

contains at least (b + 1)n−1b different expansions, since each element of En(⊆ T (b, A)) has a unique radix 
expansion in base b. However, for any w =

∑n
j=1 ajb

−j ∈ En, we have

|bnw| ≤ (b− 1)(bn−1 + · · · + b + 1) ≤ bn − 1.

Hence there is no more than 2(bn− 1) +1 = 2bn− 1 possible different values in En. Note that (b +1)n−1b >
bn−1, hence some number in En must have at least two different expansions in base b. It is a contradiction. 
Which completes the proof. �
Example 4.5. Let b = 8, and let D = {0, d1, d2, d3}, where dj ∈ Dj = j+4Z for j = 1, 2, 3. Then the measure 
μb,D,{nk} is a spectral measure for any increasing sequence {nk}∞k=1 ⊆ N.

Proof. Let C = {0, 2, 4, 6}. Then the matrix in (2.4) is

H8−1D,C := 1√
4

⎛⎜⎜⎜⎝
1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎟⎠
is unitary so (8, D) is admissible. By Theorem 4.3, it is enough to show that each element in T (b, C ∪ (−C))
has a unique radix expansion in base b.

Indeed, it follows from (1.3) that the self-similar set K := T (b, C ∪ (−C)) of IFS {ϕa(x) = b−1(x + a) :
a ∈ C ∪ (−C))} is contained in the interval I := [−6/7, 6/7]. It is easy to check that ϕa(I) ∩ ϕa′(I) = ∅ for 
distinct a, a′ ∈ C ∪ (−C). Hence ϕa(K) ∩ ϕa′(K)(⊆ ϕa(I) ∩ ϕa′(I)) = ∅ for distinct a, a′ ∈ C ∪ (−C). That 
is, the IFS {ϕa} satisfies the strong separation condition (SSC). As we all know, SSC implies that each 
element in T (b, C ∪ (−C)) has a unique radix expansion in base b. The proof is complete. �
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5. Ultimately periodic sequences

In the present section we will deal with a class of sequences called ultimately periodic sequence, which is 
a generalization of arithmetic procession.

Definition 5.1. A sequence {nk}∞k=1 ⊆ N is ultimately periodic (respectively periodic) if there exist constants 
K, m, T ≥ 1 such that

nk+T = nk + m, k ≥ K (respectively nk+T = nk + m, k ≥ 1).

If K = T = 1, then the sequence {nk}∞k=1 is an arithmetic procession.

For example, the sequence {1, 4, 5, 7, 8, 10, 11, · · ·} is ultimately periodic, where K = 2, T = 2, m = 3. 
Remove the first term, the sequence {4, 5, 7, 8, 10, 11, · · ·} is periodic.

Theorem 5.2. Let b ≥ 2 be a positive integer, and let D be a finite subset of Z such that (b, D) is admissible. 
Suppose that the sequence {nk}∞k=1 is ultimately periodic. Then the measure μb,D,{nk} is a spectral measure.

In order to prove Theorem 5.2, we need the following fundamental theorem.

Theorem A. (See [19].) Let b ≥ 2 be a positive integer, D and C be two finite subsets of Z with the same 
cardinality such that (b−1D, C) is a compatible pair. Then the self-similar measure μb,D is a spectral measure. 
Moreover, if 0 ∈ C ⊆ [−b + 2, b − 2], then μb,D is a spectral measure with a spectrum

Λ(b, C) = {
n∑

j=1
bj−1cj : cj ∈ C, for all n ∈ N}.

Proof of Theorem 5.2. According to the definition of ultimately periodic sequence, there exist positive 
integers K, T , m with T ≤ m such that

(nK+jT , · · · , nK+(j+1)T−1) = (nK , · · · , nK+T−1) + jm, j ∈ N.

Then the infinite convolution product measure

μ = δb−nK+T D ∗ δb−nK+T+1D ∗ · · ·

exists in the weak convergence. Hence μb,D,{nk} = μK+T−1 ∗ μ. It is sufficient to show that μ is a spectral 
measure with a spectrum

Λ′ = bnK+T−1C + bnK+T+1−1C + · · · , when C ⊆ [−b + 2, b− 2].

In fact, by Proposition 2.3, we first have∑
λ̇∈ΛK+T−1(b,C,{nk})

∣∣μ̂K+T−1(ξ + λ̇)
∣∣2 = 1 (ξ ∈ R). (5.1)

In view of that fact that (μ, Λ′) is a spectral pair if and only if∑ ∣∣μ̂(ξ + λ̈)
∣∣2 = 1 (ξ ∈ R), (5.2)
λ̈∈Λ′
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it follows from (5.1), (5.2) and the identity μ̂b,D,{nk}(ξ) = μ̂K+T−1(ξ)μ̂(ξ) that∑
λ∈Λ(b,C,{nk})

∣∣μ̂b,D,{nk}(ξ + λ)
∣∣2

=
∑

λ̇∈ΛK+T−1(b,C,{nk})

∑
λ̈∈Λ′

∣∣μ̂b,D,{nk}(ξ + λ̇ + λ̈)
∣∣2

=
∑

λ̇∈ΛK+T−1(b,C,{nk})

∑
λ̈∈Λ′

∣∣μ̂K+T−1(ξ + λ̇ + λ̈)
∣∣2∣∣μ̂(ξ + λ̇ + λ̈

)∣∣2
=

∑
λ̇∈ΛK+T−1(b,C,{nk})

∣∣μ̂K+T−1(ξ + λ̇)
∣∣2 ∑

λ̈∈Λ′

∣∣μ̂(ξ + λ̇ + λ̈
)∣∣2

=
∑

λ̇∈ΛK+T−1(b,C,{nk})

∣∣μ̂K+T−1(ξ + λ̇)
∣∣2

= 1 (ξ ∈ R),

which shows that (μb,D,{nk}, Λ(b, C, {nk})) is a spectral pair.
Next we show that (μ, Λ′) is a spectral pair. Set

D̃ = bnK+T−1

K+T−1∑
i=K

b−niD and C̃ = bm−nK+T−1

K+T−1∑
i=K

bni−1C.

Then both D̃ and C̃ are subsets of Z, and (b−mD̃, C̃) forms a compatible pair. Since the sequence {nk}∞k=K+T

is periodic, we have

μ = δb−nK+T−1b−mD̃ ∗ δb−nK+T−1b−2mD̃ ∗ · · ·

in the weak convergence and

Λ′ = bnK+T−1(C̃ + bmC̃ + · · ·) =: bnK+T−1Λ(bm, C̃). (5.3)

With an easy calculation, C̃ ⊆ [2 − bm, bm − 2]. So by Theorem A, Λ(bm, C̃) is a spectrum for the 
self-similar measure

μbm,D̃ = δb−mD̃ ∗ δb−2mD̃ ∗ · · · .

That is, ∑
λ∈Λ(bm,C̃)

∣∣μ̂bm,D̃(ξ + λ)
∣∣2 = 1 (ξ ∈ R). (5.4)

It follows from (5.3), (5.4) and the identity μ̂(ξ) = μ̂bm,D̃(b−nK+T−1ξ) that

∑
λ′∈Λ′

∣∣μ̂(ξ + λ′)
∣∣2 =

∑
λ∈Λ(bm,C̃)

∣∣μ̂bm,D̃(b−nK+T−1ξ + λ)
∣∣2 = 1 (ξ ∈ R),

which shows that (μ, Λ′) is a spectral pair. The proof of Theorem 5.2 is complete. �
Remark 5.3. If the sequence {nk}∞k=1 satisfies that nk+1 = nk + N for k ∈ N where N chosen as in 
Theorem 3.2, then Theorem 5.2 and Theorem 3.2 are consistent.
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