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Let A be a complex semisimple Banach algebra with identity, and denote by σ′(x)
and ρ(x) the nonzero spectrum and spectral radius of an element x ∈ A, respec-
tively. We explore the relationship between elements a, b ∈ A that satisfy one of the 
following conditions: (1) σ′(ax) ⊆ σ′(bx) for all x ∈ A, (2) ρ(ax) ≤ ρ(bx) for all 
x ∈ A. The latter problem was identified by Brešar and Špenko in [7]. In particular, 
we use these conditions to spectrally characterize prime Banach algebras amongst 
the class of Banach algebras with nonzero socles, as well as to obtain spectral char-
acterizations of socles which are minimal two-sided ideals.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

By A we denote a complex Banach algebra with identity element 1 and invertible group G(A). Moreover, 
it will be assumed throughout that A is semisimple (i.e. the Jacobson radical of A, denoted Rad A, only 
contains 0). We will write Z(A) for the centre of A, that is, for the set of all x ∈ A such that xy = yx

for all y ∈ A. For x ∈ A we denote by σA(x) = {λ ∈ C : λ1 − x /∈ G(A)}, ρA(x) = sup {|λ| : λ ∈ σA(x)}
and σ′

A(x) = σA(x) − {0} the spectrum, spectral radius and nonzero spectrum of x, respectively. If the 
underlying algebra is clear from the context, then we shall agree to omit the subscript A in the notation 
σA(x), ρA(x) and σ′

A(x). This convention will also be followed in some of the forthcoming definitions. We 
shall also agree to reserve the notation ∼= exclusively for algebra isomorphisms. Moreover, we recall that an 
element x of A is called quasinilpotent if σ(x) = {0}.

In [7] M. Brešar and Š. Špenko consider two interesting problems which resulted from certain questions 
centred around Kaplansky’s problem on spectrum preserving maps [10]:

Problem 1. Suppose that a, b ∈ A satisfy σ(ax) = σ(bx) for all x ∈ A. Does this imply a = b?
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Problem 2. Suppose that a, b ∈ A satisfy

ρ(ax) ≤ ρ(bx) for all x ∈ A. (1.1)

What is the relation between a and b?

The first problem has been settled by G. Braatvedt and R. Brits in [5]:

Theorem 1.1. [5, Theorem 2.1, Theorem 2.6] Let a, b ∈ A. Then the following are equivalent:

(i) a = b.
(ii) σ(ax) = σ(bx) for all x ∈ A such that ρ (x− 1) < 1.
(iii) σ(a + x) = σ(b + x) for all x in some open neighbourhood of −b.

Problem 2, as to be expected, is slightly more intricate. Evidence such as [7, Example 3.3] suggests that 
the answer to this question may depend on the algebra or on the elements under consideration. Indeed, in 
the special situation where b = 1 it was found in [6] that a must then belong to Z(A). Moreover, in [7]
Brešar and Špenko investigated the special case where A is a prime C∗-algebra. The conclusion in this case 
is that the elements a and b satisfying (1.1) are necessarily linearly dependent. We recall that A is a prime 
algebra if all nonzero two-sided ideals I and J of A satisfy IJ �= {0}. In particular, we will see that the 
linear dependence obtained in the prime C∗-algebra case extends to the case where A is assumed to be 
prime with a nonzero socle. Furthermore, the consideration of Problem 2 leads to spectral characterizations 
of socles which are minimal two-sided ideals. Other characterizations of such socles were recently obtained 
by the authors and G. Braatvedt (cf. [12, Theorem 3.8, Theorem 3.9] and [11, Theorem 4.4]).

The notions of rank, trace and determinant are well-established for operator theory. Moreover, in a more 
general setting, these notions provide an analytic means to investigate the socle of a semisimple Banach 
algebra. This latter idea was made precise by B. Aupetit and H. Du. T. Mouton in [3] where they managed 
to show that these notions can be developed, without the use of operators, in a purely spectral and analytic 
manner. This paper is fundamental to our discussion here, so as in [12] we briefly summarize some of the 
theory in [3] before we proceed.

For each nonnegative integer m, let

Fm = {a ∈ A : #σ′(xa) ≤ m for all x ∈ A} ,

where the symbol #K denotes the number of distinct elements in a set K ⊆ C. Following Aupetit and 
Mouton in [3], we define the rank of an element a of A as the smallest integer m such that a ∈ Fm, if it 
exists; otherwise the rank is infinite. In other words,

rank (a) = sup
x∈A

#σ′(xa).

If a ∈ A is a finite-rank element, then

E(a) = {x ∈ A : #σ′(xa) = rank (a)}

is a dense open subset of A [3, Theorem 2.2]. A finite-rank element a of A is said to be a maximal finite-
rank element if rank (a) = #σ′(a). With respect to rank it is useful to know results such as Jacobson’s 
Lemma [1, Lemma 3.1.2], the Spectral Mapping Theorem [1, Theorem 3.3.3] and the Scarcity Theorem 
[1, Theorem 3.4.25]. It can be shown [3, Corollary 2.9] that the socle, written SocA, of a semisimple Banach 
algebra A coincides with the collection 

⋃∞ Fm of finite rank elements. We mention a few elementary 
m=0
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properties of the rank of an element [3, p. 117]. Firstly, #σ′(a) ≤ rank (a) for all a ∈ A. Furthermore, 
rank (xa) ≤ rank (a) and rank (ax) ≤ rank (a) for all x, a ∈ A, with equality if x ∈ G(A). Moreover, the 
rank is lower semicontinuous on Soc A. It is also subadditive, i.e. rank (a + b) ≤ rank (a) + rank (b) for all 
a, b ∈ A [3, Theorem 2.14]. Finally, if p is a projection of A, then p has rank one if and only if p is a minimal 
projection, that is, if pAp = Cp [3, p. 117]. It is also worth mentioning here that a projection p is minimal 
if and only if Ap is a nontrivial left ideal which does not contain any left ideals other than {0} and itself, 
that is, if and only if Ap is a nontrivial minimal left ideal [4, Lemma 30.2]. A similar result holds true for 
the right ideal pA. We will also define a minimal two-sided ideal in this manner, that is, as a two-sided ideal 
which does not contain any two-sided ideals other than {0} and itself.

The following result is fundamental to the theory developed in [3] and is mentioned here for convenient 
referencing later on:

Diagonalization Theorem. [3, Theorem 2.8] Let a ∈ A be a nonzero maximal finite-rank element and de-
note by λ1, . . . , λn its nonzero distinct spectral values. Then there exist n orthogonal minimal projections 
p1, . . . , pn ∈ Aa ∩ aA such that

a = λ1p1 + · · · + λnpn.

In particular, the Diagonalization Theorem easily implies the well-known result that every element of the 
socle is Von Neumann regular, that is, for each a ∈ SocA, there exists an x ∈ SocA ⊆ A such that a = axa

[3, Corollary 2.10].
If a ∈ Soc A we define the trace of a as in [3] by

Tr (a) =
∑

λ∈σ(a)

λm (λ, a) ,

where m(λ, a) is the multiplicity of a at λ. A brief description of the notion of multiplicity in the abstract case 
goes as follows (for particular details one should consult [3]): Let a ∈ SocA, λ ∈ σ(a) and let B(λ, r) be an 
open disk centred at λ such that B(λ, r) contains no other points of σ(a). It can be shown [3, Theorem 2.4]
that there exists an open ball, say U ⊆ A, centred at 1 such that # [σ(xa) ∩B(λ, r)] is constant as x runs 
through E(a) ∩U . This constant integer is the multiplicity of a at λ. It can also be shown that m (λ, a) ≥ 1
and

∑
α∈σ(a)

m(α, a) =
{

1 + rank (a) if 0 ∈ σ(a)
rank (a) if 0 /∈ σ(a).

(1.2)

Furthermore, we note that the trace has the following useful properties:

(i) Tr is a linear functional on Soc A ([3, Theorem 3.3] and [12, Lemma 2.1]).
(ii) Tr (ab) = Tr (ba) for each a ∈ Soc A and b ∈ A [12, Corollary 2.5].
(iii) For any a ∈ A, if Tr (ax) = 0 for each x ∈ Soc A, then aSoc A = {0}. Moreover, if a ∈ Soc A, then 

a = 0 [3, Corollary 3.6].
(iv) If f is an analytic function from a domain D of C into SocA, then λ 	→ Tr (f(λ)) is holomorphic on D

[3, Theorem 3.1].

Let λ ∈ σ(a) and suppose that B(λ, 2r) separates λ from the remaining spectrum of a. Let fλ be the 
holomorphic function which takes the value 1 on B(λ, r) and the value 0 on C − B(λ, r). If we now let Γ0
be a smooth contour which surrounds σ(a) and is contained in the domain of fλ, then
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p (λ, a) = fλ(a) = 1
2πi

∫
Γ0

fλ(α) (α1 − a)−1
dα

is referred to as the Riesz projection associated with a and λ. By the Holomorphic Functional Calculus, 
Riesz projections associated with a and distinct spectral values are orthogonal, all commute with a and for 
λ �= 0

p (λ, a) = a

2πi

∫
Γ0

fλ (α)
α

(α1 − a)−1
dα ∈ Aa ∩ aA. (1.3)

It is also worth mentioning that the orthogonal minimal projections obtained in the conclusion of the 
Diagonalization Theorem are in fact the Riesz projections of the maximal finite-rank element associated 
with each of its corresponding nonzero spectral values.

In the operator case, A = B(X) (bounded linear operators on a Banach space X), the “spectral” rank 
and trace both coincide with the respective classical operator definitions.

2. Uniqueness under spectral variation in the socle

Let a ∈ A. J. Zemánek has shown that ρ(a + x) = 0 for all quasinilpotent x in A if and only if 
a ∈ Rad A [1, Theorem 5.3.1]. In order to get some feeling for the subject matter, we start by utilizing the 
aforementioned result to show that condition (iii) in Theorem 1.1 can be substantially relaxed:

Theorem 2.1. Let a, b ∈ A. Then the following are equivalent:

(i) a = b.
(ii) ρ (a + x) ≤ ρ (b + x) for all x in some open neighbourhood of −b.

Proof. Certainly, (i) ⇒ (ii). We therefore proceed to show that (ii) ⇒ (i). We claim that ρ (a− b + q) = 0
for all quasinilpotent elements q in A: Let q be any quasinilpotent element in A. Consider the analytic 
function f : C → A defined by f(λ) = a − b + λq. By hypothesis and the Spectral Mapping Theorem, there 
exists a real number k > 0 such that ρ (a− b + λq) ≤ ρ (λq) = 0 whenever |λ| < k. Hence, σ (f (λ)) = {0}
whenever |λ| < k. By the Scarcity Theorem we may therefore conclude that σ (f (λ)) = {α (λ)} for all 
λ ∈ C, where α is a mapping from C into C. By [1, Corollary 3.4.18], α is an entire function. However, 
α (λ) = 0 whenever |λ| < k, and so, from basic Complex Analysis it must be the case that α (λ) = 0 for all 
λ ∈ C. This proves our claim. Consequently, a − b ∈ Rad A by [1, Theorem 5.3.1]. Thus, by semisimplicity 
we have the result. �
Theorem 2.2. Let a, b ∈ Soc A. Then a = b if and only if any one of the following holds true:

(i) σ(ax) = σ(bx) for all rank one elements x ∈ A.
(ii) σ(a + x) = σ(b + x) for all rank one elements x ∈ A.

Proof. Obviously, if a = b then conditions (i) and (ii) both hold. So let a, b ∈ Soc A and assume that 
condition (i) holds. Then Tr (ax) = Tr (bx) for all rank one elements x ∈ A. Let y ∈ Soc A be arbitrary. 
Clearly, Tr (ay) = Tr (by) if y = 0. So assume that y �= 0. By the Diagonalization Theorem and the 
density of E(y) there exist rank one projections p1, . . . , pn, α1, . . . , αn ∈ C and a u ∈ G(A) such that 
y = α1up1 + · · · + αnupn. Thus, by the linearity of the trace we readily obtain Tr (ay) = Tr (by) for all 
y ∈ Soc A. Consequently, Tr ((a− b) y) = 0 for all y ∈ Soc A. Thus, since a − b ∈ Soc A, it follows from 
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[3, Corollary 3.6] that a − b = 0. Next take a, b ∈ Soc A and assume that condition (ii) holds. Fix any 
λ /∈ σ(a) ∪ σ(b) and 0 �= α ∈ C. If x ∈ A has rank one, then we have

λ1 −
(
a + α−1x

)
∈ G(A) ⇔ λ1 −

(
b + α−1x

)
∈ G(A).

Consequently,

(λ1 − a)
(
1 + (λ1 − a)−1

α−1x
)
∈ G(A) ⇔ (λ1 − b)

(
1 + (λ1 − b)−1

α−1x
)
∈ G(A).

Since the first term on the left of each expression is invertible, it follows that

α ∈ σ
(
(λ1 − a)−1

x
)
⇔ α ∈ σ

(
(λ1 − b)−1

x
)
.

Hence, σ′
(
(λ1 − a)−1

x
)

= σ′
(
(λ1 − b)−1

x
)

for all rank one elements x ∈ A. Thus, Tr
(
(λ1 − a)−1

x
)

=

Tr
(
(λ1 − b)−1

x
)

for all rank one elements x ∈ A. Moreover, since

(λ1 − a)−1 − (λ1 − b)−1 = (λ1 − a)−1 (a− b) (λ1 − b)−1 ∈ Soc A,

it follows as before from [3, Corollary 3.6] that (λ1 − a)−1− (λ1 − b)−1 = 0. Hence, a = b, which establishes 
the result. �

Let J be a two-sided ideal of A. Denote by l (J) the left-annihilator of J , that is,

l (J) := {x ∈ A : xJ = {0}} .

Similarly, we define the right-annihilator of J by

r (J) := {x ∈ A : Jx = {0}} .

Theorem 2.3. Suppose that SocA �= {0}. Then l (Soc A) = {0} if and only if the following are equivalent for 
any a, b ∈ A:

(i) a = b.
(ii) σ(ax) = σ(bx) for all rank one elements x ∈ A.
(iii) σ(a + x) = σ(b + x) for all rank one elements x ∈ A.

Proof. Suppose first that l (Soc A) = {0} and let a, b ∈ A. Certainly, (i) ⇒ (ii) and (i) ⇒ (iii). Using 
the argument in the proof of Theorem 2.2 we see that (ii) implies Tr ((a− b) y) = 0 for all y ∈ Soc A. 
Hence, by [3, Corollary 3.6] it follows that (a− b) Soc A = {0}. Hence, a − b ∈ l (Soc A) = {0}, so 
(ii) ⇒ (i). Similarly, the argument in the proof of Theorem 2.2 can also be used to show that (iii) im-
plies Tr

((
(λ1 − a)−1 − (λ1 − b)−1

)
y
)

= 0 for all y ∈ Soc A, where λ /∈ σ(a) ∪ σ(b) is fixed. Hence, by 

[3, Corollary 3.6]

(λ1 − a)−1 − (λ1 − b)−1 ∈ l (Soc A) = {0} .

Thus, (iii) ⇒ (i). This proves the forward implication. For the converse, we argue contrapositively. Suppose 
that l (Soc A) �= {0}. Let 0 �= a ∈ l (Soc A) be fixed. Moreover, pick y ∈ Soc A. Since a �= 0, a + y �= y. 
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However, since aSoc A = {0}, it follows that σ ((a + y)x) = σ(yx) for all rank one elements x ∈ A. Hence, 
(ii) � (i). This completes the proof. �

In [5, Theorem 2.5] it was shown that properties (i) to (iii) are equivalent for any two bounded linear oper-
ators on a Banach space X. Consequently, Theorem 2.3 implies the well-known fact that l (Soc B(X)) = {0}.

Lemma 2.4. Suppose that Soc A is a minimal two-sided ideal. Let a, b ∈ A and suppose that b = pt, where 
p = p2 ∈ Soc A and t ∈ G(A). If ρ(ax) ≤ ρ(bx) for all x ∈ A, then a = λb for some λ ∈ C with |λ| ≤ 1.

Proof. If p = 0, then by semisimplicity a = 0 and we are done. So assume that p �= 0. By hypothesis, 
ρ (a′x) ≤ ρ(px) for all x ∈ A, where a′ = at−1. It will suffice to show that a′ = λp for some λ ∈ C, since 
of course the assumption in conjunction with the Spectral Mapping Theorem automatically yields |λ| ≤ 1. 
Replacing x by (1 − p)x, we get ρ (a′ (1 − p)x) = 0 for all x ∈ A. Thus, a′ (1 − p) ∈ Rad A = {0}, and 
so, a′ = a′p. Moreover, if we replace x by x (1 − p), then by Jacobson’s Lemma we have ρ ((1 − p) a′x) = 0
for all x ∈ A. Hence, as before, the semisimplicity of A yields a′ = pa′. Consequently, a′ = pa′p. Now, by 
[2, Lemma 2.5] pAp is a closed semisimple subalgebra of A with identity p. Moreover, σ′

pAp(pxp) = σ′
A(pxp)

for all x ∈ A. Hence, by hypothesis, we have

ρpAp ((pa′p) (pxp)) ≤ ρpAp (pxp) for all x ∈ A.

Hence, by the result in [6] it follows that a′ ∈ Z(pAp). However, since SocA is a minimal two-sided ideal, by 
[12, Theorem 3.8, Theorem 3.9] we may infer that pAp ∼= Mn (C). Consequently, Z(pAp) = Cp. So, a′ = λp

for some λ ∈ C. The result now follows. �
Let p be a projection of A with rank (p) ≤ 1. By Jp we denote the two-sided ideal generated by p, that 

is, we let

Jp :=

⎧⎨
⎩

n∑
j=1

xjpyj : xj , yj ∈ A,n ≥ 1 an integer

⎫⎬
⎭ .

By [11, Lemma 2.2] these Jp are minimal two-sided ideals. Moreover, by [12, Lemma 3.5] there exists a 
collection of pairwise orthogonal two-sided ideals {Jp : p ∈ P} such that every element of Soc A can be 
written as a finite sum of members of the Jp. In particular, this implies that Soc A is a minimal two-sided 
ideal whenever A is prime.

Theorem 2.5. Soc A is a minimal two-sided ideal if and only if the following are equivalent for any a ∈ A

and b ∈ Soc A:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A

(ii) a = λb for some λ ∈ C with |λ| ≤ 1.

Proof. Suppose first that Soc A is a minimal two-sided ideal and let a ∈ A and b ∈ Soc A. Obviously, 
(ii) ⇒ (i), so assume that condition (i) holds. If b = 0, then by hypothesis and the semisimplicity of A
we have a = 0. So assume b �= 0. By the Diagonalization Theorem and the density of E(b) we can find 
mutually orthogonal rank one projections p1, . . . , pn, α1, . . . , αn ∈ C − {0} and a u ∈ G(A) such that 
b = α1p1u + · · · + αnpnu. Observe firstly that if we set p := p1 + · · · + pn, then p2 = p and pb = b. 
Consequently, by hypothesis and Jacobson’s Lemma it follows that ρ ((1 − p) ax) = 0 for all x ∈ A. Hence, 
(1 − p) a ∈ Rad A = {0}, and so, a = pa. By orthogonality it follows that 

(
α−1

1 p1 + · · · + α−1
n pn

)
b = pu. 

Thus, by hypothesis and Jacobson’s Lemma it follows that
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ρ
((
α−1

1 p1 + · · · + α−1
n pn

)
ax

)
≤ ρ (pux) for all x ∈ A.

Thus, by Lemma 2.4 we may infer that

(
α−1

1 p1 + · · · + α−1
n pn

)
a = λpu for some λ ∈ C.

Hence,

a = pa = (α1p1 + · · · + αnpn)
(
α−1

1 p1 + · · · + α−1
n pn

)
a

= (α1p1 + · · · + αnpn) (λpu)

= λ (α1p1u + · · · + αnpnu) = λb.

This proves the forward implication. For the reverse implication we argue contrapositively. Suppose that 
Soc A is not a minimal two-sided ideal. Then by [12, Lemma 3.5] we may infer the existence of two rank 
one projections, say p and q, such that JpJq = JqJp = {0}. In particular, p �= λ (p + q) for all λ ∈ C. Let 
x ∈ A be arbitrary. Then (px)(qx) = (qx)(px) = 0. Hence, by [1, Chapter 3, Exercise 9] it follows that 
σ′((p +q)x) = σ′(px) ∪σ′(qx). So, ρ(px) ≤ ρ((p +q)x). Since x ∈ A was arbitrary, this shows that (i) � (ii), 
which completes the proof. �
Lemma 2.6. Suppose that for any a, b ∈ A we have that the following are equivalent:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A

(ii) a = λb for some λ ∈ C with |λ| ≤ 1.

Then A is a prime algebra.

Proof. We shall argue contrapositively. If A is not prime, then we can find two nonzero two-sided ideals 
I and J such that IJ = {0}. Let 0 �= a ∈ I. If a ∈ J , then aAa = {0}. But then, by semisimplicity, it 
follows that a = 0 which is absurd. Hence, a /∈ J . Pick 0 �= b ∈ J . In particular then, a �= λb for all λ ∈ C. 
We firstly claim that I ⊆ r(J). Let x ∈ l(J) and let y ∈ J be arbitrary. By Jacobson’s Lemma and the 
fact that J is a two-sided ideal, it follows that ρ(yxw) = 0 for all w ∈ A. Hence, yx ∈ Rad A = {0}. 
Since y ∈ J was arbitrary, it follows that I ⊆ r(J) as claimed. Since a �= λb for all λ ∈ C and b �= 0, we 
may infer that a �= λ (b + a) for all λ ∈ C. Let x ∈ A be arbitrary. Then ax ∈ l(J) ∩ r(J). Consequently, 
(ax)(bx) = (bx)(ax) = 0. Thus, by [1, Chapter 3, Exercise 9] it follows that σ′((a + b)x) = σ′(ax) ∪ σ′(bx). 
Hence, ρ(ax) ≤ ρ((a + b)x). Since x ∈ A was arbitrary, this gives the result. �
Theorem 2.7. Let A be a C∗-algebra. Then A is prime if and only if for any a, b ∈ A we have that the 
following are equivalent:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A

(ii) a = λb for some λ ∈ C with |λ| ≤ 1.

Proof. This is immediate from [7, Theorem 3.7] and Lemma 2.6. �
Lemma 2.8. Suppose that SocA is a minimal two-sided ideal and that l (Soc A) = {0}. Then for any a, b ∈ A

we have that the following are equivalent:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A

(ii) a = λb for some λ ∈ C with |λ| ≤ 1.
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Proof. Let a, b ∈ A. If a = 0, then we are done. So assume a �= 0. It suffices to show that (i) ⇒ (ii). Let 
y ∈ Soc A be arbitrary but fixed. By hypothesis, ρ(ayx) ≤ ρ(byx) for all x ∈ A. Hence, by Theorem 2.5
there exists a λy ∈ C such that ay = λyby. Let fb : Soc A → C and fa : Soc A → C be defined as 
follows: fb(y) = Tr (by) and fa(y) = Tr (ay) for y ∈ Soc A. Then fb and fa are nonzero linear functionals 
on the linear space Soc A. Moreover, by our first observation it follows that Ker fb ⊆ Ker fa. Hence, from 
linear algebra (see [9, p. 10]), it follows that fa = λfb for some λ ∈ C. Thus, by the linearity of the trace, 
Tr ((a− λb) y) = 0 for all y ∈ Soc A. Hence, by [3, Corollary 3.6] it follows that a − λb ∈ l (Soc A) = {0}
which gives the result. �
Theorem 2.9. Suppose that Soc A �= {0}. Then A is prime if and only if for any a, b ∈ A we have that the 
following are equivalent:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A

(ii) a = λb for some λ ∈ C with |λ| ≤ 1.

Proof. The reverse implication follows immediately from Lemma 2.6. So assume that A is prime. Since 
Soc A �= {0}, we may infer that l (Soc A) = {0}. Moreover, since A is prime, it readily follows from the 
remark preceding Theorem 2.5 that Soc A is a minimal two-sided ideal. The forward implication therefore 
follows from Lemma 2.8. �
Corollary 2.10. Suppose that SocA �= {0}. Then A is prime if and only if SocA is a minimal two-sided ideal 
and l (Soc A) = {0}.

Proof. This is a direct consequence of Lemma 2.8 and Theorem 2.9. �
Let 0 �= a ∈ A and 0 �= b ∈ Soc A. It turns out that the condition

σ′(ax) ⊆ σ′(bx) for all x ∈ A ⇒ a = b

can also be used to characterize socles which are minimal two-sided ideals. Firstly, however, we will prove 
some related results.

The next result was obtained by G. Braatvedt and R. Brits in [5]. We state it together with a short new 
proof based on the spectral trace:

Theorem 2.11. [5, Corollary 2.3] Let N be an arbitrary nonempty open subset of A and let a, b ∈ A. If σ(ax)
and σ(bx) are finite and equal for all x ∈ N , then a = b.

Proof. Let y ∈ A. A standard argument using Baire’s Category Theorem and the Scarcity Theorem can be 
used to show that if σ(yx) is finite for all x in some nonempty open set N of A, then y has finite rank. We 
may therefore infer that both a and b have finite rank. Furthermore, since E(a) and E(b) are both open 
dense subsets of A, it readily follows that E(a) ∩E(b) is a dense subset of A. Consequently, we can find an 
x0 ∈ N such that ax0 and bx0 are both maximal finite-rank elements. Let y ∈ A be arbitrary but fixed, and 
define analytic functions from C into Soc A as follows:

f(λ) = a [(1 − λ)x0 + λy] and g(λ) = b [(1 − λ)x0 + λy] (λ ∈ C) .

Since (E(a) ∩ E(b)) ∩ N is a nonempty open set and x0 belongs to this set, there exists a real number 
ε > 0 such that for all λ ∈ B (0, ε) we have that f (λ) and g (λ) are maximal finite-rank elements and 
σ (f (λ)) = σ (g (λ)). By the Diagonalization Theorem the functions
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λ 	→ Tr (f (λ)) and λ 	→ Tr (g (λ))

agree on B (0, ε). Thus, since these functions are entire by [3, Theorem 3.1], it must be the case that they 
agree on all of C. With the particular value λ = 1 we get Tr (ay) = Tr (by). Since y ∈ A was arbitrary we 
conclude by [3, Corollary 3.6] that a = b. �

From Theorem 2.11 it is clear that if σ(ax) and σ(bx) are finite and equal for all x in some nonempty 
open set N , then σ(ax) = σ(bx) for all x ∈ A. In fact, we have the following result:

Lemma 2.12. Let N be an arbitrary nonempty open subset of A and let a, b ∈ A. If σ(bx) is finite and 
σ′(ax) ⊆ σ′(bx) for all x ∈ N , then σ′(ax) ⊆ σ′(bx) for all x ∈ A.

Proof. The hypotheses allow us to infer that both a and b are finite-rank elements. Recall that E(a) and 
E(b) are open and dense in A. Hence, E(a) ∩E(b) is open and dense in A. Fix any x0 ∈ (E(a) ∩E(b))∩N

and let x ∈ A be arbitrary. Define the following analytic functions from C into Soc A:

f (λ) = a [(1 − λ)x0 + λx] and g (λ) = b [(1 − λ)x0 + λx] (λ ∈ C) .

Let rank (a) = k and rank (b) = n and note that k ≤ n (since (E(a) ∩E(b)) ∩ N �= ∅). By the Scarcity 
Theorem there exist two closed and discrete subsets of C, say Fa and Fb, such that #σ′ (f (λ)) = k for all 
λ ∈ C − Fa and #σ′ (g (λ)) = n for all λ ∈ C − Fb. Moreover, by the Scarcity Theorem, our choice of x0, 
and the definitions of f and g, there exists a real number ε > 0 such that for all λ ∈ B (0, ε),

σ′ (f (λ)) = {α1 (λ) , . . . , αk (λ)} , σ′ (g (λ)) = {γ1 (λ) , . . . , γn (λ)} ,

σ′ (f (λ)) ⊆ σ′ (g (λ)), and the αi’s and γi’s are all holomorphic on B (0, ε). Let i ∈ {1, . . . , k} be arbitrary 
but fixed. We claim that αi = γj for some j ∈ {1, . . . , n}: Fix any β0 in B (0, ε) and let (λm) be any 
sequence in B (0, ε) − {β0} which converges to β0. Since σ′ (f (λ)) ⊆ σ′ (g (λ)) for each λ ∈ B (0, ε), it 
follows that αi (λm) = γjm (λm) for some jm ∈ {1, . . . , n}. However, by the Pigeon Hole Principle we 
may infer the existence of a subsequence, denoted by (λm) for convenience, and a j ∈ {1, . . . , n} such 
that αi (λm) = γj (λm). However, then the set {λ ∈ B (0, ε) : αi (λ) − γj (λ) = 0} contains a limit point. 
So, from elementary Complex Analysis we conclude that αi = γj . This proves our claim. Without loss of 
generality we may therefore assume that σ′ (f (λ)) = {γ1 (λ) , . . . , γk (λ)} for each λ ∈ B (0, ε). Pick any 
λ0 ∈ ∂B (0, ε) ∩ [C− (Fa ∪ Fb)] (which exists since Fa and Fb are discrete), and let z ∈ C − (Fa ∪ Fb)
be arbitrary. We claim that σ′ (f (z)) ⊆ σ′ (g (z)): Since Fa and Fb are discrete, we can find a path Γ
in C − (Fa ∪ Fb) which connects λ0 and z. Now, for each λ ∈ Γ, there exists a nonempty open disk 
Bλ := B (λ, rλ) such that for β ∈ Bλ,

σ′ (f (β)) =
{
α

(λ)
1 (β) , . . . , α(λ)

k (β)
}

and σ′ (g (β)) =
{
γ

(λ)
1 (β) , . . . , γ(λ)

n (β)
}
,

where the α(λ)
i ’s and γ(λ)

i ’s are all holomorphic on Bλ. By compactness we can find λ1, . . . , λm ∈ Γ such 
that Bλi

∩Bλi+1 �= ∅ for i ∈ {0, . . . ,m− 1} and Bλm
∩Bz �= ∅. Now, observe that

σ′ (f (β)) = {γ1 (β) , . . . , γk (β)} and σ′ (g (β)) = {γ1 (β) , . . . , γn (β)}

for each β ∈ B (0, ε)∩Bλ0 . Since B (0, ε)∩Bλ0 is a nonempty open set, it follows in a similar way as before 
that

σ′ (f (β)) =
{
γ

(λ0)
1 (β) , . . . , γ(λ0) (β)

}

k
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for each β ∈ Bλ0 . Hence, σ′ (f (β)) ⊆ σ′ (g (β)) for each β ∈ Bλ0 . Repeating this argument with the chain 
of intersecting open disks we may conclude that σ′ (f (β)) ⊆ σ′ (g (β)) for each β ∈ Bz. This proves our 
claim. Since

z ∈ C− (Fa ∪ Fb)

was arbitrary, σ′ (f (z)) ⊆ σ′ (g (z)) for all z ∈ C − (Fa ∪ Fb). Thus, by a straightforward argument, using 
the upper semicontinuity of the spectrum and Newburgh’s Theorem [1, Theorem 3.4.4], we may conclude 
that the spectral containment extends to all of C. Hence,

σ′(ax) = σ′ (f (1)) ⊆ σ′ (g (1)) = σ′(bx).

Since x ∈ A was arbitrary, this establishes the result. �
The Jacobson radical formula is really only a particular case of a more general type of spectral calculus: 

Suppose σ(bx) is finite for all x ∈ A. If for each x ∈ A we have that σ′(ax) is a portion of σ′(bx), then “a is 
a portion of b” in the following sense:

Theorem 2.13. Let N be an arbitrary nonempty open subset of A and let a, b ∈ A. If σ(bx) is finite for each 
x ∈ N , and σ′(ax) ⊆ σ′(bx) for each x ∈ N then a commutes with b and, either a = 0, or there exist rank 
one elements a1, . . . , an, and k ≤ n such that

a = a1 + · · · + ak and b = a1 + · · · + an.

Moreover, a is orthogonal to b − a.

Proof. As before, by the hypotheses above, it follows that both a and b have finite rank. Moreover, by 
Lemma 2.12 it follows that the spectral containment assumption “for all x ∈ N” may be replaced by “for 
all x ∈ A”. Now, if σ(ax) = {0} for all x ∈ A, then by the semisimplicity of A we may infer that a = 0. We 
may therefore assume that a �= 0 and conclude that rank (b) = n ≥ 1. Recall that E(a) ∩ E(b) is an open 
dense subset of A since E(a) and E(b) are both open and dense. Further, since σ′(ax) ⊆ σ′(bx) for each 
x ∈ A, it follows in particular that rank (a) ≤ rank (b). Since G(A) is open and E(a) ∩E(b) is dense, we can 
fix an x ∈ (E(a) ∩ E(b)) ∩G(A). By the Diagonalization Theorem and our hypothesis on the spectrums of 
ax and bx, we can find n mutually orthogonal rank one projections p1, . . . , pn, k mutually orthogonal rank 
one projections q1, . . . , qk (with k ≤ n), and nonzero complex numbers α1, . . . , αn such that

bx = α1p1 + · · · + αnpn and ax = α1q1 + · · · + αkqk. (2.1)

Set b′ = bx and a′ = ax. Let p be any rank one projection such that a′p �= 0. Then a′p has rank one. 
Moreover, by the containment above and the fact that E (a′p) is dense, it follows that σ′ (a′py) = σ′ (b′py)
for all y in a dense subset of A. Thus, Tr (a′py) = Tr (b′py) for all y in a dense subset of A. However, by 
[12, Lemma 2.3] the trace is continuous on the set of rank one elements. Hence, Tr (a′py) = Tr (b′py) for 
all y ∈ A, and so, a′p = b′p by [3, Corollary 3.6]. A similar statement is valid for multiplication on the left. 
We shall use this to show that qj = pj for each j ∈ {1, . . . , k}. For j ∈ {1, . . . , k} we have (cf. the remark 
following (1.3))

qj = 1
2πi

∫
(λ1 − a′)−1

dλ (2.2)

Γj
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and

pj = 1
2πi

∫
Γj

(λ1 − b′)−1
dλ, (2.3)

where Γj is a small circle surrounding αj and separating it from 0 and the remaining spectrum of b′. From 
(2.1) it follows that qja′ = a′qj �= 0 so, by the preceding paragraph, we have qjb′ = qja

′ and b′qj = a′qj and 
hence that

qjpj = 1
2πi

∫
Γj

qj (λ1 − b′)−1
dλ = 1

2πi

∫
Γj

qj (λ1 − a′)−1
dλ = q2

j = qj , (2.4)

and similarly pjqj = qj . Now, if pja′ = 0 then

pjqj = 1
2πi

∫
Γj

pj (λ1 − a′)−1
dλ = 1

2πi

∫
Γj

pj
λ

dλ = 0

which contradicts the first calculation that pjqj = qj �= 0. Thus, pja′ �= 0 from which we have pja′ = pjb
′. 

From a similar argument we have a′pj = b′pj . As in (2.4), but now using (2.2), we have pjqj = pj = qjpj . 
Hence, ax = α1p1 + · · ·+ αkpk. Since x is invertible we can solve for a and b in (2.1) and our result follows 
with aj = αjpjx

−1. Now, since E(a) ∩E(b) is dense and open in A we can find a sequence (xn) ⊆ E(a) ∩E(b)
such that xn → 1 as n → ∞. But for each xn the first part of the proof shows that

axn (bxn − axn) = (bxn − axn) axn = 0.

So in the limit we obtain a(b − a) = (b − a)a = 0 and hence also ab = ba. �
It is immediate from the above result that if we add to the assumptions the requirement that rank (a) =

rank (b), then a = b. With the hypothesis of Theorem 2.13 a inherits analytic properties from b:

Corollary 2.14. Suppose a and b satisfy the hypothesis of Theorem 2.13 and that a �= 0. If f(λ) is holomorphic 
on a domain D containing σ(b) and f(b) = 0, then also f(a) = 0 and f(b − a) = 0. In particular, if b is a 
projection then so is a.

Proof. If b is invertible, then by Lemma 2.12 and [5, Theorem 2.1] we have a = αb for some α ∈ C. 
So rank (a) = rank (b), and the comment following Theorem 2.13 readily yields a = b. We may therefore 
assume that b /∈ G(A) and that rank (a) < rank (b) = n �= 0. Moreover, we may also assume that f is not 
identically 0. By hypothesis and the Spectral Mapping Theorem, f (σ(b)) = σ (f(b)) = {0}. Hence, f has 
zeroes at the spectral points of b. By [8, Corollary 4.3.9] there exists a polynomial h (λ) without a constant 
term and a holomorphic function g (λ) on D such that f(λ) = h (λ) g (λ) and g(α) �= 0 for all α ∈ σ(b). In 
particular then, g(b) is invertible by the Spectral Mapping Theorem. Hence, since 0 = f(b) = h(b)g(b) (by 
the Holomorphic Functional Calculus), we have h(b) = 0. Since a and b − a are orthogonal, it follows that 
h(a) = −h(b − a). For the sake of a contradiction suppose that h(a) and h(b − a) are not zero. Then since 
a = a1 + · · · + ak+1 and b − a = ak+1 + · · · + an by Theorem 2.13, it follows that there is a largest integer 
k + 1 ≤ m ≤ n and x1, . . . , xm ∈ A such that

0 �= amxm = a1x1 + · · · + am−1xm−1.
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Since am has rank one the minimal right ideal amA = amxmA which shows that am ∈ a1A + · · · + am−1A. 
However, by the subadditivity of the rank we then obtain that rank (b) < n which is absurd. Thus, h(a) =
h(b −a) = 0 and the result follows from the Holomorphic Functional Calculus. The last part of the statement 
is obvious. �

The next result is similar in spirit to Theorem 2.13:

Theorem 2.15. Let p be a projection of A, let q ∈ A, and suppose there exist a neighbourhood Np of p and 
a neighbourhood N1−p of 1 − p such that

#σ(qx) = #σ(px) < ∞ for all x ∈ Np ∪N1−p.

Then q is a scalar multiple of p or q is a scalar multiple of the identity.

Proof. If p = 1, then by [5, Theorem 2.1] q is a scalar multiple of the identity. If p = 0 and q /∈ G(A), then 
q ∈ RadA = {0}. If p = 0 and q ∈ G(A), then for all x in a neighbourhood N0 of 0 we have that #σ(qx) = 1
which by the Scarcity Theorem implies that every element of A has one point spectrum. Thus, since A is 
semisimple, A ∼= C and hence q is a scalar multiple of the identity. So assume that p is neither 0 nor 1, and 
that q is not a scalar multiple of the identity. The hypothesis implies that, for all x in some neighbourhood 
of 1, say N1, we have #σA(qpxp) = #σA(pxp). Moreover, since yqpxp ∈ G(A) or pxp ∈ G(A) implies p = 1
which contradicts our hypothesis on p, it follows that 0 belongs to both σA(yqpxp) and σA(pxp) for all 
x, y ∈ A. Hence, by Jacobson’s Lemma we may infer that #σA ((pqp)(pxp)) = #σA(pxp) for all x ∈ N1. So 
it follows that

#σ′
pAp ((pqp)(pxp)) = #σ′

pAp (p(pxp)) when x ∈ N1.

Applying the Open Mapping Theorem to the continuous linear operator x 	→ pxp from A onto pAp we have 
that

#σ′
pAp ((pqp)(pxp)) = #σ′

pAp (p(pxp))

for all pxp in some neighbourhood of p in pAp. Hence, by the density of EpAp(pqp) and EpAp(p) in pAp

we may conclude that rankpAp(pqp) = rankpAp(p). Whence, since pAp is finite-dimensional, it follows that 
pqp ∈ G(pAp). Thus,

#σpAp ((pqp)(pxp)) = #σpAp (p(pxp))

for all pxp in some neighbourhood of p in pAp. Hence, by [5, Theorem 2.1] it follows that pqp = αp for some 
α ∈ C. On the other hand, using the hypothesis with the neighbourhood N1−p and the fact that q is not a 
scalar multiple of the identity, it follows, for all x in some neighbourhood of 1, that

σ (q (1 − p)x) = σ ((1 − p) qx) = {0} .

Hence, by the Scarcity Theorem and the semisimplicity of A we get q = pq = qp. Therefore, q = αp, which 
completes the proof. �
Theorem 2.16. SocA is a minimal two-sided ideal if and only if the following are equivalent for any 0 �= a ∈ A

and 0 �= b ∈ Soc A:

(i) σ′(ax) ⊆ σ′(bx) for all x in some nonempty open set N .
(ii) σ′(ax) ⊆ σ′(bx) for all x ∈ A.
(iii) a = b.
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Proof. Suppose first that Soc A is a minimal two-sided ideal and let 0 �= a ∈ A and b ∈ Soc A. Obviously 
(iii) ⇒ (i). Moreover, by Lemma 2.12, (i) ⇒ (ii). So assume that condition (ii) holds. Since (ii) implies 
that ρ(ax) ≤ ρ(bx) for all x ∈ A, it readily follows from Theorem 2.5 and hypothesis that a = λb for some 
λ ∈ C − {0}. Hence, rank (a) = rank (b), and so, by Theorem 2.13 and the remark following it, a = b. This 
proves the forward implication. For the other direction, we argue contrapositively. Suppose that SocA is not 
a minimal two-sided ideal. Then by [12, Lemma 3.5] we may infer the existence of two rank one projections 
p and q such that JpJq = JqJp = {0}. However, as in the proof of Theorem 2.5 this implies that p �= p + q

and σ′(px) ⊆ σ′ ((p + q)x) for all x ∈ A. Hence, (ii) � (iii), which establishes the result. �
Moreover, we obtain a similar characterization of prime Banach algebras as was done in Theorem 2.9:

Theorem 2.17. Suppose that Soc A �= {0}. Then A is prime if and only if for any a, b ∈ A − {0} we have 
that the following are equivalent:

(i) σ′(ax) ⊆ σ′(bx) for all x ∈ A.
(ii) a = b.

Proof. If A is not prime then we may proceed as in the proof of Lemma 2.6 and expose two elements a
and b such that a �= a + b and σ′(ax) ⊆ σ′ ((a + b)x) for all x ∈ A. This proves the reverse implication. 
Conversely, if A is prime, then since SocA �= {0} it follows that SocA is a minimal two-sided ideal and that 
l (Soc A) = {0}. Let a, b ∈ A − {0} be arbitrary. Obviously (ii) ⇒ (i). So assume that condition (i) holds 
and let y ∈ SocA be arbitrary but fixed. Then by Theorem 2.16 we may infer that ay = by. Since y ∈ SocA
was arbitrary, we conclude that Tr ((a− b)y) = 0 for all y ∈ Soc A. Hence, by [3, Corollary 3.6] it follows 
that a − b ∈ l (Soc A) = {0}. Therefore, (i) ⇒ (ii), so the theorem is true. �

To conclude we will show that if Soc A is a minimal two-sided ideal, then conditions (i) and (ii) in 
Theorem 2.17 are equivalent whenever b belongs to some inessential ideal; that is, a two-sided ideal in 
which the spectrum of all elements contains at most 0 as an accumulation point. Before that, however, we 
will need a little preparation:

Lemma 2.18. Let s ∈ A and for each x ∈ A suppose that σ(sx) contains at most 0 as an accumulation point 
for all x ∈ A. Then the Riesz projections of s corresponding to nonzero spectral values have finite rank.

Proof. Let σ′(s) = {λ1, λ2, . . . } and set, for i ∈ N, p := p(λi, s). Recall that pAp is a semisimple Banach 
algebra with identity p. There exists an open neighbourhood V of 1 in A such that pxp is invertible in pAp

for each x ∈ V . Now suppose x ∈ V and #σA(px) = ∞. Then, by Jacobson’s Lemma, #σA(pxp) = ∞ =
#σ′

A(pxp), and, since p ∈ sA, it follows from our hypothesis on s that σ′
A(pxp) is a sequence converging 

to 0. But this means σpAp(pxp) contains a sequence converging to zero, from which it follows (since the 
spectrum is closed) that pxp cannot be invertible in pAp giving a contradiction. So #σA(px) < ∞ for all 
x ∈ V and a standard application of the Scarcity Theorem then says #σA(px) < ∞ for all x ∈ A. Thus 
rank (p) < ∞. �
Theorem 2.19. Suppose that Soc A is a minimal two-sided ideal. Let 0 �= a ∈ A and let 0 �= b ∈ A such that 
σ(bx) has at most 0 as an accumulation point for all x ∈ A. Then the following are equivalent:

(i) σ′(ax) ⊆ σ′(bx) for all x ∈ A.
(ii) a = b.
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Proof. Let 0 �= a ∈ A and b ∈ A. Surely, (ii) ⇒ (i). So assume that condition (i) holds. We claim that 
σ(ax) = σ(bx) for all x ∈ A: Let x ∈ A be arbitrary. It will suffice to show that σ′(ax) = σ′(bx) and 
0 ∈ σ(ax) ⇔ 0 ∈ σ(bx). If σ(bx) = {0}, then σ′(ax) = σ′(bx) = ∅. So assume that σ(bx) �= {0} and let 
λ ∈ σ′(bx). Since σ′(bx) is either finite or a sequence converging to zero, we may consider the Riesz projection 
of bx associated with λ, say p := p (λ, bx). Now, by Lemma 2.18 it follows that p ∈ SocA. Consequently, by 
hypothesis and Theorem 2.16, we may infer that axp = bxp. Moreover, since bxp = pbx, by condition (i), 
Jacobson’s Lemma and Theorem 2.16 it follows that pax = pbx = axp. Hence,

(ax (1 − p)) (axp) = (axp) (ax (1 − p)) = 0.

Thus, since ax = ax (1 − p) + axp, it follows from [1, Chapter 3, Exercise 9] that

σ′(ax) = σ′ (ax (1 − p)) ∪ σ′(axp) = σ′ (ax (1 − p)) ∪ σ′(bxp).

But by the Holomorphic Functional Calculus it follows that σ′(bxp) = {λ}. Hence, λ ∈ σ′(ax). This shows 
that σ′(ax) = σ′(bx). Suppose now that 0 /∈ σ(bx). Then, by hypothesis on b it must be the case that σ(bx)
is finite, say σ(bx) = {α1, . . . , αr}. For each i ∈ {1, . . . , r}, let pi denote the Riesz projection of bx associated 
with αi. By condition (i) and Theorem 2.16 it follows that axpi = bxpi for all i ∈ {1, . . . , r}. But by the 
Holomorphic Functional Calculus p1 + · · · + pr = 1. Hence,

ax = ax (p1 + · · · + pr) = axp1 + · · · + axpr

= bxp1 + · · · + bxpr = bx (p1 + · · · + pr) = bx.

So, 0 /∈ σ(ax). Similarly, 0 /∈ σ(ax) yields bx = ax and consequently 0 /∈ σ(bx). Hence, 0 ∈ σ(ax) ⇔ 0 ∈
σ(bx). This proves our claim. By Theorem 1.1 we may therefore conclude that a = b, which completes the 
proof. �
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