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1. Introduction

By A we denote a complex Banach algebra with identity element 1 and invertible group G(A). Moreover,
it will be assumed throughout that A is semisimple (i.e. the Jacobson radical of A, denoted Rad A, only
contains 0). We will write Z(A) for the centre of A, that is, for the set of all z € A such that zy = yx
for all y € A. For z € A we denote by c4(z) = {A€C: A1 -2 ¢ G(A)}, pa(z) = sup{|A|: A € oa(z)}
and o’y(z) = oa(x) — {0} the spectrum, spectral radius and nonzero spectrum of x, respectively. If the
underlying algebra is clear from the context, then we shall agree to omit the subscript A in the notation
oa(z), pa(z) and o’y (x). This convention will also be followed in some of the forthcoming definitions. We
shall also agree to reserve the notation = exclusively for algebra isomorphisms. Moreover, we recall that an
element x of A is called quasinilpotent if o(z) = {0}.

In [7] M. Bresar and S. Spenko consider two interesting problems which resulted from certain questions
centred around Kaplansky’s problem on spectrum preserving maps [10]:

Problem 1. Suppose that a,b € A satisfy o(az) = o(bx) for all x € A. Does this imply a = b7
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Problem 2. Suppose that a,b € A satisfy
plaz) < p(bx) for all = € A. (1.1)
What is the relation between a and b?
The first problem has been settled by G. Braatvedt and R. Brits in [5]:

Theorem 1.1. [5, Theorem 2.1, Theorem 2.6] Let a,b € A. Then the following are equivalent:

(i) a =b.
(ii) o(azx) = o(bx) for all x € A such that p(x — 1) < 1.
(iii) o(a+x) = o(b+ x) for all x in some open neighbourhood of —b.

Problem 2, as to be expected, is slightly more intricate. Evidence such as [7, Example 3.3] suggests that
the answer to this question may depend on the algebra or on the elements under consideration. Indeed, in
the special situation where b = 1 it was found in [6] that a must then belong to Z(A). Moreover, in [7]
Bresar and Spenko investigated the special case where A is a prime C*-algebra. The conclusion in this case
is that the elements a and b satisfying (1.1) are necessarily linearly dependent. We recall that A is a prime
algebra if all nonzero two-sided ideals I and J of A satisfy IJ # {0}. In particular, we will see that the
linear dependence obtained in the prime C*-algebra case extends to the case where A is assumed to be
prime with a nonzero socle. Furthermore, the consideration of Problem 2 leads to spectral characterizations
of socles which are minimal two-sided ideals. Other characterizations of such socles were recently obtained
by the authors and G. Braatvedt (cf. [12, Theorem 3.8, Theorem 3.9] and [11, Theorem 4.4]).

The notions of rank, trace and determinant are well-established for operator theory. Moreover, in a more
general setting, these notions provide an analytic means to investigate the socle of a semisimple Banach
algebra. This latter idea was made precise by B. Aupetit and H. Du. T. Mouton in [3] where they managed
to show that these notions can be developed, without the use of operators, in a purely spectral and analytic
manner. This paper is fundamental to our discussion here, so as in [12] we briefly summarize some of the
theory in [3] before we proceed.

For each nonnegative integer m, let

Fm ={a € A: #0'(xa) <m forall z € A},

where the symbol #K denotes the number of distinct elements in a set K C C. Following Aupetit and
Mouton in [3], we define the rank of an element a of A as the smallest integer m such that a € F,, if it
exists; otherwise the rank is infinite. In other words,

rank (a) = sup #o'(za).
€A

If a € A is a finite-rank element, then
E(a) ={r € A: #0'(va) = rank (a)}

is a dense open subset of A [3, Theorem 2.2]. A finite-rank element a of A is said to be a mazimal finite-
rank element if rank (a) = #o0’'(a). With respect to rank it is useful to know results such as Jacobson’s
Lemma [1, Lemma 3.1.2], the Spectral Mapping Theorem [1, Theorem 3.3.3] and the Scarcity Theorem
[1, Theorem 3.4.25]. It can be shown [3, Corollary 2.9] that the socle, written Soc A, of a semisimple Banach
algebra A coincides with the collection |J;°_, F,, of finite rank elements. We mention a few elementary
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properties of the rank of an element [3, p. 117]. Firstly, #0’(a) < rank (a) for all a € A. Furthermore,
rank (za) < rank (a) and rank (ax) < rank (a) for all z,a € A, with equality if x € G(A). Moreover, the
rank is lower semicontinuous on Soc A. It is also subadditive, i.e. rank (a + b) < rank (a) + rank (b) for all
a,b € A [3, Theorem 2.14]. Finally, if p is a projection of A, then p has rank one if and only if p is a minimal
projection, that is, if pAp = Cp [3, p. 117]. Tt is also worth mentioning here that a projection p is minimal
if and only if Ap is a nontrivial left ideal which does not contain any left ideals other than {0} and itself,
that is, if and only if Ap is a nontrivial minimal left ideal [4, Lemma 30.2]. A similar result holds true for
the right ideal pA. We will also define a minimal two-sided ideal in this manner, that is, as a two-sided ideal
which does not contain any two-sided ideals other than {0} and itself.

The following result is fundamental to the theory developed in [3] and is mentioned here for convenient
referencing later on:

Diagonalization Theorem. [3, Theorem 2.8] Let a € A be a nonzero mazimal finite-rank element and de-
note by A1,..., A\, its nonzero distinct spectral values. Then there exist n orthogonal minimal projections
P1y---,Pn € AaNaA such that

a=M\p1+-+ Anpan-

In particular, the Diagonalization Theorem easily implies the well-known result that every element of the
socle is Von Neumann regular, that is, for each a € Soc A, there exists an x € Soc A C A such that a = aza
[3, Corollary 2.10].

If a € Soc A we define the trace of a as in [3] by

Tr (a) = Z am (A a),

A€o (a)

where m(A, a) is the multiplicity of a at X. A brief description of the notion of multiplicity in the abstract case
goes as follows (for particular details one should consult [3]): Let a € Soc A, A € o(a) and let B(A,r) be an
open disk centred at A such that B(\,r) contains no other points of o(a). It can be shown [3, Theorem 2.4]
that there exists an open ball, say U C A, centred at 1 such that # [o(za) N B(\,r)] is constant as x runs
through E(a) NU. This constant integer is the multiplicity of a at A. It can also be shown that m (A, a) > 1
and

m(a,a) = 1+ rank (a) if 0 € o(a)
ag;a) () { rank (a)  if 0 ¢ o(a). (1.2)

Furthermore, we note that the trace has the following useful properties:

(i) Tr is a linear functional on Soc A ([3, Theorem 3.3] and [12, Lemma 2.1]).
(ii) Tr(ab) = Tr (ba) for each a € Soc A and b € A [12, Corollary 2.5].
(i) For any a € A, if Tr (axz) = 0 for each = € Soc A, then aSoc A = {0}. Moreover, if a € Soc A, then
a =0 [3, Corollary 3.6].
(iv) If f is an analytic function from a domain D of C into Soc A, then A — Tr (f(A)) is holomorphic on D
[3, Theorem 3.1].

Let A € o(a) and suppose that B(\,2r) separates A from the remaining spectrum of a. Let fy be the
holomorphic function which takes the value 1 on B(\,7) and the value 0 on C — B(A,r). If we now let Ty
be a smooth contour which surrounds o(a) and is contained in the domain of fy, then
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p(\a) = fala) = i @) (el —a)” da
T
To

is referred to as the Riesz projection associated with a and A. By the Holomorphic Functional Calculus,
Riesz projections associated with a and distinct spectral values are orthogonal, all commute with a and for
A#0

p(\a) = % / fko(éa) (a1 —a)"! da € AanaA. (1.3)
To

It is also worth mentioning that the orthogonal minimal projections obtained in the conclusion of the
Diagonalization Theorem are in fact the Riesz projections of the maximal finite-rank element associated
with each of its corresponding nonzero spectral values.

In the operator case, A = B(X) (bounded linear operators on a Banach space X), the “spectral” rank
and trace both coincide with the respective classical operator definitions.

2. Uniqueness under spectral variation in the socle

Let a € A. J. Zemédnek has shown that p(a + z) = 0 for all quasinilpotent z in A if and only if
a € Rad A [1, Theorem 5.3.1]. In order to get some feeling for the subject matter, we start by utilizing the
aforementioned result to show that condition (iii) in Theorem 1.1 can be substantially relaxed:

Theorem 2.1. Let a,b € A. Then the following are equivalent:

(i) a=0b.

(i) pla+x) < p(b+x) for all x in some open neighbourhood of —b.

Proof. Certainly, (i) = (ii). We therefore proceed to show that (ii) = (i). We claim that p(a —b+¢) =0
for all quasinilpotent elements g in A: Let ¢ be any quasinilpotent element in A. Consider the analytic
function f : C — A defined by f(A) = a — b+ Aq. By hypothesis and the Spectral Mapping Theorem, there
exists a real number k& > 0 such that p(a — b+ Ag) < p(Ag) = 0 whenever |\| < k. Hence, o (f (\)) = {0}
whenever |A\| < k. By the Scarcity Theorem we may therefore conclude that o (f (A)) = {«a(A\)} for all
A € C, where « is a mapping from C into C. By [1, Corollary 3.4.18], « is an entire function. However,
a (X) = 0 whenever |A| < k, and so, from basic Complex Analysis it must be the case that o (\) = 0 for all
A € C. This proves our claim. Consequently, a — b € Rad A by [1, Theorem 5.3.1]. Thus, by semisimplicity
we have the result. O

Theorem 2.2. Let a,b € Soc A. Then a = b if and only if any one of the following holds true:

(i) o(ax) = o(bx) for all rank one elements x € A.
(ii) o(a+x) = o(b+ x) for all rank one elements x € A.

Proof. Obviously, if « = b then conditions (i) and (ii) both hold. So let a,b € Soc A and assume that
condition (i) holds. Then Tr (az) = Tr (bz) for all rank one elements 2z € A. Let y € Soc A be arbitrary.
Clearly, Tr(ay) = Tr(by) if y = 0. So assume that y # 0. By the Diagonalization Theorem and the
density of E(y) there exist rank one projections p1,...,pn, 1,...,a, € C and a u € G(A) such that
y = aqupr + -+ + apupy,. Thus, by the linearity of the trace we readily obtain Tr (ay) = Tr (by) for all
y € Soc A. Consequently, Tr ((a — b)y) = 0 for all y € Soc A. Thus, since a — b € Soc A, it follows from
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[3, Corollary 3.6] that a —b = 0. Next take a,b € Soc A and assume that condition (ii) holds. Fix any
A¢o(a)Uo(b) and 0 # o € C. If € A has rank one, then we have

M= (a+a'z) € GA) & AL — (b+a 'z) € G(A).
Consequently,
(A — a) (1 Y (M —a)" a_lx) € G(A) = (A1 b) (1 T (AL a_lx) € G(A).
Since the first term on the left of each expression is invertible, it follows that

OzEU(()\l—a)_lx) (z)aEa((/\l—b)_lm).

Hence, o’ (()\1 —a)”! sr:) =o' (()\1 —b)7! x) for all rank one elements z € A. Thus, Tr (()\1 —a)™! gc) =
Tr ((/\1 - b)f1 ac) for all rank one elements x € A. Moreover, since
M—a)'=A1=b)""'=A1—a)" (a—b) (AL —b)"' €Soc A,

it follows as before from [3, Corollary 3.6] that (AL — a) ' — (AL — b) "' = 0. Hence, a = b, which establishes
the result. O

Let J be a two-sided ideal of A. Denote by [ (J) the left-annihilator of J, that is,
I(J):={x€eA:zJ={0}}.
Similarly, we define the right-annihilator of J by
r(J)={xeA:Jr={0}}.

Theorem 2.3. Suppose that Soc A # {0}. Then [ (Soc A) = {0} if and only if the following are equivalent for
any a,b € A:

(i) a=0b.
(ii) o(ax) = o(bx) for all rank one elements x € A.
(iii) o(a+ x) = o(b+ x) for all rank one elements x € A.

Proof. Suppose first that [ (Soc A) = {0} and let a,b € A. Certainly, (i) = (ii) and (i) = (iii). Using
the argument in the proof of Theorem 2.2 we see that (ii) implies Tr ((a —b)y) = 0 for all y € Soc A.
Hence, by [3, Corollary 3.6] it follows that (a —b)Soc A = {0}. Hence, a — b € 1 (Soc A) = {0}, so
(ii) = (i). Similarly, the argument in the proof of Theorem 2.2 can also be used to show that (iii) im-
plies Tr ((()\1 —a) ' = (A1 — b)_l) y) = 0 for all y € Soc A, where X\ ¢ o(a) U o(b) is fixed. Hence, by
[3, Corollary 3.6]

M —a)"" =1 —b)"" €l(Soc A) = {0}.

Thus, (iii) = (i). This proves the forward implication. For the converse, we argue contrapositively. Suppose
that [ (Soc A) # {0}. Let 0 # a € [ (Soc A) be fixed. Moreover, pick y € Soc A. Since a # 0, a +y # y.
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However, since aSoc A = {0}, it follows that o ((a + y) ) = o(yx) for all rank one elements x € A. Hence,
(ii) # (i). This completes the proof. O

In [5, Theorem 2.5] it was shown that properties (i) to (iii) are equivalent for any two bounded linear oper-
ators on a Banach space X. Consequently, Theorem 2.3 implies the well-known fact that [ (Soc B(X)) = {0}.

Lemma 2.4. Suppose that Soc A is a minimal two-sided ideal. Let a,b € A and suppose that b = pt, where
p=p? €Soc A and t € G(A). If p(az) < p(bx) for all z € A, then a = \b for some X € C with |\ < 1.

Proof. If p = 0, then by semisimplicity a = 0 and we are done. So assume that p # 0. By hypothesis,
p(a'z) < p(pr) for all x € A, where o’ = at~!. It will suffice to show that a’ = A\p for some A € C, since
of course the assumption in conjunction with the Spectral Mapping Theorem automatically yields |A| < 1.
Replacing x by (1 —p)z, we get p(a’ (L —p)z) = 0 for all z € A. Thus, ¢’ (1 —p) € Rad A = {0}, and
so0, a’ = a’p. Moreover, if we replace x by x (1 — p), then by Jacobson’s Lemma we have p ((1 —p)a’z) =0
for all z € A. Hence, as before, the semisimplicity of A yields a’ = pa’. Consequently, a’ = pa’p. Now, by
2, Lemma 2.5] pAp is a closed semisimple subalgebra of A with identity p. Moreover, o, 4, (pxp) = o4 (pxp)
for all x € A. Hence, by hypothesis, we have

ppap ((pa'p) (pxp)) < ppap (prp) forall z € A.

Hence, by the result in [6] it follows that o’ € Z(pAp). However, since Soc A is a minimal two-sided ideal, by
[12, Theorem 3.8, Theorem 3.9] we may infer that pAp = M, (C). Consequently, Z(pAp) = Cp. So, a’ = A\p
for some A\ € C. The result now follows. 0O

Let p be a projection of A with rank (p) < 1. By J, we denote the two-sided ideal generated by p, that
is, we let

n
Jp = ijpyj tx5,y; € A,n > 1 an integer
j=1

By [11, Lemma 2.2] these J, are minimal two-sided ideals. Moreover, by [12, Lemma 3.5] there exists a
collection of pairwise orthogonal two-sided ideals {J, : p € P} such that every element of Soc A can be
written as a finite sum of members of the J,. In particular, this implies that Soc A is a minimal two-sided
ideal whenever A is prime.

Theorem 2.5. Soc A is a minimal two-sided ideal if and only if the following are equivalent for any a € A
and b € Soc A:

(i) plaz) < p(bz) for allz € A
(ii) a = Ab for some A € C with |A| < 1.

Proof. Suppose first that Soc A is a minimal two-sided ideal and let a € A and b € Soc A. Obviously,
(if) = (i), so assume that condition (i) holds. If b = 0, then by hypothesis and the semisimplicity of A
we have a = 0. So assume b # 0. By the Diagonalization Theorem and the density of E(b) we can find
mutually orthogonal rank one projections p1,...,pn, @1,...,a, € C— {0} and a u € G(A) such that
b = aipiu + -+ + apppu. Observe firstly that if we set p := p; + --- + p,, then p?> = p and pb = b.
Consequently, by hypothesis and Jacobson’s Lemma it follows that p ((1 — p) ax) = 0 for all € A. Hence,
(1—-p)a € Rad A = {0}, and so, a = pa. By orthogonality it follows that (041_12?1 ot pa) b = pu
Thus, by hypothesis and Jacobson’s Lemma it follows that
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p((ar'pr+ - +a,'py) az) < p(puz) forall z € A.
Thus, by Lemma 2.4 we may infer that
(a7 'p1 4+, 'pn) a = Apu for some A € C.
Hence,

a = pa=(aipi+ -+ anpy) (a7 P14+, pn)a
= (1p1+ - + anpn) (Apu)
= Aapru+ -+ anppu) = Ab.

This proves the forward implication. For the reverse implication we argue contrapositively. Suppose that
Soc A is not a minimal two-sided ideal. Then by [12, Lemma 3.5] we may infer the existence of two rank
one projections, say p and ¢, such that J,J, = JyJ, = {0}. In particular, p # X (p+¢q) for all A € C. Let
x € A be arbitrary. Then (px)(¢r) = (qz)(pr) = 0. Hence, by [1, Chapter 3, Exercise 9] it follows that
o' ((p+q)x) = o' (px)Ud’(qz). So, p(px) < p((p+¢)x). Since x € A was arbitrary, this shows that (i) = (ii),
which completes the proof. O

Lemma 2.6. Suppose that for any a,b € A we have that the following are equivalent:

(i) plaz) < p(bx) for allz € A
(ii) a = Ab for some A € C with |\ < 1.

Then A is a prime algebra.

Proof. We shall argue contrapositively. If A is not prime, then we can find two nonzero two-sided ideals
I and J such that IJ = {0}. Let 0 # a € I. If a € J, then aAa = {0}. But then, by semisimplicity, it
follows that a = 0 which is absurd. Hence, a ¢ J. Pick 0 # b € J. In particular then, a # Ab for all A € C.
We firstly claim that I C r(J). Let = € I(J) and let y € J be arbitrary. By Jacobson’s Lemma and the
fact that J is a two-sided ideal, it follows that p(yzw) = 0 for all w € A. Hence, yz € Rad A = {0}.
Since y € J was arbitrary, it follows that I C r(J) as claimed. Since a # A\b for all A € C and b # 0, we
may infer that a # A (b+ a) for all A € C. Let € A be arbitrary. Then ax € I(J) Nr(J). Consequently,
(az)(bx) = (bz)(ax) = 0. Thus, by [1, Chapter 3, Exercise 9] it follows that o’((a + b)x) = ¢’ (az) U o’ (bx).
Hence, p(az) < p((a + b)x). Since x € A was arbitrary, this gives the result. O

Theorem 2.7. Let A be a C*-algebra. Then A is prime if and only if for any a,b € A we have that the
following are equivalent:

(i) plax) < p(bx) for allx € A
(ii) @ = Ab for some A € C with |A\| < 1.

Proof. This is immediate from [7, Theorem 3.7] and Lemma 2.6. O

Lemma 2.8. Suppose that Soc A is a minimal two-sided ideal and that | (Soc A) = {0}. Then for any a,b € A
we have that the following are equivalent:

(i) plaz) < p(bx) for allz € A
(ii) a = Ab for some A € C with |\ < 1.
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Proof. Let a,b € A. If a = 0, then we are done. So assume a # 0. It suffices to show that (i) = (ii). Let
y € Soc A be arbitrary but fixed. By hypothesis, p(ayz) < p(byx) for all x € A. Hence, by Theorem 2.5
there exists a A, € C such that ay = Ayby. Let fp : Soc A — C and f, : Soc A — C be defined as
follows: fy(y) = Tr (by) and f,(y) = Tr(ay) for y € Soc A. Then f;, and f, are nonzero linear functionals
on the linear space Soc A. Moreover, by our first observation it follows that Ker f, C Ker f,. Hence, from
linear algebra (see [9, p. 10]), it follows that f, = Af, for some A € C. Thus, by the linearity of the trace,
Tr ((a — Ab)y) = 0 for all y € Soc A. Hence, by [3, Corollary 3.6] it follows that a — Ab € I (Soc A) = {0}
which gives the result. O

Theorem 2.9. Suppose that Soc A # {0}. Then A is prime if and only if for any a,b € A we have that the
following are equivalent:

(i) plaz) < p(bx) for allz € A
(ii) @ = Ab for some A € C with |A\| < 1.

Proof. The reverse implication follows immediately from Lemma 2.6. So assume that A is prime. Since
Soc A # {0}, we may infer that [ (Soc A) = {0}. Moreover, since A is prime, it readily follows from the
remark preceding Theorem 2.5 that Soc A is a minimal two-sided ideal. The forward implication therefore
follows from Lemma 2.8. O

Corollary 2.10. Suppose that Soc A # {0}. Then A is prime if and only if Soc A is a minimal two-sided ideal
and I (Soc A) = {0}.

Proof. This is a direct consequence of Lemma 2.8 and Theorem 2.9. 0O
Let 0 #a € A and 0 # b € Soc A. It turns out that the condition
o'(ax) Co'(bx) forall r€e A=a=">

can also be used to characterize socles which are minimal two-sided ideals. Firstly, however, we will prove
some related results.

The next result was obtained by G. Braatvedt and R. Brits in [5]. We state it together with a short new
proof based on the spectral trace:

Theorem 2.11. [5, Corollary 2.3] Let N be an arbitrary nonempty open subset of A and let a,b € A. If o(ax)
and o(bx) are finite and equal for all x € N, then a = b.

Proof. Let y € A. A standard argument using Baire’s Category Theorem and the Scarcity Theorem can be
used to show that if o(yx) is finite for all 2 in some nonempty open set N of A, then y has finite rank. We
may therefore infer that both a and b have finite rank. Furthermore, since E(a) and E(b) are both open
dense subsets of A, it readily follows that F(a) N E(b) is a dense subset of A. Consequently, we can find an
o € N such that axg and bzg are both maximal finite-rank elements. Let y € A be arbitrary but fixed, and
define analytic functions from C into Soc A as follows:

FA) =a[(l=XNzo+Ay] and gA) =b[(1—Nzo+ My (AeC).

Since (E(a) N E(b)) N N is a nonempty open set and xg belongs to this set, there exists a real number
€ > 0 such that for all A € B(0,¢) we have that f(\) and g (\) are maximal finite-rank elements and
o (f(N\) =0 (g (N). By the Diagonalization Theorem the functions
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A Tr (F (V) and A Tr (g(V))

agree on B (0, ¢€). Thus, since these functions are entire by [3, Theorem 3.1], it must be the case that they
agree on all of C. With the particular value A = 1 we get Tr (ay) = Tr (by). Since y € A was arbitrary we
conclude by [3, Corollary 3.6] that a =b. O

From Theorem 2.11 it is clear that if o(az) and o(bx) are finite and equal for all z in some nonempty
open set N, then o(ax) = o(bx) for all © € A. In fact, we have the following result:

Lemma 2.12. Let N be an arbitrary nonempty open subset of A and let a,b € A. If o(bx) is finite and
o'(ax) C o'(bx) for all x € N, then o' (ax) C o' (bx) for all x € A.

Proof. The hypotheses allow us to infer that both a and b are finite-rank elements. Recall that F(a) and
E(b) are open and dense in A. Hence, E(a) N E(b) is open and dense in A. Fix any zo € (E(a) N E(b))NN
and let z € A be arbitrary. Define the following analytic functions from C into Soc A:

fA)=al(l=XNzo+ Ax] and g(A) =b[(1 —A)zo+ Az] (A€ C).

Let rank (a) = k and rank (b) = n and note that k& < n (since (E(a) N E(b)) N N # 0). By the Scarcity
Theorem there exist two closed and discrete subsets of C, say F,, and Fy, such that #¢’ (f (X)) = k for all
A€ C—F, and #0' (g (\)) = n for all A € C — F},. Moreover, by the Scarcity Theorem, our choice of x,
and the definitions of f and g, there exists a real number € > 0 such that for all A € B (0,¢),

o (fA)={ar (V). ;ae (N}, o' (g(N) ={n (V)9 (V]

o’ (f(N) C o' (g(N)), and the a;’s and ~;’s are all holomorphic on B (0,¢). Let ¢ € {1,...,k} be arbitrary
but fixed. We claim that a; = 7; for some j € {1,...,n}: Fix any fp in B (0,¢) and let (\,,) be any
sequence in B (0,€) — {8} which converges to (. Since o’ (f (A)) C o’ (g(N)) for each A € B(0,¢), it
follows that a; (Am) = 7j,, (Am) for some j, € {1,...,n}. However, by the Pigeon Hole Principle we
may infer the existence of a subsequence, denoted by (\.,) for convenience, and a j € {1,...,n} such
that a; (Am) = v (Am). However, then the set {\ € B(0,¢€) : a; (A\) —7; () = 0} contains a limit point.
So, from elementary Complex Analysis we conclude that a; = ~;. This proves our claim. Without loss of
generality we may therefore assume that o’ (f (A)) = {71 (A\),..., v (A)} for each A € B(0,¢). Pick any
Ao € 0B (0,¢) N [C — (F, U Fy)] (which exists since F, and F, are discrete), and let z € C — (F, U Fp)
be arbitrary. We claim that o’ (f (2)) C o' (g(z)): Since F, and F} are discrete, we can find a path T
in C — (F, U Fp) which connects Ag and z. Now, for each A € T, there exists a nonempty open disk
By := B (A, 7)) such that for 8 € By,

o' (1(8) ={a (B)....al ()} and o' (9(8) = {4V (B)..... 9V (B)],

where the ag)‘)

that By, N By

’s and %()‘)’s are all holomorphic on B)y. By compactness we can find Ay,..., A\, € I' such

w1 W0 forie{0,...,m—1} and By, N B, # 0. Now, observe that

o (f(B)={n(B),....%w (B)} and o' (g(B) = {1 (B),...., 7 (B)}

for each 5 € B(0,€) N By,. Since B (0,€) N By, is a nonempty open set, it follows in a similar way as before
that

o (F(8) = {3 (B, (B}
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for each 8 € B),. Hence, o’ (f (8)) C ¢’ (g(B)) for each 8 € B,,. Repeating this argument with the chain
of intersecting open disks we may conclude that o’ (f (8)) C o' (¢g(B8)) for each 8 € B,. This proves our
claim. Since

ZE(C—(FGUFb)

was arbitrary, o’ (f (2)) C ¢/ (g (2)) for all z € C — (F, U Fy). Thus, by a straightforward argument, using
the upper semicontinuity of the spectrum and Newburgh’s Theorem [1, Theorem 3.4.4], we may conclude
that the spectral containment extends to all of C. Hence,

o'(ax) =o' (f (1)) C o' (g9(1)) = o' (bx).
Since x € A was arbitrary, this establishes the result. O

The Jacobson radical formula is really only a particular case of a more general type of spectral calculus:
Suppose o (bx) is finite for all x € A. If for each z € A we have that ¢’(ax) is a portion of ¢’(bx), then “a is
a portion of b” in the following sense:

Theorem 2.13. Let N be an arbitrary nonempty open subset of A and let a,b € A. If o(bx) is finite for each
x € N, and ¢'(ax) C o' (bx) for each x € N then a commutes with b and, either a = 0, or there exist rank
one elements ay,...,a,, and k < n such that

a=a1+--+ap andb=ai1+ -+ ay.
Moreover, a is orthogonal to b — a.

Proof. As before, by the hypotheses above, it follows that both @ and b have finite rank. Moreover, by
Lemma 2.12 it follows that the spectral containment assumption “for all z € N” may be replaced by “for
all x € A”. Now, if o(ax) = {0} for all z € A, then by the semisimplicity of A we may infer that a = 0. We
may therefore assume that a # 0 and conclude that rank (b) = n > 1. Recall that E(a) N E(b) is an open
dense subset of A since E(a) and E(b) are both open and dense. Further, since o’(az) C o'(bz) for each
x € A, it follows in particular that rank (a) < rank (b). Since G(A) is open and E(a) N E(b) is dense, we can
fix an x € (E(a) N E(b)) N G(A). By the Diagonalization Theorem and our hypothesis on the spectrums of

ax and bz, we can find n mutually orthogonal rank one projections p, ..., p,, £ mutually orthogonal rank
one projections ¢, . . ., qr (with & < n), and nonzero complex numbers aj, ..., @, such that
br = aip1 + -+ anp, and ax = a1q1 + - - + Qpq. (2.1)

Set ¥ = bx and o’ = ax. Let p be any rank one projection such that a’p # 0. Then a’p has rank one.
Moreover, by the containment above and the fact that E (a’p) is dense, it follows that o’ (a'py) = o’ (b'py)
for all y in a dense subset of A. Thus, Tr (a’py) = Tr (b'py) for all y in a dense subset of A. However, by
[12, Lemma 2.3] the trace is continuous on the set of rank one elements. Hence, Tr (a'py) = Tr (b'py) for
all y € A, and so, a’p = b'p by [3, Corollary 3.6]. A similar statement is valid for multiplication on the left.
We shall use this to show that ¢; = p; for each j € {1,...,k}. For j € {1,...,k} we have (cf. the remark
following (1.3))

1 1
=— [ (A\1-d
q] 271_2 ( a’)
r;

A (2.2)
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and

1 -1
= — AL -0 d\ 2.
L

where I'; is a small circle surrounding o; and separating it from 0 and the remaining spectrum of 4. From
(2.1) it follows that gja’ = a’q; # 0 so, by the preceding paragraph, we have ¢;b’ = ¢;a’ and b'q; = a/q; and
hence that

1 ~1 1 -1
4P = 5 /qj A1 —=b)" " d\= 57 /qj (A —d') " d)\= q]2- =qj, (2.4)

FJ‘ Fj

and similarly p;q; = ¢;. Now, if pja’ = 0 then

1 —1 1 D4
pj‘]j:%/pj()\]-*al) dA:—,/X]dA:O

which contradicts the first calculation that p;q; = ¢; # 0. Thus, p;ja’ # 0 from which we have p;a’ = p;b'.
From a similar argument we have a’p; = b'p;. As in (2.4), but now using (2.2), we have p;jq; = p; = q;p;-
Hence, axz = ayp1 + - - - + agpk. Since z is invertible we can solve for a and b in (2.1) and our result follows
with a; = a;jp;z~!. Now, since E(a)NE(b) is dense and open in A we can find a sequence (z,,) C E(a)NE(b)
such that z,, =& 1 as n — oco. But for each x,, the first part of the proof shows that

azy (bry, — axy) = (bxy, — azxy) ax, = 0.
So in the limit we obtain a(b —a) = (b — a)a = 0 and hence also ab = ba. O

It is immediate from the above result that if we add to the assumptions the requirement that rank (a) =
rank (b), then a = b. With the hypothesis of Theorem 2.13 a inherits analytic properties from b:

Corollary 2.14. Suppose a and b satisfy the hypothesis of Theorem 2.13 and that a # 0. If f(\) is holomorphic
on a domain D containing o(b) and f(b) =0, then also f(a) =0 and f(b—a) = 0. In particular, if b is a
projection then so is a.

Proof. If b is invertible, then by Lemma 2.12 and [5, Theorem 2.1] we have a = ab for some a € C.
So rank (a) = rank (b), and the comment following Theorem 2.13 readily yields a = b. We may therefore
assume that b ¢ G(A) and that rank (a) < rank (b) = n # 0. Moreover, we may also assume that f is not
identically 0. By hypothesis and the Spectral Mapping Theorem, f (o(b)) = o (f(b)) = {0}. Hence, f has
zeroes at the spectral points of b. By [8, Corollary 4.3.9] there exists a polynomial h (\) without a constant
term and a holomorphic function g (A) on D such that f(A) = h(A)g(A) and g(a) # 0 for all « € o(b). In
particular then, g(b) is invertible by the Spectral Mapping Theorem. Hence, since 0 = f(b) = h(b)g(b) (by
the Holomorphic Functional Calculus), we have h(b) = 0. Since a and b — a are orthogonal, it follows that
h(a) = —h(b — a). For the sake of a contradiction suppose that h(a) and h(b — a) are not zero. Then since
a=a;+---+ags1 and b —a = agy1 + - -+ + an by Theorem 2.13, it follows that there is a largest integer
k+1<m<nandzy,...,z, €A such that

0# amTm =121 + -+ + Qp—1Tm—1.
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Since a,, has rank one the minimal right ideal a,, A = a2, A which shows that a,, € a1A+ -+ apm_1 A.
However, by the subadditivity of the rank we then obtain that rank (b) < n which is absurd. Thus, h(a) =
h(b—a) = 0 and the result follows from the Holomorphic Functional Calculus. The last part of the statement
is obvious. O

The next result is similar in spirit to Theorem 2.13:

Theorem 2.15. Let p be a projection of A, let ¢ € A, and suppose there exist a neighbourhood N, of p and
a neighbourhood N1_, of 1 — p such that

#o(qr) = #o(px) < 0o forall x € Ny U Ni_yp.
Then q is a scalar multiple of p or q is a scalar multiple of the identity.

Proof. If p = 1, then by [5, Theorem 2.1] ¢ is a scalar multiple of the identity. If p = 0 and g ¢ G(A), then
g € RadA = {0}. If p=0and ¢ € G(A), then for all z in a neighbourhood Ny of 0 we have that #o(gz) =1
which by the Scarcity Theorem implies that every element of A has one point spectrum. Thus, since A is
semisimple, A = C and hence q is a scalar multiple of the identity. So assume that p is neither 0 nor 1, and
that ¢ is not a scalar multiple of the identity. The hypothesis implies that, for all x in some neighbourhood
of 1, say Ny, we have #04(qpxp) = #04(pxp). Moreover, since ygpxp € G(A) or prp € G(A) implies p = 1
which contradicts our hypothesis on p, it follows that 0 belongs to both o4(ygpzp) and o4(pzp) for all
x,y € A. Hence, by Jacobson’s Lemma we may infer that #o4 ((pgp)(pxp)) = #04(pxp) for all z € Ny. So
it follows that

#0p4p ((pgp)(pp)) = #0734, (P(PTP)) When z € Ni.

Applying the Open Mapping Theorem to the continuous linear operator x — pap from A onto pAp we have
that

#0714 (0ap) (pp)) = #07pa, (P(pzP))

for all pzp in some neighbourhood of p in pAp. Hence, by the density of Epa,(pgp) and E,a,(p) in pAp
we may conclude that rank,4,(pgp) = rank,4,(p). Whence, since pAp is finite-dimensional, it follows that
pqp € G(pAp). Thus,

#opap ((pap)(pzp)) = #0opap (p(pzp))

for all pzp in some neighbourhood of p in pAp. Hence, by [5, Theorem 2.1] it follows that pgp = ap for some
o € C. On the other hand, using the hypothesis with the neighbourhood N;i_, and the fact that ¢ is not a
scalar multiple of the identity, it follows, for all z in some neighbourhood of 1, that

o(q(1—p)x)=0((1—p)gr)={0}.

Hence, by the Scarcity Theorem and the semisimplicity of A we get ¢ = pq = gp. Therefore, ¢ = ap, which
completes the proof. O

Theorem 2.16. SocA is a minimal two-sided ideal if and only if the following are equivalent for any 0 # a € A
and 0 # b € Soc A:

"(ax) C o'(bx) for all x in some nonempty open set N.

o
(ii) o'(ax) C o' (bx) for all x € A.
a
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Proof. Suppose first that Soc A is a minimal two-sided ideal and let 0 # a € A and b € Soc A. Obviously
(iif) = (i). Moreover, by Lemma 2.12, (i) = (ii). So assume that condition (ii) holds. Since (ii) implies
that p(az) < p(bx) for all € A, it readily follows from Theorem 2.5 and hypothesis that a = Ab for some
A € C — {0}. Hence, rank (a) = rank (b), and so, by Theorem 2.13 and the remark following it, a = b. This
proves the forward implication. For the other direction, we argue contrapositively. Suppose that Soc A is not
a minimal two-sided ideal. Then by [12, Lemma 3.5] we may infer the existence of two rank one projections
p and ¢ such that J,J, = J,J, = {0}. However, as in the proof of Theorem 2.5 this implies that p # p + ¢
and o' (px) C o’ ((p+ q) x) for all x € A. Hence, (ii) % (iii), which establishes the result. O

Moreover, we obtain a similar characterization of prime Banach algebras as was done in Theorem 2.9:

Theorem 2.17. Suppose that Soc A # {0}. Then A is prime if and only if for any a,b € A — {0} we have
that the following are equivalent:

(i) o'(az) C o'(bz) for all z € A.
(ii) a =b.

Proof. If A is not prime then we may proceed as in the proof of Lemma 2.6 and expose two elements a
and b such that a # a + b and ¢'(ax) C o’ ((a + b)z) for all x € A. This proves the reverse implication.
Conversely, if A is prime, then since Soc A # {0} it follows that Soc A is a minimal two-sided ideal and that
1(Soc A) = {0}. Let a,b € A — {0} be arbitrary. Obviously (ii) = (i). So assume that condition (i) holds
and let y € Soc A be arbitrary but fixed. Then by Theorem 2.16 we may infer that ay = by. Since y € Soc A
was arbitrary, we conclude that Tr ((a — b)y) = 0 for all y € Soc A. Hence, by [3, Corollary 3.6] it follows
that a — b € [ (Soc A) = {0}. Therefore, (i) = (ii), so the theorem is true. O

To conclude we will show that if Soc A is a minimal two-sided ideal, then conditions (i) and (ii) in
Theorem 2.17 are equivalent whenever b belongs to some inessential ideal; that is, a two-sided ideal in
which the spectrum of all elements contains at most 0 as an accumulation point. Before that, however, we
will need a little preparation:

Lemma 2.18. Let s € A and for each x € A suppose that o(sx) contains at most 0 as an accumulation point
for all x € A. Then the Riesz projections of s corresponding to nonzero spectral values have finite rank.

Proof. Let o/(s) = {A1, Ao,...} and set, for i € N, p := p(A;, s). Recall that pAp is a semisimple Banach
algebra with identity p. There exists an open neighbourhood V of 1 in A such that pxp is invertible in pAp
for each € V. Now suppose € V and #04(pz) = oo. Then, by Jacobson’s Lemma, #o4(pxp) = 0o =
#o'y (pxp), and, since p € sA, it follows from our hypothesis on s that ¢’;(pzp) is a sequence converging
to 0. But this means o,4,(prp) contains a sequence converging to zero, from which it follows (since the
spectrum is closed) that pxp cannot be invertible in pAp giving a contradiction. So #04(px) < oo for all
x € V and a standard application of the Scarcity Theorem then says #o04(px) < oo for all © € A. Thus
rank (p) < oco. O

Theorem 2.19. Suppose that Soc A is a minimal two-sided ideal. Let 0 # a € A and let 0 # b € A such that
o(bx) has at most 0 as an accumulation point for all x € A. Then the following are equivalent:

(i) o'(ax) C o'(bz) for all z € A.
(ii) a =b.
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Proof. Let 0 # a € A and b € A. Surely, (ii) = (i). So assume that condition (i) holds. We claim that
o(ax) = o(bx) for all x € A: Let © € A be arbitrary. It will suffice to show that o'(az) = o’(bx) and
0 € g(ax) & 0 € o(bx). If o(bz) = {0}, then ¢'(ax) = o'(bz) = (. So assume that o(bx) # {0} and let
A € o'(bx). Since o’ (bx) is either finite or a sequence converging to zero, we may consider the Riesz projection
of bz associated with A, say p := p (A, bz). Now, by Lemma 2.18 it follows that p € Soc A. Consequently, by
hypothesis and Theorem 2.16, we may infer that axzp = bap. Moreover, since bxp = pbx, by condition (i),
Jacobson’s Lemma and Theorem 2.16 it follows that paxz = pbxr = axp. Hence,

(az (1 - p)) (azp) = (azp) (ax (1 - p)) =0.
Thus, since ax = ax (1 — p) + axp, it follows from [1, Chapter 3, Exercise 9] that
o'(az) = o' (az (1 — p)) U o' (axp) = o' (ax (1 —p)) Uo’ (bxp).

But by the Holomorphic Functional Calculus it follows that o’(bxp) = {A}. Hence, A € ¢'(ax). This shows
that o’ (az) = o’ (bz). Suppose now that 0 ¢ o(bx). Then, by hypothesis on b it must be the case that o(bz)
is finite, say o(bx) = {aq,...,a.}. Foreach i € {1,...,7}, let p; denote the Riesz projection of bx associated
with «;. By condition (i) and Theorem 2.16 it follows that axp; = bxp; for all ¢ € {1,...,r}. But by the
Holomorphic Functional Calculus p; + - - - + p, = 1. Hence,

ax = ax (p1 + -+ pr) = axpy + - - - + axp,
=bxpy + - +bzp, =bx (p1+---+pr) = ba

So, 0 ¢ o(ax). Similarly, 0 ¢ o(az) yields bx = ax and consequently 0 ¢ o(bx). Hence, 0 € o(az) < 0 €
o(bx). This proves our claim. By Theorem 1.1 we may therefore conclude that a = b, which completes the
proof. O
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