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1. Introduction and results

This paper concerns with a semilinear time-fractional partial differential equation (FPDE for short) which
describes diverse physical phenomena and mathematical models (see e.g. [13,14,26]). More precisely, in this
paper we consider the semilinear integro-partial differential equation in R™, which reads as

{10 = fi7ot = PO + ), o € R 1> (1)
u(0,z) = uo(z), v € R" |

where u(t) = u(t,x) = (ui(t,z), -, un(t,x)) with n > 1, r,(t) = vt* 1/T'(a), I'(a) denotes the gamma
function, P(D) = A, is the Laplacian operator on az-variable, v denotes the Newtonian viscosity and
f R — R is a function satisfying

£(0) =0 and |f(a) — f(b)] < Cla—b] (Ja|*~" + [p]’7"). (1.2)
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Above p > 1 and C is a positive constant independent of a,b € R. Typical examples of f(u) are given
by v|u|?~tu and v|u|? for v € {+, —}. These nonlinearities yield a scaling for (1.1) which is fundamental

for our approach in Besov—Morrey spaces N7 (see (2.7), for the definition). These spaces are a type of

3,00
Besov spaces based on Morrey spaces and hpaie been introduced by H. Kozono and M. Yamazaki [16] for
analysis of the Navier-Stokes equations. A number of authors have studied PDEs (see [4,5,20,28,37]) and
harmonic analysis (see [27,35]) in this framework; for further details, see [30,31] and references therein. As
far as we know, the existence problem for (1.1) in Besov—Morrey spaces is new for the fractional case a # 1.

Formally, the problem (1.1) is equivalent to (FPDE)

Ofu =vP(D)u+ f(u) in (0,00) x R" (1.3)
ut(0) = 0 and u(0) = up in R, (1.4)

a—

ol ! stands for the Riemann-Liouville derivative of order a — 1, namely

where 0f'u = Dg‘lt_lut, wup = % and D

t
1
Doy = 0 / WS g fort > 0.

ot F2—a)dt ) (t—s)t
0

Employing a Duhamel-type formula (see [11, Proposition 2.1]) in (1.3)—(1.4) (or (1.1)), formally we obtain
the integral equation

u(t) = Lo (t)ug + Ba(u)(t), (1.5)
where
B, (u)(t) = /La(t — ) /ra_l(s —7)f(u(r))dr | ds (1.6)
0 0

and {L,(t)}+>o stands for the family of convolution operators (or diffusion-wave operators) defined by

La(8)p(€) = Ea(—t*[¢*)3(8). (1.7)

Throughout this paper a mild solution for (1.3)—(1.4) (or (1.1)) is a function wu(t, z) satisfying (1.5) and
u(t,z) = up in &'(R™) as t — 07. Actually, using Proposition 3.2 below and Sobolev embedding (2.11), we
are going to show this weak convergence in homogeneous Besov space '34,(50‘”, see details in Lemmas 3.4
and 3.5. Here E,(—t®|¢|?) stands for Mittag-Leffler function (see (2.15)) and =~ = F stands for the Fourier
transform. For o = 1, the operator L1 (t) = S(t) is the heat semigroup, because Ey(—t|¢|?) = e~ t1¢I°. The

kernel k, of L,(t) is the fundamental solution of (1.3) with f = 0, namely
baltyz) = [ =SB, (<12, (1)
Rn
which, in one-dimensional case, reads as (see [8])
1 - 2 i sgn(E) 2
ka(t,ar):a exp{ifx — t|¢|~ e "2 SIS LdE, 7:2—5 .
R

The FPDE (1.3)-(1.4) interpolates two PDEs (see e.g. [9]), namely semilinear wave (a = 2) and heat
(o = 1) equations, which have been widely investigated in the last years. These PDEs present many
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differences in the theory of existence and asymptotic behavior of solutions in scaling invariant spaces (critical
spaces). In the case « = 1, the FPDE (1.3) is well documented in critical spaces, see e.g. [16]. Without

making a complete list, we mention LP-spaces, weak-LP spaces, Besov spaces B; 0o

Morrey spaces My, .,

Besov—Morrey spaces N° and among others. However, there are few papers dealing with FPDEs in

P00
those spaces when 1 < a < 2. In [11], the authors used Mihlin-Hérmander’s theorem in order to establish
LP-L" estimates for Mittag-Leffler’s family (1.7) and obtained local well-posedness in an L™ (R™)-framework.
Using the estimates of [11] and employing techniques of [2,22], the authors of [21] showed the existence of

n/p 2/(p=1) NEq(rpo),r (For Ey(r po).r, see Remark 1.2-(ii)).

In [3], the authors studied qualitative properties, hke self—81m11ar1ty, antisymmetry and positivity, of global

self-similar global solution with initial data uo € By

solutions for small initial data in Morrey space M, x, A = n — —=£-. Now, let P(D)f be the Riesz potential
(=A)P2f = FYEPFF and f(u(t)) = h(x, t)|u(t)|? u(t). It is worth to mention the works [10,15,32]
where the authors, motivated by works of Fujita [7,36], established conditions for either blow up or global
existence of weak nonnegative solutions. It is not know if solutions of the Navier—Stokes equations are
smooth for all ¢ > 0, however Lions [18] showed a priori estimate

/ 103 ul®) gt < const.(J +J), T = |luollgaan) (1.9)
0

where 0 < v < 1/4 and u is a weak solution in L?((0,7); L*(R™)) associated to the data ug € L*(R"), for
n < 4.1In [29, Theorem 5.3], Shinbrot gave a step ahead showing (1.9) for all dimensions n and 0 < v < 1/2.
This shows that solutions of the Navier—Stokes have more smoothness in ¢ than at first appears. It seems
that our initial data class (see Theorem 1.1) is larger than the previous works and contains strongly singular

one has the continuous inclusions

C o . 2 . 2p
functions (see Remark 1.2-(iii)). For p =n — —rand A =n— —1,

L7 C weak-L? C Mpx C N, o, and B CN7, (1.10)
providedthat%:%:—U—l—"%‘:—k—i—ﬂ,whereaz%—p1,k—;—p—and1<p<r<

q < @ (all spaces in (1.10) are invariant by scaling (1.12)). Moreover, there is no known existence of
solutions for (1.3)-(1.4) in a class such that X 2 N, .
class for (1.3)(1.4) also we improve the well-posedness result in [3,21].

In this sense, we provide a maximal existence

One of the aims of this paper is to establish the existence of solutions for (1.3)-(1.4) in the framework of
Besov—Morrey spaces. For that matter, we obtain estimates in Sobolev—Morrey and Besov—Morrey spaces
for the diffusion-wave operator L (t) (see Lemma 3.1) which could have an interest of its own. Furthermore,
some symmetries properties, self-similarity and asymptotic behavior of solutions are also investigated. We
perform a scaling analysis in order to choose the correct indexes of spaces such that their norms are invariant
under the scaling (1.11). Indeed, it is well known that if u solves (1.3) with f(u) = y|u|[?~1u then, for each
A > 0, the rescaled function uy(t, z) = /\P%lu(/\%t, Az) is also a solution. This leads us to define a scaling
map for (1.3) as

u(t, ) = ux(t, x). (1.11)
Making ¢ — 07 in (1.11), this map induces the following scaling for initial data
uo(z) — uor(x) = A7 Tug(Az). (1.12)

Solutions invariant by (1.11), namely u(¢, x) = ux(t, z), are called forward self-similar solutions.
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Let BC((0,00),X) be the class of bounded functions from (0,00) to a Banach space X. For 1 < p <
q < 00, we define our ambient space based on Besov—Morrey type spaces (see (2.7)) as

XP={ue BC((0,00); N, o) : t"u € BO((0,00); Mg )}, (1.13)

which is a Banach space endowed with the norm

[ ul| xp = sup [Ju(t, -)||N;“m +sup t”|u(t, )| m,.,. - (1.14)
>0 >0
Here n € R and o < 0 are given by
2 — — 2
n:3<——” ”) and o= _H_ 2 (1.15)
2\p—-1 q p p—1

where these values have been chosen in such a way that the norm (1.14) is invariant under the scaling
map (1.11).

1.1. Main results
In what follows, we state our main results.

Theorem 1.1 (Well-posedness). Letn > 1,1 <a <2, 1< {p, p} <qg< oo, and 0 < u <n be such that

2 2 - 2 - 2
S S il g and 2—H < . (1.16)
p—1 ap q a(p—1) p p—1

(i) (Ezistence and uniqueness) There are € > 0 and § = 6(¢) such that if [luo||lng, < & then the problem

(1.1) has a mild solution u € XE which is unique in the closed ball {u € Xl ||UHXZ; < 25}. Also,
u(t) — ug in the weak—x* topology of Biéf&‘” ast— 07,
(i) (Continuous dependence on data) Consider the ball

D5 = {Uo € N;;p,oo; HUOHN"

Dy, 00

<6}

in the space N7

00 The data-solution map ug € Ds — u € XV is Lipschitz continuous.

Remark 1.2.

(i) Let I > 0 be such that {p,p} < g <land (n—u)/q =n/l. By (1.16) it follows that an(p — 1) < 2l <
an(p—1)pfor 1 < a < 2. Forevery a € inu,oo satisfying the assumptions of Theorem 1.1, there exists a
unique solution u(t, z) of (1.3) in L=((0,00); Ny, o) such that [lu(t,-)||lr,, < Ct—o/(p=1taln—p)/2q
In particular, we recover Theorem 1 of [16].

(ii) Under the assumptions of Theorem 1.1, for 4 = 0 and ¢ < r < p, we reobtain the result in [21]. Indeed,
in view of Nrk,o,oo = Bf’oo and proceeding as in Lemma 3.4 with (p, q) = (r, q), one has

1
[¥olles ., 1= SUD LT [ La (o]l
= supt7% B Lo (o, < Cluoll - 2.
>0 Bl Pt
where m = %(pio — 1) and py = w Now, using the assumption [luo|l zn/r—2/-1 < 4 in

Theorem 1.1(i), one obtains Theorem 1.1 of [21].
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(iii) Let p>1+4+2/nand A =n—2p/(p — 1) for p > 1. It follows that

2
0 o _
Mp)\ C Ml,nfnp%A C ./\/'1’“700 C Np,u,oo7 m=n— ﬁ
in view of (2.9) and (2.11). Our initial data can be taken strictly larger than those in [3], see [16,
Example 0.10].
(iv) Suppose that n = 1 and let P(D) = Izg be the Riesz—Feller operator which is given by Dg o) =
wg(f)cﬁ(f), where wg(f) = —[¢]Pei9m )% with 0 < B < 2 and || < min{p,2 — B}, £ € R. Hence (see
e.g. [19]), the diffusion-wave operator L, () reads as

—

LY (8)p(€) = Ea[—t*|¢[PemOF | 5(¢)

which has kernel

fR exp{ix — t|§|ﬁe’i%sgn(§)}d§, a=1

kot 2) = ,
- o €€ By [—towf(€)]de, 1 2
Re a[ 7/15(5)} 57 <a <2
If (1 <a<?2)and (8 = 2), Theorem 1.1 gives us an insight on how to proceeds on the study of
SFPDEs (stochastic fractional partial differential equations)

0%u

" OFhy, OPW (t,x)
o > —5in

k:1W +f(t,m,u(t,m)) otor

(t,z) = Dyu(t,z) + g(t,z, ult,x)) +

with datum ug in spaces more singular than LP(R) spaces. Here, the functions f, g, hy satisfy Lipschitz
and certain growth conditions (see e.g. [1] and [24]).

Let O(n) be the orthogonal matrix group in R™ and let G be a subset of O(n). If h(x) = h(Mz) and
h(z) = —h(Mzx), for every M € G, then h is said even (or symmetric) and odd (or antisymmetric) under
the action of G, respectively.

Theorem 1.3. Assume the hypotheses of Theorem 1.1. Let f(u) = ~y|u|?~ u.

(i) (Symmetry and antisymmetry) The solution u(x,t) is antisymmetric (resp. symmetric) for t > 0, when
ug 1s antisymmetric (resp. symmetric) under the action of G.
(ii) (Self-similarity) Let ug be a homogeneous function of degree 7p2T17 then the mild solution given in

Theorem 1.1 is self-similar.

Remark 1.4. If G = O(n) we have radial symmetry. Indeed, it follows from Theorem 1.3(i) that if ug is
radially symmetric then u(x,t) is radially symmetric for all ¢ > 0.

Also, we prove an asymptotic behavior result of the solutions obtained in Theorem 1.1 as t — oo.

Theorem 1.5. Assume the hypotheses of Theorem 1.1. Let u and v be two global mild solutions for (1.1)
given by Theorem 1.1, with respective data ug and vg. We have that

lim (1) = v(,Ollxg, . = lim_ (1) = o(, 0L, =0 (L.17)

t—+oo puoo g
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if and only if

i | La(®)(0 — v0) vz, + £ Lat)(wo — w0)llas,,, =0. (1.18)

The manuscript is organized as follows. In Section 2, basic properties of Sobolev—Morrey, Besov—Morrey
spaces and Mittag-Leffler functions are reviewed. Section 3 is devoted to estimates for operators coming
from (1.5). Proofs of the theorems are performed in Section 4.

2. Preliminaries

In this section we collect some well-known properties about Sobolev—Morrey and Besov—Morrey spaces.
Also, we recall properties of the Mittag-Leffler functions.

2.1. Besov-Morrey space

The basic properties of Morrey and Besov—Morrey spaces is reviewed in the present subsection for the
reader convenience, more details can be found in [12,16,17,25,33].

Let Q,(zo) be the open ball in R™ centered at z¢ and with radius r > 0. Given two parameters 1 < p < oo
and 0 < p < n, the Morrey spaces M, ,, = My, ,(R™) is defined to be the set of functions f € LP(Q,(x¢))
such that

K

[fllp.p := sup supr™> [[f|[Lr(Q, (o)) < 00 (2.1)
xoER™ r>0

which is a Banach space endowed with norm (2.1). For s € R and 1 < p < oo, the homogeneous Sobolev—

Morrey space M, = (—=A)~*/2M,, ,, is the Banach space with norm

17lag, = [ 2071 (2:2)

Taking p = 1, we have || f||z1(Q, (y)) denotes the total variation of f on open ball Q,(zo) and M, , stands
for space of signed measures. In particular, M; ¢ = M is the space of finite measures. For p > 1, we have
Mpo=LP and M; 5= H; is the well known Sobolev space. The space L*> corresponds to My, ,,. Morrey
and Sobolev—Morrey spaces presents the following scaling

||f(>")||p7u =\ ||f||p,u (2.3)
and
g—n=u
Oy = X7 Ul (2.0
where the exponent s — % is called scaling index and s is called regularity index. We have that
(=AM = M3 (2.5)

Morrey spaces contain Lebesgue and weak-LP, with the same scaling indexes. Precisely, we have the con-
tinuous proper inclusions

LP(R™) G weak-LP(R™) G M, ,(R") (2.6)
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where r < p and p = n(l —r/p) (see e.g. [23]). Let S(R™) and S’(R™) be the Schwartz space and the
tempered distributions, respectively. Let ¢ € S(R™) be nonnegative radial function such that

supp(p) C{E € R™; S < el <2) and 3" (€)= 1, forall € £0

j=—o0

where ¢; (&) = p(2779€). Let ¢(z) = F1(p)(x) and ¢;(z) = F1(p;)(z) = 29"¢(27z) where F~! stands
for inverse Fourier transform. For 1 < ¢ < 00, 0 < p < n and s € R, the homogeneous Besov-Morrey
space N, .(R™) (N7, . for short) is defined to be the set of u € S'(R"), modulo polynomials P, such that

Flo;(€)Fu e M,,, for all j € Z and

1

(Zjez(zjansj * UHq,/L)T) " <oo, 1<r<oo

SuPjez, 2js||¢j * | g, < 00, T = 00.

lullaz,, = (2.7)

a,p,T

The space N, .

homogeneous Besov space. We have the real-interpolation properties

is a Banach space and, in particular, N, = B;T (case p = 0) corresponds to the

S _ s1 S0
Nq,mr - (Mq,u’qu)@vT
and
N;,/MT = ( qsiuﬂ“l’ ;3177“2)977”’ (2'8)

for all s1 # s2, 0 < 6 <1 and s = (1 — 6)s1 + 0s3. Here (X,Y)g, stands for the real interpolation space
between X and Y constructed via the Ky ,-method. Recall that (-,-)g,, is an exact interpolation functor of
exponent # on the category of normed spaces.

In the next lemmas, we collect basic facts about Morrey spaces and Besov—Morrey spaces (see e.g. [12,
16,33]).

Lemma 2.1. Suppose that s1,s2 € R, 1 < p1,p2,p3 <ocoand 0 < p; <n,i=1,2,3.

(i) (Inclusion) If =25+ = % and pa < p1,

0 0
Mpu/tl C M;Uz,uz and N 1 C Mphln CN

P01, P1,M41,00°

(2.9)

(i1) (Sobolev-type embedding) Let j = 1,2 and p;, s; be pa < p1, s1 < so such that so — % =5 — B

p1
we obtain
M2 CMG L (= = o) (2.10)
and for every 1 <1y <71y < 00, we have
.\ 5g— MTH2
NpZyry CNGL Ly and N2 C Boory ™ (2.11)
(iii) (Holder inequality) Let p%, = p% + p% and Z—; =24 %. If fj € My, ., with j = 1,2, then fifs €
MPS7M3 and
Hflf2”:l73,/13 < ”flllphule?sz,uz' (2'12)
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We finish this subsection recalling an estimate for certain multiplier operators on M7  (see e.g. [17]).

Lemma 2.2. Let m,s € R and 0 < p < n and P(¢) € C/A+1(R"\{0}). Assume that there is A > 0 such
that

okp
a—@(f)

’ < Al (2.13)

for all k € (NU{0}™ with |k| < [n/2] + 1 and for all & # 0. Then, the multiplier operator P(D)f =
FAP(&)Ff on 8'/P satisfies the estimate

IP(D)fll gy < CANf gy - (1< < 00) (2.14)

where C' > 0 is a constant independent of f, and the set S'/P consists in equivalence classes in 8’ modulo
polynomials with n variables.

2.2. Mittag-Leffler function

In this part we collect some basic properties for Mittag-Leffler functions E,(—t%|¢]?) as well as the
fundamental solution k, (see (1.8)), further details can be obtained in [3,8,11] and references therein.
Recall that Mittag-Leffler’s function E,(—t%|¢|?) can be defined via complex integral as

1 ezza—l

where ( is any Hankel’s path on complex plan C. The integrand in (2.15) has simple poles given by

o (€) = |€]7e' T, ba(€) = [€]7e™ T, for £ € R™.

Lemma 2.3. Let 1 < o < 2 and kqo be as in (1.8). We have that

1
LY (R") 5 Ea(—[¢]*) = —(exp(aa(€)) + exp(ba(€))) +1a(€) (n>1) (2.16)
where
sin(am) poo ‘5‘25(},16,5 '
la(ﬁ) = i fo s2a4-2[¢[2s cos(arr)Hﬁ\‘ldS if § 7é 0
b ife=o.
Moreover,
3kka e . ok .
31,? (tgl') =t S (k+ )wka(l,t 2 1-)7 (t > 0) (217)

ko(t,z) >0, Py(1,|z|) = aks(1,z) is a probability measure.

Lemma 2.4. Let 1 <a <2 and 0 <6 < 2. There exists A > 0 such that
o ) 2 —|k|

g € Bal-1eP)] | < Alel™™, e # 0, (2.18)

for all k € (NU{0})™ with |k| < [n/2] + 1.
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We finish this section by recalling that E,(—|¢|?) coincides with Y77, %, and then Eo (=€) is

finite, for all £ € R™. Indeed, since Gamma function I'(z) can be expressed as W 57 fC e*z7"dz, for
x € C, dominated convergence theorem yields

Ba(—l¢f2) = = [ ez [nm 1<z“|§|2>”+1]dz

2mi n—oco 1+ 2|2
1 z,,—1 : - —a|¢|2\k
=5 €% lnIL%I;)(—Z 1€19) ] dz

. 1 _ (=g
— tim 3 (e k_/ (ak+1) 2.1
im H( £1?) — [ e dz Tk 1) (2.19)
- ¢

for all o > 1.
3. Key estimates

The goal of this section is to derive estimates for Mittag-Leffler convolution operators {L,(t)}:>0 on
Sobolev—Morrey spaces and Besov—Morrey spaces. Here and below the letter C' will denote constants which
can change from line to line.

Lemma 3.1. Let s, e R, 1 <a<2,1<p<g<oo,0< u<mn, and(ﬁ—s)—l—"p%“—”%q”<2whereﬁzs.

(i) There exists C > 0 such that

_a(B_g)_a(n=p_n—p
ILa(®)llyg, < CtEEI"8CF 2 0 (3.1)

for everyt >0 and f € M, ,
(it) Let r € [1,00], there exists C > 0 such that

) _E _L
ILafllys, . < CH 8O- 8CT=5 (32)
for every f € 8'/P and t > 0.
(iii) Let r € [1,00] and 8 > s, there exists C > 0 such that
_o —s)— _H _l_
ILa(®)flyy < COEE-I=8CE5 0, (33)

for every f € S'/P.

Proof. Let 0 = (8 —s) +1, where [ = “_£ — “_£_ Recalling that ?;(5) = A""F(E/N) for fr(z) := f(Az), we
let (—A)% Ly (t) be the Fourier multiplier defined as follows

ha(-1) * frar2())7-arz (€)
=175 (P(D)(fyor2))i-ar2 (€), (3-4)
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where the symbol of P(D) is T (€,1) = [£]° Eo(—|€]?). Noticing that 0 < 6 < 2, it follows from Lemma 2.4
that P (&) shall to satisfy (2.13) with m = 0. Using (2.4) and (2.14) we obtain

I(PD)(frar2))i-orell gy =127 IPD) (frar2)l s,

n—p

<CAt 20775

)
| fewr2la,,
= CArFOTTIE S f

= CA | flls - (35)

Using (2.10) with (s1,s2) = (0,1) and (3.4), we obtain

< ot fH ’Wherel:u_n—u
p q
= |[(—a)="+2 _ earts
= |(=4) L (t) e H( fH
_ 0% H(P(D)(ftam))t*”/?HMS »
< CA- 35 -

where (3.7) is obtained of (3.6) via inequality (3.5). In order to obtain (3.2) we recall the real interpolation

N = (ML M) 0,0, N3 = (M3, M2, )0, where = (1—0)81 4002, f1 # B2 and s = (1—0)s1 +
0ss2, s1 # so. Then, we have
1Za () fllpee, < mo millflla, . 0<6<1, (3.8)

where m; = || L () . In view of (3.1), we obtain

f”M;luﬁMslu

n—u)

m; < CAt=zFims)—5 (55555

and then, by inserting it into (3.8), we get (3.2). Now, using (3.2), it follows that

anun

TNl

Pk, 00

”L ()fHN?ﬁ s <Ot*0¢(ﬁ s)—

and

o

1L () fllns, . < CEECT 50 flla

pyp,00 "

In view of (2.8) and (28 — s)(1 — 1/2) + s(1/2) = 3, we have Nﬁu, = (N0 2, N3 L so)1/2,1 which
yields (3.3). O

Proposition 3.2. Let £ € R™. If 1 < a < 2, we have |Eo(—|€?)| < 1 and Eo(—[t*/%¢)?) — 1 ast — 0t

Proof. It is enough to make a proof for 1 < a < 2, because the Lemma holds for Ey(—t[¢[2) = e~tel’,
To this end, let ¢t = |f]asa for € # 0 and using Lemma 2.3 and |exp(aq(€))] = |exp(ba(E))| =
exp(|€]?/@ cos(m/a)) < 1 we obtain
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B IEP)] < 2 + ial2)]

1

2 sm e G
< = ds
a 52 4 2scos(am) +1
0
o0
< 2 sin(am) / 1 ds
! T 52 4 2scos(am) + 1
0
2 2
=2 101-9=1
S Ta-2)
Let ®(t) = %ﬂ“\ﬁ\? Note that |®(¢)| € L(0,00) and ®(t) — e*/z as t — 01, using dominated converge

theorem and residue theorem we have

ezl 1 e?
@ = — 2 ) —_— = = 1 .
Eo(—t*€]?) — 22/ pos dz 2m,{mres<z,z O)} , (3.9)

¢

because res(e*/z; z=0)=1. O
3.1. Linear estimates

We start by recalling an elementary fixed point lemma whose proof can be found in [6].

Lemma 3.3. Let (X, || - ||) be a Banach space and 1 < p < oo. Suppose that B : X — X satisfies B(0) =0
and

1B(z) = B()|l < Ko = 2| (l=]*~" + [|2]1771).

Let R > 0 be the unique positive root of 2° K RP~* —1=0. Given 0 < e < R and y € X such that ||y <,
there exists a solution x € X for the equation x = y + B(x) which is the unique one in the closed ball
{z € X; |z < 2e}. Moreover, if ||y|| < e and ||z|| < 2 satisfies the equation T = § + B(Z) then

ly — - (3.10)

_ 1
lr =2l < T 5T

The integral equation (1.5) has the form x = y + B(z) in the space X = X? where y = Lq(t)uo and
B(x) = By(u) is given by (1.7) and (1.6), respectively. We invoke Lemma 3.3 in our proofs, hence the
estimates for linear and nonlinear part of (1.5) will be necessary.

Lemma 3.4. Under the assumptions of Theorem 1.1, there exists L > 0 such that

[ La(t)uollxp < Lluollng

pyp,007

(3.11)

for all ug € N¢

P00
B3, . ast—07F.

Let s =2/(p—1), if up € BOO oo We obtain Ly (t)ug — ug in the weak—x topology of

Proof. Notice that by (1.15) we obtain n + $o = § (% — u) Using (1.16) one has *2£ — 22 — 0 =
2

=1 — *F < o, <2and 0 <0 which by (3.2) and afterwards by (2.9) and (3.3), respectively, give us
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q,p,1

sup || La(t)uollng,, .. +supt?||La(t)uolr,,, < Cllallg, . +supt?||La()uollng
t>0 >0 ’ t>0

J _I_ _&
< Clluollng, JrCsulmt"+ & [uollnvz

Py, 00
S LHUOHN;,{MOH
this yield (3.11). It remains to check the weak—sx convergence. To this end, let v € Bf 1 the predual space

of B;’Oyoo. Using Proposition 3.2 we have

[La(t)y = vl g5 = > 27N F s [Ba(—t71EP7) — UFv| 1 am} — 0

j=—c0

as t — 0F. Thanks to (2.17) and (2.19) one has E,(—t¥|£|?) =t~ 2" E,(—|t~2¢|?) € R for all t > 0 and
£ € R, it follows that

[{La(t)uo = uo, v)| = [(uo, La(t)v = v)| <

pe. M La(t)y — UHBH — 0, (3.12)
ast—0T. O
3.2. Nonlinear estimates

Recall the nonlinear term in (1.5)

t

:/La(t—s /Sra (s = 7) f(u(7))drds. (3.13)

0

Lemma 3.5 (Nonlinear estimate). Assume the hypotheses of Theorem 1.1. There is a constant K > 0 such
that

1Ba (1) = Ba(0)llxp < Kllu—vllxp(lulls’ + Ivl%;"), (3.14)
or atl u,v € . Moreover, we have B,(u)(t) — 0 in the weak—x* topology o .00007 ast — .
for all u,v € XP. M . we have By (u)(t) — 0 in the weak—+ topology of B 0+
Proof. The proof is divided in three steps.
First step. Let § € R be such that o — £ = §— =L In view of (1.16) and o > 1 we have 7L > = p T >k,

it follows that ¢ < 0 < § and p > ¢/p. Applying (2.10) and (3.2) afterwards (2.9) and (2.12), res pectlvely,
we have

[Ba(u)(t) = Ba(v)(®)llng, . < [Ba(u)(t) = Ba(v)(t)lln

a/p,p,00

t

<c / (t—s)m / raci(s = T f(u(r) ~ f(r)|xp, _drds
0

a/p,

S

0
<c / (t—sm / raci(s = | F(u(r)) = F@())ar, ,  drds

0

< C/(t—s)’h /ra,l(s—T)Hu—v||Mq1“(||qu\/_(iu + HUHP 1 drds  (3.15)
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= 11 (t) j;lgt"HU(t) = v(t)[[m,,, Supt" P ()5, + 1ol )  (3:16)
where r4(s) = s*71/T(a), f(u()) = |u(7)]P " u(r), 11 = —95=—-90— %(% — %) and

t) = C/(t —sm /ra,l(s — 7)1 "drds

=CB( —np,a—1)Bla—n,m +1), (3.17)

for B(z,y) = fol t*=1(1 —t)¥~1dt if 2,y > 0. Indeed, by change of variables 7 = zs and s = tw, respectively,

we get
t s t 1
/(t — M /ra,l(s — 7)1 "drds = /(t —s)nsaimIe /(1 — )7 274y | ds
0 0 0 0
1
=B(1 —np,a — 1)ta+71—np /(1 _ w)vlwa—l—npdw,
0
= AL =np,a = DS =np,n + 1), (3.18)
because by 11 = -0 — %(% — #5F) and (1.15) we have
2 n—pu a, 2 n—u
a+m— np—a+2(p N p ) 2(p_1 . )p
B o ap
=a+ —p 1 —p 1

Inserting (3.17) into (3.16) yields
1Ba()(t) = Ba(0) D)l .. < Kisupt'llu(t) =v(®)llm,,, supt" D (lu®llRy, , + 0(®)]%,,)-  (3:19)

Second step. Let 5 = s = 0. By estimate (3.1) and Hoélder inequality (2.12) we obtain

t

[ B (u)(t) = Ba(v)(t)[m,,,, < C/(t —5)720(s)ds (3.20)
0
where 5 = —%(7;/;”)‘ — =1) and 6(s) is given by

S

0(s) = /mfl(s = 1)lu(r) = o(r) | ag,,, (), + IR, dr.

0

Mimicking the First step we get

- -1 -1
1Ba(u)(#) = Ba(0)®)llaty 0 < ¥2(t) supt7u(t) — v(t) ;.. i;ngt"(” Dllu®lia,, + Ilv®l%,,)  (3:21)
where 1)5(t) can be estimated as

Ya(t) < CB(L—np, o0 — 1)B(a — np, 72 + 1)t = Kot ™", (3.22)

Please cite this article in press as: M.F. de Almeida, J.C.P. Precioso, Existence and symmetries of solutions in Besov—Morrey
spaces for a semilinear heat-wave type equation, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.06.044




Doctopic: Partial Differential Equations YJMAA:19597

14 M.F. de Almeida, J.C.P. Precioso / J. Math. Anal. Appl. e e e (e eee) e o e—0oe

because in view of (1.15) we have

n an—u o 2p n @ ap
o —-np=a— = - =+ — - ———n=-n.
Y2 — NP 2 ¢ 2p—1 =1 p—1 n n

Inserting (3.22) into (3.21) it follows that
Ba(0)(t) = Ba(0) Ollag, . < Kesupe'lult) = o(®)ve supt™® (a5l + o)) (323)

The convergence of the beta functions appearing in (3.18) and (3.22) is obtained by restrictions (1.16) and

a > 1, because this yields in 1,72 > —1 and np < 1 < a. It follows that (T - < 2 < 2 which we

have used in Second step. Recalling (1.14) and using (3.19) and (3.23) we obtain (3.14) with K = K; + K».

Third step. As S(R™) is dense in Bi/l(p*l) (see [34, p. 48]) the weak—x* convergence can be obtained by
estimate
[(Ba(u)(t),0)| < [(Ba(u)(t),v — @)| + [(Ba(u)(t), )|
< 1Ba (@)1 gm0 = &l o + [{Ba(w)(®), )]

< Cllullxpe + Clulliy Il zrio-t* < Cllulle as t = 0%, (3.24)

oLl g2 )

because for v € B one has |jv — SD”BQ/(p*l) < g, for all £ > 0. Moreover, by embedding
101

J\/WOOCB S o= “)/l (see (2.11)) and *# <—<

|(Ba(u /t
0

0// s = DI e Wt = )]s drds

7 /p we have that

Ta—1(s — 7) (f(u(7)), Lo(t — s)p) drds

v o,

IN

(e}
(e}

t s
<C [ [s=nr2e -0 8 F D el ol el drds
0 0
t s
< [ [ts=mrbe— o) 80 drds ull el 2,
00 Bl
< Cto‘Hqu(gngHB% —0 as t— 0" (3.25)

and

Ba@O - <C [ [ racss = DEalt =) W u)] o drds
- 00

00,00

/ / 1(5 = )| Lt = ) [u(r)|" L u() Lz, _drds
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a/p,p,00

// (5= )| Lat = 8) [u(r) () s, drds

t s
<C [ [raals =t = )P (ol _drds
0 0
SC’//Ta_l(s—T)(t—5)717'7”"d7'dsHu||§(p
0 0
< Clull. (320)

as required, this finish our proof. O
4. Proof of theorems
4.1. Proof of Theorem 1.1

Let 0 <e < R= (1/2”K)p_1, where K > 0 and L > 0 are the constants obtained in Lemma 3.4 and
Lemma 3.5, respectively. Let § = ¢/L, Lemma 3.3 with X = X and y = L(t)ug yields the existence of a
unique global mild solution u € X, such that [jul|x, < e. Moreover, Lemmas 3.4 and 3.5 yield u(t) — uo

p—1)

in the weak—# topology of Bi{foo as t — 07. The dependence of the initial data can be obtained from

Lemma 3.4 and Lemma 3.3. Indeed, let § = L, (t)ug where ug € N, ., then
_ 1 _ < 1
l[u(t) —u()l[xz < WHLa(t)(UO —o)llx, < WHUO olng, .- O

4.2. Proof of Theorem 1.3

The proof follows from analogous argument found in [3, Theorem 3.3]. For the reader convenience, we
indicate the main steps of proofs.
Item (i): Let M € G and ug be antisymmetric, then ®(x,t) = Ly (t)up and B, (u) is antisymmetric. Indeed,
in view of the orthogonality of M and uo(Mz) = —ug(z) we have

—Tg(€) = [ug(M)]" () = up(M~1€), (4.1)
it follows that
[@(M,t)]"(€) = Eo(—t*|M~¢*Ya(M~1¢)
—Eo (—t*[¢[*)a(¢)
~&(x,1)(€).

this shows us that L, (t)uo is antisymmetric for each fixed ¢ > 0. Similarly, we can show that B, (u) is
antisymmetric whether u is also. So, employing an induction argument, one can prove that each element wuy
of the Picard sequence

|
S

uy(x,t) (z,1t) (4.2)

®(x,t) + Bo(ug—1)(z,t), k=2,3,--- (4.3)

ug(x,t)

is antisymmetric. It follows that u(x, t) is antisymmetric, for all ¢ > 0. The symmetric property is analogous.
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Item (ii): Let ®(x,t) = Lo(t)up. In view of ug be homogeneous of degree _pzj we set up(Ax) =
A2/ =Dy (x). Tt follows that

[\, )] (€) = Ba(—t*1&/X?)ua(¢/N)
— AT AT B, (—t /AU (€)
= AT By (—t%€[) (€)

—

= AT (,1)(0),
that is, ®(Az,t) = )\_%CI)(% t). Now proceeding like Item (i) we obtain that
u(z,t) = uy(z,t), for every A > 0,
in other words, u is forward self-similar solution. O
4.8. Proof of Theorem 1.5

We only show that (1.18) implies (1.17). The converse is left to the reader. We have that

tMult) =oM< ELa(t)(uo = vo)l[ag,,, + "] Balu) = Ba(v)lr,,

a5k

= 11 La(t) (a0 — v0) [ a, . + 1 (1) (44)

and

[u-t) = vl Dllng, o < IEa(t)(wo = vo)llng, . + [[Balu) = Ba(v)llng

D,H,00 P ,00 D,H, 00

< [ La(t)(uo — vo)l|lng, . + J2(t). (4.5)
Using the inequality (3.20), ||ul|x, < 2¢ and ||U||Xq < 2g, J1(t) can be estimated as

S

nt <o [t = o9 [raats = nllu) = o), (IR, + oI5, ) drds
0 0

S

< t”2(2€)”_1C’/(t — )7 /ra,l(s — 7)1 "% (T)dTds, (4.6)
0 0

where ¥1(7) = t"||u(7) — v(7)||m,,, and v2 =np — a —n. For Js, in view of (3.15), we have that

t s
Ja(t) < (2”5”_1)0/(15 —s)M /ra,l(s — 7)1 "PEy(1)drds, (4.7)
0 0
where ¥o(7) = [[u(r) — v(7)[xg,  and y1 =np —a.

Let us define X(7) = X1(7) + Xo(7). After performing a change of variables in (4.6) and (4.7), we get

1 1
Ji() + Ja(t) < (2027~ )C / (1= g)2ga—i-me / ro1(1— 2)2="5(to2)dzdo +
0

0
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1 1
4 (2°eP™h) C'/ (1—o)re 1= "p/ra 1(1 = 2)27""%(toz)dzdo. (4.8)
0 0
We claim that
IT := lim sup X(¢) = 0, (4.9)
t—+oo

which is enough for our purposes. For that, we take lim sup in (4.8) in order to obtain

t—+o0
1 1
lim sup[Jy (¢) + J2(t)] < (2”6”71)0/(1 —0)20* 1P do lim sup/ra_l(l — 2)z7"PE(toz)dz
t—4o0 ), t—+00
1 1
+ (2"6”_1)0/(1 — o) o o limsup/ra,l(l —2)z "X (toz)dz
) t—+o00
1 1
< (2P’ Ho /(1 - U)VQUa_l_ﬁpda/ra_l(l —2)z7"dz | I
0 0
1 1
+ (2°ePHC /(1 - 0)7100‘*1*"’%0/7’&_1(1 —2)27"dz | 1T
0 0
= (K + Ko)(2°eP~ DI (4.10)

It follows from (4.4), (4.5), (4.10) and (1.18) that

I < tim sup(t”]| L (1) (10 — 00)llat,., + L) (10 — o) lxz, ) + lim sup[J1 () + Ja(t)]

t——+o0 t——+o0

<0+ (K + Ky) (20" DI = (2°eP KOILL (4.11)
So, due to 2°e”7'K < 1, we get I = 0, as required. O
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