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1. Introduction

Let f = {fi} be a sequence of functions. For any given pair of nonnegative integers n and m and for 
fixed t1, . . . , tm ∈ R, we consider the Slater determinant

Sn,m(f ; t1, . . . , tm) := det

⎡⎢⎣ fn(t1) . . . fn+m−1(t1)
... . . .

...
fn(tm) . . . fn+m(tm)

⎤⎥⎦
and the symmetrized Slater determinant

Wn,m(f ; t1, . . . , tm) := Sn,m(f ; t1, . . . , tm)
V (t1, . . . , tm) , (1.1)

where V (t1, . . . , tm) is the Vandermond determinant of t1, . . . , tm. When the variables coincide, the sym-
metrized Slater determinant becomes, up to a constant, the Wronskian determinant
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W (fn, . . . , fn+m−1;x) := det

⎡⎢⎢⎣
fn(x) fn+1(x) . . . fn+m−1(x)
f ′
n(x) f ′

n+1(x) . . . f ′
n+m−1(x)

· · · · · · · · · · · ·
f

(m−1)
n (x) f

(m−1)
n+1 (x) . . . f

(m−1)
n+m−1(x)

⎤⎥⎥⎦ .

Slater determinants are wave functions of multi-particle fermion systems in Quantum Mechanics [2,14]. 
For most of the models that are well understood, the wave functions are related to the classical orthogonal 
polynomials. The main purpose of this paper is to study properties of Slater determinants for orthogonal 
polynomials.

Let dμ be a positive Borel measure on R for which orthogonal polynomials p = {pn} exist. We shall denote 
by Sn,m(t1, . . . , tm) and Wn,m(t1, . . . , tm) the Slater and symmetrized Slater determinant Sn,m(p; t1, . . . , tm)
and Wn,m(p; t1, . . . , tm) throughout this paper. Let μn be the n-th moment of dμ,

μn :=
∫
R

tndμ(t), n = 0, 1, 2, . . . ,

and let Mn be the Hankel matrix of the moments defined by

Mn := [μi+j ]ni,j=0 =

⎡⎢⎢⎢⎣
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1

· · · · · · . . . · · ·
μn μn+1 · · · μ2n

⎤⎥⎥⎥⎦ .

It is known [15] that detMn > 0. The orthogonal polynomial pn with respect to dμ can be defined by

pn(x) = det

⎡⎢⎢⎢⎢⎢⎢⎣
Mn−1

μn

μn+1
...

μ2n−1

1x, . . . xn−1 xn

⎤⎥⎥⎥⎥⎥⎥⎦ , n = 0, 1, 2, . . . , (1.2)

which has the leading coefficient detMn−1.
Associated with the measure dμ, we define two additional sequences of polynomials,

qn(x) :=
n∑

k=0

μk

(
n

k

)
(−x)n−k, n = 0, 1, 2, . . . . (1.3)

rm,n(x) :=
m∑

k=0

μn+k

(
m

k

)
(−x)m−k, n,m = 0, 1, 2, . . . . (1.4)

These polynomials may be viewed as shifted moments of dμ and moments of (· −x)mdμ, respectively, because 
it is easy to see that

qn(x) =
∫
R

(t− x)ndμ(t), and rm,n(x) =
∫
R

tn(t− x)mdμ(t). (1.5)

We define their extension to several variables by

qn(t1, . . . , tm;x) :=
∫
R

(t− x)n(t− t1) · · · (t− tm)dμ(t), (1.6)

rn(t1, . . . , tm) :=
∫

tn(t− t1) · · · (t− tm)dμ(t). (1.7)

R
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One of the main results in this paper shows that the symmetrized Slater determinant Wn,m(t1, . . . , tm)
of orthogonal polynomials can be represented by the Hankel determinant of either qn(t1, . . . , tm−1; tm) or 
rn(t1, . . . , tm), and it can also be represented as a Selberg type integral. The results may be considered as 
generalizations of results obtained in a long paper by Karlin and Szegő [10] and in a more recent paper of 
Leclerc [11]. The latter is our starting point. Indeed, when all variables coincide, our Theorem 2.1 below 
becomes

W (pn, . . . , pn+m−1;x) = Cn,m det [qm+i+j(x)]n−1
i,j=0 = Cn,m det [rm,i+j(x)]n−1

i,j=0 ,

where Cn,m is constant. The first identity is exactly Leclec’s result, whereas the second one appears to be 
new. Another consequence of our results shows that the function

F (x1, . . . , xr) := det

⎡⎢⎢⎢⎢⎢⎣
pn(x1) pn+1(x1) . . . pn+2r−1(x1)
p′n(x1) p′n+1(x1) . . . p′n+2r−1(x1)

... . . . . . .
...

pn(xr) pn+1(xr) . . . pn+2r−1(xr)
p′n(xr) p′n+1(xr) . . . p′n+2r−1(xr)

⎤⎥⎥⎥⎥⎥⎦
is nonnegative for all n, r ∈ N and (x1, . . . , xr) ∈ R

r. For r = 1 this is a consequence of the Christoffel–
Darboux formula. For r > 1 this appears to be new and it is a special case of an even more general result.

As an application, we show that the polynomials qn and rm,n are closely related to the Jensen polynomials 
of entire functions in the Laguerre–Pólya class, and use our results to deduce new properties for the Jensen 
polynomials. We will also discuss an interplay between our principal results and the orthogonal polynomials 
that arise in the study of Toda lattices.

The paper is organized as follows: the main result for the Slater determinants of orthogonal polynomials 
is stated in the next section. The proof and further discussions are given in Section 3. The connection 
with Jensen polynomials and Toda lattices are discussed in Section 4. Examples on classical orthogonal 
polynomials are given in Section 5.

2. Main results on Slater determinants

To emphasize the dependence on the measure dμ, we sometimes write Mn(dμ) = Mn, pn(dμ; x) = pn(x)
etc.

Theorem 2.1. For every n, m ∈ N, the symmetric Slater determinant Wn,m(t1, . . . , tm) obeys the identities

Wn,m(t1, . . . , tm) = Bn,m det [qi+j+1(t1, . . . , tm−1; tm)]n−1
i,j=0 (2.1)

= Bn,m det [ri+j(t1, . . . , tm−1, tm)]n−1
i,j=0 , (2.2)

where

Bn,m = (−1)nm
m−1∏
k=1

detMk+n−1.

For 1 ≤ k ≤ m, let σk(t1, . . . , tm) denote the elementary symmetric functions of t1, . . . , tm defined by

σk(t1, . . . , tm) =
∑

tj1 · · · tjk . (2.3)

1≤j1<j2<···<jk≤n
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By the definition of rn(t1, . . . , tm),

rn(t1, . . . , tm) =
m∑

k=0

(−1)k σk(t1, . . . , tm)μn+m−k(dμ).

It follows form Theorem 2.1 that the symmetric Slater determinant can be written in a concise form in 
terms of the moments of dμ. Indeed, with t = (t1, . . . , tm),

W1,m(t) = B1,mr0(t) = (−1)m
m−1∏
k=1

detMk

m∑
k=0

(−1)kσk(t)μm−k(w),

which appears in [6], and the next case is

W2,m(t) = B2,m
[
r2(t)r0(t) − r1(t)2

]
, B2,m =

m−1∏
k=1

detMk+1.

We regard qn(x) defined in (1.3) as the case m = 0 of qn(t1, . . . , tm; x) and, evidently, rm,n(x) defined in 
(1.4) is rn(t1, . . . , tm) with t1 = . . . = tm = x. Setting t1 = . . . = tm = x in Theorem 2.1 gives the following 
corollary.

Corollary 2.2. For all m, n ∈ N,

W (pn, . . . , pn+m−1;x) = Cn,m det [qm+i+j(x)]n−1
i,j=0 (2.4)

= Cn,m det [rm,i+j(x)]n−1
i,j=0 , (2.5)

where Cn,m is a constant given by

Cn,m := (−1)nm
m−1∏
k=1

k! detMk+n−1.

Identity (2.4) was proved by Leclerc [11]. Notice that it is easy to see that the determinant 
W (pn, . . . , pn+m−1; x) is a polynomial of degree mn, but this is not obvious for the determinant 
[qm+i+j(x)]n−1

i,j=0. It is clear, however, that det [rm,i+j(x)]n−1
i,j=0 is a polynomial of degree mn, since each 

rm,i+j(x) is of degree m.
For a further generalization, we make the following definitions.
Let m1, . . . , mr ∈ N and m := m1 + . . . + mr. We define the m ×m determinant

Sm1,...,mr
n (t1, . . . , tr) := det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn(t1) pn+1(t1) . . . pn+m−1(t1)
p′n(t1) p′n+1(t1) . . . p′n+m−1(t1)
. . . . . . . . . . . .

p
(m1−1)
n (t1) p

(m1−1)
n+1 (t1) . . . p

(m1−1)
n+m−1(t1)

...
...

...
...

pn(tr) pn+1(tr) . . . pn+m−1(tr)
p′n(tr) p′n+1(tr) . . . p′n+m−1(tr)
. . . . . . . . . . . .

p
(mr−1)
n (tr) p

(mr−1)
n+1 (tr) . . . p

(mr−1)
n+m−1(tr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.6)

its symmetrized verson
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Wm1,...,mr
n (t1, . . . , tr) := Sm1,...,mr

n (t1, . . . , tr)∏
1≤i<j≤r(tj − ti)mimj

,

as well as the corresponding polynomials

qm1,...,mr
n (t1, . . . , tr;x) := qn

( m1︷ ︸︸ ︷
t1, . . . , t1, . . . ,

mr︷ ︸︸ ︷
tr, . . . , tr;x

)
, (2.7)

rm1,...,mr
n (t1, . . . , tr) := rn

( m1︷ ︸︸ ︷
t1, . . . , t1, . . . ,

mr︷ ︸︸ ︷
tr, . . . , tr

)
. (2.8)

Theorem 2.3. For every n ∈ N, m1, . . . , mr ∈ N with m := m1 + . . . + mr,

Wm1,...,mr
n (t1, . . . , tr) = Cm1,...,mr

n det
[
q
m1,...,mr−1
i+j+mr

(t1, . . . , tr−1; tr)
]n−1
i,j=0 (2.9)

= Cm1,...,mr
n det

[
rm1,...,mr

i+j (t1, . . . , tr)
]n−1
i,j=0 , (2.10)

where

Cm1,...,mr
n := (−1)nm

r∏
i=1

mi∏
j=1

j!
m−1∏
k=1

detMk+n−1.

The matrix in (2.10) is the moment matrix Mn−1(wm1,...,mr
(t1, . . . , tr)) for the measure wm1,...,mr

(t1, . . . ,
tr; x) = (x − t1)m1 · · · (x − tr)mrdμ(x). We also obtain an integral representation for the determinants in 
(2.6).

Theorem 2.4. For m1, . . . , mr ∈ N and n ∈ N,

Sm1,...,mr
n (t1, . . . , tr) = Cm1,...,mr

n

∏
1≤i<j≤r

(tj − ti)mimj

× 1
n!

∫
Rn

r∏
i=1

n∏
j=1

(sj − ti)mi

∏
1≤i,j≤n

(si − sj)2
n∏

j=1
dμ(sj).

The integral in the above is a special case of the Selberg integral when dμ = w(x)dx and w is a classical 
weight function. We refer to [8] for a beautiful account of the Selberg integrals. In the case of m1 = . . . =
mr = 1, this result appeared in [3] and is well known in the random matrix community.

An immediate consequence of our main result is the following remarkable corollary.

Corollary 2.5. Let n, m1, . . . , mr be positive integers. Then

S2m1,...,2mr
n (t1, . . . , tr) ≥ 0 for every (t1, . . . , tr) ∈ R

r.

Furthermore, equality holds only if ti = tj for some i �= j.

In the case of r = 1, Sm
n is the Wronskian W (pn, . . . , pn+m−1) and it is nonnegative on the real line if 

m is even, as shown by Karlin and Szegő in [10]. Our explicit integral representation gives a direct proof of 
this classical result.

We end this section by mentioning another connection of the Slater determinant. For α = (α1, . . . , αm) ∈
N

m
0 with 0 ≤ α1 ≤ . . . ≤ αm = n, define
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Pn
α (u1, . . . , um) =

det
[
pαm−i+1+i−1(tj)

]m
i,j=1

V (t1, . . . , tm) ,

where ui = σm−i+1(t1, . . . , tm), the elementary symmetric function of t1, . . . , tm defined at (2.3), then Pn
α is 

a polynomial of degree n in (u1, . . . , um) and, moreover, the set {Pn
α : 0 ≤ α1 ≤ . . . ≤ αm = n} is a complete 

set of orthogonal polynomials in m variables [7, Section 5.4.1]. The Slater determinant corresponds to the 
case of α = (n, . . . , n).

3. Proofs of the main results and further results

We divide this section into subsections. The first subsection contains several lemmas on the polynomials 
pn, qn and rn. Our main results on the determinants are proved in the second subsection. The last section 
contains other related results on Slater determinants.

3.1. Lemmas

We start with a fundamental tool in our work, a well-known identity that can be found in [13, p. 62].

Lemma 3.1. Let fi, gj be functions such that figj ∈ L1(R) for 1 ≤ i, j ≤ n. Then

det

⎡⎣∫
R

fi(t)gj(t)dμ(t)

⎤⎦n

i,j=1

=
∫
Rn

det [fj(ti)]ni,j=1 det [gj(ti)]ni,j=1

n∏
i=1

dμ(ti). (3.1)

Recall that the Vandermond determinant is given explicitly by

V (t1, . . . , tm) = det

⎡⎢⎢⎢⎣
1 1 . . . 1
t1 t2 . . . tm
... . . . . . .

...
tm−1
1 tm−1

2 . . . tm−1
m

⎤⎥⎥⎥⎦ =
∏

1≤i<j≤m

(tj − ti).

One immediate consequence of the identity (3.1) is an integral expression of the orthogonal polynomial 
pn(dμ).

Lemma 3.2. For n = 0, 1, . . . ,

pn(dμ;x) = (−1)n det [qi+j+1(dμ;x)]n−1
i,j=0 .

Proof. We use (3.1) with fj(t) = (x − t)j and gj(t) = (x − t)j+1 to obtain, by (1.5), that

det [qi+j+1(x)]n−1
i,j=0 = 1

n!

∫
Rn

det
[
(ti − x)j−1]n

i,j=1 det
[
(ti − x)j

]n
i,j=1

n∏
k=1

dμ(tk)

= 1
n!

∫
Rn

(t1 − x) · · · (tn − x)
∏

1≤i<j≤n

(ti − tj)2
n∏

k=1

dμ(tk)

= (−1)npn(x), (3.2)

where the last identity follows from a well-known expression for orthogonal polynomials; see, for example, 
[15, p. 27]. �
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The integral representation (3.2) is the special case m = 1 of (2.4), already established in [11]. We include 
the proof since it illustrates the strength of (3.1), which will be used several times in this section.

Lemma 3.3. The polynomial qm1,...,mr
n (t1, . . . , tr; ·) satisfies

(1) qn(t1, . . . , tm; x) = qn+1(t1, . . . , tm−1; x) + (x − tm)qn(t1, . . . , tm−1; x);
(2) qn(x, . . . , x; x) = qn+m(x).

Proof. The first item follows from (1.6) by writing t − tm = t −x +x − tm. The second item follows directly 
from (1.6). �

For given t1, . . . , tm, let dμm be the measure defined by

dμm(x) = dμm(t1, . . . , tm;x) := (t− t1) · · · (t− tm)dμ(x).

Lemma 3.4. For m, n = 1, 2, . . . ,

det [qi+j+1(t1, . . . , tm−1; tm)]n−1
i,j=0 = det [ri+j(t1, . . . , tm)]n−1

i,j=0 . (3.3)

Proof. By the definition of wm, we can write

qi+j+1(t1, . . . , tm−1; tm) =
∫
R

(t− tm)i+jdμm(t).

By (3.1) with fj(t) = gj(t) = (t − tm)j , we see that

det [qi+j+1(t1, . . . , tm−1; tm)]n−1
i,j=0 =

∫
Rn

[V (s1 − tm, . . . , sn − tm)]2
n∏

i=1
dμm(si)

=
∫
Rn

[V (s1, . . . , sn)]2
n∏

i=1
dμm(si),

where we have used the closed form of the Vandermond determinant in the last step. Applying (3.1) with 
fj(t) = gj(t) = tj , it follows that the last integral can be written as

∫
Rn

[V (s1, . . . , sn)]2
n∏

i=1
dμm(si) = det

⎡⎣∫
R

si+jdμm(s)

⎤⎦n−1

i,j=0

.

Directly from the definition, the integral on the right-hand side is ri+j(t1, . . . , tm), which proves (3.3). �
We note that each ri+j is a symmetric function of t1, . . . , tm, so that the right-hand side of the identity 

(3.3) is a symmetric function, which is, however, not obvious from the left-hand side of (3.3) because
qn(t1, . . . , tm−1; tm) is not symmetric in t1, . . . , tm.

Lemma 3.4 shows that we have established the identity (2.2) and, setting t1 = . . . = tm, the identity 
(2.5). Thus, we only need to prove our main theorems in terms of qn, that is, (2.1).

For qm1,...,mr
n , defined in (2.7), we can write its Hankel determinant as an integral.
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Lemma 3.5. For m1, . . . , mr ∈ N and n ∈ N,

det
[
qm1,...,mr

i+j+1 (t1, . . . , tr;x)
]n−1
i,j=0

= 1
n!

∫
Rn

n∏
i=1

(si − x)
r∏

i=1

n∏
j=1

(sj − ti)mi

∏
1≤i,j≤n

(si − sj)2
n∏

j=1
dμ(sj). (3.4)

Proof. Let m = m1 + . . . + mr. If m1 = . . . = mr = 1, then r = m and, by (3.2) and (3.7), it follows that

det [qi+j+1(u1, . . . , um;x)]n−1
i,j=0 = (−1)npn(dνm;x)

= 1
n!

∫
Rn

n∏
i=1

(si − x)
∏

1≤i,j≤n

(si − sj)2
n∏

j=1

m∏
i=1

(sj − ui)dμ(sj).

Setting u1 = . . . = um1 = t1, um1+1 = . . . = mm1+m2 = t2, . . . , in the above identity completes the 
proof. �

Our last lemma in this subsection is well known. We give a proof since the same procedure will be used 
later.

Lemma 3.6. For n, m ∈ N,

Wn,m(x, . . . , x) =
m−1∏
j=1

j! W (pn, . . . , pn+m−1;x).

Proof. In the determinant Wn,m(t1, . . . , tm), we set tj = t1 + jh for j = 1, . . . , m and rewrite the j-th 
row of the left hand side in terms of the forwarded difference �j−1

h pn+i(tj). Since 
∏

1≤i<j≤m(tj − ti) =∏m−1
j=1 j!hm(m−1)/2, taking the limit h → 0 completes the proof. �

3.2. Slater determinants

We prove the following result from which Theorem 2.1 can be deduced.

Theorem 3.7. For n ∈ N, m1, . . . , mr ∈ N and m := m1 + . . . + mr,

Sm1,...,mr,1
n (t1, . . . , tr, x) = Bm1,...,mr

n

r∏
i=1

(x− ti)mi

∏
1≤i<j≤r

(tj − ti)mimj

× det
[
qm1,...,mr

i+j+1 (t1, . . . , tr;x)
]n−1
i,j=0 , (3.5)

where

Bm1,...,mr
n := (−1)n(m+1)

r∏
i=1

mi∏
j=1

j!
m∏

k=1

detMk+n−1.

Proof. We first prove the case of m1 = . . . = mr = 1, for which r = m, by induction on m. That is, we 
prove
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det

⎡⎢⎢⎢⎣
pn(t1) pn+1(t1) . . . pn+m(t1)

...
...

...
...

pn(tm) pn+1(tm) . . . pn+m(tm)
pn(x) pn+1(x) . . . pn+m(x)

⎤⎥⎥⎥⎦ = Bn,m

m∏
i=1

(x− ti)
∏

1≤i<j≤m

(tj − ti)

× det [qi+j+1(t1, . . . , tm;x)]n−1
i,j=0 , (3.6)

where Bn,m = (−1)n(m+1) ∏m
k=1 detMk+n−1. For m = 0, (3.6) is the identity in the lemma. We now assume 

that (3.6) holds for a fixed m − 1 and prove that it holds with m − 1 replaced by m.
We can assume, without loss of generality, that w(u) is supported on [a, b] with a finite number a. 

Indeed, let χ[a,b] denote the indicator function of the interval [a, b]; if w is supported on (−∞, b], then we 
can establish the identity for the truncated weight function χ[a,b](x)w(x), and then take the limit a → −∞. 
Since both pk and qk can be written as integrals against the weight function, as seen by (3.2) and (3.4), and 
the identity (3.6) contains finitely many such polynomials, the limit exists as a → −∞ exists.

Since (3.6) is a polynomial identity, we only need to establish it for t1, . . . , tm less than a. Then dμm(t) :=
(t − t1) . . . (t − tm)dμ(t) is a nonnegative weight function on [a, b]. It follows by the Lemma 3.2 that pn(dνm)
is given by

pn(dνm;x) = (−1)n det [qi+j+1(t1, . . . , tm;x)]n−1
i,j=0 . (3.7)

By (3.3) the leading coefficient γn(dνm) of pn(dνm; x) is given by

γn(dνm) = detMn−1(dνm) = det [qi+j+1(t1, . . . , tm−1; tm)]n−1
i,j=0 . (3.8)

Moreover, by the Christoffel formula [15, p. 30], pn(dμm) can also be given by

pn(dνm;x) = An,m(t)∏m
k=1(x− tj)

det

⎡⎢⎢⎢⎣
pn(t1) pn+1(t1) · · · pn+m(t1)

... . . . . . .
...

pn(tm) pn+1(tm) · · · pn+m(tm)
pn(x) pn+1(x) · · · pn+m(x)

⎤⎥⎥⎥⎦ , (3.9)

where An,m(t) = An,m(t1, . . . , tm) is independent of x. In particular, the leading coefficient of xn+m in ∏m
i=1(x − ti)pn(dνm; x), which is the same as γn(dνm), is given by

γn(dνm) = An,m(t) detMn+m−1 det [pn+j−1(ti)]mi,j=1 ,

where we have used (1.2), from which it follows, by the induction hypothesis, that

γn(dνm) = An,m(t) detMn+m−1Bn,m

∏
1≤i<j≤m

(tj − ti) det [qi+j+1(t1, . . . , tm−1; tm)]n−1
i,j=0 .

Comparing the latter with (3.8) we obtain

1
An,m(t) = detMn+m−1Bn,m

∏
1≤i<j≤m

(tj − ti).

Consequently, combining (3.7) and (3.9) proves (3.6) with m − 1 replaced by m, where the constant Bn,m

satisfies the relation Bn,m+1 = (−1)n detMn+m−1Bn,m. This completes the induction and the proof of (3.6).
Now we apply the limit procedure in Lemma 3.6 on the identity (3.6). Setting tj = t1+jh for j = 1, . . . , m1

in the identity and using
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∏
1≤i<j≤m

(ti − tj) =
∏

1≤i<j≤m1

(ti − tj)
m1∏
i=1

m∏
j=m1+1

(ti − tj)
∏

m1+1≤i<j≤m

(ti − tj),

we take the limit h → 0 to conclude that

Wm1,1...,1,1
n (t1, tmr+1, . . . , tm, x) = Bm1,1,...,1

m∏
j=m1+1

(t1 − tj)m1
∏

m1+1≤i<j≤m

(ti − tj)

× (x− t1)m1

m∏
i=m1+1

(x− ti) det
[
qm1,1,...,1
i+j+1 (t1, tm1+1 . . . , tm;x)

]n−1

i,j=0
,

where the constant is given by

Bm1,1,...,1 = B1,1,...,1
m1−1∏
k=1

k!.

Repeating the above process by setting tm1+1 = . . . = tm1+m2 = t2, so that

m∏
j=m1+1

(t1 − tj)m1 = (t1 − t2)m1m2

m∏
j=m1+m2+1

(ti − tj)mi ,

it follows that (3.5) holds for Sm1,m2,1,...,1,1
n . Continuing this process completes the proof of (3.5). �

We note that Theorem 3.7 is more general than Theorem 2.1. Indeed, if m1 = . . . = mr = 1, then (3.5)
becomes (3.6), which is (2.1) after replacing x by tm+1 and then replacing m by m − 1. Together with 
Lemma (3.4), this completes the proof of Theorem 2.1.

Proof of Theorem 2.3. Taking mr-th derivative of (3.5) with respect to x and then setting x = tr, the 
left-hand side becomes Sm1,...,mr−1,mr+1

n (t1, . . . , tr), whereas the constant in the right-hand side becomes 
m!Bm1,...,mr

n and the main term becomes

∏
1≤i<j≤r−1

(tj − ti)mimj

r−1∏
i=1

(tr − ti)mi(mr+1) det
[
qm1,...,mr

i+j+1 (t1, . . . , tr; tr)
]n−1
i,j=0 .

By the definition of qn, it is easy to see that

qm1,...,mr

i+j+1 (t1, . . . , tr; tr) = q
m1,...,mr−1
i+j+mr+1 (t1, . . . , tr−1; tr).

Replacing mr by mr − 1 in the resulting identity proves (2.9). Then (2.10) follows from (3.3). �
When r = 1 and t1 = x, the identity (2.9) becomes (2.4).

Proof of Theorem 2.4. Combining (3.5) with (3.4), we obtain that

Sm1,...,mr,1
n (t1, . . . , tr, x) = Bm1,...,mr

n

r∏
i=1

(x− ti)mi

∏
1≤i<j≤r

(tj − ti)mimj

× 1
n!

∫ n∏
i=1

(si − x)
r∏

i=1

n∏
j=1

(sj − ti)mi

∏
1≤i,j≤n

(si − sj)2
n∏

j=1
dμ(sj).
Rn
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The integral representation of Sm1,...,mr
n (t1, . . . , tr) is deduced from comparing the leading coefficient of 

xn+m in the above identity. �
We note that Corollary 2.5 follows immediately from Theorem 2.4 and it also follows from (2.10), since 

the right hand side of (2.10) is the determinant of the moment matrix Mn−1(dμm1,...,mr
) of the weight 

function dμm1,...,mr
(t) = (t − t1)m1 · · · (t − tr)mrdμ(t), which is nonnegative if m1, . . . , mr are even positive 

integers.

3.3. Further results on determinants

For positive integers �1, �2, . . . , �n, we define

F [q�1 , . . . , q�n ](t1, . . . , tm;x) := det [q�i+j−1(t1, . . . , tm;x)]ni,j=1 .

With this notation, the identity (3.6) becomes

det [pn+j−1(ti)]mi,j=1 = Bn,m−1
∏

1≤i<j≤m

(tj − ti)F [q1, . . . , qn](t1, . . . , tm−1; tm).

Furthermore, for 1 ≤ j ≤ n + 1, we define

F [q1, . . . , q̂j , . . . , qn+1] := F [q1, . . . , qj−1, qj+1, . . . , qn+1].

Lemma 3.8. For m, n ∈ N,

F [qm, qm+1, . . . , qm+n−1](t;x) =
n∑

k=0

(x− t)kF [qm, . . . , q̂m+k, . . . , qm+n](x).

Proof. By Lemma 3.3, qk(t; x) = qk+1(x) + (x − t)qk(x). Using this relation and writing the determinant 
F (q1, . . . , qn)(t, x) as a sum of two determinants according to the fist row, we obtain

F [qm, . . . , qm+n−1](t;x)

=

∣∣∣∣∣∣∣∣∣
qm+1(x) · · · qn+m(x)
qm+1(t;x) · · · qn+m(t;x)

... · · ·
...

qm+n(t;x) · · · qm+n(t;x)

∣∣∣∣∣∣∣∣∣ + (x− t)

∣∣∣∣∣∣∣∣∣
qm(x) · · · qn+m−1(x)

qm+1(t;x) · · · qn+m(t;x)
... · · ·

...
qm+n(t;x) · · · qm+n(t;x)

∣∣∣∣∣∣∣∣∣ .
Applying the relation qk(t; x) = qk+1(x) + (x − t)qk(x) multiple times, it is easy to see that the first 
determinant simplifies to F [qm+1, . . . , qm+n](x). For the second determinant, we repeat the above pro-
cedure by splitting it into two determinants according to the second row, and simplify the first one to 
F [qm, ̂qm+1, qm+2. . . . , qm+n](x). Continuing this process, it is easy to see that the last determinant is 
F [qm, . . . , qm+n−1](x). �
Proposition 3.9. For m ≤ k ≤ n + m,∣∣∣∣∣∣∣∣∣∣

pn(x) · · · pn+m(x)
... · · ·

...
p
(m−1)
n (x) · · · p

(m−1)
n+m (x)

p
(k)
n (x) · · · p

(k)
n+m(x)

∣∣∣∣∣∣∣∣∣∣
= (−1)k−mC1,m

n k!F [qm, . . . , q̂k, . . . , qm+n](x). (3.10)
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Proof. Setting r = 2, m1 = 1, m2 = m, t1 = t and t2 = x in the identity (2.9), Lemma 3.8 yields∣∣∣∣∣∣∣∣∣
pn(t) · · · pn+m(t)
pn(x) · · · pn+m(x)

... · · ·
...

p
(m−1)
n (x) · · · p

(m−1)
n+m (x)

∣∣∣∣∣∣∣∣∣ = C1,m
n (x− t)mF [qm . . . , qn+m−1](t;x)

= C1,m
n

n∑
j=0

(x− t)m+jF [qm, . . . , q̂m+j , . . . , qm+n](x).

Taking k = m + j derivatives of the above identity with respect to t and setting t = x, we obtain (3.10)
after changing the first row to the last row. �

If we want more gaps in the derivatives of pn in the determinant, we will need, by (3.6), an extension of 
Lemma 3.8 to more than two variables. For example, by (3.6) and an obvious extension of Lemma 3.8 to 
more variables,∣∣∣∣∣∣

pn(x) pn+1(x) pn+2(x)
pn(t1) pn+1(t1) pn+2(t1)
pn(t2) pn+1(t2) pn+2(t2)

∣∣∣∣∣∣ = Bn,2(t2 − t1)(t2 − x)(t1 − x)F [q1, . . . , qn](t1, t2;x)

= Bn,2(x− t1)(x− t2)(t2 − t1)
n∑

k=0

(x− t1)kF [q1, . . . , q̂k+1, . . . qn+1](t2;x).

Writing t2 − t1 = (x − t1) − (x − t2), then taking derivatives with respect to t1 and setting t1 = x, it follows 
that ∣∣∣∣∣∣

pn(x) pn+1(x) pn+2(x)
p′′n(x) p′′n+1(x) p′′n+2(x)
pn(t2) pn+1(t2) pn+2(t2)

∣∣∣∣∣∣ = 2Bn,2(x− t2)

× (F [q1, . . . , qn](t2;x) − (x− t2)F [q2, . . . , qn+1](t2;x))

where we have used Lemma 3.8 in the second term. Consequently, expanding F in terms of the power of 
x − t2 by using Lemma 3.8, we derive the following:

Proposition 3.10. For k ≥ 2,∣∣∣∣∣∣∣
pn(x) pn+1(x) pn+2(x)
p′′n(x) p′′n+1(x) p′′n+2(x)
p
(k)
n (x) p

(k)
n+1(x) p

(k)
n+2(t2)

∣∣∣∣∣∣∣ = 2k!Bn,2

× (F [q1, . . . , q̂k, . . . , qn](x) − F [q2, . . . , q̂k, . . . , qn+1](x)) .

For j > 2, however, the above discussion leads to∣∣∣∣∣∣∣
pn(x) pn+1(x) pn+2(x)
p
(j)
n (x) p

(j)
n+1(x) p

(j)
n+2(x)

pn(t2) pn+1(t2) pn+2(t2)

∣∣∣∣∣∣∣ = Bn,2j!(x− t2)

× (F [q1, . . . , q̂j−2, . . . qn+1](t2;x) − (x− t2)F [q1, . . . , q̂j−1, . . . qn+1](t2;x)) .

In order to continue the above procedure, we have to expand the right-hand side in powers of x − t, for 
which we need a formula such as
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F [q1, . . . , q̂k, . . . , qn+1](t;x) =
k∑

i=1
(x− t)i−1

n+2∑
j=k+1

(x− t)j−k−1

× F [q1, . . . , q̂i, . . . , q̂j , . . . , qn+2](x).

Taking derivatives with respect to t2 and setting t2 = x, we can then write∣∣∣∣∣∣∣
pn(x) pn+1(x) pn+2(x)
p
(j)
n (x) p

(j)
n+1(x) p

(j)
n+2(x)

p
(k)
n (x) p

(k)
n+1(x) p

(k)
n+2(x)

∣∣∣∣∣∣∣
as a sum of the determinants of the form F [q1, . . . , ̂qi, . . . , ̂qj , . . . , qn+2](x).

4. Laguerre–Pólya class of entire functions and Toda lattices

4.1. The Laguerre–Pólya class

The real entire function ψ(x) is said to belong to the Laguerre–Pólya class LP if it can be represented as

ψ(x) = cxme−ax2+bx
∞∏
k=1

(1 + x/xk)e−x/xk ,

where c, b and xk are real, xk �= 0, a ≥ 0, m ∈ N0 and 
∑

x−2
k < ∞. The functions in LP, and only these, 

obey the property that they are local uniform limits, that is, uniform limits on the compact subsets of C, of 
polynomials with only real zeros. Such polynomials are usually called hyperbolic ones. The Laguerre–Pólya 
class has been studied extensively since the Riemann hypothesis is equivalent to the fact that the Riemann 
ξ-function, the one that Titchmarsh denotes by Ξ, belongs to LP. We refer to [4–6] and the references 
therein.

Laguerre gave a necessary condition for a function ψ to be in the Laguerre–Pólya class P ∈ LP: if ψ ∈ LP
then

L(ψ;x) = [ψ′(x)]2 − ψ(x)ψ′′(x) ≥ 0 ∀x ∈ R. (4.1)

Jensen established a necessary and sufficient condition. If ψ ∈ LP and its Maclaurin expansion is

ψ(x) =
∞∑
k=0

γk
xk

k! (4.2)

then its Jensen polynomials are defined by

gn(x) = gn(ψ;x) :=
n∑

j=0

(
n

j

)
γjx

j , n = 0, 1, . . . .

Jensen himself established the following fundamental theorem in [9] (see [12]):

Proposition 4.1. A function ψ with the Maclaurin expansion (4.2) belongs to LP if and only if all its Jensen 
polynomials gn(ψ; x), n ∈ N, are hyperbolic. Moreover, the sequence {gn(ψ; x/n)} converges locally uniformly 
to ψ(x).
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The generalized Jensen polynomials are defined by

gn,k(x) = gn,k(ψ;x) :=
n∑

j=0

(
n

j

)
γk+jx

j , n, k = 0, 1, . . . .

It is evident that gn,0(x) = gn(x) and gn,k(ψ; x) = gn(ψ(k); x), which shows, in particular, that 
gn,k(ψ; x/n) → ψ(k)(x) locally uniformly. Furthermore, it is easy to verify that g(k)

n+k(ψ; x) = (n+k)!
k! gn,k(x). 

Consequently, it follows from (4.1) that, if ψ ∈ LP then

Ln(ψ;x) := (n + 2)[g′n+1(ψ;x)]2 − (n + 1)gn(ψ;x) g′′n(ψ;x) ≥ 0, ∀x ∈ R. (4.3)

Let us call Ln(ψ; x) the Laguerre determinant of Jensen polynomials.
Craven and Csordas [4] (see also [5]) gave another criterion in terms of the Turán determinant of Jensen 

polynomials:

Proposition 4.2. Let the Maclaurin coefficients of the real entire function ψ be such that γk−1γk+1 < 0
whenever γk = 0, k = 1, 2, . . . . Then ψ ∈ LP if and only if

Tn(ψ;x) := g2
n(ψ;x) − g2

n−1(ψ;x)g2
n+1(ψ;x) > 0, ∀x ∈ R \ {0} and n ∈ N. (4.4)

Our main result on the determinant shows that if ψ is a Laplace transform of a non-negative measure, 
then the Laguerre polynomial inequalities and the Turán inequalities are equivalent. Let us consider the 
bilateral Laplace transform

Lμ(z) :=
∫
R

e−ztdμ(t), z ∈ C,

for a real nonnegative measure dμ and it formal Maclaurin expansion

Lμ(z) =
∞∑
k=0

μk

k! (−z)k, μk :=
∞∫
0

tkdμ(t).

Then its Jensen polynomials gn and gn,k are given by, with γk = (−1)kμk,

gn(Lμ; z) =
n∑

j=0

(
n

j

)
(−1)jμjz

j and gn,k(Lμ; z) =
n∑

j=0

(
n

j

)
(−1)j+kμj+kz

j .

A direct verification shows that

g(j)
n (Lμ; z) = n!

(n− j)!gn−j,j(Lμ; z), 0 ≤ j ≤ n. (4.5)

It turns out that gn is related to our qn and gn,k is related to our rk,n.

Lemma 4.3. For 0 ≤ k ≤ n,

gn(Lμ;x) = (−x)nqn
(
dμ; 1

x

)
and gn,k(Lμ;x) = (−1)n+kxnrn,k

(
dμ; 1

x

)
. (4.6)

Proof. These follow directly from the definitions of Jensen’s polynomials. �
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Theorem 4.4. For m, n ∈ N,

det[gm+i+j(x)]n−1
i,j=0 = xn(n−1) det

[
m!

(m + i + j)!g
(i+j)
m+i+j(x)

]n−1

i,j=0
. (4.7)

Proof. By (4.6), it is easy to see that

det[gm+i+j(x)]n−1
i,j=0 = xnm+n(n−1) det[qm+i+j(1/x)]n−1

i,j=0,

det
[

m!
(m + i + j)!g

(i+j)
m+i+j(x)

]n−1

i,j=0
= xnm det [rm,i+j(1/x)]n−1

i,j=0 ,

so that (4.7) follows from (2.5). �
In particular, when n = 2, the identity (4.7) becomes

[gm+1(x)]2 − gm(x)gm+2(x)

= x2

(m + 2)(m + 1)2
(
(m + 2)[g′m+1(x)]2 − (m + 1)gm(x)g′′m+2(x)

)
,

and it was observed by Craven and Csordas [4]. Identity (4.7) gives a direct relation between the Turán 
determinants and the Laguerre determinants of any order.

4.2. Toda lattices and orthogonal polynomials

The Toda lattice is a model for a nonlinear one-dimensional crystal that describes the motion of a chain 
of N particles with nearest neighbor interactions. The Hamiltonian of the Toda lattice is

H(p,q) =
N∑

k=1

(
p2
k(t)
2 + e−(qk+1(t)−qk(t))

)
,

where pk is the moment of the k-th particle and qk is its displacement from the equilibrium. With the change 
of variables of Flashka and Moser

ak = 1
2e

−(qk+1−qk)/2, bk = −1
2pk,

the equations of motion become

a′k(t) = ak(t)(bk(t) − bk(t)) and a′k(t) = 2(a2
k(t) − a2

k−1(t)).

Let L = (li,j) be the Jacobi matrix with diagonal entries lk,k = bk and off-diagonal ones lk,k+1 = lk+1,k = ak, 
and let B = (bi,j) whose only non-zero elements are the off-diagonal entries bk,k+1 = −bk+1,k = ak. Then 
the Lax form of the equations of motion is

d

d t
L = [B,L].

The matrix L is naturally associated with the sequence of orthonormal polynomials, with the time variable 
as a parameter, which satisfy the three term recurrence relation

an(t) pn+1(x; t) = (x− bn(t)) pn(x; t) − an−1(t) pn−1(x; t).
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These are in fact the characteristic polynomials of the principal minors of L and they are orthogonal with 
respect to the measure dμt(x) = etxdμ0(x), where dμ0 corresponds to t = 0. Once the direct problem with 
the initial data at t = 0 is solved and the polynomials pn(x, 0) are obtained, one needs to solve the inverse 
problem. A fundamental problem is to construct pn(x, t). In order to do so, as it is seen from (1.2), it suffices 
to calculate the moments mk(t) =

∫
xketxdμ0(x). These moments are obtained by successive differentiation 

of m0(t) because dmk(t)/dt = mk+1(t). Therefore, the principal task in solving the inverse problem is to 
determine

m0(t) =
∫

etxdμ0(x).

One possible approach is to approximate this formal Laplace transform by the Wronskians of the orthogonal 
polynomials pn(x; 0) = pn(dμ; x).

If dμ is a non-negative measure supported on [0, ∞), then Lμ(x) is the Laplace transform of μ. Let 
(Lμ)(k) be the k-th derivative of Lμ. Then, for x ≥ 0,

(Lμ)(k)(x) =
∫
R

(−t)ke−xtdμ(t) = (−1)kμ(x)
k ,

where μ(x)
n is the k-th moment of the measure dμ(x) := e−xtdμ(t). By (4.5) and gn((Lμ)(k); x) = gn,k(Lμ; x), 

we can rewrite (2.5) as

det[gm+i+j(Lμ;x)]n−1
i,j=0 = xn(n−1) det

[
gm((Lμ)(i+j);x)

]n−1

i,j=0
. (4.8)

Furthermore, by (4.6) and (2.4), we conclude that

Cn,m det
[
gm((Lμ)(i+j);x)

]n−1

i,j=0
= xnmW (pn, . . . , pn+m−1; 1/x).

In particular, when n = 1, we obtain the following corollary:

Corollary 4.5. For m ∈ N, x ∈ R,

gm(Lμ;x) = (−x)nm W (p1, . . . , pm; 1/x)∏m−1
k=1 k! detMk(dμ)

→ Lμ(x), m → ∞.

As another corollary of these relations, we deduce the following result:

Corollary 4.6. Let μ be a nonnegative Borel measure and assume that its Laplace transform Lμ is real 
analytic on [0, ∞). Then for n = 1, 2, . . . ,

det
[
(Lμ)(i+j)(x)

]n−1

i,j=0
≥ 0, x ∈ (0,∞).

Proof. From (4.6) and Corollary 2.5, the right hand side of (4.8) is nonnegative if m is an even positive 
integer. By its definition, it is easy to see that

gm(Lμ;x) =
∞∫

(1 − tx)mdμ(t).

0
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It follows from dominant convergence theorem that

lim
m→∞

g2m

(
(Lμ)(i+j); x

2m

)
= lim

m→∞

∞∫
0

(
1 − tx

2m

)2m

ti+jdμ(t) = (Lμ)(i+j)(x).

For fixed n, the above limit carries over to the determinant in the right hand side of (4.8). This completes 
the proof. �

In fact, since the determinant in the corollary is that of the moment matrix for dμ(x), it is positive.

5. Examples

In this section we illustrate our main results in the case of classical orthogonal polynomials. We recall 
that if p̃n(dμ) denotes the orthonormal polynomial of degree n with respect to the measure dμ, then

p̃n(dμ;x) =

√
detMn−1(dμ)
detMn(dμ) xn + . . . , (5.1)

which can be used to determine the determinant of Mn(w) for the classical orthogonal polynomials.

5.1. Hermite polynomials

For the weight function w(x) = e−x2
dx/

√
π, which is normalized so that μ0 = 1, its moments μk are 

given by

μ2k = (2k)!
22kk! =

(
1
2

)
k

and μ2k+1 = 0,

where (a)k := a(a +1) . . . (a +n −1) is the Pochhammer symbol. The corresponding orthogonal polynomials 
are the Hermite polynomials Hn(x),

Hn(x) =
∑

0≤k≤n/2

(−1)k n!
k!(n− 2k)! (2x)n−2k,

normalized by Hn(x) = 2nxn + . . . . The orthonormal Hermite polynomial is H̃n(x) = Hn(x)/
√

2nn!. Hence, 
it follows from (5.1) that the determinant of the moment matrix Mn for w(x) satisfies

detMn = n!
2n detMn−1 = . . . =

n∏
k=1

k!
2k .

Since the orthogonal polynomial pn which appears in (2.4) is given by

pn(x) = detMn−1
Hn(x)

2n ,

it follows that in this case

det [pn+j−1(ti)]mi,j=1 =
m∏ detMn+j−2

2n+j−1 det [Hn+j−1(ti)]mi,j=1 .

j=1
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Let w(t1, . . . , tm; x) = (x − t1) . . . (x − tm) e−x2 . According to (2.2), we obtain that

det
[
Hn+j−1(ti)/2n+j−1]m

i,j=1

V (t1, . . . , tm) = (−1)nm detMn−1(w(t1, . . . , tm))
detMn−1

, (5.2)

where Mn−1(w(t1, . . . , tm)) is the moment matrix of w(t1, . . . , tm). Furthermore, (1.6) shows that

qn+1(t1, . . . , tm−1; tm)w(t)dt =
∫
R

(t− tm)nw(t1, . . . , tm; t)dt

is the shifted moment of w(t1, . . . , tm). According to (2.1), we can replace the term detMn−1(w(t1, . . . , tm))
in (5.2) by the determinant of these shifted moments of wm.

By the definition of (1.3), it follows readily that

qn(x) =
n∑

j=0
μj

(
n

j

)
(−x)n−j = in

Hn(ix)
2n .

Furthermore, it is easy to see that, if n is even, then

rm,n(x) =
(1

2

)
n
2

(−x)m3F1

( −m
2 , −m+1

2 , n+1
2

1
2

;−x−2
)
,

and if n is odd, then

rm,n(x) = −m
(1

2

)
n+1

2

(−x)m+1
3F1

( −m+1
2 , −m+2

2 , n+2
2

3
2

;−x−2
)
.

Now, if uk = bkvk, then it is easy to verify that

det [u�i+j−1]ni,j=1 = b
∑n

i=1(�i+i−1) det [b�i+j−1]ni,j=1 .

Using this identity, it follows that (2.4) becomes, for the Hermite polynomials,

det
[
H

(k−1)
n+j−1(x)

]m
k,j=1

= (−1)mn2
m(m−1)

2 in(n+m−1)

2
n(n−1)

2
∏n−1

k=m k!
det [Hm+k+j(ix)]n−1

k,j=0

= (−1)mn2
(m+n)(m+n−1)

2∏n−1
k=m k!

det [rm,k+j(x)]n−1
k,j=0 .

The first equality appeared in [11, (33)].

5.2. Laguerre polynomials

For α > −1, the weight function wα(t) = tαe−t/Γ(α+1) has the moments μk(wα) = (α+1)k, k = 0, 1, . . . . 
The Laguerre polynomials are orthogonal with respect to wα and they are explicitly given by

Lα
n(x) = (α + 1)n

n!

n∑
j=0

(−n)jxj

(α + 1)jj!
= γnx

n + . . . , γn := (−1)n

n! .

The leading coefficient of the orthonormal Laguerre polynomial of degree n is given by 1/
√
n!(α + 1)n, so 

that, by (5.1),
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Mn(wα) =
n∏

k=1

Mk(wα)
Mk−1(wα) =

n∏
k=1

k!(α + 1)k.

Let wα(t1, . . . , tm; x) := (x − t1) . . . (x − tm)xαe−x. According to (2.2), we obtain that

det
[
Lα
n+j−1(ti)/γn+j−1

]m
i,j=1

V (t1, . . . , tm) = (−1)nm detMn−1(wα(t1, . . . , tm))
detMn−1(wα) ,

where Mn−1(wα(t1, . . . , tm)) is the moment matrix of wα(t1, . . . , tm).
By the definition of qn = qn(wα) in (1.3), we obtain that

qn(wα;x) =
n∑

j=0

(
n

j

)
(α + 1)n−j(−x)j

= (−1)n(−n− α)n
n∑

j=0

(−n)j(−x)j

(−n− α)jj!
= (−1)nn!L(−n−α−1)

n (−x).

This polynomial appeared in [11] as a constant multiple of L−n−2α
n (x), but −n − 2α should be −n −α− 1. 

Furthermore, by the definition of rm,n = rm,n(wα) in (1.4) and using (a)j+k = (a)j(a + j)k,

rm,n(wα;x) =
n∑

j=0

(
n

j

)
(α + 1)n+m−j(−x)j = (α + 1)nqm(wn+α;x)

= (−1)mm!(α + 1)nL(−n−m−α−1)
m (−x).

It follows that (2.4) becomes, for the Laguerre polynomials,

det
[
(Lα

n+j−1(x))(i−1)
]m
i,j=1

= Am,n det
[
(m + i + j)!L−m−i−j−α−1

m+i+j (−x)
]n−1

i,j=0

= Am,n(m!)n det
[
(α + 1)i+jL

−m−i−j−α−1
m (−x)

]n−1
i,j=0 ,

where

Am,n =
(−1)m(m−1)/2 ∏m−1

k=1 k!∏m
j=1(n + j − 1)! detMn−1(wα)

.

Notice that the two determinants in the second identity have the Laguerre polynomials of the same param-
eters but different degrees.

5.3. Gegenbauer polynomials

For λ > −1/2, the weight function wλ(t) = cλ(1 − t2)λ−1/2, where cλ = Γ(λ +1)/(Γ(1
2 )Γ(λ + 1

2)) is chosen 
so that μ0 = 1 and the moments are given by

μ2k =
(1
2 )k

(λ + 1)k
and μ2k+1 = 0, k = 0, 1, . . . .

The Gegenbauer polynomials Cλ
n are orthogonal with respect to wλ, they satisfy
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cλ

1∫
−1

Cλ
n(t)Cλ

m(t)wλ(t)dt = hλ
nδn,m, hλ

n := λ(2λ)n
(n + λ)n! ,

and those polynomials are given explicitly as

Cλ
n(x) = γλ

nx
n

2F1

(
−n

2 ,
1−n

2
1 − n− λ

; 1
x2

)
, γλ

n := (λ)n2n

n! . (5.3)

The leading coefficient γλ
n of Cλ

n divided by 
√
hλ
n is the leading coefficient of the orthonormal Gegenbauer 

polynomial of degree n. Hence, by (5.1),

Mn(wλ) =
n∏

k=1

Mk(wλ)
Mk−1(wλ) =

n∏
k=1

λ(2λ)kk!
(k + λ)(λ)2k22k = λn

(λ + 1)n

n∏
k=1

(2λ)kk!
(λ)2k22k .

Let wλ(t1, . . . , tm; x) := (x − t1) . . . (x − tm)(1 − x)λ−1/2. According to (2.2), we obtain that

det
[
Cλ

n+j−1(ti)/γλ
n+j−1

]m
i,j=1

V (t1, . . . , tm) = (−1)nm detMn−1(wλ(t1, . . . , tm))
detMn−1(wλ) , (5.4)

where Mn−1(wλ(t1, . . . , tm)) is the moment matrix of wλ(t1, . . . , tm).

Lemma 5.1. For wλ and n = 0, 1, . . . , qn = qn(wλ) is given by

qn(x) = n!
2n(λ + 1)n

C−n−λ
n (x) = (x2 − 1)n/2

C
λ+1/2
n

(
−x/

√
x2 − 1

)
C

λ+1/2
n (1)

. (5.5)

Proof. Directly from the definition of (1.3), it is easy to see that

qn(x) =
n∑

j=0

(
n

j

)
μj(−x)n−j = (−x)n2F1

(
−n

2 ,
1−n

2
λ + 1 ; 1

x2

)
. (5.6)

Writing λ + 1 = 1 − n − (−n − λ) and using (−λ − n)n = (−1)n(λ + 1)n, the first expression for qn follows 
from (5.3). Applying the identity [1, (2.3.14)],

2F1

(
−n, b

c
;x
)

= (c− b)n
(c)n 2F1

(
−n, b

b + 1 − n− c
; 1 − x

)
to the right hand side of (5.6), it is easy to see that we obtain

qn(x) = (−x)n
(λ + 1

2 )n2n

(2λ + 1)n 2F1

(
−n

2 ,
1−n

2
1
2 − n− λ

; 1 − 1
x2

)
= n!

(2λ + 1)n
(x2 − 1)n/2Cλ+1/2

n

(
−x/

√
x2 − 1

)
by (5.3), which is the second representation of qn since Cλ+1/2

n (1) = (2λ + 1)n/n!. �
As in the case of the Hermite polynomials, we have the following formulas for rm,n(x). If n is even then

rm,n(x) =
(1
2 )n

2

(λ + 1)n
(−x)m−1

3F2

( −m+1
2 , −m+2

2 , n+2
2

3 n+1 ;−x−2
)
,

2 2 , λ + 1 + 2 ,
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where as if n is odd, then

rm,n(x) = −m
(1
2 )n+1

2

(λ + 1)n+1
2

(−x)m3F2

( −m
2 , −m+1

2 , n+1
2

1
2 , λ + 1 + n

2 ,
;−x−2

)
.

It follows that (2.4) becomes, for the Gegenbauer polynomials,

det
[
(Cλ

n+j−1(x))(i−1)
]m
i,j=1

=
(−1)mn

∏m−1
k=1 k!

∏m
j=1 γ

λ
n+j−1

detMn−1(wλ) (x2 − 1)m(m+n−1)/2

× det
[
C

λ+1/2
m+i+j(−x/

√
x2 − 1)

C
λ+1/2
m+i+j(1)

]n−1

i,j=0

=
(−1)mn

∏m−1
k=1 k!

∏m
j=1 γ

λ
n+j−1

detMn−1(wλ) det
[
rλm,i+j(x)

]n−1
i,j=0 .

The first equality already appeared in [11].
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