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A SOLUTION TO THE PROBLEM OF RAŞA CONNECTED WITH BERNSTEIN
POLYNOMIALS

JACEK MROWIEC, TERESA RAJBA, AND SZYMON WĄSOWICZ

ABSTRACT. During the Conference on Ulam’s Type Stability (Rytro, Poland,
2014), Ioan Raşa recalled his 25-years-old problem concerning some inequal-
ity involving the Bernstein polynomials. We offer the complete solution (in
positive). As a tool we use stochastic orderings (which we prove for binomial
distributions) as well as so-called concentration inequality. Our methods al-
low us to pose (and solve) the extended version of the problem in question.

1. INTRODUCTION

The Bernstein fundamental polynomials of degree n ∈N are given by the for-
mula

bn,i (x) =
(

n

i

)
xi (1−x)n−i , i = 0,1, . . . ,n .

In 2014, during the Conference on Ulam’s Type Stability held in Rytro (Poland),
Ioan Raşa recalled his 25-years-old problem ([1, Problem 2, p. 164]) related to
the preservation of convexity by the Bernstein–Schnabl operators.

Problem. Prove or disprove that

(1.1)
n∑

i , j=0

(
bn,i (x)bn, j (x)+bn,i (y)bn, j (y)−2bn,i (x)bn, j (y)

)
f

(
i + j

2n

)
� 0

for each convex function f ∈C
(
[0,1]

)
and for all x, y ∈ [0,1].

The aim of this paper is to answer the above-stated problem affirmatively (i.e.,
to prove (1.1)).

Let us invoke some basic notations and results (see e.g. [3]). Let (Ω,F ,P ) be
a probability space. As usual, FX (x) = P (X < x) (x ∈R) stands for the probability
distribution function of a random variable X : Ω → R, while μX is the distri-
bution corresponding to X . For real-valued random variables X ,Y with finite
expectations we say that X is dominated by Y in the stochastic convex ordering
sense, if

(1.2) E f (X ) � E f (Y )

for all convex functions f : R → R (for which the expectations above exist). In
that case we write X �cx Y or FX �cx FY .

The main idea of our solution is to study the convex stochastic ordering within
the class of binomial distributions. To this end we make use of Ohlin’s Lemma
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([8, Lemma 2, p. 256]), which gives a sufficient condition for two random vari-
ables to be in the stochastic convex ordering relation.

Ohlin’s Lemma. Let X ,Y be two random variables and suppose that EX = EY . If
the probability distribution functions FX ,FY cross exactly once, i.e.,

FX (x) � FY (x) if x < x0 and FX (x) � FY (x) if x > x0

for some x0 ∈R, then X �cx Y .

Originally this lemma was applied to certain insurance problems and it was
lesser-known to mathematicians for a long time. It was re-discovered by the se-
cond-named author, who found a number of applications in the theory of con-
vex functions (cf. [10, 11]).

Remark 1. Szostok noticed in [12] that if the measures μX ,μY corresponding to
X ,Y , respectively, are concentrated on the interval [a,b], then, in fact, the rela-
tion X �cx Y holds if and only if the inequality (1.2) is satisfied for all continuous
convex functions f : [a,b] →R.

Recall that X ∼ B(p) means that the random variable X has the Bernoulli dis-
tribution with the parameter p ∈ (0,1). If X has the binomial distribution with
the parameters n ∈ N and p ∈ (0,1) (which we denote by X ∼ B(n, p) for short),
then, of course,

(1.3) P (X = k) =
(

n

k

)
pk (1−p)n−k , k = 0,1, . . . ,n and EX = np.

Below we recall the binomial convex concentration inequality, which plays
an important rôle in our considerations. It is, in fact, due to Hoeffding [4]. Nev-
ertheless, Hoeffding did not state it in the form required for our purposes. The
desired form can be found, e.g., in [5, Proposition 1, p. 67].

Theorem 2. Let bi ∼ B(pi ) (for i = 1, . . . ,n) be independent random variables. Set

Sn = b1 +·· ·+bn. Let p = p1 +·· ·+pn

n
and suppose that S∗

n ∼ B(n, p). Then

EΦ(Sn) � EΦ(S∗
n)

for any convex function Φ : R→R (which means that Sn �cx S∗
n).

A crucial result required to solve Raşa’s problem reads as follows.

Theorem 3. Let x, y ∈ (0,1) and n ∈ N. Assume that X , X1, X2,Y ,Y1,Y2 are ran-
dom variables such that X , X1, X2 ∼ B(n, x), Y ,Y1,Y2 ∼ B(n, y), X ,Y are indepen-
dent, X1, X2 are independent and Y1,Y2 are independent. Then

(1.4) FX+Y �cx
1

2

(
FX1+X2 +FY1+Y2

)
.

We postpone the proof to the end of the Section 2, where we present two re-
sults on the stochastic convex ordering concerning two binomial distributions.
Theorem 3 is their immediate consequence. Section 3 delivers in Theorem 8 the
solution of the problem of Raşa. In its proof we apply Theorem 3. We note that
the inequality (1.4) is no longer valid if we drop the hypothesis that the involved
random variables are binomially distributed. In Section 4 we will present the
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counterexample. In Section 5 we also offer a generalization of the Raşa prob-
lem (1.1) as well as a generalization of the inequality (1.4) by taking not nec-
essarily two random variables X ,Y , but the whole family

{
X(1), . . . , X(m)

}
(with

m � 2) of independent random variables.

2. STOCHASTIC CONVEX ORDERING — THE CASE OF TWO BINOMIALLY

DISTRIBUTED RANDOM VARIABLES

This section is devoted to the proof of Theorem 3. We divide our job into two
propositions.

Proposition 4. Let x, y ∈ (0,1) and n ∈ N. Let X ∼ B(n, x) and Y ∼ B(n, y) be
independent random variables. Then

X +Y �cx S∗
2n ,

where S∗
2n ∼ B

(
2n,

x + y

2

)
.

Proof. Since X ∼ B(n, x) and Y ∼ B(n, y) are independent, there exist indepen-
dent random variables b1, . . . ,b2n , where bi ∼ B(pi ) for p1 = ·· · = pn = x and
pn+1 = ·· · = p2n = y such that

X =
n∑

i=1
bi and Y =

2n∑
i=n+1

bi .

Set

S2n =
2n∑

i=1
bi = X +Y and p =

2n∑
i=1

pi = nx +ny

2n
= x + y

2
.

Now the result follows immediately by Theorem 2. �

Proposition 5. Let x, y ∈ (0,1) and n ∈ N. If X1, X2 ∼ B(n, x) are independent,

Y1,Y2 ∼ B(n, y) are independent and S∗
2n ∼ B

(
2n,

x + y

2

)
, then

(2.1) FS∗
2n
�cx

1

2

(
FX1+X2 +FY1+Y2

)
.

Proof. If x = y , then FS∗
2n
= FX1+X2 = FY1+Y2 and (2.1) is trivially satisfied. In the

case where x �= y we assume without loss of generality that x < y . Since X1, X2 ∼
B(n, x) are independent as well as Y1,Y2 ∼ B(n, y) are independent, we have X1+
X2 ∼ B(2n, x) and Y1 +Y2 ∼ B(2n, y). For k ∈ {0,1, . . . ,2n} we infer from (1.3) that

P (X1 +X2 = k) =
(

2n

k

)
xk (1−x)2n−k ,

P (Y1 +Y2 = k) =
(

2n

k

)
yk (1− y)2n−k .

Let us consider the function

(2.2) fX1+X2 (t ) =

⎧⎪⎪⎨
⎪⎪⎩

(
2n

k

)
xk (1−x)2n−k for k � t < k +1, k = 0,1, . . . ,2n,

0 for all other t .
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It is not too difficult to check that

(2.3) FX1+X2 (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for t � 0

k∫
0

fX1+X2 (u)du for k −1 < t � k, k = 1,2, . . . ,2n ,

1 for t > 2n .

Similarly we define the functions fY1+Y2 and fS∗
2n

by replacing x in the definition

of fX1+X2 by y,
x + y

2
, respectively. Of course, a formula analogous to (2.3) holds

for the probability distribution functions FY1+Y2 and FS∗
2n

.
Now we proceed to the proof of the relation (2.1). We are going to apply Ohlin’s

Lemma to the distribution functions FS∗
2n

and
1

2

(
FX1+X2+FY1+Y2

)
. Having in mind

properties (1.3) we arrive at ES∗
2n = n(x + y) and

1

2

(
E (X1 +X2)+E (Y1 +Y2)

)= 1
2 (2nx +2ny) = n(x + y)

so the distribution functions under consideration admit the same expectations.

The distribution functions
1

2

(
FX1+X2 +FY1+Y2

)
and FS∗

2n
agree on the interval

(−∞,0] and on the interval (2n,∞). Then to verify the second of the hypotheses
of Ohlin’s Lemma it is enough to prove that there exists t0 ∈ (0,2n) such that

(2.4)

1

2

(
FX1+X2 (t )+FY1+Y2 (t )

)−FS∗
2n

(t ) > 0 for 0 < t < t0 ,

1

2

(
FX1+X2 (t )+FY1+Y2 (t )

)−FS∗
2n

(t ) < 0 for t0 < t < 2n .

Since all of the probability distribution functions FX1+X2 , FY1+Y2 and FS∗
2n

are
discontinuous at the points k ∈ {0,1, . . . ,2n} and constant in between, condi-
tion (2.4) is equivalent to

(2.5)

1

2

(
FX1+X2 (k)+FY1+Y2 (k)

)−FS∗
2n

(k) > 0 for 0 < k < t0 ,

1

2

(
FX1+X2 (k)+FY1+Y2 (k)

)−FS∗
2n

(k) < 0 for t0 < k < 2n .

Bearing in mind formula (2.3) and the analogous formulae for FY1+Y2 and FS∗
2n

we conclude that the condition (2.5) is satisfied if there exist numbers 0 < t1 <
t2 < 2n such that

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0 for 0 � k < t1 ,

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) < 0 for t1 < k < t2 ,

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0 for t2 < k � 2n .
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By (2.2) and its counterparts for Y1 +Y2 and S∗
2n , if k = 0,1, . . . ,2n, then

(2.6)
1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k)

= 1

2

[(
2n

k

)
xk (1−x)2n−k +

(
2n

k

)
yk (1− y)2n−k

]

−
(

2n

k

)(x + y

2

)k(
1− x + y

2

)2n−k =
(

2n

k

)
ψk (x, y) ,

where

ψk (x, y) = 1

2

[
xk (1−x)2n−k + yk (1− y)2n−k

]
−
(x + y

2

)k(
1− x + y

2

)2n−k
.

Consider the case where k = 0. By strict convexity of the function u 
→ (1−u)2n

on (0,1), we have

ψ0(u, v) = 1

2

[
(1−u)2n + (1− v)2n]− (

1− u + v

2

)2n > 0

for all u, v ∈ (0,1) with u �= v ; in particular

ψ0(x, y) > 0.

Similarly, for k = 2n, by the strict convexity of u 
→ u2n on (0,1), we get

ψ2n(u, v) = 1

2

[
u2n + v2n]− (u + v

2

)2n > 0

for all u, v ∈ (0,1) with u �= v ; in particular

ψ2n(x, y) > 0.

Consequently, by (2.6),

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0

for k = 0 and k = 2n.
Moreover, we claim that there exists k0 ∈ {1,2, . . . ,2n −1} such that

(2.7)
1

2

(
fX1+X2 (k0)+ fY1+Y2 (k0)

)− fS∗
2n

(k0) < 0.

Assume not. Then
1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0

for all k ∈ {0,1, . . . ,2n}. Adding these inequalities side by side we arrive at

1

2

2n∑
k=0

fX1+X2 (k)+ 1

2

2n∑
k=0

fY1+Y2 (k) >
2n∑

k=0
fS∗

2n
(k) .

But using (2.2) (together with its counterparts for Y1 +Y2 and S∗
2n) and Newton’s

Binomial Theorem we get a contradiction because all the sums above are equal
to 1. This proves (2.7).

Set z = x + y

2
. By (2.6), if k ∈ {0,1, . . . ,2n}, then

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) =
(

2n

k

)
zk (1− z)2n−k Rx,y (k) ,
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where

Rx,y (t ) = 1

2

(1−x

1− z

)2n

⎛
⎜⎝

x

1−x
z

1− z

⎞
⎟⎠

t

+ 1

2

(1− y

1− z

)2n

⎛
⎜⎜⎝

y

1− y
z

1− z

⎞
⎟⎟⎠

t

−1, t ∈ [0,2n] .

As x < y , we have

(2.8)
1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0 ⇐⇒ Rx,y (k) > 0

for all k = 0,1, . . . ,2n.
Obviously

Rx,y (0) > 0,(2.9)

Rx,y (2n) > 0,(2.10)

Rx,y (k0) < 0 for some 0 < k0 < 2n .(2.11)

Since R ′′
x,y (t ) > 0 for all t ∈ (0,2n) (an easy computation), Rx,y is a continuous

and convex function on [0,2n]. Taking into account (2.9), (2.10) and (2.11) we
conclude that there exist numbers 0 < t1 < t2 < 2n such that

Rx,y (t ) > 0 for 0 � t < t1 ,

Rx,y (t ) < 0 for t1 < t < t2 ,

Rx,y (t ) > 0 for t2 < t � 2n .

Consequently, by (2.8), for k ∈ {0,1, . . . ,2n} we have

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0 for 0 � k < t1 ,

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) < 0 for t1 < k < t2 ,

1

2

(
fX1+X2 (k)+ fY1+Y2 (k)

)− fS∗
2n

(k) > 0 for t2 < k � 2n .

This implies that the conditions (2.5) are satisfied for some 0 < t0 < 2n and the
second hypothesis of the Ohlin’s Lemma has been verified. Hence (2.1) is satis-
fied, which completes the proof. �

Observe now that Theorem 3 follows immediately from Propositions 4 and 5.

3. THE PROBLEM OF IOAN RAŞA

Following Billingsley [2], we recall the definition of weak convergence of prob-
ability measures. Let S be a complete and separable metric space with its Borel
σ-algebra Σ. We say that a sequence (μm) of probability measures on (S,Σ) con-
verges weakly to the probability measure μ (which is denoted by μm =⇒ μ),
if

lim
m→∞

∫
S

h dμm =
∫
S

h dμ for all h ∈Cb(S) ,

where Cb(S) is the space of all continuous and bounded functions h : S →R.
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For S = R with the usual topology, if Fm ,F are the probability distribution
functions of the measures μm ,μ, respectively, then μm =⇒ μ if and only if
lim

m→∞Fm(x) = F (x) for all points x ∈R at which F is continuous.

If Xm , X : Ω→R are random variables (m ∈N), then the sequence (Xm) is said
to converge weakly to X (write Xm =⇒ X ), if the sequence of distributions (μXm )
converges weakly to the distribution μX in the above sense.

Remark 6. If μXm (m ∈ N) and μX are concentrated on some compact interval
[a,b] ⊂R, then Xm =⇒ X if and only if

lim
m→∞

b∫
a

h dμXm =
b∫

a

h dμX

for all continuous functions h : [a,b] →R.

A technical remark will be also needed.

Remark 7. Let ξ,η,ζ be random variables and a > 0. It is easy to show that

ξ�cx η ⇐⇒ ξ

a
�cx

η

a

as well as

Fξ �cx
1

2

(
Fη+Fζ

) ⇐⇒ F ξ
a
�cx

1

2

(
F η

a
+F ζ

a

)
.

Indeed, it is enough to observe that E f
(
ξ
a

)
= E f 1

a
(ξ), where f 1

a
(x) = f

( x
a

)
and so

on. Of course, f : R→R is convex if and only if f 1
a

: R→R is convex as well.

We are now in a position to achieve the main goal of our paper, which is a so-
lution of the aforementioned problem of Ioan Raşa.

Theorem 8. If n ∈N and

bn,i (x) =
(

n

i

)
xi (1−x)n−i , i = 0,1, . . . ,n ,

then

(3.1)
n∑

i , j=0

(
bn,i (x)bn, j (x)+bn,i (y)bn, j (y)−2bn,i (x)bn, j (y)

)
f

(
i + j

2n

)
� 0

for each convex function f ∈C
(
[0,1]

)
and for all x, y ∈ [0,1].

Proof. If x = y , then (3.1) is trivially fulfilled, so (by symmetry) it is enough to
assume that 0 � x < y � 1.

Rewrite (3.1) in the form

2n∑
k=0

∑
i+ j=k

bn,i (x)bn, j (y) f

(
k

2n

)

� 1

2

2n∑
k=0

∑
i+ j=k

(
bn,i (x)bn, j (x)+bn,i (y)bn, j (y)

)
f

(
k

2n

)
,

which is equivalent to

(3.2) E f

(
X +Y

2n

)
� 1

2

[
E f

(
X1 +X2

2n

)
+E f

(
Y1 +Y2

2n

)]
,
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where X1, X2 are independent random variables, Y1,Y2 are independent random
variables and X ,Y are independent random variables such that four cases are
possible:

(a) 0 < x < y < 1, X , X1, X2 ∼ B(n, x), Y ,Y1,Y2 ∼ B(n, y),
(b) 0 = x < y < 1, μX = μX1 = μX2 = δ0 (δx0 denotes, as usual, the probability

measure concentrated at x0 ∈R), Y ,Y1,Y2 ∼ B(n, y),
(c) 0 < x < y = 1, X , X1, X2 ∼ B(n, x), μY =μY1 =μY2 = δn , μY1+Y2 = δ2n ,
(d) x = 0, y = 1, μX =μX1 =μX2 = δ0, μY =μY1 =μY2 = δn .

It can be noticed that, (a) implies (b), (c) and (d): after proving (3.1) for all
0 < x < y < 1, (b), (c) and (d) follow by passing to the limit.

Suppose that (a) holds. Although we derive

FX+Y �cx
1

2

(
FX1+X2 +FY1+Y2

)
,

from Theorem 3, Remark 7 yields

F X+Y
2n

�cx
1

2

[
F X1+X2

2n
+F Y1+Y2

2n

]
,

which means that (3.2) holds for all convex functions f : R→R, so, by Remark 1,
also for all convex functions f ∈C

(
[0,1]

)
.

Consider now the case (b). Let (xm) be a sequence of real numbers such that
0 < xm < 1 and xm → 0. Let (ξ(m)) be a sequence of random variables such that
ξ(m) ∼ B(n, xm) and ξ(m),Y are independent (m ∈N). Let ξ(m),1, ξ(m),2 ∼ B(n, xm)
be independent random variables (m ∈ N). We shall check that μξ(m) =⇒ δ0 =
μX . Indeed, if u < 0 then Fξ(m) (u) = FX (u) = 0. If 0 < u � 1 then

Fξ(m) (u) = P (ξ(m) < u) = P (ξ(m) = 0) = (1−xm)n −−−−→
m→∞ 1.

If u > 1 then Fξ(m) (1) � Fξ(m) (u) � 1. Since Fξ(m) (1) −−−−→
m→∞ 1, then Fξ(m) (u) −−−−→

m→∞ 1.

Hence lim
m→∞Fξ(m) (u) = FX (u) for all u �= 0. Because FX is continuous at any u �= 0,

we get μξ(m) =⇒ δ0 = μX (see the introductory note at the beginning of this
section). Consequently, μξ(m)+Y =⇒ μX+Y and μξ(m),1+ξ(m),2 =⇒ μX1+X2 , which
implies that

(3.3) μξ(m)+Y

2n

=⇒ μ X+Y
2n

and μξ(m),1+ξ(m),2
2n

=⇒ μ X1+X2
2n

.

Taking into account ξ(m) ∼ B(n, xm) and Y ∼ B(n, y), by the case (a) we arrive at

(3.4) E f

(
ξ(m) +Y

2n

)
� 1

2

[
E f

(
ξ(m),1 +ξ(m),2

2n

)
+E f

(
Y1 +Y2

2n

)]

for all convex functions f ∈ C
(
[0,1]

)
. Of course, any random variable involved

in (3.4) is concentrated on [0,1], so by (3.3) together with Remark 6 we infer that

(3.5)

lim
m→∞E f

(
ξ(m) +Y

2n

)
= E f

(
X +Y

2n

)
,

lim
m→∞E f

(
ξ(m),1 +ξ(m),2

2n

)
= E f

(
X1 +X2

2n

)
for all continuous functions f : [0,1] → R. The inequality (3.2) follows now by
(3.4) and (3.5).
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In the case (c) the proof is analogous. Let (ym) be a sequence of real num-
bers such that 0 < ym < 1 and ym → 1. Let (γ(m)) be a sequence of random
variables such that γ(m) ∼ B(n, ym) and γ(m), X are independent. We claim that
γ(m) =⇒ Y . Observe that

Fγ(m) (n) = P (γ(m) < n) = 1−P (γ(m) � n) = 1−P (γ(m) = n) = 1− yn
m −−−−→

m→∞ 0.

For u < n, by 0 � Fγ(m) (u) � Fγ(m) (n) −−−−→
m→∞ 0 we get Fγ(m) (u) −−−−→

m→∞ 0. If u > n

then Fγ(m) (u) = FY (u) = 1. Hence lim
m→∞Fγ(m)(u) = FY (u) for all u �= n. Because FY

is continuous at any u �= n, we get μγ(m) =⇒ μY . To prove (3.2) we proceed now
similarly as in the case (b).

Finally, we take into account the case (d). The inequality (3.2) could be proved
by combining the cases (b) and (c), i.e., by considering the sequences (xm), (ym)
such that xm , ym ∈ (0,1), xm → 0, ym → 1 together with the random variables
ξ(m) ∼ B(n, xm) and γ(m) ∼ B(n, ym). To prove (3.2) we proceed now similarly as
in the cases (b) and (c).

We also notice that

μ X+Y
2n

= δ 1
2

, μ X1+X2
2n

= δ0 and μ Y1+Y2
2n

= δ1 .

Next we could apply Ohlin’s Lemma to give an alternative proof, which is con-
siderably easier than the previous one. We omit the details.

Thus Theorem 8 is proved and the problem of Raşa is completely solved. �

4. STOCHASTIC CONVEX ORDERING — TWO RANDOM VARIABLES IN A GENERAL

CASE

In this section we show that in the case of any random variables X ,Y (not
necessarily binomially distributed) the inequality (1.4) need not be satisfied. As
we can see, Ohlin’s Lemma is a strong tool, however, it is worthwhile to notice
that in the case of certain inequalities, the corresponding probability distribu-
tion functions may cross more than once. Therefore a simple application of
Ohlin’s Lemma is impossible and an extra idea is needed. To handle such sit-
uations, in the papers [9, 12], the authors employed the Levin–Stečkin theorem
[6] (see also [7], Theorem 4.2.7).

Levin–Stečkin Theorem. Let a,b ∈R, a < b and let F1,F2 : [a,b] →R be functions
with bounded variation such that F1(a) = F2(a). Then, in order that

b∫
a

f (x)dF1(x) �
b∫

a

f (x)dF2(x),
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for all continuous convex functions f : [a,b] → R, it is necessary and sufficient
that F1 and F2 satisfy the following three conditions:

F1(b) = F2(b) ,

b∫
a

F1(x)dx =
b∫

a

F2(x)dx ,

x∫
a

F1(t )dt �
x∫

a

F2(t )dt for all x ∈ (a,b) .

To start our considerations, we define the number of sign changes of a func-
tion ϕ : R→R by

S−(ϕ) = sup
{

S−[ϕ(x1),ϕ(x2), . . . ,ϕ(xk )
]

: x1 < x2 < ·· · < xk ∈R, k ∈N
}

,

where S−[y1, y2, . . . , yk ] denotes the number of sign changes in the sequence
(y1, y2, . . . , yk ) (zero terms are being discarded). Next we say that two real func-
tions ϕ1,ϕ2 have n crossing points (or cross each other n-times) if S−(ϕ1−ϕ2) =
n. Let a = x0 < x1 < ·· · < xn < xn+1 = b. The functions ϕ1,ϕ2 are said to cross
n-times at the points x1, x2, . . . , xn (or that x1, x2, . . . , xn are the points of sign
changes of ϕ1 −ϕ2) if S−(ϕ1 −ϕ2) = n and there exist a < ξ1 < x1 < . . . < ξn <
xn < ξn+1 < b such that S−[ξ1,ξ2, . . . ,ξn+1] = n.

The lemma below is due to Szostok (cf. [12, Lemma 2]). We quote it in a sli-
ghtly rewritten form.

Lemma 9. Let a,b ∈R, a < b and let F1,F2 : [a,b] →R be functions with bounded

variation such that F1(a) = F2(a), F1(b) = F2(b), F = F2 −F1,
b∫

a
F (x)dx = 0. Let

a < x1 < ·· · < xm < b be the points of sign changes of F . Suppose also that F (t ) � 0
for t ∈ (a, x1).

(i) If m is even then the inequality

(4.1)

b∫
a

f (x)dF1(x) �
b∫

a

f (x)dF2(x)

is not satisfied by all continuous convex functions f : [a,b] →R.
(ii) If m is odd, define Ai (i = 0,1, . . . ,m, x0 = a, xm+1 = b) by

Ai =
xi+1∫
xi

|F (x)| dx.

Then the inequality (4.1) is satisfied for all continuous convex functions f :
[a,b] →R, if and only if the following inequalities hold true:

A0 � A1 ,

A0 + A2 � A1 + A3 ,

...

A0 + A2 +·· ·+ Am−3 � A1 + A3 +·· ·+ Am−2 .
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In a comment after the statement of Theorem 3 we indicated that the hypoth-
esis that the random variables involved in the relation (1.4) are binomially dis-
tributed is essential. Now we are going to present a counterexample.

Example 10. Consider three couples of independent random variables:

• X ,Y with μX = 1
2 (δ1 +δ3), μY = 1

2 (δ0 +δ4), respectively;
• X1, X2 such that μX1 =μX2 =μX ;
• Y1,Y2 such that μY1 =μY2 =μY .

It is easy to check that

μX+Y = 1
4 (δ1 +δ3 +δ5 +δ7) ,

μX1+X2 = 1
4 (δ2 +δ6)+ 1

2δ4 ,

μY1+Y2 = 1
4 (δ0 +δ8)+ 1

2δ4

as well as 1
2

(
FX1+X2 +FY1+Y2

)= FZ , where μZ = 1
8 (δ0 +δ2 +δ6 +δ8)+ 1

2δ4.

Put F = 1
2

(
FX1+X2 +FY1+Y2

)−FX+Y , a = 0 and b = 8. Obviously
b∫

a
F (u)du = 0.

Then x1 = 1, x2 = 4 and x3 = 7 are the points of sign changes of F and F (t ) � 0 for
t ∈ (a, x1). Moreover,

A0 = 1

8
, A1 = 3

8
, A2 = 3

8
, A3 = 1

8
(m = 3 is odd).

Since A0 < A1, it follows from Lemma 9 that the relation (1.4), i.e.

FX+Y �cx
1

2

(
FX1+X2 +FY1+Y2

)
,

does not hold. In particular, the inequality

E f (X +Y ) � 1

2

[
E f (X1 +X2)+E f (Y1 +Y2)

]
,

is violated by the continuous convex function f (t ) = (t −4)+.

5. AN EXTENSION OF THE PROBLEM OF RAŞA

Let us start with the extension of the results of Propositions 4 and 5 to the case
of any finite number of independent random variables.

Proposition 11. Let m,n ∈N, m � 2, x1, . . . , xm ∈ (0,1). Suppose that

(i) X(1), . . . , X(m) are independent random variables such that X(i ) ∼ B(n, xi ), i =
1, . . . ,n;

(ii) S∗
mn ∼ B(mn, x̄), where x̄ = 1

m

m∑
i=1

xi ;

(iii) X(i ),1, . . . , X(i ),m are independent random variables such that X(i ), j ∼ B(n, xi ),
j = 1, . . . ,m, i = 1, . . . ,n.

Then

X(1) +·· ·+X(m) �cx S∗
mn ,(5.1)

FS∗
mn

�cx
1

m

[
FX(1),1+···+X(1),m +·· ·+FX(m),1+···+X(m),m

]
,(5.2)

FX(1)+···+X(m) �cx
1

m

[
FX(1),1+···+X(1),m +·· ·+FX(m),1+···+X(m),m

]
.(5.3)
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Proof. It is enough to prove the relations (5.1), (5.2). Relation (5.3) is their im-
mediate consequence.

The proof of relation (5.1) is short. Assuming that all the hypotheses are sat-
isfied, there exist independent random variables b1,b2, . . . ,bmn such that

b j ∼ B(xi ) , i = 1, . . . ,m, j = (i −1)n +1, . . . , i n

and

X(i ) =
i n∑

j=(i−1)n+1
b j , i = 1, . . . ,m .

Then X(1) + ·· · + X(m) =
mn∑
j=1

b j and (5.1) is an immediate consequence of Theo-

rem 2.

The rest of the proof is devoted to the relation (5.2).

Because if x1 = ·· · = xm then (5.2) is trivially satisfied, assume that this condi-
tion does not hold. Without loss of generality assume moreover that

x1 � x2 . . . � xm and x1 < xm .

Let i = 1,2, . . . ,m. Since X(i )1, X(i )2, . . . , X(i )m ∼ B(n, xi ) are independent, we have
X(i )1 +X(i )2 +·· ·+X(i )m ∼ B(mn, xi ). Hence

P
(
X(i )1 +X(i )2 +·· ·+X(i )m = k

)=
(

mn

k

)
xk

i (1−xi )mn−k , k = 0,1, . . . ,mn.

For the function

(5.4) fX(i )1+X(i )2+···+X(i )m (t )

=

⎧⎪⎪⎨
⎪⎪⎩

(
mn

k

)
xk

i (1−xi )mn−k for k � t < k +1, k = 0,1, . . . ,mn ,

0 for all other t

we easily check that

(5.5) FX(i )1+X(i )2+···+X(i )m (t )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t � 0,

k∫
0

fX(i )1+X(i )2+···+X(i )m (u)du for k −1 < t � k, k = 1, . . . ,mn ,

1 for t > mn .

Similarly we define the function fS∗
mn

by putting x̄ instead of xi in the defini-
tion (5.4). Of course, the formula analogous to (5.5) holds for the distribution
function FS∗

mn
.

As in the proof of Proposition 5 (i.e. in the case m = 2), now we check the
hypotheses of Ohlin’s Lemma. The first one (concerning the equality of expecta-
tions) is easily fulfilled, so we turn our attention to the second one. It is enough
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to prove that there exists t0 ∈ (0,mn) such that

(5.6)

1

m

[
FX(1),1+···+X(1),m (k)+·· ·+FX(m),1+···+X(m),m (k)

]
−FS∗

mn
(k) > 0

for 0 < k < t0 ,

1

m

[
FX(1),1+···+X(1),m (k)+·· ·+FX(m),1+···+X(m),m (k)

]
−FS∗

mn
(k)) < 0

for t0 < k < mn .

Having in mind (5.5) and the analogous formula for FS∗
mn

we infer that condi-
tion (5.6) is satisfied if there exist 0 < t1 < t2 < mn such that

(5.7)

1

m

[
fX(1),1+···+X(1),m (k)+·· ·+ fX(m),1+···+X(m),m (k)

]
− fS∗

mn
(k) > 0

for 0 � k < t1 ,

1

m

[
fX(1),1+···+X(1),m (k)+·· ·+ fX(m),1+···+X(m),m (k)

]
− fS∗

mn
(k) < 0

for t1 < k < t2 ,

1

m

[
fX(1),1+···+X(1),m (k)+·· ·+ fX(m),1+···+X(m),m (k)

]
− fS∗

mn
(k) > 0

for t2 < k � mn .

By (5.4) and its counterpart for fS∗
mn

, if k = 0,1, . . . ,mn then

(5.8)
1

m

[
fX(1),1+···+X(1),m (k)+·· ·+ fX(m),1+···+X(m),m (k)

]
− fS∗

mn
(k)

= 1

m

[(
mn

k

)
xk

1 (1−x1)mn−k +·· ·+
(

mn

k

)
xk

m(1−xm)mn−k

]

−
(

mn

k

)
x̄k (1− x̄)mn−k =

(
mn

k

)
ψk (x1, . . . , xm) ,

where

(5.9) ψk (x1, . . . , xm)

= 1

m

[
xk

1 (1−x1)mn−k +·· ·+xk
m(1−xm)mn−k

]
− x̄k (1− x̄)mn−k .

If k = 0 or k = mn then ψk (x1, . . . , xm) > 0 by the strict convexity (on (0,1)) of the
functions u 
→ (1−u)mn and u 
→ umn , respectively. By (5.8) we get

1

m

[
fX(1),1+···+X(1),m (k)+·· ·+ fX(m),1+···+X(m),m (k)

]
− fS∗

mn
(k) > 0.

Similarly as in the proof of Proposition 5 we can show that there exists k0 ∈
{1,2, . . . ,mn −1} such that

1

m

[
fX(1),1+···+X(1),m (k0)+·· ·+ fX(m),1+···+X(m),m (k0)

]
− fS∗

mn
(k0) < 0.

Taking into account (5.9), for k = 0,1, . . . ,mn we have

(5.10) ψk (x1, . . . , xm) = x̄k (1− x̄)mn−k Rx1,...,xm (k) ,
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where

Rx1,...,xm (t ) = 1

m

⎡
⎢⎢⎣
(

1−x1

1− x̄

)mn

⎛
⎜⎜⎝

x1

1−x1

x̄

1− x̄

⎞
⎟⎟⎠

t

+·· ·+
(

1−xm

1− x̄

)mn

⎛
⎜⎜⎝

xm

1−xm

x̄

1− x̄

⎞
⎟⎟⎠

t⎤⎥⎥⎦−1

for t ∈ [0,mn]. By computing the second derivative we convince ourselves that
this function is strictly convex on (0,mn). Then Rx1,...,xm (0) > 0, Rx1,...,xm (mn) > 0
and Rx1,...,xm (k0) < 0 for some 0 < k0 < mn. Combining this with continuity of
Rx1,...,xm on [0,mn] we conclude that there exist 0 < t1 < t2 < mn such that

Rx1,...,xm (t ) > 0 for 0 � t < t1 ,

Rx1,...,xm (t ) < 0 for t1 < t < t2 ,

Rx1,...,xm (t ) > 0 for t2 < t � mn .

Following (5.8) and (5.10) we see that the relations (5.7) hold, so the second hy-
pothesis of Ohlin’s Lemma is fulfilled. It is now enough to apply this result to
complete the proof of Proposition 11. �

Now we present the result which extends Theorem 8, and, therefore, general-
izes the problem of Raşa.

Theorem 12. Let m,n ∈N, m � 2. Then

(5.11)
n∑

i1,...,im=0

(
bn,i1 (x1) · · ·bn,im (x1)+·· ·+bn,i1 (xm) . . .bn,im (xm)

−mbn,i1 (x1) . . .bn,im (xm)
)

f

(
i1 +·· ·+ im

mn

)
� 0

for each convex function f ∈C
(
[0,1]

)
and for all x1, . . . , xm ∈ [0,1].

Proof. Rewrite (5.11) in the form
mn∑
k=0

∑
i1+···+im=k

bn,i1 (x1) · · ·bn,im (xm) f

(
k

mn

)

� 1

m

mn∑
k=0

∑
i1+···+im=k

(
bn,i1 (x1) · · ·bn,im (x1)+·· ·+bn,i1 (xm) . . .bn,im (xm)

)
f

(
k

mn

)
,

which is equivalent to

(5.12) E f

(
X(1) +·· ·+X(m)

mn

)

� 1

m

[
E f

(
X(1),1 +·· ·+X(1),m

mn

)
+·· ·+E f

(
X(m),1 +·· ·+X(m),m

mn

)]
,

where X(1), . . . , X(m) are independent random variables and for all i ∈ {1, . . . ,m}
the random variables X(i ),1, . . . , X(i ),m are independent with

X(i ), X(i ),1, . . . , X(i ),m ∼ B(n, xi ) , if xi ∈ (0,1) ,

μX(i ) =μX(i ),1 = ·· · =μX(i ),m = δ0 , if xi = 0,

μX(i ) =μX(i ),1 = ·· · =μX(i ),m = δn , if xi = 1.

The proof of the inequality (5.12) (based on Proposition 11) is similar to the
proof of Proposition 5 (i.e. in the case m = 2) and we omit it. �
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