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grade fluids filling a two-dimensional bounded domain with the Navier-slip boundary
condition (with friction). We prove the well-posedness of this problem and establish

éiecyc:f]gngl;de fAuid a stability result. Our stochastic model involves a multiplicative white noise and
Solvability a convective term with third order derivatives, which significantly complicate the
Stability analysis.
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1. Introduction

The study considers stochastic incompressible fluids of second grade, which are a special class of non-
Newtonian fluids. Unlike Newtonian fluids where only the stretching tensor appears in the characterization
of the stress response to a deformation fluid, the Cauchy stress tensor T of non-Newtonian fluids is defined
by

T = —7TH—|— VAl + 041A2 + Qo A%,

where the first term —nll is due to the incompressibility of the fluid and A, As are the two first Rivlin—
Ericksen tensors (cf. [35])

Ai(y) =Vy+(Vy)' and As(y) = Ai(y) + Ai(y)Vy + (Vy) | Ay(y),

where y denotes the velocity of the fluid, the superposed dot is the material time derivative, v is the
kinematic viscosity of the fluid, and «j, ag are constant material moduli. A previous study [18] showed
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that the thermodynamic laws and stability principles impose a; > 0 and a1 + as = 0. We set @ = 1 and
assume that aq > 0.

It is well known that small random perturbations in turbulent fluids can produce relevant macroscopic
effects. Therefore, the incorporation of stochastic white noise force in the Navier—Stokes equations [3] is
widely recognized as important for understanding turbulence phenomena. Thus, in [2] (see Lemma 2.2), the
stochastic Navier—Stokes equations were deduced from fundamental principles by showing that the stochastic
Navier—Stokes equations are a real physical model. The stochastic Navier—Stokes equations are now quite
well understood (e.g., see [16,20,30,36], and the references therein). However, few results have been reported
regarding stochastic non-Newtonian fluids [17,32-34]. In this study, we consider the stochastic second grade
equations with multiplicative noise given by

{ 2 (Y —aAY) =vAY —cwrl (Y —aAY) x Y — Vr + U + G(t,Y) W, L)

divy =0 in O % (0,7),

where U is a body force, G(t,Y) W, is a multiplicative white noise, and @ is a bounded domain of R? with
a boundary TI'.

Studying this system requires suitable boundary conditions on the boundary I' of the domain. The
Dirichlet boundary condition given by

Y=0 onI

is accepted as an appropriate boundary condition and it is the most usual. Another physical relevant
boundary condition considered in previous studies is the Navier boundary condition

Y -n=0, 2n-DY)+~4Y]-7=0 onT, (1.2)

where n = (n1,n2) and 7 = (—ng,n1) are the unit normal and tangent vectors, respectively, to the bound-
ary I', DY = w is the symmetric part of the velocity gradient, and v > 0 is a friction coefficient
on I

The stochastic partial differential equations (1.1) with the Dirichlet boundary condition were studied by
[32] and [34]. In the former study, tightness arguments were used together with the Skorohod theorem to
prove the existence of a weak stochastic solution in the sense that the Brownian motion, which is part of the
solution, was not given in advance; whereas in the second study, the existence and uniqueness of a strong
stochastic solution was proved. In pioneering studies [31] and [13] (see also [12]), the deterministic second
grade equations with the Dirichlet boundary condition were studied mathematically for the first time, while
[6] investigated the deterministic equations with a particular Navier boundary condition (without friction,
i.e., when v = 0). The physical interpretations of these second grade equations were given by [8,18,19,
21,23], and [24]. Tt is relevant to recall that the deterministic methods are based on the Faedo—Galerkin
approximation method and a priori estimates. Then, compactness arguments can be used to pass to the
limit of the respective approximate equations in the distributional sense. Unfortunately, for the stochastic
partial differential equations, a priori estimates are not sufficient to pass to the limit of the approximate
equations due to the lack of regularity on the time and stochastic variables. Thus, in order to obtain a strong
stochastic solution, we should verify that the sequence of the Galerkin approximations converges strongly
in some adequate topology.

We should note that even if the Dirichlet boundary condition is widely accepted as an appropriate bound-
ary condition at the surface of the contact between a fluid and a solid, it is also a source of many problems
because it attaches fluid particles to the boundary, thereby creating a strong boundary layer (cf. [15,25,26,
28]). In addition, the Navier boundary condition allows the slippage of the fluid on the boundary, which
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makes it possible to address important problems, such as the boundary layer problem when the viscos-
ity v and/or the elastic response « tend to zero (cf. [7,11,9,10,14,27,29]). However, even if the Navier-slip
boundary condition allows us to solve interesting problems, technically, when compared with the Dirichlet
boundary condition, it requires a more careful mathematical analysis to show the well-posedness of system
(1.1)—(1.2) and to establish the stability properties for the solution because the boundary terms obtained by
integrating by parts for the convective term do not vanish and they should be estimated in an appropriate
manner.

To the best of our knowledge, we investigate stochastic second grade fluid equations with the Navier
boundary condition for the first time in this study. To show the well-posedness, we follow the Faedo—Galerkin
approximation method by taking an appropriate basis, as employed in previous studies. First, we deduce
uniform estimates for the approximate solutions that allow us to pass to the limit with respect to the weak
topology. In order to show that the limit process is a solution, we employ the methods developed in [4]
to study the stochastic Navier—Stokes equations. In particular, we show that the approximate solutions
already converge strongly up to a certain stopping time, and thus we establish the existence and uniqueness
results for the solution of system (1.1)—(1.2) as a stochastic process with values in H3. We should note
that analogous reasoning was employed by [34] to handle stochastic second grade fluid equations with
homogeneous Dirichlet boundary conditions.

The remainder of this paper is organized as follows. In Section 2, we state the functional setting and
introduce useful notations. In Section 3, we present some well-known results and lemmas related to the
nonlinear term of (1.1);, which is applied in the following sections. The main result concerning the existence
of a strong stochastic solution is established in Section 4. Finally, in Section 5, we study the stability

property.
2. Functional setting and notations

We consider the stochastic second grade fluid model in a bounded and simply connected domain O of
R? with a sufficiently regular boundary T’

dv(Y)) = (WAY —curl(v(Y)) x Y = Vr +U)dt + G(t,Y) dW,,

divy =0 in O x (0,7T), 1)
Y n=0, [2m-DY)+AY]-7=0 onT'x (0,T), '
Y(0) =Y, in O,

where v > 0 is the constant viscosity of the fluid, @ > 0 is a constant material modulus, the constant v > 0
is the friction coefficient of ', A and V denote the Laplacian and the gradient, respectively, Y = (Y7, Y3) is
a two-dimensional (2D) velocity field, and

v(Y) =Y — aAY.

The function 7 represents the pressure, U is a distributed mechanical force, and the term

G(t,Y)dW, = > G*(t,Y)dW}
k=1

corresponds to the stochastic perturbation, where G(¢,Y) = (G'(¢,Y),...,G™(t,Y)) has suitable growth
assumptions, as defined in the following, and W = (W}, ..., W/™) is a standard R™-valued Wiener process
defined on a complete probability space (£, F, P) endowed with a filtration {‘Ft}te[O,T]' We assume that Fy
contains every P-null subset of (2.
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Let X be a real Banach space endowed with the norm |[-|| . We denote LP(0,7; X) as the space of
X-valued measurable p-integrable functions y defined on [0, 7] for p > 1.

For p,r > 1, let LP(Q, L"(0,T; X)) be the space of the processes y = y(w,t) with values in X defined on
Q2 x [0,T], adapted to the filtration {F;},¢(y 71, and endowed with the norms

sk

T
9200000200 = | E | [ ol e
0

and

11l 2o 0,0 0.m:x)) = (E sup lyllx ) if r = oo,
te[0,T]

where E is the mathematical expectation with respect to the probability measure P. As usual, in the notation
for processes y = y(w, t), we generally omit the dependence on w € Q.

In Equation (2.1), the vector product x for 2D vectors y = (y1,y2) and z = (21, 22) is calculated as

y Xz = (y1,y2,0) X (21, 22,0). The curl of the vector y is equal to curl y = g—gi — g—z; and the vector product

of curly with the vector z is understood as
curly x z = (0,0, curly) x (21, 22,0).

Given two vectors y, z € R?, y-z = Zle y;z; denotes the usual scalar product in R?, and given two matrices
A, B, we denote A- B = 22 A;;B;;.

ij=1
Let us introduce the following Hilbert spaces

H(curl; 0) = {y € L*(0) | curly € L*(0), divy=0 in O},
H={yeL*0)|divy=0 in O and y-n=0 on T},
V={yeH(O)|divy=0 in O and y-n=0 on T}, (2.2)
W={yeVNnH*O)|[2n-Dy)+~y]-7=0 on I'},

W =W n H30).

We denote (-,-) as the inner product in L?(0) and || - ||2 as the associated norm. The norm in the space
HP(O) is denoted by || - || g». Let us note that H(curl; ©) is a subspace of H*(0O). Let us denote

(Dy,Dz) = /Dy - Dz.
o
On the space V', we consider the following inner product

(. 2)y = (). %) = (v, 2) + 20 (Dy, D) + ay / y-z

and the corresponding norm || - ||y. We can verify that the norms || - ||g: and || - || are equivalent because
of the Korn inequality

Iyl < CUDylly +llylly) . Yy € HY(O). (2:3)
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C denotes a generic positive constant, which may depend only on the domain O, the regularity of the
boundary I', the physical constants v, «, v, and K, as defined in (2.5).
Let B be a given Hilbert space with inner product (-.-) 5. For a vector

m~-times

m——
h=(h',...,h™) € B®" =B x .. x B,

we introduce the norm

Ihlls =D Il
i=1

and we define the absolute value of the inner product of h with a fixed v € B as

k=1

m 1/2
|(h,v)p| = <Z (hk,v)fg) : (2.4)

Assume that G(t,y) : [0,7] x V — V™ is Lipschitz on y, and it satisfies linear growth, i.e., a positive
constant K exists such that

IG(t,y) — G(t, )|y < K Iy — 2II3,
IGE Iy <KQ+]yly).  Vy.zeV, telo,T). (2.5)

3. Preliminary results

Let us introduce the Helmholtz projector P : L?(0) — H, which is the linear bounded operator defined
by Py = ¢, where § € H is characterized by the Helmholtz decomposition

y=9+Ve, ¢eH(O).
We recall some useful inequalities, i.e., the Poincaré inequality
lyll, <ClIVyll,  forallyeV

and the Sobolev inequality

yll, < ClIVyll, for all y € V.

Now, we present the first result in this section, which is a well known and very important property
concerning the Navier boundary conditions (see Lemma 4.1 and Corollary 4.2 in [26]). Let k be the curvature
of I'. By parameterizing I" by the arc length s, the following relation holds

Bn_dn_kT

ar — ds

Lemma 3.1. Let y € H2(O) NV be a vector field that verifies the Navier boundary condition. Then,

curly =g(y) onT with g(y)=2k—7)y-T (3.1)
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Proof. Let us first note that the anti-symmetric tensor Ay = Vy — (Vy) can be written in the form
Ay = curly{(l) Bl} .
The symmetry of Dy and the anti-symmetry of Ay imply that
(Dy)T-n=(Dy)n-7 and (Ay)7-n=-—(Ay)n-T.
It follows that
(Vy)r-n=Dy)n-7—1(Ay)n-7,
which is equivalent to
curly = =2(Vy)7 -n+2(Dy)n - 7. (3.2)
By taking the derivative of the expression y-n = 0 in the direction of the tangent vector 7, we deduce that
(Vy)r-n=—-ky-7. (3.3)
The conclusion is then a consequence of (3.2) and (3.3). O

Now, we state a formula that can be derived easily via integration by parts
—/Ay-z:—/2(Dy)n~z+/2Dy-Dz, (3.4)
o r o

which holds for any y € H2(O) NV and z € H*(O). Using the boundary conditions, this gives the relation
—/Ay~z:'y/y~z+/2Dy-Dz for any y € W and z € V, (3.5)
o r o

which is used throughout this study.
Let us consider the following modified Stokes system with Navier boundary conditions

h—aAh+Vp=f, divh =0 in O,
(3.6)

h-n=0, 2(n-Dh)+~h]-7=0 onT.
Next, we state a lemma concerning the regularity properties of the solution of this system.

Lemma 3.2. Suppose that f € H™(O), m = 0,1. Then, system (5.6) has a solution (h,p) € H™T2(0) x
H™YO), and the following estimates hold

1hllg2 < C|fll2, (3.7)
ol < Clf - (3.8)

Proof. If we suppose that f € L?(O), then the existence of the solution (h,p) with h in H'(O) is given by
the Lax—Milgram lemma. Multiplying (3.6); by h, we derive
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2 2
B3 + o (21DRI + A2y ) = (F5R) < £ Il
which gives
[Pl < C IS5 - (3.9)
In addition, after applying the operator curl to system (3.6), we derive the following system for u = curl h

u— alAu = curl f in O,
(3.10)

u=gh)=(2k—~)h-7 onl.

Let us denote the extension of the unit exterior normal n (and the tangent 7 = (—ngz,n1)) on the whole
domain O by the same notation, n (and 7). Then, the function z = u — (2k — ) h - 7 solves the system

z—alAz=culf— 2k —v) h-7+aA[(2k—~) h-7] in O,
(3.11)
z=0 on I
Multiplying equation (3.11); by z, integrating by parts, and using (3.9), we deduce that
Izl + alVzl2 < C ([ fll2 + 1Blla) < Clfl2,
which implies that
luller < C([fll2 + [Rllz2) < Clfll2- (3.12)
In addition, estimate (2.3.3.7), p. 110 in [22] for system (3.10) gives
lullzrs < € (Jleurd flla + 12k =) b7l oy )
S CUA N + 1Al g2) - (3.13)
h solves system (3.6), so a stream function ¢ exists such that h = V+¢, which satisfies the system
Ap=u in O,
(3.14)
p=0 onI'
and the estimate
[l m2em < ullgm, — m €N, (3.15)

by Theorem 2.5.1.1, p. 128 in [22].
By combining (3.12) and (3.15) with m = 1, we deduce that

lellms < Cllullar < Clfll2
hence, h = V¢ € H? and (3.7) hold. Moreover, (3.13) and (3.15) with m = 2 imply that
el < llullgz < C U llar + [1Bllm2) -

Given (3.7), we conclude that h = Vt¢ € H? and (3.8) hold. O
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Let us recall that the space W introduced in (2.2) is naturally endowed with the Sobolev norm || - || g=.
The next result follows directly from Lemma 5 in [5] and it helps to introduce W as an equivalent norm
used to analyze the stability in Section 5.

Lemma 3.3. For each y € W, we have

[o(y) =Po)lly < Cliyllg (3.16)
lo(y) = Po@)ll g < Cllyllge - (3.17)

The next regularity result is fundamental for establishing the well-posedness of the velocity equation (see
Propositions 6 in [6] and Lemma 2.1 in [12] for similar results).

Lemma 3.4. Let y € w. Then, the following estimates hold

1Yl = < C POy + Nyl ) (3.18)
1Yl s < C ([[eurlo(y)lly + lyll o) - (3.19)

Proof. Considering system (3.6) with f = v(y), then the pair (y,0) is obviously the solution of this system.
Hence, the estimate (3.7) yields

1Yl 2 < Cllo@)lly < C(loly) = Po)ll, + [Po()lly) -

By applying (3.16), we can obtain (3.18).
curlv(y) € L2(0) and V - (curlv(y)) = 0, so a unique vector-potential 1) € H*(O) exists such that

curly = curlv(y), divyp =0 in O,
P-n=0 on I’

and

1)1 < C llewrl v(w)ll,. (3.20)
It follows that curl (y — aAy — ) = 0 and 7 € L?(O) exists such that

y—aAy—yY+Vr=0.

Hence, y is the solution of the Stokes system (3.6), where f is replaced by .
As a consequence of (3.8), we have

191l s < C Ul + Nyl ) - (3.21)
Using (3.20), we obtain the claimed result (3.19). O

In order to define the solution of equation (2.1); in the distributional sense, we introduce a trilinear
functional, which is well known in the context of Navier—Stokes equations

b((bazay):((bvzyy), V¢7Z,yEV

In the following, we often employ the property
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b(¢, z,y) = —b(¢,y, 2), (3.22)

which is obtained via integration by parts given that ¢ is divergence-free and (¢-n) =0 on T.
Straightforward computations yield the following relation

(curlo(y) x z,8) = b(¢,2,v(y) = b(z,6,0(y))  VyeW, z,peV. (3.23)
In the next lemma, we deduce crucial estimates that are important for establishing the well-posedness
of system (2.1), as well as for proving the stability property of their solutions. We should note that some

estimates follow from an adaptation of the method considered in [6] to prove the uniqueness.

Lemma 3.5. Let y, z, ¢ € w. Then,

|(curlo(y) x 2,0)] < C [yl gs 12l 1 18]l 7 (3.24)
[(curlv(y) x 2,¢)| < C llyll g 12l s [l (3.25)
|(curlv(y) x z,9)| < C llyl7 [12] gs - (3.26)

Proof. First step. The proof of estimate (3.24). We can directly estimate

|(curlv(y) x 2, ¢) < [|9]loll2ll2llcurlv(y)lle < |6l mallzll2]lyll e

by Sobolev’s embedding H?(O) — L*°(0). Hence, we have (3.24).
Second step. The proof of estimate (3.25). Equality (3.23) gives

(curlv(y) X 2, (Z)) = b(¢7 = y) - b(Z, ¢7 y) -« (b((ba 2, Ay) - b(Z, ¢7 Ay)) . (327)
Using Sobolev’s embedding H'(O) — L*(0), it is easy to see that

1b(¢,2,9) —b(2,0,9)| = [b(d,2,y) +b(z,6,9)]
< lollallVzll2lylla + 1214l Véll2llyll4
< Cl@lla 12l [yl 2 (3.28)

After integrating by parts and using the boundary conditions, we derive

o o d j o 9z; o
b(¢,2,Ay) = Z /‘bza?AyJ = Z /@82% %-%) = Z /@a—zm(z‘ljk(y))
6,5=1¢ i5,k=1 ij. k=1
2
)
> [alanm- Y [ (68) As
i,5,k=11 4,5,k=1 ¢
d 2 ;0 : 92
d .
= Z /%ii R 82 - Z /¢iax,€gjxﬁ4j‘k(y)
i,j=17 i.3,k=1{ i,4,k=1,
=0+ I+ 1Is. (3.29)

Again, after integrating by parts, it follows that



594 N. Chemetov, F. Cipriano / J. Math. Anal. Appl. 454 (2017) 585-616

I, = Z /@22 Z /(bZ (y)7j divn + Z /Mk ‘75122 9(y)75)nk

©,j=1n L,j=1H 4,5,k=1 ¢

= b(¢, 2z, divng(y)r) +b((n- V)b, 2, nk g(y +Zb(¢, 2= gly)r )
b(¢,z (n-V) (g9(y)7)) -
Then, using Sobolev’s embedding H2(0) <+ L=(0O), we can easily derive
b(¢, 2, Ay)| < [b(¢, z,divng(y)7)| + [b((n- V) 6,2, g(y)7)| + [b(¢,2 (- V) (9(y)7))]
+Z (o (o5 mestrm) [+ o (2. 440 + o (¢ 541 )
< Cllzlmsli@l asllyllm - (3.30)

By symmetry, it follows that

b(2, ¢, Ay)| < Cllzl| msl|dll s |yl - (3.31)

Then, (3.25) follows from (3.27)—(3.31).
Third step. The proof of estimate (3.26). As given in the computations above for (3.29), we obtain

2

Cndn =Y / - Y [ - Y [ A
i,j=1 i,5,k= 1o i,j,k:lo
=J1+ o+ Js,
where
2
Ji=b(z,y,divag(y)r) +b((0- V) 2,9, gy)r) + Y b (z 2k g(y)T )
k=1
+b(z,y,(0-V) (9(y)7))
2
B==3 b (£ A4()
k=1
and

2 2
8 [ 9y; Ay By ok
J3 = — Z /Ziaxi (axi) (89&2 - Z /Ziﬁzl axi 9y
1,5,k=1 ¢ 1,5,k=1 ¢
2 2
I afg () o oo ()] = 3 [ (Bugm) =0
D) |0z \ Oz ) Oxj Ox; \ O Y Ox; \ Oz Oxj .
4,5,k=1 1,5,k=1 ¢

Therefore, we derive
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b (e M) < (e divn g+ b (- 9) 2.9 9 + 3 b (2 mgwym 22|

+16 (2,9, (n- V) \+Z\b(3m,y7 W) < Cllellyldn,  (332)

where we use
2 2
> b (z 2y, g(y)T) =->b (z nk g(y)T, 5%)
k=1 k=1

by (3.22).
By taking ¢ = y in (3.29), we have

2 2
b(y, 2z, Ay) = Z/yzgii Zb<587ysz4k ) Zb(yaxk

ij=1% k=1 k=1

y)) :
Considering the embedding theorems H?(O) — C(0), H(O) = L*(T') and H}(O) — L*(O), we have
2

b(y. 2, Ay)| < Z/iyig—;g<y>rj|+f(\b(%,z,A.uy))mb(y, 2= 40)))
k=1

ij=1}

< Clylin 192l + CITSR IV + 3 sl |2

1,j=1

Bwl(‘)xk H y||2

2
< Clyllg: 2l gs - (3.33)
Then, (3.26) is a consequence of (3.28) and (3.32)—(3.33). O
4. Existence of the strong solution

In this section, we establish the existence of a strong solution for system (2.1) in the probabilistic sense.

Definition 4.1. Let
UeL*Qx (0,T); H(cur; 0)), Yy € L2(Q,W).

A stochastic process Y € L2(Q, L>(0,T; W)) is a strong solution of (2.1) if for a.c.-P and a.e. t € (0,7T),
the following equation holds

/ —2v (DY (s), D¢p) — V’y/y < ¢ dx — (curlv(Y(s)) x Y{(s),¢)| ds
0 r

WY (0),6) + / (U(s), ) ds + / (G(,Y (), 6) dW, (4.1)

0 0

for all ¢ € V, where the nonlinear term should be understood in the sense of
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(curlv(Y () x Y(t),6) = b(9, Y (t),v(Y(s))) = b(Y(t),d,v(Y(s)))

and the stochastic integral is defined by

/ (G(s,Y(5)), 6) dW, =
0 k

We now formulate our main existence and uniqueness result in this section.

Ms

1

/ (G¥(s,Y(s)), ¢) dWPE.
0

Theorem 4.2. Assume that
U e LP(Q x (0,T); H(curl; 0)), Yy € LP(Q,V) N L3(Q, W) for some 4 < p < oo.
Then, a unique solution Y to equation (4.1) exists that belongs to
L2(Q, L0, T; W)) N LP(Q, L=(0,T; V).

Moreover, the following estimates hold

t

1 2 2 2 2
2 s [V +E / (4 IDY I3 + 20y ¥ 12y ) ds < C (BNl +ENU 320,005 + 1)
se|0,t
0

E sup fleurlv (Y (DIl < € (E lleurl v(¥o) I3 + E U 20,101) +1) -
se|0,t

The proof of the theorem is obtained by Galerkin’s approzimation method. We consider the inner product
of W defined by

(¥, 2)7 = (curlv(y), curlv(z)) + (y,2)y, - (4.2)

Considering (2.3) and (3.19), the norm || - || induced by this inner product is equivalent to || - |[zs. The
injection operator I : W — V is a compact operator, so a basis {e;} C W of eigenfunctions exists

(ya ei)f/{u/ = AZ (ya ei)V ) Vy € W? 1€ Na (43)

which is an orthonormal basis for V' and the corresponding sequence {\;} of eigenvalues verifies A; > 0,
Vi € N and \; — oo as i — oo. We note that the ellipticity of Equation (4.3) increases the regularity of the
solutions. Hence, without loss of generality, we can consider {e;} C H* (see [6]).

In this section, we consider this basis and introduce the Faedo—Galerkin approximation of system (2.1).
Let W,, = span{es,...,e,} and define

n
= ch(t)ej
j=1

as the solution of the stochastic differential equation

{ d(v(Yy),0) = (vAY, — curl (v (Yy,)) x Y, + U), ¢) dt + (G(t,Yy), d) dWy, ”m

Yn(o) = Yn,07 V¢ S an

where Y, o denotes the projection of the initial condition Yy onto the space W,.
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We note that {e; = \/%ej }321 is an orthonormal basis for W and
J

- Z Yo, e5)y €5 = Z(Yo@)w &

j=1

and thus the Parseval’s identity gives

Y2 O)lly < Yol and  [[Ya(0)]l5 < Yo (4.5)

57 -

Equation (4.4) defines a system of stochastic ordinary differential equations in R™ with locally Lipschitz
nonlinearities. Hence, a local-in-time solution Y;, exists as an adapted process in the space C([0,T,]; W,,).
The global-in-time existence of Y,, follows from the uniform estimates based on n = 1,2,..., which are
deduced in the next lemma (similar reasoning was employed by [1,34]).

Lemma 4.3. Assume that
UeL*Qx(0,T); Heul;0)), Yy e L*(Q,W).

Then, problem (/./) admits a unique solution Y, € L*(Q, L>(0,T; W)) Furthermore, for any t € [0,T],
the following estimates hold

t
2 2 2
3B st Il + B [ (DY + 207 Yol ) b

s€[0,t]
0
2
< C(L+EI%l} +ENUIR 0z ) (4.6)
¢
—E sup |[curlv (Yu(s))|3 + E/||Curlv )3 ds < E|curlo (Yo) |2
2 s€[0,t] «
0
¢ ¢
+c1E/\|cur1U||§ ds+C]E/ (14 1Y) ds (4.7)
0 0
and
2 2 2
E sup 1Ya(5lfy < CE ISl +EN U1 sumon) (1.9
s s

where C' are positive constants that are independent of n (and they may depend on the data considered for
our problem in the domain O, the reqularity of T', and the physical constants v, «, 7).

Proof. For each n € N, let us consider the sequence {7} } yen of the stopping times
T =inf{t > 0: ||Ya(t)|lgs > N} AT,.
In order to simplify the notation, let us introduce the function

F(Yp) = (WAY,, — curl (v (V) x Yy + U) € HY(O).
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By taking ¢ = e; for each i = 1,...,n in Equation (4.4), we obtain
d (Yru ei)v = (f(Yn)7 ei) dt + (G(ta Yn)a ei) th (49)

Step 1. In the space V for Y, obtain an estimate depending on the stopping times Tpx.
The It6 formula gives

d (Yn, ez)\z/' =2 (an 6i)V (f(Yn)a ei) dt +2 (Yn, ei)V (G(t’ Yn)a ei) th + |(G (t’ Yn) ’ ei)|2 dtv

where the module in the last term is defined by (2.4). Summing these equalities over ¢ = 1,...,n, we obtain
dlIYally = 2 (F(Yn), Ya) dt +2(G(1,Yn), Ya) dWi + |G (1Y) ,e0)|” dt.
i=1

We know that

(f(Yn), Ya) = =20 [IDYall5 = vy [ Yall 72y + @ (b (Ya, Ya, AY,) = b (Yo, Y, AY,))
—b (Yn7 Yna Yn) + (Ua Yn)
= =20 ||DYal5 — vy [IYal 72y + (U, Y2), (4.10)

and thus
2 2 2
AlVally =2 (<20 IDYal} = vy ValFae) + (U, 0)) dt

+2(G(t,Yy),Yy,) dW; + an (G (t,Yy) e dt. (4.11)
=1

Let G, be the solution of (3.6) for f = G(t,Y;,). Then,

(Gn,ei)v = (G(t,Y,),e;) fori=1,...,n

which implies that

Y NG (. Ya) el = |Gally < CIIG (&, Ya)ll3 < CO+[1YallF), (4.12)

i=1

where we use the fact that G,, solves the elliptic type problem (3.6) for f = G(¢,Y,,) and assumption (2.5)s.
Let us take ¢ € [0, 7], and after integrating over the time interval (0,s), 0 < s < 7% At of equality (4.11)
and estimating (4.12), we have

S

1Yo ()3 + / (A IDYolly + 207 Yl 2o qry)dr < [[Ya(0)3 + C(1 + / |Ul3 dr)
0 0

S

+ Il dr2 [ (6 0Y) o) . (4.13)
0 0

The Burkholder-Davis—Gundy inequality gives
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Nf=

s TN AL
E sup /(G(r,Yn),Yn)dW,.gE /|(G(3,Yn),Yn)\2ds
SE[O,T]\L,/\t]
0 0
1
TNAL 2
2
<E s o)l | [ 16615 ds
s€[0, 7R At] 0
TN AL
<cB swp V)B4 CE [ 1+ V) ds
s€0, 7R AL] 5

By substituting the last inequality with the selected ¢ = % in (4.13) and considering (4.5), we derive

TN AL
1
3B s @I +E [ (wIDYalE + 20 Walag) ds < Bl

s€[0, 7R AL
0
t TN AL
+CIE/(1+||UH§)ds+C]E / 1Yl ds.
0 0

Hence, if we denote 1o n] as the characteristic function of the interval [0, 7y, then the function

f(t) =E sup 1y 0l[Ya(s)l7
s€[0,t]

fulfills the Gronwall type inequality

t

i
O =C [ 5)ds + IV, 0 +CE [0+ U] ds
0

0

which implies that

TNAL
1
2E s VO +E [ (WDl + 2 Vo) ds
s€[0,7R At]
0
2
<C(1+EI} +EIUIZ20415)) - (4.14)

Step 2. L? estimate for curlv(Y,,) depending on the stopping times T
The deduction of this estimate is quite long. First, let us consider the solutions f,, and G,, of (3.6) for
f=f(,) and f = G(t,Y,), respectively. Then, the following relations hold

(frrei)v = (F(Ya)e),  (Gure)v = (G(t, V), e). (4.15)
If we use these relations in Equality (4.9), we obtain

d(Yn,ei)y = (fn i)y dt+ (Gnoei),, dWr.

Multiplying the last identity by A; and using (4.3) in the resulting equation yields
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d (Yo, €)= (fns€i)jp dt + (G, ei)g AW
In addition, the It6 formula gives
d (Yo, €)% =2 (Yn,ei)gp (Fased)p dt + 2 (Yo, €:) 5 (G )i AWy + [(Giny €3) 7] dt.

After multiplying this equality by /\i and summing over ¢ = 1,...,n, we obtain

_ - "1 .
A||Y,[F = 2(fu Yo)yir dt + 2(Gn, Ya )i dWe D (G, e) g,
i=1""

i.e.,
d([leurlo (Vo) 3 + [Yallf) = 2 ((curlv(fn), curlv(Ya)) + (fu, Yo)v) dt

+2 ((curlv(én), curlv(Y,,)) + (G, Yo)v) dWy + Z N |(G(t,Yy), ei)v|* dt
i=1

by the definition of the inner product (4.2). The definitions of f, and G, as solutions of (3.6) imply that
d(fJeurlv (Y,) 3 + [[Yall) = 2 ((curl £(Vy,), curlv(Y,)) + (£(Y,), V) dt

+2 ((Cuﬂ G(t7 Yn)7 CurlU(Yn)) + (G(f, Yn)v Yn)) th + i )‘i|(G(t7 Yn)7 ei)V|2 dt7
=1

which reduces to
d||curlv (V) ||2 = 2 ((curl £(Y;,), curlv(Yy,))) dt

+2((curl G(L, Yy, curlv(Yy,))) dW, + zn:(xi DG Y, e) 2 dt, (4.16)

i=1

considering Equality (4.11).
Since

curl (curl (v(Yy)) x Yy) = (Y - V) curlo(Yy,) and (Y - V) curlu(Y,), curlv(Y,)) =0,
then we have

(curl f(Yy),curlv(Yy,)) = (veurl AY,, + curl U, curl v(Y,,))

= (—Z curlv(Y,) + ZcurlYn + curl U, curlu(Yn)) .
a !
By substituting the last relation into (4.16), we derive
2 2v 2 v
dllcurlv (Y,)[|; + — |lcurlv (Yy,)||; dt =2 (—curl Y, + curlU, curly(Yn)> dt
et !

+ 2 ((curl G(t, Yn), curlv(Yy,))) dW; + i()\z — DI(G(t,Yy), e)|* dt. (4.17)

i=1

Let us take ¢ € [0, T]. By integrating over the time interval (0, s), 0 < s < 7R At, taking the supremum and
the expectation, we obtain
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TN AL
2
E sup |curlv (Yn(s))Hg + ) / ||curl v (Yn)||§ ds < E||curlv (Yn(O))Hg
s€[0, 7R At] «Q o
TN AL
+2E / ‘ (Kcurl Y, + curlU, curlv(Yn)) ‘ ds
a
0
+2E  sup /(curlG(r, Y,), curlv(Yy,)) dW,
s€[0, 7R At] 2
TN AL n
+E / S — 1 [(G(s, Ya), e ds.
o i=1
Moreover,
TN AL
2E / ‘ (Kcurl Y, + curlU, curlv(Yn)> ‘ ds
a
0
TN AL
<E sup |lcurlv (Y,(s))|l, / (K lcurl Yy, ||, + ||Cur1U||2) ds
s€[0, TR AL] 0 o
TN AL
<eE sup |curlv (Yn(s))Hg + C.E / (||cur1Yn||§ + chrlUHg) ds,
s€[0, 7R At] o
ie.,
TN AL
2K / ‘ (gcurl Y, + curlU, curlv(Yn)) ’ ds
0
TN AL
<eE sup |lcurlv (Y, (s))||5 + C-E / (lewrl Yy, |13 + [[curl U|3) ds.
s€[0,7RAL]
0

The Burkholder—-Davis—Gundy inequality and estimate (2.5)y imply that

s TNt

2E  sup /(curlG (r,Yn),curlv(Yy,)) dW,| < 2E / |(curl G (s,Yy) , curlv(Yy,))[? ds
s€[0,7R At]
0 0

TN AL 2
<2E sup |lcurlv(Y,(s))ll, / ||cur1G(s,Yn)||§ ds
S€E0, 7R AL] 0
TN AL
<eE sup |curlv(Yy,)|3 + C.E / ||G(3»Yn)||%/ ds
s€[0,7% At]
0
T At
<eE sup |curlv(Yy,)|3 + C.E / (1+||Yn(8)|‘%/> ds,
s€[0,7% At]

0

[N

(4.18)

(4.19)
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ie.,

S

2E  sup /(curlG (r,Yy),curlu(Yy,)) dW,

se[0, TNt
[0, 7R At] A

TN AL
<eE sup |curlv(Yy,)|2 + C.E / (1 + | YnH%,) ds. (4.20)
s€[0,7 At] 0

After substituting (4.19)—(4.20) into (4.18) and choosing € = §, we obtain

T At

1 2v
“E sup [jeurlo (Yo (s))|2 + =—E / [curlv (Y,)]3 ds < E ||curlv (Y,,(0))]]3
2 sepo,rpat @
t TN AL
+01E/\|cur1U||§ ds + CE / (1+ ||Yn(s)\|2v) ds. (4.21)
0 0
Step 3. The limit transition as N — oo in estimates (4.14) and (4.21).
Since
E [|curlv (Y, (0)[[5 < CE [[Y,(0)|[3s < CE||Yo|l3s < C
and
TN AL
2
E / (1+ 12 ds < ©
0

by (4.5) and (4.14), then we obtain

E sup |[curlo (Y, ()]s < C.
s€[0,7R At]

Therefore, estimates (3.19), (4.14) imply that

E sup [[Ya(s)|7s < C,

s€[0,7{ AT

where C' is a constant that is independent of N and n. Let us fix n € N, and by writing

E sup |[|Vu(s)l7e =1E< Sup ey <7) IYn(S)IIEs>

s€[0,7RAT] s€0,7RAT)

0,7/ AT

+]E< sup  lirn>ty Yn(3)||i13>
s€| T

> ]E( max 1en o7y ||Yn(8)||12qg) > N?P (18 < T), (4.22)

s€[0,7R]

we deduce that P (78 <T) — 0, as N — oo. This means that 73 — 7' in probability as N — oco. Then,
a subsequence {7y, } of {73} (which may depend on n) exists such that
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7, (W) =T for a.e. weN ask— co.
Since 7y, < T, < T, then we deduce that T, = T, so Y, is a global-in-time solution of the stochastic
differential equation (4.4). In addition, the sequence {7} } of the stopping times is monotone on N for each
fixed n, so we can apply the monotone convergence theorem in order to pass to the limit in Inequalities

(4.14) and (4.21) as N — oo, thereby deducing estimates (4.6) and (4.7).

Step 4. Estimate in the space W for Y,. By substituting estimate (4.6) into (4.7) and using Lemma 3.4, we
immediately derive the main estimate (4.8) of this lemma. O

In the next lemma, by assuming better integrability for the data U, Yj, we improve the integrability
properties for the solution Y;, of problem (4.4).

Lemma 4.4. Assume that
UeLP(Qx(0,T);H), Yo € LP(Q,V) for some 4 < p < .

Then, the solution Y, of problem (/.4) belongs to LP(2, L°°(0,T;V)) and verifies the estimate

B sup Va0l < CEWoll, +C 1+ [ U] ds) (4.23)
s€[0,t]

where C' is a positive constant that is independent of n.
Proof. For each n € N, let us define a suitable sequence {73 } nen for the stopping times
T =inf{t >0:||Ya(t)|v > N} AT.

After applying the It formula for the function 6(z) = 2%, ¢ > 1, to process (4.11), we have

ANl = g IVl [ (W 1DYal} + 207 1Vl r)) +2<U,Yn>+Z|<G<t,yn>,ei>|2] it

i=1

+2q | Vall3" ™2 (G, Yn), Ya) Wi +2q(q — 1) Va7 [(G(, Ya), Ya) | dt.

Let us take t € [0,T]. By integrating over the time interval [0,s], 0 < s < 7% A ¢, we obtain

1Y ()27 < 1Y (0)]27 + g / IV 120, V) + S G (r, V) e | dr
=1
2 / IYal272 (G(r. Y,0). Yi) dW,
2q— 4 2
+2q(qg—1) /HY || (G(r,Y,),Y,)|” dr. (4.24)

From estimate (4.12), we have
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n

DG Ya) el < O(L+|YallF).

i=1

By taking the supremum on s € [0, 7k A t], the expectation in (4.24), applying Burkholder-Davis—-Gundy’s
and Young’s inequalities, and proceeding analogously to (4.13), we obtain

t
B_sw V(oI BV +C,B / U2 ds
0

s€[0, 7R AL
1 TN AL
+3E s YOI+ 0+ E [ VY as)
s€[0,7 At] 0
Using Gronwall’s inequality, we deduce that

t

2q 2q 2q

B _sw I < CEINGIE +C (4B [ U1 ds (4.25)
s€|0, T AL

0

for any ¢ > 1 and ¢ € [0, T]. Using the fact that

E sup [Vu(s)|i¥<C

s€[0,7{ AT

with a C that is independent of n and NN, we may reason as given in the proof of Lemma 4.3 in order to
verify that for each n, 73y — 7' in probability, as N — oo. Then, a subsequence {7y, } of {7y} (which may
depend on n) exists such that TN, — T for a.e. w € Q, as k — oo. Now, let us consider ¢ = £. Using
the monotone convergence theorem, we pass to the limit in (4.25) as k — oo, thereby deriving estimate
(4.23). O

Proof of Theorem 4.2. Existence. The proof is divided into four steps.

Step 1. Estimates and convergence related to the projection operator.
Let P, : W — W, be the orthogonal projection defined by

n
Py =) ¢¢ with & =(y¢)y, WWeW,
j=1
where {¢; = \/L/\—jej }321 is the orthonormal basis of W. It is easy to check that

n
Py = chej with  ¢; = (y,¢5), Yy e W.
j=1

By Parseval’s identity, we have

1Payllv < llyllv, VyeV,
I1Poyll < Nyl and Py —y strongly in W, Yy € w.

Considering an arbitrary Z € L?(Q x (0,T); W), we have
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1P Zll <12l and  PoZ(w,t) = Z(w,t)  strongly in W,

which are valid for P-a.e. w € Q and a.e. t € (0,7T). Hence, Lebesgue’s dominated convergence theorem and
the inequality

1Z|v <C||Z|l  forany Ze W

imply that
PZ—Z strongly in  L*(Q x (O,T);AW/)),
P.Z —Z strongly in L*(Q x (0,7);V)). (4.26)
Step 2. Passing to the limit in the weak sense.
We have
E sup |[Ya()|f <O E sup [[Ya@)y <C (4.27)
te[0,T] te[0,T]

for some constants C that are independent of the index n by estimates (4.8) and (4.23). Therefore, a suitable
subsequence Y, exists, which is indexed by the same index n to simplify the notation, such that

Y, =Y  *weakly in L3(Q, L°(0,T; W)),
Y, —~Y *-weakly in LP(Q, L>°(0,T;V)). (4.28)

Moreover, we have

PY —Y  strongly in L2(Q x (0,T); W)),
T);

P,Y —Y  strongly in L*(Q x (0,T);V)). (4.29)
Let us introduce the operator B : WxV - W*, defined as
(B(y,z),¢) = (curlv(y) X z, ) for any vy, ¢ € w and z €V,

and we state some useful properties. Relation (3.23) gives

(B(y,2),¢)=—(B(y,9),2), (B(y,2),2) =0, (4.30)

and (3.24), (3.25) yield
1B (y,2) [l < Cllzlly Iyl (4.31)
1B (4, 2) 5 < Cllylly 2l - (4.32)

According to (3.26), a fixed constant C; exists such that

1B (y,9) - < C1llylly (4.33)

and thus

2
1B Wl L2x 0,0y < CrWllLs,Le0m0vy) - (4.34)
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In addition, considering (2.5), (4.28), the operators B*(t) and G*(t) exist such that

B(Y,,Y,) — B*(t)  weakly in L*(Q x (0,T); W*),
G(t,Y,) = G*(t)  weakly in L*(Q2 x (0,7); V™).

By passing to the limit n — oo in Equation (4.4), we find that the limit function Y satisfies the stochastic
differential equation

(4.35)

d(v(Y),¢) =[(vAY + U, ¢) — (B*(t), )] dt + (G*(t), ) dW4, Vo € w. (4.36)

Step 8. Deduction of strong convergence as n — oo depending on the stopping times Ty;.
In order to prove that the limit process Y satisfies Equation (4.1), we adapt the methods given by [4]
(also see [34]). Let us introduce a sequence (1a7), M € N, of stopping times defined by

v (w) = inf{t > 0: ||[Y(t)||l5(w) > M} AT, w e N
By taking the difference between (4.4) and (4.36), we deduce that

d(P,Y =Y, e))y = [(WAY =Y, e;) + (B(Yy, Y,) — BX(t), e;)] dt
— (G, Yy) — G*(t), e;) AW, (4.37)

which is valid for any e; € W,,, i =1, ....n.
By applying It6’s formula, Equation (4.37) gives

A(PY = Yn,e)} =2(PY — Yo, &)y [VA(Y = Y,),e:) + (B(Yn, Ya) — B*(t), e3)] dt
—2(P,Y = Yo, &)y (Gt,Yy) — G*(t), &) dW; + |(G(t, Yy) — G*(1), ;)] dt,

and by summing over the index ¢ from 1 to n, we derive

d (”PnY - YnH%/) + (4V||D(PnY - Yn)”% + 2vy ”PnY - Yn”i%l")) dt
=2w(A(P,Y —Y),P,Y —Y,)dt
+2(B(Y,,Y,) — B*(t), P,Y — Y, dt

+ Zn: (G(t,Y,) — G*(t),e)|? dt — 2(G(t,Y,) — G*(t), P,Y — Yy,) dW,. (4.38)

Let us note that

+ <B(P7LY7P71Y) - B(Y’ Y)apnY - Yn> + <B(Y7Y) - B*(t)7PnY - Y;L>

=1+ I+ Is. (439)
Using (4.30), we derive
I, =(B(Y,,Y,) — B(P,)Y,R,Y),P,Y - Y,)
=(BY.,Y,) - BY,,P,Y)+ B(Y,,P.Y) - B(P,)YY,P,Y),P,Y - Y,)

=—(B(Y,,PY -Y,),RY -Y,)—(B(P,Y -Y,,RY),PY —-Y,)
= <B(PTLY -Y,, PY — 1/n)7Pn1/>a
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which together with (4.33) implies that
1] < CulY g [P2Y = Yall} (4.40)
For the term I5, we have

|12| = |<B(PTLKP7LY) _B(KY)aPnY_ Yn>|

[l 577

and for every ¢ € W, from (4.31) and (4.32), it follows that

IB(PLY, P,Y) = B(Y,Y) 5. <[B(PRY =Y, oY) + [ BY, P.Y =Y.

< COIYllglPY =Ylv,

Il

and thus we obtain
o] < C Yl 1PY =Yy |PY = Yall - (4.41)

In addition, by denoting én, é, and G* as the solutions of the Stokes system (3.6) for f = G(t,Yy),
f=G(t,Y), and f = G*(t), respectively, we have

(G(t,Y,) — G (t),e) = (Gn — G*,e5)y,  i=1,2,....n.

Then,

STHGE YY) = GH (1), e0)]* = [|PuGr — PaG* [}

i=1

2

The standard relation 2% = (z — y)? — y? + 22y allows us to write

Hpnén - Pné*”%/ = HPnén - PnéH%/ - ”Pné - Pné*”%/
+2(P,G,, — P,G*, P,G — P,G*)y.
From the properties of the solutions of the Stokes system (3.6) and (2.5), we have
1PaGr = PuGlf3 < |G = G} < |G, Y0) = Gt Y )72 < K |[Ya = Y3,
and thus for the fixed constant Cy = 2K, we have
|PaG = PG5 < K ||V = Y[, = [ PaG — PG 7
+2(P,G,, — P,G*, P,G — P,G*)y
<G ||Yu = PYI + CPY = Y[} = [ PG — PG|}
+2(P,G,, — P,G*, P,G — P,G")y. (4.42)

The positive constants C; and Cs in (4.40) and (4.42), are independent of n and they may depend on the
data, i.e., the domain O, the regularity of I, and the physical constants v, «, v, K.

According to the convergence results (4.26)—(4.29), (4.35), we note that by passing to the limit in Equa-
tion (4.38) in a suitable manner, as n — oo, then all the terms containing P,Y — Y will vanish on the
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right-hand side of Equality (4.38), according to Relations (4.26), (4.41), and (4.42), but the terms with
Y,, — P,Y will remain. Fortunately, these terms can be eliminated by introducing the auxiliary function

{(t) — ¢~ C2t—2Ch ngYHV«V—ds.

Now, by applying Itd’s formula to Equality (4.38), we obtain

A(EDIPY = Yal}) +€(0) (WIDPY = Va3 + 207 | PaY = Yallfaqry ) dt
= 2E)(A(PY —Y),P,Y = Y,)dt

+ 26(t)(B(Yy, Yy) — B*(t), P,Y — Y,,) dt + £(t) Zn:\ G*(t),e:)|* dt

—26(t) (G(t,Yy) — G*(t), P,Y — Y,) dW,
— Cof(D)|PaY = Yol dt — 20160 IY [l 1PnY = Yal [y dt. (4.43)

By integrating this over the time interval (0, 7p;(w)), taking the expectation, and applying estimates (4.39),
(4.40), and (4.42), we deduce that

™

E (§(man)l|PaY (1ar) = Ya(rar) V) +E / E()|1PuG — PuG*[3rds
0

TM
+E [ (s) (WIDPY = V)3 + 27 [PY = Yalaqr)) ds
0

< WE / () (APY —Y),PY —Y,)ds
0

™ ™

+2]E/§(s)lg d5+2E/ &(s)Isds
0 0
T™
+]E/ 66) [CIPY Y12 + 2P — PG PG — PuG7)y | ds
0
=Ji+Jo+Js+ Js

In the following, we show that for each M € N, the right-hand side of this inequality tends to zero as
n — 0.
Using (4.27)—(4.28) and the properties of the projection P,, we have

1= 2B [ €5) (1o (DAPY = V), PY - Vi) ds]

< CPY =Y r2axor):m) 1PnY — Yall2(ox 0,112

< C|PY =Y r2axo,ry:m2) (Y l2@x o) 52) + 1 YallL2x 0,7);152))
< CIPY =Y r2ax0,1):m2)
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which tends to zero as m — oo by (4.29). Considering estimates (4.8), (4.41) and given that
Lo, 71 (8) 1Y (8)[l57 < M, P-a.e. in €, then we deduce that

TM
|J2] < 2E /5 VI ds
0

T
2E/€ $)110,ma) () Y [l 1 22Y = Yl (1Y Il + [1Ynll) ds
0

< CM||P,Y — YHIﬂ(Qx(o T);W) (HYHL?(Qx(o,T);vT/) + HYn”L?(Qx(o,T);VT/))

< COM||PY — YHH(Qx(O,T);VT/)’

which also converges to zero by (4.29).
The convergence of (4.28) and (4.29) shows that

P,Y =Y, =0  weakly in L*(Q x (0,T), W),

and thus for any operator A € L?(Q x (0,T), W*) we have

T
IE/APY Y.)ds =0 as n — oo.
0

The function 1} 7,,1(s)&(s) is bounded and independent of the space variable, so we have

[Lj0,72,1(8)&(s) (B(Y,Y) — B*) ||L2 Qx(0,T),W*)

< C(IBO Y oy + 1B ooy i) ) < €
by (4.27), (4.34), and (4.35). Therefore,
™
J3z = 2E/§(8)13 ds
T
2]E/ L[0,7a] s)(B(Y,Y)—B*(s)),P.,Y —Y,)ds =0 as n — oo.
0

We write

J,=E / £(s) [C |PY =Y |3 4 2(P.G, — PuG*, P,G — P,G")y
0

T
— CE / Lo.mar (S)E(8) [ PaY — Y% ds
0

T
t C]E/ 1[0,TM}(3)§(3)(én — G*,P,G — Pné*)v ds.
0
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Due to (4.29), we have
T T
IE/ 10,11 (8)E(s) | PY — Y ||3 ds| < E/ |PY = Y3 ds — 0, as n — oc.
0 0

Now, for each stochastic process Z € L?(Q x (0,T), H), let us denote Z as the solution of the modified
Stokes problem (3.6). We recall that the operator

A:Z 7

is a linear and continuous operator from L?(2x (0,7T), V) onto L?(Q2x (0, T), V). By applying Proposition A.2
in [4] (also see the references therein), it follows that A is continuous for the weak topology, i.e., if Z,, =~ Z
weakly in L2(Q x (0,7),V), then Z, — Z weakly in L%(Q x (0,T),V). Due to this property and the
convergence result (4.35), we obtain

Gn—G"—=G—G*  weakly in L*(Q x (0,T),V™). (4.44)

Moreover, we have G- G* € W™ and

P,(G-G*) = G-G* strongly in L?(Q x (0,7, AW/’"),

P (G—-G")— G—G strongly in L*(Q x (0,T), V™).
Then, we can verify that
110,271 (8)E(8) Pa(G — G*) = 110701 (8)E(s) (G — G*)  strongly in L*(Q x (0,7), V™). (4.45)
As a consequence of (4.44) and (4.45), we have

T
E/ 110,11 (8)E(5) (G — G*, P,G — P,G*)y ds

0

T
= E/(én -G, 1[0’TM](S)5(S>Pn(é —G*))yds — 0, as n — oc.
0

After combining all the convergence results, we obtain the following strong convergences depending on the
stopping times 7y,

Jim B (€(ran) |PaY (mar) = Ya(man) [7) = 0,

T™
lim E / £(s)| PG — P,G*||3-ds = 0,
0

n—oo

T™M
lim E / £(s) <4V||D(PnY V)| + 20y |PLY — YHH%Q(F)) ds = 0,
0

for each M € N. A strictly positive constant y exists such that u < 1y -,,1(s)§(s) < 1, so it follows that
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T™M ™M
nmE/MﬂY—YM%m:Oimmmg mnE/mhdﬂﬁwzo
n—oo n—00
0 0
by (4.29). In addition, considering (4.26), we have
TM™
E/ IG — G*||2ds = 0. (4.46)
0

Step 4. Identification of B*(t) with B(Y,Y) and G*(t) with G(t,Y).
Now, we can show that the limit function Y satisfies Equation (4.1). By integrating Equation (4.36) on
the time interval (0, 7ps A t), we derive

(0 (Y (rar A1) 1) — (0 (Vo) , ) = / (AY +U,§) — (B*(s), )] ds
0
+ (G*(s), ¢) AW (4.47)
/

for any ¢ € w.
From (4.46), it follows that

1.1 (DG =110 1, (DG ace. in @ x (0,T),
which implies that
Lo, 7 ()G (L, Y) = 1197, (1) G"(2) a.e. in Q x (0,7) (4.48)
by (3.6). Since B(Y,,,Y,) — B(Y,Y) = B(Y,,Y, —Y) — B(Y, —Y,Y), then by using (4.31)-(4.32), we have
I1B(Ya,Yn) = BY,Y)|lgp. < C (IValliy + 1Y) 1¥n = Ylv-

Then, for any ¢ € L>(Q x (0,7); W), by using (4.27), (4.28),

T
|]E/1[o,TM](s)<B(Yn,Yn) — B(Y,Y), ¢)ds|
0

T
< CE [ 1i0,710(5) (Wallg + I l1g) 1% = Yyl ds
0

T

< Clellim o [ (1Yol + IV llg) ¥ = Yl ds
0
1
2

TM
§CH<,0\|L,_,O(QX(07T)7VT,) E/ 1Y, = Y||3 ds — 0, as n — 0o.
0

Considering (4.35); and that the space L>(Q x (0,T); W) is dense in L?(Q2 x (0,7T); W), we obtain
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110,74,1(8)B*(5) = 10,7, () B(Y,Y) a.e. in Q x (0,7). (4.49)

By introducing identities (4.48), (4.49) into Equation (4.47), it follows that
T Nt

(0 (¥ (rar 7 1)), 0) — (v(¥) . ) = / (VAY + T, 6) — (B(Y,Y), )] ds

+ / (G(s,Y), ¢) dW,. (4.50)
0

Now, by reasoning as given in (4.22) we have 7oy — T a.e. in Q0. We can pass to the limit in each term of
Equation (4.50) in L*(2 x (0,T)) as M — oo by applying the Lebesgue-dominated convergence theorem
and the Burkholder-Davis—Gundy inequality to the last (stochastic) term, thereby deriving Equation (4.1)
a.e. in Q x (0,7).

We note that the estimates for Y, in Lemmas 4.3 and 4.4 are also valid for the limit process Y due to
convergence (4.28).

The uniqueness of the solution Y follows from the stability result, as shown in the next section. O

5. Stability result for the solutions
In this section, we establish a stability property for solutions of the stochastic second grade fluid model
(2.1). Although we have an existence result with H? space regularity, the difference between the two solutions

can only be estimated (with respect to the initial data) in the space H2. It is convenient to introduce the
following norm on the space W

lyllw = llyllv + [Pu(y)ll2,  yeW.
As a consequence of (3.18) and (2.3), this norm || - ||w is equivalent to || - || g=.
Theorem 5.1. Assume that for some 4 < p < o0,
Uy, Uy € LP(Q, LP(0,T; H(curl; 0))),  Yig,Ya0 € LP(Q,V) N L2(Q, W)
and
Y1, Yy € L3(Q, L=(0,T; W)) N LP(Q, L*(0,T; V)
are the corresponding solutions of (2.1) in the sense of the variational equality (4.1).

Then, the strictly positive constants C3 and C exist that depend only on the data (the domain O, the
reqularity of T', and the physical constants v, «, v, K ), which satisfy the following estimate

t
E sup &(s) [Ya(s) = Ya(s)|l5y < C(E[|Y1,0 — Yaol3y + E / £(s) U1 (s) — Ua(s)|3 ds) (5.1)
s€|0, s

with the function & defined as

£(t) = e=C3 Jo (Y1l gra 1|2l ) ds
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Proof. The process Y = Y] — Y5 satisfies the system

dv(Y) = (vAY —curlv(Y) x Yo — curlo(Yy) X Y — Vr +U) dt
+ (G(t, Y1) — G(¢t,Y2)) dW,

V.Y = in O x (0,7),
Y n=0, [2(n- DY) +Y]-7=0 on ' x (0,7),
Y(0)=Yy=Y10—Yap in O,

613

(5.2)

where m = m — 73 and U = Uy — Us. By applying the operator (I — aIP’A)fl to Equation (5.2);, we deduce

a stochastic differential equation for Y and using It6’s formula, we obtain

dY |3 = 2((vAY — curlv(Y) x Y — curlo(Yy) x Y +U),Y) dt
+ |Gy = Ga|[} dt + 2(G(t, Y1) — G(t, Y2),Y) dW,

(5.3)

where G; are the solutions for the modified Stokes problem (3.6) with f = G(¢,Y;), i = 1,2. Hence, using

assumption (2.5), we have
IG1 = Gal} < ClIG(E Y1) - Gt Ya) |15 < CIIY -

Considering property (3.23), estimate (3.26), and Young’s inequality, we derive

t

t
2 2 2 2 2
YOI + [ (401DY 15+ 20 1Y o) ds < 6% +C [ [¥allo IV s
0 0
t

t t
+ [1vigds+c [ Y1 ds+2 [ (G ¥5) - 6l Ya).v) .
0 0 0

The It formula also gives

d||Pv (V)| =2 (vAY — curlo(Y) x Ya — curlv(Yy) x YV + U, Pv (Y)) dt
+ [|G(t, Y1) — G(t, Y2)||2 dt + 2 (G(t, Y1) — G(t, Yz),Pu(Y)) dW;.

By estimating the nonlinear term
(curlo(Y) x Y + curl o(¥2) x ¥, Pu(Y))] < Cs (I¥all s + [Villgs) (1Y I3 + [Bo(¥)112)

and using (2.5), we deduce that

Po (v @)1+ 22 [0l ds < [Po @l +2 [ (27 +UPu(r)) ds
0 0

+Ca [ (Wall s+ IWille) (1Y + [PoVI3) ds
0
t

e / V2 ds +2 / (G(s, 1) — G(s,Y2), Pu(Y)) dIV,.

0
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By summing this inequality with (5.4), we obtain

1Y @15 + IPo (Y ()3 < [Yolly, + [Pv (Yo)ll3
t

t
4 / \U2ds + C / (V]2 + [Po (V) |2) ds
0

0

i
+Ca [ (Wall + 1¥3lL50) (V1 + [PoY)I3) ds
0

+ 2/(G(8,Y1) —G(5,Y2),Y +Pu(Y)) dW,.
0

Taking &(t) = e~ 3 Jo (W2l s +lI¥all s )ds anq applying It6’s formula, it is then easy to obtain

&0 (YOI + Po (V@)I3) < 1Y)+ [Pu (Y0)11
t t
+ / IIUY3ds + C / &) (1Y% + o (v) [3) ds
0 0
t
+ 2/5 G5, Y1) — Gls,Ya),Y +Po(Y)) dW,. (5.5)
0
The Burkholder—Davis—Gundy inequality gives

E sup /5 G(r, Y1) — G(r,Y),Y + Pu(Y)) dW,
s€[0,t]

W=

<E / () V|2 |V + Po(Y)|]% ds

<eE sup £(s) ([[YV][y + [Po(Y)]2)

s€0,t]
t

+CE [ €)Yy + [Po(v)) ds
0

By substituting this inequality with ¢ = % in (5.5) and taking the supremum on the time interval [0, ¢] and

the expectation, we deduce that

E sup £(s) [V (8)I% < E[Yol +E / £(s)|U|2 ds + CE / Y ()| ds.
s€[0,t]

Hence, Gronwall’s inequality yields (5.1). O
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