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1. Introduction

The role played by Sobolev inequality in analysis and geometry is well known and a fair amount of work
has been devoted to its study. Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold.
Aubin [1] proved the following Sobolev inequality

n—2
n

/IfI%du < a/|Vf|2du+6/f2du, Ve W),
M M

where

a=[Kn)]?+ee>0
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and (8 depends on bounds on the injectivity radius, sectional curvature and its derivatives and K (n) is the
best constant in the Sobolev inequality for R™ (see [36]). Hebey [19] proved that 8 can depend only on &,
the injective radius and the lower bound of the Ricci curvature. Hebey and Vaugon [21] proved that we can
take € = 0 but g still depends on the derivatives of curvature tensor.

Assume that Ric > —Kg, where K is a nonnegative constant. We consider Sobolev inequality like

n—2

n

/ - fuladp| < s / VfPdp, Y f e CP(M, R). (1.1)
M

Gallot [15] proved

S(M) < eOn(HHVEdiam(D)) [giam (M)]2[Voly(M)] ™ 7. (1.2)
Apart form the dimensional constant, the estimate above is sharp.

Let B := B(z, r) C M be a ball with center x and radius r. Then in view of (1.1) and (1.2), it is natural
to conjecture that

n—2
n

/|f — fal*2dp < VR 2ol (B)] % / IVf[’dp, ¥ feC¥(B,R),
B B

where K is a nonnegative constant such that
Ric > —Kg, on B(x, 2r).

Saloff-Coste [33] solved the conjecture partially. They proved that, for any f € C§°(B, R), if n > 3, there
holds

n—2
n

[is#an) <ot VEROR ol B F [ (972472 du
B B

and if n < 2, the above inequality holds with n replaced by any fixed n’ > 2. More details about Sobolev
inequality can be found in Aubin and Li [2], Biezuner [5] and the references therein.
In the case of Ricci flow

%gij(x,t) = —2Rij(.%',t)7 (13)
(logarithmic) Sobolev inequalities also play an important role in its analysis. One motivation for the
Wh-entropy comes from the log-Sobolev inequality of Gross [16] (see also Topping [37]). Due to the im-
portance of (logarithmic) Sobolev inequality in the analysis of geometric flow, it is key to have a uniform
control on the constants o and .

Sesum and Tian [35] proved a uniform Sobolev imbedding for certain Kéahler-Ricci flow with Ricci
curvature bounded from below.

However, in general the constant /5 cannot be controlled uniformly along the Ricci flow. By making use of
the (generalized) Perelman’s W entropy [31], Zhang [42,43] and Ye [40,41,39,38] (see also Hsu [23]) proved
(logarithmic) Sobolev inequalities along Ricci flow, from which and the method of [7] (see also Lemma 2.2
in [20] and its proof or Lemma 6.1 in [40]) they established long time non-collapsing result generalizing the
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Perelman’s short time result [31]. Zhang [44] also proved the long time non-inflated result for the normalized
Kéhler-Ricci low on Fano manifolds.
In this paper, we consider the geometric flow

0
Egij(xvt) = —28;j(z,t) (1.4)

on M x [0, T') for some (finite or infinite) T' > 0 with a given initial Riemannian metric g(0) = go, where
Sij(z,t) is the component of a time-dependent symmetric 2-tensor S. Motivated by [31], we define the F
functional and W functional and prove their monotonicity under some assumptions. Next we obtain the
(logarithmic) Sobolev inequalities and their equivalence up to different factors. We also prove the long time
non-collapsing and non-inflated. As applications, for mean curvature flow in Lorentzian space and twisted
Kahler—Ricci flow on Fano manifolds, we get the results above.

In the following, we denote the volume element of g(¢) by du(t), the trace of S;;(t) by S, or S(x,t) =
i g (t)S;;(t) (sometimes also by S simply without confusion), the volume of M with respect to g(t) by
ij=1
Vol (M), the first eigenvalue of —Ay, + 5 by Ao(g(t)) and the norm of the gradient of u € W12(M) with
respect to g(t) by |Vuls.

For convenience, we define an evolving tensor quantity Dy associated to the tensor S (see for example
[14] and the references therein).

Definition 1.1. Let g(x,t) be a smooth solution to the geometric flow (1.4) on M x [0,T). Then for any
X € X(M), we define

oS
Ds(8,X) i= 5 = Dy S = 21815

+4(VISij) X7 —2X'V,;S + 2R;; X' X7 — 25, X' X7, (1.5)

where V and R;; are the Levi-Civita connection and Ricci curvature respectively with respect to the
Riemannian metric g(¢). In particular, if for any vector field X € X(M) there holds D3(S,X) > 0 on [0, T'),
then we call Dy(S, ) nonnegative.

Theorem 1.1. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Dy(S, ) defined in (1.5) is nonnegative. For each o > 0 and each t € [0, T), we have

/u2 Inu?du(t) < a/ (|Vu|f + itu2> du(t) — glncr + A (t + %) + Ay (1.6)
M M

for any uw e WHA(M) with [,, w*du(t) = 1, where

4
A1 == 5 minS’O, (17)
Cs(M, go)*Volg, (M)=

Ay :nlnC’S(M,go)—i-g(lnn—l), (1.8)

and where Cs(M, go) is the Sobolev constant defined in (2.1).
Therefore, we can deduce

A
/u2 Inu?dpu(t) < gln ay / <|Vu|t2 + %u2> dp(t) + Il (1.9)

M M
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for any uw € WH2(M) satisfying [,, u*du(t) = 1, where

2e 2(A1f+42)
oy = —e
n

Theorem 1.2. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Do(S, ) defined in (1.5) is nonnegative. If Ao(go) is positive, then for each t € [0,T) and each o > 0 there
holds

/u2 Inu?du(t) < 0/ (|Vu|f + itUQ) du(t) — glna +C (1.10)
M M

for allu € WH2(M) with [,, w*du(t) = 1, where C depends only on the dimension n, Volg, (M), Cs(M, go),
Xo(go) and the lower bound for Sy.
Therefore, there holds for each t € [0,T)

/u2lnu2d,u() gln oznj\l <Vu|t St )du() (1.11)

M

for all w € WY2(M) with u?du(t) = 1, where
M

Theorem 1.3. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Do(S, ) defined in (1.5) is nonnegative. There hold

(1) if Ao(go) >0, fort € [0, T) and u € WH2(M), there holds

n—2

(ZmﬁuMnn<A/Owﬁ+%M>@@7 (1.12)
M

where A is a positive defined in (4.8), depending only on n, Volg, (M), Cs(M, go), Mo(go) and the lower
bound of Sy.
(2) if T < oo, fort € [0, T) and uw € WH2(M), there holds

n—2

/M%MMQ HSA/(w@+?ﬁ)@m+3/ﬁ@m, (1.13)
M

M

where A and B are defined in (4.9) and (4.10) respectively, depending only on n, Vol,, (M), Cs(M, go),
Ao(go) and the upper bound T.

Remark 1.1. From the Jensen’s inequality, we can deduce logarithmic Sobolev inequality from Sobolev
inequality (see for example [40]). Now from the proof of Theorem 1.3, we know that Sobolev inequality
implies also logarithmic Sobolev inequality with different constants. Therefore, we can say that (logarithmic)
Sobolev inequalities are equivalent to each other up to constant factors. In the case of Ricci flow (1.3), the
equivalence proved by making use of estimates on heat kernel can be found in Ye [40] and Zhang [43].
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Remark 1.2. In the case of Ricci flow (1.3), the results in Theorem 1.1, Theorem 1.2 and Theorem 1.3 can
be found in Zhang [42,43], Ye [40] and Hsu [23].

Remark 1.3. In the case of extended Ricci flow (so-called List-Ricci flow [26])

%gij (x,t) = —2R;;(x, t) + 4do(z, t) @ do(z, 1),

0

a (:L', t) = Ag(w,t)d)(xa t)a

where ¢ € C°(M x R, R), the Sobolev inequalities were obtained by Liu and Wang [28].

Remark 1.4. In the case of harmonic-Ricci flow (see [3,30,46])

%gij(l’, t) = —2R7;j (.T, t) + QCV(t)V’l/) X Vi/),

0
E (l‘,t) = Tg(z,t)’(/)(xat)7
where ¥(-,t) : (M, g(-,t)) — (N,h) is a family of smooth maps between two Riemannian manifolds, both
g(-,t) and h are Riemannian metrics, a(¢) is a positive non-increasing function, and 7,1 denotes the intrinsic
Laplacian of 1, the Sobolev inequalities can be found in [13].

Given the (logarithmic) Sobolev inequalities, we can prove the k-noncollapsing property and the so-called
k-noninflated property and also give some examples as applications.

The rest of the paper is organized as follows. In Section 2, we prove the equivalence between Sobolev in-
equality and logarithmic Sobolev inequality up to a different factor, which also holds in the case of geometric
flow (1.4). In Section 3, we define F functional and W entropy and prove their monotonicity and prove
the lower bound of S, assuming that Do (S, ) is nonnegative. In Section 4, we prove (logarithmic) Sobolev
inequalities under geometric flow (1.4), i.e., Theorem 1.1, Theorem 1.2 and Theorem 1.3. In Section 5, we
give the x-noncollapsing property along geometric flow (1.4). In Section 6, based on a series of properties
of fundamental solution to conjugate heat equation along geometric flow (1.4), we prove the so-called k
noninflated property. In Section 7, as applications, we consider Lorentzian mean curvature flow (7.1) on
ambient Lorentzian manifold with nonnegative sectional curvature and twisted Kéhler-Ricci flow (7.2) on
Fano manifolds and obtain the results mentioned in the first six sections along these two geometric flows.

2. The (logarithmic) Sobolev inequalities on Riemannian manifolds and their relations

In this section, first we give some (logarithmic) Sobolev inequalities and lemmas which will be useful in
the following sections.

Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold. Then the Sobolev constant of
(M, g) (for the exponent 2) is defined to be

1
Cs(M, g) =su ul| 2n — ————ulla:  we CHM), [|[Vulz=1}. 2.1
5(M, g) p{l [ T LC (M), [ Vulz } (2.1)

Therefore, the Sobolev inequality (for the exponent 2) is

[ul| 20, < Cs(M, g)[[Vul2 + lull2, ¥V ue Wh2(M). (2.2)

Vol, (M)«

We need the following fundamental results (see for example [40]).
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Theorem 2.1. Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold and S be any sym-

metric 2-tensor with trace S = > ¢“S;;. Then for any u € WH2(M) with ||ulls = 1, there hold
ig=1

1
2 2
uw*Inudy < nln | Cs(M, Vullg + —— |,
A[ " (s( DIVull2 Volg(M)n>

2
/u2lnu2d,u§ W/ <|Vu|2+iu2> dufg(lnoszHZJrl)
M

M

no 1 min S~

- - Cs(M,g)? |, 2.4

. (Volg(M)" e g>> (24
where « is any positive real number and S~ = min{S, 0}.

Moreover, if the first eigenvalue Mg = Xo(g) of the operator —Ag + % is positive, we can deduce

2
/u21nu2du§ M/ |Vu|2+§u2 - ElnAJranQJrUO, (2.5)
2 4 2 2
where
1 ins—\
8o = 0o(g) = [ MCs(M, g)? + _ — Cs(M, 9?22 , 2.6
0 =d0(9) (0 s(M, g) Vol (A1) s(M, 9)"— (2.6)

n
o9 =00(9) = 5 lln (AOCS(Ma 9)° + Vol, (M) 2
g 2

—In(XCs(M, 9)*) - 1] (2.7)

and A is any positive real number satisfying A > dg.

Now we give some fundamental materials which will be useful in the proof of Logarithmic Sobolev
inequality implying Sobolev inequality. The ideas come from [4] and the references therein.

Let (M, &, 1) be a measurable space with a nonnegative o-finite measure p. For convenience, let F be
nonnegative function on M and be contained in all LP-space with respect to the measure p.

Let W (f) be a given norm or semi-norm on F which will be determined later. For p > 1, k € Z, define

foe =min{(f — p")*, p"(p— 1)},

where (f — pF)* = max{f — p*, 0}.
For any f € F*, define

Afpk,p = Pru(f > Pk)~
Lemma 2.2. For any f € F* and any p > 1, we have

PP —
pp

1
Zaf,p,k,p < ||fH£ < (-1 Zaf,pyk,p' (2.8)

kEZ kEZ
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Proof. From

[ra=% [

M REZpk < f<phtr
< S (2 ) =l 2 )
k€L
=’ Z Qfpk,p — Z Qf,pk+1,p
kEZ kEZ
=P =1 sk,
kEL

and

/ frdu = | ra

kGZ ok < f<ph+l

>prk< (f = p") - (f>p’“+1)>

kEZ
= E Af.p,k,p — E :afp7k+1,p
kez kEZ
-1
e
kEZ

we can deduce (2.8). O

Lemma 2.3. For f € FT and 1 < p < 400, we have

=) (5"
— 1, kIl < I[F115- (2.9)
( p ) -1 ;Z or

Proof. Since
PLESIP

/ o ilPd = p / P — o > e
M 0

k+1
ot

=p / (s = PP~ tu(f = s)ds

ok

for p > 1, we have

S [ 1ol = pz/ s— PP LS 2 5)ds

kEZ s kEZ

ok
<<{sup sup (8 p) pZ/s”l (f > s)ds
k€Z selpk, pht1] 5 k€L
_1\?r!
) e
p
M
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On the other hand, we have

S [ 1foslran = pz/ s— oIS > 5)ds

K€Ly ke

k+1
Pt

>l = [ st

kEZ x
€ ok

( ) Zafp k+1,p

kEZ

_1\?
> (p 1) 1
p ) e

Thus, we can obtain (2.9). O

For p,s € (0, +o00] and ¢ € (0, 1], assume that there holds

111y < (CW NI, (Sp.)
where the associated parameter g € (—oo, 0) U (0, +00) U {co} by setting
1 9 1-9
—= 2y . (2.10)
p q $

Lemma 2.4. For a function f € F*, define

¢ ur— n|flls.

Then ¢" (u) > 0.

Proof. Since

8=

S =171 [ ln<|f|1> 7

M

define

o) == — 71" AZ i (ﬁ)

Then we have

2
/ _ r " n _ T (ln 2
o) = /f In fdu /f du /f (In f)*d
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< L/ %l | [ (i’

_ /f’“dlu /f’“(lnf)2du = 0.

Thus
1 1
¢ (u) = ——=¢' (—) > 0. O

Theorem 2.5. (See Theorem 10.2 in [}].) If for any f € F*, we have logarithmic Sobolev inequality

JJ & (ﬁu)pd“] <[5 3) i (2 (LSY)

then we can deduce (S” ) for all 0 < s < p and vise versa.

p,s

Proof. From Lemma 2.4, the function

is increasing of u, where we can define v (%) = (%)

Therefore, from (LSY), for 0 < s < p we can deduce (noticing that % > %)

o (B)=e ()

—-p 14 n
= 71 /f1 <||f||p
(2 ().
P q £l
which is (5] ) exactly.

Now assume (5 ) holds for any 0 < s < p. Rewrite (S
p,s P,

(et )@ 2 <cw<f>>(1i> |
1£1ls —\ Al
Taking logarithms, we have

sl misto (A1) < (A0 T (G

Letting s — p, we get (LS]). DO
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Lemma 2.6. If for a > 0, there holds

(Z W(fp,k)a> a < A(aup)W(f)7 v f S ]:+7

keZ

where A(a, p) is a constant depending on o and p, then (Sgs) implies

a=s CA(p, p)

1£lla < (" = 1193~ = ZZEW ().

Proof. From (5} ), we have

/f:;kdp, < (CW (o) /f; Ldu
Since
/fﬁ,kdu <p™(p—1)°ulf = ")
M
/fﬁ’,kdu > P (p = 1)Pu(f = ),
M

we can deduce

p(1—9)

afqk+1,0 < plp— 1)_;”19(CW(fﬂsk))pﬂaf,qfk,p'

Therefore, we have

E :aﬁq,k,p = E :af,q,k+17p

keZ kEZ
19 9 p(1=19)
< Zp P CW(fP k))p a’f,qf]@p
keZ
1-9
S ( - 1) pﬁcpﬁ (ZW fp7 ) (Z f,q,k: p)
keZ keZ
p(lfﬂ)
<pllp—1)" el (ZW fok) > (Z af,q.k, p)
kezZ keZ

Therefore, we have

)

Zaf,q,k,p < pqg(p - 1)_ch (Z W(fp,k)p> .

kEZL keZ

(Sq.p.s)

(2.11)

(2.12)

(2.13)
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Taking p = ¢ in (2.8), from (2.13), we can deduce

g

/f"du < (p = 1)p%s (p— 1)79C" (Z W(fp,k)p>

wr kEZ

< (p? = 1)p%r+ (p — 1) "1CUA(p, p)?W (£)7,

which is (S p,s) as desired. O

Let (M, g) be an n-dimensional Riemannian manifold. Then for f € FT, define non-negative functional

1

W(f) = / (IVFP + S f7)du + / frdu)

M
where S € C°(M, R) and c is a constant.
Lemma 2.7. If c+ 5 >0 and 1 < p < 400, then we have
1
(Z W(fp,w“) <W(f),
kEZ

where any a > p is constant.

Proof. Since ¢ + S > 0, we can consider (¢ + S)dp as a new measure. Therefore, for p > 1, similar to

Lemma 2.3, we can also deduce

Z/ (c+ )7 o < (%)pl/(c+5)fpdu.

keZy, M

Obviously, there holds

S [Wheka=Y [ Vi

kEZM kEZkafSpk+l
~ [1vsra
M

Therefore, for a > p, we can get

(Zw(fp,k)a> = (M/ |pr k‘p"’_Sf,Z;,k) dﬂ+c/f5,kd:“
M

1
o

kEZ k:eZ

3|

Z/|pr,k|pdu+2/ (c+5)

kEZjy kEZjy

IA
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p—1
< | [wmrans (222 s siran
M

<W(f). O

3. Preliminaries of geometric flow

In this section, we give some fundamental properties about the geometric flow (1.4). Let (M, g) be

an n-dimensional compact Riemannian manifold. Motivated by [31], fixing a real-valued function S €

C>(M,R), we can define, for any h € C*°(M,R) with fM e hdpu =1,

Flg,h) = /(S+ |Vh|*)e "du
M

and

Wio.£.7) = [ [r(S 41918+ 1 = n] s
M

where 7 is a positive number and f € C*°(M,R) satisfies

eff d
— = =1
/ (4w7)2 "
M

[N

Let v=¢"2 and

Then we have

Flg.h) = F(g.0) = [(@VeP +5e%)dp, [oPan=1
M

M
and
W(97f77—) = W*(Q,Uﬂ') — glnT — gln(47r) —-n
where
W*(g,u, ) = / [7(4|Vul® + Su?) — v’ Inw?] dp, /uzdu =1
M M
We define

dMo(g) == inf  F*(g,v)

Jap v2dp=1

(3.1)
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w(g,7) = inf  W*(g,u,7).
Jar wPdp=1

741

In the case of geometric flow (1.4), we take the function S as S(z,t), the trace of time-dependent symmetric

2-tensor S with respect to Riemannian metric g(z,t).

Lemma 3.1. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0, T). Let h be a
positive solution to the backward heat equation

Then we have

and

where

0
ah(m, t) = _Ag(a:,t)h + |Vh|§(w,t) — S(x, t)

dF
ry = / (2|hi]‘ —l—Sij‘z +D2(8,Vh)>e_hdu(t)
M
d_W_ 2f,,+54._i442+’p(8Vf) id (t)
dt = T i i 27_gzj 2\, (47_‘_7_)% ML),
0 N 9 n
a ({E, t) - - g(m,t)f(xv t) + |vf|g(m,t) - S(‘T7 t) + 2T(t)

and for any o >0 and 0 <t* < T,

T(t) =t"+o0—t.

(3.5)

In particular, both F entropy and W entropy are non-decreasing in t if Da(S, ) is nonnegative and all times

t €10,T), from which we can get that A\o(g(t)) is non-decreasing of t and

n (o
* > * _
i g(t),0) = 1 (g(0).t +0) + 5 ln

for allt € [0,T) and o > 0 (the case t = 0 is trivial).

Proof. The proof here is just direct computation. We use the method in [14]. Set

By Lemma 2.1 in [14], let us take « = 2,6 =1,A=0,a =1,b =d = 0,c = —1. Then we can get

P =2Ah—|Vh]*+ S

oPrP

ot

= —AP +2VP - Vh+2lhij + Sij|* + % — AS — 2|8

—2Vh-VS + 4hiVj8ij — 2Sijhihj + 2Rijhihj
=—-AP+2VP -Vh+ 2|hij + Sij|2 + D2(S, Vh)

(3.7)
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Combining (3.8) and the definition of F entropy, we derive

dr d n _[(oP _Oh —h
prileT /Pe du(t) = / < 5 Pat PS) e *du(t)
M M

= / [— AP +2VP - Vh+2|hij +$¢j|2 + Do(S,Vh)
M

+ P(Ah — |Vh|* + S) — PS} e "du(t)

— / [ — " A(Pe™) + 2|hij + Sij|* + Da(S, Vh)} e du(t)
M

:/(2|hij+sij2+7>2(s,w))ehdu(t).
M

Hence, it follows that F entropy is non-decreasing.
The monotonicity of W entropy had been proved in Theorem 3.1 of [24] (see also [14,17]).
Since D(S, ) is nonnegative, from (3.4) and (3.5), we have

%W*(g, u,T) > g% InT,
where
-
u=ul) = GaE
which satisfies the equation
Ou Vul2 S
5{**A“*|u|+§

It follows that

n T(tl)
*(g(t t < u*(g(t t —1
(o). 7(0)) < 1 (glta,7lt2)) + I T
Choosing t; = 0 and t5 = t* we can obtain
« . . " n. t'+o
#(9(0),t" +0) < p(9(t7),0) + 5 In ——. (3.9)

Since 0 < t* < T is arbitrary, (3.9) can be rewritten as (3.7).
Similarly, we can get that A\g(g(¢)) is non-decreasing of t. O

Remark 3.1. The authors would like to thank Professor Hong Huang for pointing out the references [17,24].

Lemma 3.2. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Dy (S, ) is nonnegative. We have

i > mi . .
min S(z,t) > min S(x,0) (3.10)
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Moreover, we have either

S(z,t) =0, (3.11)
or
. 1
min S(z,t) > T 57 (3.12)
reM o
min S(z,0) n
xzeM
Proof. Since Dy(S, ) is nonnegative, taking X = 0, we have
aS 9
from which we can get
2
95 _ AS — =82 >0.
ot n
From the maximum principle, we have (3.10).
If mi]\r} S(z,0) > 0, we have (3.11). Otherwise, at the minimal point of S(z,t), we have
xTE
d 2 ?
T <21:T€111\r/} S(m,t)) - chlélj\% S(a:,t)} > 0. (3.13)

From the theory of ordinary differential equation, by (3.13), we can get (3.12). O
4. Proofs of theorems about (logarithmic) Sobolev inequalities

We will also need the following elementary lemma (see for example [40]).

Lemma 4.1. Let a > 0 and b be constants. Then the minimum of the function y = ac — g Ino +b for o >0
is 5 In(aa), where

= "en. 4.1
a=-—_e (4.1)
Proof of Theorem 1.1. For u € Wh2(M) with [;, u*du(0) = 1, taking

8(t+ o)

“ nCs(M, go)?’ ‘

in (2.4), we have

/u2 Inu?du(0) < (t+ o) / (4] Vulg + Sou®) dp(0)
M M

+ -(2InCs(M, go) +Inn —2In2 —1)

|3

n 4
——In(t+o)+(t+o > —minSy | .
g It o)+t o) (CS(M, 90)2Volg, (M) = 0)
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It follows that

N n 4 .
1 (g(0),t+o)> 5 In(t+o0)—(t+0) (CS(M7 PREEINITE — min S(])

- g(ZlnCs(M, g0) +lnn—2In2—1). (4.2)

From (3.7) and (4.2), we can deduce

4 .
Ino— (t+o0) s — min Sy
CS(Mﬂ 90)2V0190 (M);

w (g(t), 0) >

|3

— g(2lnCS(M, go) +Inn—2In2—1),

or

o n o 4
lgt),~=) > —lno— (t+ — 5 — min S
i (o0 7) 25 (1+5) (CS(M, go)2Voly, (M)7 0)
- g(zlnCS(M, go) +lnn—1)

which is equivalent to (1.6).
Taking

s A
a= / <|w|§ + It“2> du(t) + 71 >0
M

and b = Ajt + As in Lemma 4.1, from (1.6), we can get (1.9). O
Before prove Theorem 1.2, we need the following lemma.
Lemma 4.2. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that

Do(S, ) defined in (1.5) is nonnegative. If Ao(go) is positive, then for any o > 0 and t € [0,T) satisfying
t+o>5Cs(M, 90)%60, there holds

[ mant <o [ (190 + 5 autt) - 5 mo
M M

+ glnn+nlnCS(Mago)+Uo(go) (4.3)

for any w € WH2(M) with [,, u*du(t) = 1, where Cg(M,go) is the Sobolev constant defined in (2.1),
0o = d0(go) is the number defined in (2.6) and the number oo(go) is defined in (2.7).

Proof. Assume t + o > 2Cs(M, go)*00(g0). Choosing

8(t+ o)
R ———— 5 s
nCs(M, go)? ~ olan)

from (2.5), we can deduce
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21,2 2 S0 o n
w?Inudu(0) < 4(t + o) |Vulg + U dp(0) — B In(t + o)
M M

+ Z(? InCs(M, go) +1Inn — 21n2> +o00(9),

where u € WH2(M) satisfying [, u*du(0) = 1.
It follows that

N*(g(ht + 0) >

|3

In(t+o0) — 2(2 InCs(M,go) +Inn—21In 2) —00(90)- (4.4)

From (3.7) and (4.4), we can deduce

w(g(t),o) > glna— g(?lnC’S(M,go) +Ilnn— 21n2> —0o0(go)
or
o n n
* il B _ o
I (g(t), 4) 2 glno— 2 (21DCS(M790)+111”> o0(g0),

which is equivalent to (4.3). O
Remark 4.1. In the case of Ricci flow (1.3), the result in Lemma 4.2 can be found in Ye [40].

Note that the proofs of Theorem 1.1 and Lemma 4.2 lead to the following general result. Indeed, Theo-
rem 1.1 and Lemma 4.2 can be seen as its special examples.

Theorem 4.3. Let g(t) be a smooth solution of the geometric flow (1.4) on M x [0, T) for some (finite or
infinite) T > 0 with Do(S,-) defined in (1.5) nonnegative and let h(o) be a scalar function for o > 0.
Assume that the initial metric go = g(0) satisfies the logarithmic Sobolev inequality

/u2 In u2dp(0) < 0/ (mg 4 %uQ) du(0) + h(o)
M M

for each o > 0 and all w € W"2(M) with [, u*du(0) = 1. Then there holds at each t € [0,T)

S, n o
/u2 Inu?du(t) < or/ (Vuﬁ + 4tu2) dup(t) + h(4t + o) — 5 In i
M

Jor each o >0 and all uw € WH2(M) with [,, u*du(t) = 1.
Given Theorem 1.1 and Lemma 4.2, we can deduce Theorem 1.2.

Proof of Theorem 1.2. Let t € [0,T) and o > 0. If t+0 < §Cs(M, 90)%60(g0), we apply (1.6) in Theorem 1.1
and bound t + ¢ in (1.6) by gCgs(M, 90)%00(go). Otherwise, we apply (4.3) in Lemma 4.2. Then we can
deduce (1.10). Since the eigenvalue Ao(g(t)) is non-decreasing and Ao(go) > 0 we have Ao(g(¢)) > 0 for
all ¢. Therefore, we can deduce [, (|Vu\f + %u2) dp(t) > 0 for all ¢t. From Lemma 4.1 by setting a =
Jor (IVul? + Stu?) dp(t) and b= C, we can get (1.11). O

Here we give a special conclusion of Theorem 1.2.
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Corollary 4.4. Suppose that g(t) is a smooth solution of the geometric flow (1.4) on M x [0, T) for some
(finite or infinite) T > 0 with Da(S, ) defined in (1.5) nonnegative. If A\g(go) is positive, then fort € [0, T),
we have

Voly (M) > e “ (4.5)
when S’t <0, and

Volyy (M) > e~ 178,

I3

(4.6)
when S’t > 0. Here C is the constant in Theorem 1.2 and S’t is the average of St

t = <7 1 -
VOlg(t)(M)

Proof. Taking u = Volg(t)(M)*% in (1.10), we get

1
n———
Volg(t)(M)

1
If S; < 0, then taking o = 1, we get (4.5). If §; > 0, then taking o = 5;!, we get (4.6). O
Remark 4.2. In the case of Ricci flow (1.3), the result in Corollary 4.4 specializes to the one in Ye [40].

Given the logarithmic Sobolev inequalities in Theorem 1.1 and Theorem 1.2, we can deduce the uniform
Sobolev inequality along geometric flow (1.4).

Proof of Theorem 1.3. In the case A\g(go) > 0, letting

u

(S w?du(®))

[l (i ) 0]

= /uzdu(t) In (aﬂ oy (el + S‘f“z)du(t)> 5

)

W=

from (1.11), we have

Jar @2

air fo (190l + (2555 ) u?) au) | *
Jar udp(t) ’

<n /u2du(t) In

where S; = min{0, Sp}. Define
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Then from Lemma 2.6 and Lemma 2.7(by taking p=2,p=2,s=1,¢= —2) we have

(Zunznzd,u < (2332 — 1) - on=2 2a11W(f) (4.7)

Since

/w@@:ﬁ@%/mw@

M M

m / (|Vuf + %UQ) du(t)

M

Ao(lgo) / ('v“|f2 + %“2) du(t),

M

IN

IN

substituting the expression of ay; into (4.7), we have (1.12), where

n n— n A - S_ 4
A= (2722 1) T 2nta 2t Aolgo) = S /4, (4.8)
Ao(g0)
In case T' < 0o, define
1
Sy + A i
1
wig) = [ (1vek + = ) dute)
M
Then from (1.9), Lemma 2.6 and Lemma 2.7(by taking p =2, p =2, s = 1, ¢ = -2, we have (1.13), where
2n nT_Q 4an 62 4(A1T+A2)
A= (2n—z - 1) 27 e, (4.9)
2n nf an A1€ 4(A1T+A)
B (2%2 — 1) 27-3 3 TR O (4.10)

5. The k-noncollapsing estimates under geometric flow

In the case of Ricci flow (1.3), the k-noncollapsing property, the volume ratio between a geodesic ball
and Euclidean ball with the same radius is bounded from below, is first proved by Perelman [31] under the
assumption that curvature is bounded along the Ricci flow. Here we get the x-noncollapsing estimates as
follows.

Theorem 5.1. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0, T) and Da(S, )
defined in (1.5) is nonnegative. There hold

(1) if Ao(go) > 0 and S; < %5 holds on a geodesic ball B(z,r), where v > 0, then fort € [0, T), there holds

1 \*% ,
Volyy(B(z,7)) > (—2”+3A> ",

where A is a positive constant defined in (4.8).
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(2) if T < 00 and S; < 2 holds on a geodesic ball B(z,r) with 0 <r < L, then for t € [0, T)), there holds

1 3
Volg(t)(B(fE,T')) 2 <m) T”)
where A and B are defined in (4.9) and (/.10) respectively.
Remark 5.1. In the case of Ricci flow, this version of the s-noncollapsing property can be found in [40],
which is particularly powerful and flexible and has important applications to Poincaré conjecture and the
geometrization conjecture [32]. (More meanings and applications of the k-noncollapsing property can be
found in [40] and the references therein.)
The proof of Theorem 5.1 is a direct result of the following lemma.
Lemma 5.2. Let (M, g) be an n-dimensional (n > 3) compact Riemannian manifold and S be any symmetric
n

2-tensor with trace S = Y. ¢8;;. Assume that for any u € W12(M), there holds the Sobolev inequality
i,j=1

[r

IfS < %2 holds on a geodesic ball B(x,r) with 0 < r < L, then there holds

n—2
n

=N < A/ (wl2 + %uz’) du+B/u2du-
M M

1 z
Vol (B(z, ) 2 (2+3A+2L3> T

Proof. The proof is very similar to the proof of Lemma 6.1 in [40]. Here we omit it. O
6. The k-noninflated estimates under geometric flow

Except for x non-collapsing property, the k-noninflated property (the volume ratio between a geodesic
ball and Euclidean ball with the same radius is bounded from above) is also very useful (in the case of
Kéhler—Ricci flow, the importance of upper bound of volume can be found in [34,8] and references therein).

To make the « non-inflated property clear, we give a definition as follows.

Definition 6.1. A smooth, compact, n-dimensional geometric flow (1.4) is called k non-inflated at the point
(x0, to) under scale p if the following statement holds.

(1) the geometric flow is defined in the space time cube

{(a:, t) : d(z, zo,t0) <7, t € [to — r2, to]},

(2) for some positive constant o, S(z,t) < % for all (z,¢) in the above cube.

Then there exists a positive constant x, which may depend on « such that

VOlg(to)(B(Io,ﬂ to)) < Kr'.
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Remark 6.1. In the k non-collapsing property, the condition S(z, t) < T% on the S(z, t) is included in the

one S(x,t) < t(%t of the x non-inflated property in the same space time cube.

In the case of Ricci flow (1.3), our definition is the same as the one in Zhang [44].

Theorem 6.1. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0, T) and Da(S, )
defined in (1.5) and Ric — S are nonnegative. For any xo € M, the geometric (1.) is k non-inflated at
(xo, to) under scale \/lg, where x defined in (6.22) depends only on go, to and «.

Remark 6.2. The « non-inflated property in Theorem 6.1 specializes to the one in Zhang [44] in the case of
Ricci flow (1.3).

In order to prove the x non-inflated property of geometric flow (1.4), we need the lemmas as follows.

Let g(x,t) be a solution to the geometric flow (1.4) on M x [0, T'), where M is a compact manifold and
let £, t be two moments in time such that 0 < £ < ¢t < T, and z, z € M. Let G = G(z,¢;x,t) be the
fundamental solution of the conjugate heat equation

8€f(27£) + Ag(z,@)f(zaé) - S(Z7£)f(z7£) =0

along the geometric flow (1.4). Fixing z, ¢, we know that G, as a function of x and ¢, is the fundamental
solution of heat equation (see for example Lemma 26.3 of Chapter 26 in [10])

Och(z,t) — Ag(m,t)h<-73a t) = 0. (6.1)

Lemma 6.2. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Do(S, ) defined in (1.5) is nonnegative. We have

/G(z CGa,t)dp(z,t) <1+CA+t—10)%2, (6.2)
M

where C' only depends on mij\r} S(x,0). In particular, C = 0 when
TE

S(z,t) > min S(z,0) > 0.

zeM

Proof. Since

d
d

~

/Gzﬁmtdu(xt)
M
{AIG (z,0;2,t) — S(x,t)G(z, b, x,t) | dp(z, t)
/S’ (z,4; 2, t)dp(z, t), (6.3)
M

from (3.11), (3.12) and (6.3), we have either

%/G(Z,E;x,t)du(x,t) <0
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or
fM 2,0z, t)dp(z, t)
x

~mrsem T

min S
xeM

/G(z 4 a,t)du(a, t)
M

4
dt

Finally, we can deduce (6.2). O
Lemma 6.3. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Dy(S, ) defined in (1.5) is nonnegative. We have

explL() ~ ¢ . S (3,0)
G(z, bz, t) < A= 02 , (6.4)

where 0 < £ <t and
L(t) = 2A1t + As,

with Ay, As the same as the ones defined in (1.7) and (1.8) up to adding constants depending only on n
Moreover, if S(x, 0) > 0, we have

oC
G(z, bz t) < ) (6.5)

where C' is the same as the ones defined in (1.10) up to adding constants depending only on n

Proof. Let f = f(x, t) be a positive solution to (6.1). Give Ty > £ and ¢ € (¢, Tp), defining

Ty~
t =
p(t) Ty 1

we have p(¢) =1 and p(Tp) = +o0.
Applying the idea of Davies, we have

Eo)
Ol fllp(ey = Ok (/fp(t)du(x,t)
1
p(t)

Lot [ #Oauen) + | [ 7 Oaute.
M

—1

P3(t)

/fp O(In f)p' () dp(z, t)
n / PO ()AL f (1) — f(,8)S (2, t))dpu(x, )

multiplying both sides by p(¢)?| f ||g 8) , we can deduce
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p@PIFIED T 0l o =~ B A1) In / FPOdu(a, )
2@ [ 570 Ptz
M
p(t) 2
— 4y =) [ |7 (7] aute.
M

t)/ (f¥)2 S(a, t)du(z, t)
M

p(t)

Define v(z, t) = ——L > Then we have
(ar fr0du(a,t))2
o]z =1,
/v21n112 :p(t)/vzlnf—Z/v ln||fp()\|2
M M M
— -2l o+ p(0) [l .

M

Dividing both sides by ||fHZEg, we have

P ()0 10| flpce)
=p t)/v2 Inv?du(z,t) — 4(p(t) — 1)/\VU|2d,u(x,t)
b

M

t) [ Sz, t)v?du(x,t)
/

:p’(t)/v2 Inv?du(z,t) —/S(m,t)vzdu(x,t)

M M

— 4(p(t) — 1)/ <|W|2 + iS(m,t)zP) du(z, t).

From the Cauchy—Schwarz inequality, we have

A(p(t) —1) _ At —0)(To — 1)
p’(t) TO — é
(To —t+t—1)?
- To— /¢

:TO_Z7

1 (Th—¢t)?
p’(t) o TO —é

<Ty—¢.

Therefore, we have

751
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P’ ()0 In || fllpe)

=9 v? Inov?du(z, t) — L
p(t)Ll Inv*du(z,1) 0

S(x, t)v?dp(z, t)

)M

_ Mt)_l)/ <|Vv|2 + iS(x,t)v2> du(mt)]

M

<p'(t) l/zﬁ Inv?du(x,t) — (To — £) Ilél{/[ S7(x,t)

%ﬂ_l)/ <|W|2 + is(x,t)ﬁ) du(x,t)] :

M

Taking

in (1.6), we can deduce

, 4 -1 . _
P00 f e < 1/() (nln A 4 1)~ (@ - ) o, 5 o>)

where, since o0 < Ty — £ < Ty,

A, (t n %) 4 Ay < ATy + Ay = L(Tp)

and we also make use of (3.10) to obtain

— inf S7(x,t) < — inf S (x,0).
zeM zeM

Since

and

Ap(t) —1)  A(t—O)[To — € — (t — 0]

)

) To— ¢

we can deduce

— —1In

1
< -
Oy lanHp(t) =T, —é{ B To— 0

+ L(TO) - (To - f) xléllf/l S_(.’)S, 0)}

(6.7)
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Integrating from t = £ to t = T, we can get

WFGTo)oo o 1y i e
In Sy < ~3 (T — 0]+ L(T) = (To = ) jnf 5~(@,0)+n.

Since
f@To) = [ Gestin To)f (2, du 1),
M
the above inequality implies that
exp|L(Ty) — (To — £) 12{/[ S (z,0) + n|

G(Z,E;IL‘,TO) < (4(T0 —E))%

Since Ty > { is arbitrary, we get (6.4) with maybe modified constants A; and As.
If S(z, 0) > 0, then we can use the logarithmic Sobolev inequality (1.10) in (6.7). Therefore, we can
deduce (6.5) with a modified constant. 0O

Remark 6.3. We can also prove this lemma by Moser’s Iteration. Here we follow [25] and just sketch it.
For p > 1, we have

/ 17 fudu(t) - / PAfdu(t) =0,
M M

that is,
0 [ e+ [ surtann + P (195 Paun =0
p+1 p+1 (p+1)? ’
M M M
where we use the Stokes’ theorem and that 0;du(t) = —Sidu(t). Since p > 1, we have 4p > 2(p + 1).

Therefore, we can deduce

at/fpﬂdu(t) + /(St—l-Co)prd,u(t)+2/|prT+1|2du(t)

M M M
<Co [ #4aut) (6.9)
M
where
0, minSy > 0,
- 4 *
Co = —min Sy, min Sy < 0.
Cs(M, go)*Volg, (M) = T
Define
0, 0<t< 7T,
t—r1T
= < 0T
n(t) G TTstsoT
1 0T <t <
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Multiplying (6.8) by n(t), we can deduce
1 pt1
0 [ o) | + 500 | [ o) oaun <4 19575 Pauco)
M

< (Co+17(1)) / ().

M

Integrating this with respect to ¢ gives

T
s [ ran w28 [ [ (19554 2L 0 ) autoy
M

0T <t<T
oT

<2 (ﬁ + CO) /T/fp+1du(t)dt

T M

From Lemma 3.2, we know that S; + Cy > 0. From the proof of Theorem 1.3, we can have the Sobolev

inequality
n—=2
n St + C
(M/ urzdp(t) | <A / [IVuIt2 + %uﬂ dp(t), (6.9)
M
where
2 n2 4 4
(272 —1) 27 [Co(M, go)]* 270, inf 5 >0,
re
A= , (6.10)
1 n; 1t 2
— (2 nez 1) 25t 2@2+M inf Sp < 0.
n zeM

By making use of the Sobolev inequality above, we can get

T
//f(“l)(l*%)du(t)dt

0T M

n—2

frH () / fODTERdu() | dt

3o
3

n T
< sup (M/ P du(t) AGZ [ (50 + Co) 7+ au(t) + 41V 5 2] aptr) | a

oT<t<T
T
/ / P dp(t)dt
T M

1+2

n

3

1 14
< I
<4A {Co + 0= T)T]

Forp>2 0<7<1, set
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, :

n+ 2

)= | [ [frauoa) o ="12
T M

Then for 0 < 7 < 6 < 1, we have

1
P

Hip,0) < ()% (Cot =7 ) HOn ), (6.11)

For pg > 2 fixed, defining

from (6.11), we have

-

ok POX
H(Ypq1s Opp1) < (4A)rox® (Co + W) H (g, k).

By iteration, we can deduce

H(Yig1, Opg1) < (44)7°

Letting £ — +00, we have

n+2
nt2  (n+2)? 1 Zpo
sup x, t)] < (44)2p0 2 *ro (Co + 7)
(w,t)eMx[OT,T]| (= ) < (44) 0 —7)T
T o
//fp"du(t)dt
T M
For 0 < p < 2, we set
h(r) = sup |f(z, )]

(z,t)eM X[rT, T

Then from the Young’s inequality, we can get

T =

ho) < %h(r) +? {2(“&2)2 2 —p)] B (445 (co + ﬁ) v /T / Frdu(t)dt

Then from Lemma 4.3 in [18], we get

=

h() < CA™ (00+ = ) /T / FPdu(t) , (6.12)
T M

where C' is a constant depending only on n and p.
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Taking p = 1 in (6.12), from (6.2), we can get the estimates in the form of (6.4) and (6.5).

Lemma 6.4. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Dy(S, ) defined in (1.5) is nonnegative. For 0 < £ <t < T and any point z, we have

1 1 t
Gz, bz t) > —— e avi=t Jo Vi=sS(@8)ds, 6.13
(z,b;x,t) > @ E° (6.13)

Proof. For fixed (z,t), consider G(z,¢;z,t) as a function of (z,¢), 0 < ¢ < t. Define h(z, ) by

o ' e—h(z,@)
30, 1) = ———r.
Then we have
2 n___
azh(z,f) + Ag(z7g)h(2,£) — |Vh’|g(z,€) -+ S(Z,g) — m = 0 (614)
If D5(S, ) is nonnegative, Cao, Guo and Tran [6] proved
(t—120) (QAQ(Z,g)h(z,E) — |Vh|£2](z7g) + S(z,ﬁ)) + h(z,£) —n <0. (6.15)
From (6.14) and (6.15), we have
1 1 h(z,£)
—0gh(z,0) < =8(2,0) — =|Vh|?, ) — =,
Oe (27 ) = QS(Z’ ) 2|v |g(z,€) Z(t_g)

Thus, for any smooth curve ~(¢), we have

d 1 N2 h(x(£),0)
~h0,0) < 3 (56000 + KO0 ) - S0, (6.16)
Taking v(¢) = z, integrating from ¢ = t5 to £ = t1, we have
17 —
h(l‘,tg)\/t — t2 S h(ZC, tl)\/t - tl + 5 /S(.’E,g) t— fdﬂ,
to

where 0 <ty < t; <t.
From Theorem 24.21 in [10], we know that 75lig‘lt(t —t1)2G(z,t1; 2, t) is bounded. Thus, for any 0 < ¢ < t,
1

we have

t

/ t — sS(x, s)ds.

4

1
2vt =4

h(z,0) <

Therefore, we can deduce (6.13). O

Lemma 6.5. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Do(S, ) defined in (1.5) and Ric — S are nonnegative. Let u(x,t) be the positive solution of

au(:}:,t) = Ayenu(z,t).
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Then, for § >0 and any x, y € M, we have

dist? (z,y,t)

u( t) < Uk [u(y, ¢)] o e “Somsasi (6.17)

=4
‘H

where U = sup u(z, s).
(z,8)EM X[s0,t]

Proof. By Theorem 2.2 in [12], we know that for any 0 < so < ¢ and s € [so, t]

Vuxs
| ,/8_80’/ w@.5) (6.18)

then inequality (6.18) yields

Set ¢ (z,s) =1n

u(x s)?

1
4(s — s0)

- ] <

Next, for any x,y € M, let v : [0,1] — M be a minimizing geodesic such that v(0) = z and (1) = y.
Integrating the above inequality along the geodesic, we get

U N U dist(z, y, s)
\/mu(y,s) S\/1 wrs) T A —se)

Thus, for any § > 0, we have

U U dist?(z, y, s) U dist(z,y,s)
1 <1 S 1 L
" u(y,s) — . u(z, s) 4(t — s9) Ty u(z,s) /s — 8o
. .2 s 2
<In U dist*(z,y, s) 5 U dist (x,y,s).
u(z, s) 4(s — s0) u(zx, s) 4(s — s0)0

Taking exponential of both sides in the above inequality and taking s = ¢, we gives (6.17). O

Lemma 6.6. Assume that g(x,t) is a smooth solution to the geometric flow (1.4) in M x [0,T) and that
Do(S,-) defined in (1.5) and Ric — S are nonnegative. We have

G(Z Gy, ) ClJ( )ﬂ e e \/:T[f; \/t—sS(z,s)ds7 (619)
(-0
where c¢1 depends only on n.
Proof. Set
{4+t
u(z,t) = G(z,4;2,t), so= i, K= sup G(z,6-).
2 Mx[EEL, 1)
From Lemma 6.5, we have
5 1 dist2 (z,y,t)

G(z,4;z,t) < K45 [G(z, 4y, t)]| THo e 2C-05 (6.20)
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Using (6.4), we know that

exp[L(t) — (t =€) inf 5 (y,0)]

h= it _0)3

Denote exp[—L(t)+(t—¢) inj& S~ (y,0)] = J(t). Then taking § = 1 in (6.20), from (6.13), we have (6.19). O
ye

Proof of Theorem 6.1. Picking any r € (0, v/%o), we consider geometric flow (1.4) in the space time cube
Q(x07t0a T) = {(1'7 8)‘diSt($ax07tO) <r, s [tO - 7'2, tO]} :

For r € (0,+/t) and z € M with dist(xg, z,to) < r, from (6.19), we have

cadto) —1 —1 [0, Vi=sS(z0,5)d
G(x07t077‘2;1’7t0) Z %e 16 T'[t0—7~2 0—sS(xo,s)ds
> Me—le_% f:oo_r2 \/to—sto%sds
Z o
c1J(t
= %6_1_204. (621)

From (6.2) and (6.21), we deduce

1+ C(1+7r?)2 > /G(zo,to —r%x, to)du(e, to)
M

Y%

G(z0,to — r%; 2, to)du(z, to)

dist(xo,z,to)<r

ClJ(tO) —1—2«
> —m © -2 dp(z, to).
dist(xzo,x,to)<r

This implies

[1+C(1+to)2] et T2
e (to) .

Vol 1) (B(wo, r, to))r ™" <

Taking

oo LT 0(1;(2))3] e (6.22)

we obtain
Vol 1) (B(zo, 7, to)) < k™. 0
7. Applications

In this section, we will give some examples of the geometric flow (1.4). First, we will consider the
Lorentzian mean curvature flow (see [22,29] and references therein).
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Let M™ be a closed n-dimensional spacelike hypersurface in an ambient Lorentzian manifold L™"*! and
let Fy : M™ — L™*! be a smooth immersion of M™ into L™*!. Consider a smooth one parameter family
of immersions

F(,t): M" — L™
satisfying F'(-,0) = Fy(-) and

% = H(p7 t)V(p, f})7 Y (p7 t) c M x [07 1—1)7

where H(p, t) and v(p, t) denote the mean curvature and the future-oriented timelike normal vector for the
hypersurface My = F(M"™, t) at F(p, t), respectively. It is easy to see that the induced metric solves the
equation

0
5% = 2H Ayj, (7.1)

where A = (A;;) is the second fundamental form on M.

Theorem 7.1. Let L™t! be the ambient Lorentzian manifold with nonnegative sectional curvature. Then
for evolution (7.1), Theorem 1.1, Theorem 1.2, Theorem 1.3, Lemma 4.2, Corollary 4.4, Theorem 5.1 and
Theorem 6.1 hold.

Proof. In this setting, we have S;; = —HA;; and S = —H?. Marking the curvature with respect to the
ambient Lorentzian manifold L"*! with a bar, we have the Gauss equation

Rij = Rij — HA;j + AiAgj + Riojo,
the Codazzi equation
ViAjk — ViAij = Rojki,
and the evolution equation for the mean curvature

%—Ij _ AH — H(AP + Ric(v, 1)),

where v denotes the future-oriented timelike normal vector, represented by 0 in the index-notation. Using
the three identities above, we get

Dy(S, X) = 2|VH — A(X,-)|* + 2Ric(Hv — X, Hv — X) + 2(Rm(X,v)v, X).

Since the ambient Lorentzian manifold L"*! has nonnegative sectional curvature, the nonnegativity con-
straints of Dy (S, X) holds naturally.
We also have

Ric(X, X) — S(X, X) = Ric(X, X) + X AjpAp; X7 + (Rm(X,v)v, X) > 0.
This completes the proof of Theorem 7.1. O

Second, let M be a real n(= 2m) dimensional Fano manifold with K&hler form wj associated to the
Kéhler metric go. We consider the twisted Kéhler—Ricci flow (see [11,27,45] and the references therein)
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0
agﬁ(m’ t) = _Rii(rﬂ? t) + 96('73) + gij(xv t)7 (7'2)

gﬁ(x,()) = (90)1'3(35),
where 6 is a closed semi-positive (1,1) form and
2me1 (M) = [w(x, t) + 6].
Here w(z,t) = /—1g;5(x,t)dz" A dzi is the Kéhler form of g(x,t). We have

Theorem 7.2. Let M be a real n(= 2m) dimensional Fano manifold with Kahler form wy whose Kihler
metric is denoted by go. Then for the twisted Kdhler—Ricci flow (7.2) with the assumption above, there
exists a positive constant k > 0 depending only on the initial metric gy such that

Voly) (B (%7")) <kr", ¥ (x,t) € M x (0, +00).

Remark 7.1. In the case of Kdhler—Ricci flow (91-3 = 0), the conclusion in Theorem 7.2 is the one in Zhang
[44] (see also [9]).

Remark 7.2. From the scaling transformation (7.3), it is not difficult to know that Theorem 1.1, Theorem 1.2,
Theorem 1.3, Lemma 4.2, Corollary 4.4, Theorem 5.1 and Theorem 6.1 also hold for twisted Kéhler—Ricci
flow (7.2).

To avoid confusions, we give some preliminaries about Kéhler geometry for special use in this paper. Let
(M,V,g) be real n-dimensional (n = 2m) Kéhler manifold, V be the Levi-Civita connection (also Chern
connection) and g be Riemannian metric which determines a unique Kéhler metric and vise versa. So we
can consider g itself as the Kéhler metric. Assume that

is the local coordinate system on M. The Kéher form is
m _—
w=+v-1 Z gi7dz" N d2,
i,j=1

where g7 = g(0.:, 0;7).
Let 0 be a real (1,1)-form. Then we have

m m
O =05 Trgd =2 ¢7"05, |02 =2 ¢7'g™0is0,5,
4,J=1 4,j=1
where > g7'g;7 = 0}
j=1

If 6 is also closed, then we have

b5 O3 O3 _ 0

azk %7 azf 0z ’
which is equivalent to

Vil =Vib;, Vibs = Vibg.
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For any f € C*°(M,R), we have

mo_ an
A, f =2 I
of igz:lg 028027

Proof of Theorem 7.2. For twisted Kéhler—Ricci flow (7.2), define

Si(@,t) = Riz(x,t) — 05(x).

)

By making use of scaling

I
t=—In(1-2s), g;(nt) = T—5-Gi5(z,5),

we know that g7 (z,s) satisfies the geometric flow equation

0 _ ~
%gij(xas) = *251‘3(1775),

where g;7(z,0) = (go)7(z) and

S7(x,8) = R,

7 ij

(z,—In(1 —2s)) — 07

Then we can get
— — A5 —2[SZ =0,

where S = Trgg.
For any real-value vector X € X(M), it can be written as

X = ixiazi + ixiazi.
=1 i=1

Since 6 is a real closed (1, 1)-form, we have

s €0,

().

2

b,

761

(7.4)
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Since 6 is semi-positive, from (7.4), (7.5) and (7.6), we have

m
Dy(S,X) =4 05X'X7 >0.
ij=1
Collins and Székelyhidi [11] and Liu [27] proved that there exists a constant o > 0 such that
m .

Z g’ (Rﬁ(x,t) - 91’7(55)) <a.

ij=1
Therefore, we have

- 1
S(x,s)gla , se€o, 5)

— S

|

Choose s € (0, 3) and 7 € [0, \/So). Then for s € [sg — 72, so] and x € M, we have

~ (%

S(z,s) <

s0— 8
By Theorem 6.1, we have
Volg(so) (B(z,7)) < K7™ (7.7)
From (7.3), we know that
dist(z,y,g(s)) =7
implies
dist(x,y,g(t)) =r

where

r

V1I=2s

t=—In(1-2s), r=

Therefore, from (7.7), we have

/}: n
Lol (e —" Y <n(
Vog(“){ (m \/1—230)]“(\/1—25[,) ’

that is, at any point (z,t) € M x (0, +00), for the twisted Ké&hler—Ricci flow (7.2), we have

Volyy [B (w,7)] < K", (7.8)

el —1
0 — .
TG(, 5 )

Since Collins and Székelyhidi [11] and Liu [27] proved that the diameter of (M, g(t)) is uniformly bounded,
the above estimate (7.8) holds for all » > 0 with maybe a different constant x. 0O

where
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