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We study nonnegative solutions of parabolic–parabolic Keller–Segel minimal-
chemotaxis-growth systems with prototype given by

{
ut = ∇ · (d1∇u− χu∇v) + κu− μu2, x ∈ Ω, t > 0,

vt = d2Δv − βv + αu, x ∈ Ω, t > 0

in a smooth bounded smooth but not necessarily convex domain Ω ⊂ R
n (n ≥ 3) 

with nonnegative initial data u0, v0 and homogeneous Neumann boundary data, 
where d1, d2, α, β, μ > 0, χ, κ ∈ R. We provide quantitative and qualitative 
descriptions of the competition between logistic damping and other ingredients, 
especially, chemotactic aggregation to guarantee boundedness and convergence. 
Specifically, we first obtain an explicit formula μ0 = μ0(n, d1, d2, α, χ) for the 
logistic damping rate μ such that the system has no blow-ups whenever μ > μ0. In 
particular, for Ω ⊂ R

3, we get a clean formula for μ0:

μ0(3, d1, d2, α, χ) =

⎧⎨
⎩

3
4d1

αχ, if d1 = d2, χ > 0 and Ω is convex,
3√

10−2 ( 1
d1

+ 2
d2

)α|χ|, otherwise.

This offers a quantized effect of the logistic source on the prevention of blow-ups. 
Our result extends the fundamental boundedness principle by Winkler [42] with 
d1 = 1, d2 = α = β := 1/τ , Ω being convex and sufficiently large values of μ beyond 
a certain number not explicitly known (except the simple case τ = 1 and χ > 0) and 
quantizes the qualitative result of Yang et al. [52]. Besides, in non-convex domains, 
since μ0(3, 1, 1, 1, χ) = (7.743416 · · · )χ, the recent boundedness result, μ > 20χ, of 
Mu and Lin [25] is greatly improved. Then we derive another explicit formula:

μ1 = μ1(d1, d2, α, β, κ, χ) =
α|χ|
4

√
κ+

d1d2β

for the logistic damping rate so that convergence of bounded solutions is ensured 
and the respective convergence rates are explicitly calculated out whenever μ > μ1. 
Recent convergence results of He and Zheng [9] are therefore complemented and 
refined.
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1. Introduction and main results

Chemotaxis, the tendency of cells, bacteria and similarly tiny organisms to orient the direction of move-
ment (otherwise random) toward increasing or decreasing concentration of a signaling substance, has been 
attracting great attention in biological and mathematical community. A celebrated mathematical model, 
initially proposed by Keller–Segel [19,20], makes up of two parabolic equations reflecting chemotactic move-
ment through a nonlinear advective–diffusive term as its most defining characteristic. Their pioneering works 
have initiated vast investigations of the K–S model and its various forms of variants since 1970. We refer to 
the beautiful survey papers [2,12,15,46], where a broad survey on the progress of various chemotaxis models 
and rich selection of references can be found.

If biological processes in which chemotaxis plays a role are modeled not only on small timescales, often 
the spontaneous growth of the population, whose density we will denote by u, should be incorporated. 
A prototypical choice to achieve this is the logistic type source κu − μu2 with birth and death rates κ and 
μ, respectively. Let us then begin with the most simplest perhaps the most interesting so-called minimal-
chemotaxis-growth model

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (∇u− χu∇v) + κu− μu2, x ∈ Ω, t > 0,

τvt = Δv − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ R
n, n ≥ 1 is a smooth bounded domain, v denotes the concentration of the chemical signal, 

κ ≥ 0, μ ≥ 0, τ ≥ 0 and χ ∈ R. The nonlinear term χu∇v, the defining term in chemotaxis models, is called 
chemotactic term: in the case χ > 0, it models the cells movement toward the higher concentrations of the 
chemical signal, which is called (positive) chemotaxis, in the case χ < 0, it models the cells movement away 
from the higher concentrations of the chemical signal, which is called negative chemotaxis.

Model (1.1) with κ = 0, μ = 0 corresponds to the classical Keller–Segel minimal model [19,20], which 
and whose variants have been extensively explored since 1970. The striking feature of KS type models is 
the possibility of blow-up of solutions in a finite/infinite time (see, e.g., [2,15,46]), which strongly depends 
on the space dimension. A finite/infinite time blow-up never occurs in 1-dimension [11,30] (except in some 
extreme nonlinear degenerate diffusion model [6]), a critical mass blow-up occurs in 2-dimension: when the 
initial mass lies below the threshold solutions exist globally, while above the threshold solutions blow up 
in finite time [14,29,33], and generic blow-up in ≥ 3-D [41,46]. The knowledge about the classical KS type 
models appears to be rather complete, see the aforementioned surveys for more.

The blow up solution or a δ function is surely connected to the phenomenon of cell aggregation; on the 
other hand, various mechanisms proposed to the underlying model have manifested that blowup solutions are 
fully precluded while pattern formation arises [5,12,26,51]. Among those mechanisms (see the introduction 
in [51]), inclusion of a growth source of cells is a common choice. In particular, the presence of logistic 
source has been shown to have an effect of preventing ultimate growth of populations. Indeed, in the case 
n = 1, 2, even arbitrarily small μ > 0 will be sufficient to suppress blow-up by ensuring all solutions to (1.1)
are global-in-time and uniformly bounded for all reasonably initial data [11,30,31,50]. This is even true for 
a two-dimensional parabolic–elliptic chemotaxis system with singular sensitivity [8]. Whereas, in the case 
n ≥ 3, the first boundedness and global existence were obtained for a parabolic–elliptic simplification of (1.1), 
i.e., τ = 0, under the condition that μ > (n−2)

n χ [37]. Recently, this result was improved to the borderline 
case μ ≥ n−2

n χ [10,18,39]. See also the existence of very weak solutions under more general conditions [40]. 
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For the full parabolic–parabolic minimal chemotaxis-growth mode, fundamental findings were obtained by 
Winkler [42]. Under the additional assumptions that Ω is convex and μ is beyond a certain number μ0 not 
explicitly known (except the case τ = 1 and χ > 0, where μ > n

4χ is sufficient to prevent blow-ups), he 
proved the existence and uniqueness of global, smooth, bounded solutions to (1.1). Recently, a progress on 
global boundedness to (1.1) with χ > 0 was derived as long as μ > θ0χ for some implicit positive constant θ0
depending on Sobolev embedding constants [52]. In 2015, an explicit lower bound for a 3-D chemotaxis-fluid 
system with logistic source was obtained by Tao and Winkler [35], when applied to the chemotaxis system 
(1.1) with χ = τ = 1, their result states that μ ≥ 23 is enough to prevent blow-ups. This bound was further 
improved by Lin and Mu [25] (2016) in three dimensional settings, wherein they replaced the logistic source 
in (1.1) by the damping term u − μur with r ≥ 2 to derive the boundedness under

μ
1

r−1 > 20χ. (1.2)

Their arguments were done to the case that Ω is convex by remarking that they could be adapted to 
non-convex domains by virtue of the papers [17,28]. Of course, when r > 2, this result was already implied 
by [42,52]. Moreover, for the particular choices κ = τ = 1, under certain largeness condition on the ration 
μ/χ, the stabilization of bounded solution (u, v) of the KS model (1.1) to the constant equilibrium (1/μ, 1/μ)
as t → ∞ occurs [9,25,47,55]. While, for arbitrarily small μ > 0, only existence of global weak solutions to 
(1.1) is available [22] in convex 3-D domains. Other dynamical properties of (1.1) can be found e.g. in [13,
23,36,48,49]. Finally, we observe that enormous variants of (1.1) have been considered to provide conditions 
on diffusion, degradation, chemo-sensitivity and mostly on the growth source ensuring the boundedness of 
the proposed models [2,4,38,50,54] and the references therein, and that explosion of solutions is possible 
in chemotaxis systems despite logistic growth restriction [45]. Therefore, it is meaningful to detect more 
circumstances where no blow-up is allowed for the minimal KS model with logistic growth (1.1).

It is widely known that the KS minimal model (1.1) with κ = μ = 0 admits both bounded and unbounded 
solutions, identified via the critical chemotactic sensitivity u

2
n [7,16]. Therefore, the model (1.1) is simply 

a supercritical case with the balance of logistic damping and aggregation effects, for which the property of 
solutions should be not only qualitatively but also quantitatively determined by the parameters involved. 
Motivated by the works [25,35,42,52], we attempt to provide a quantitative description of the competition 
between logistic damping and other ingredients, especially, chemotactic aggregation, and, in particular, we 
aim to find a full picture on how the lower bound μ0 of the logistic damping rate μ is affected by all the 
involving parameters so that no blow-up is allowed for μ > μ0. Therefore, in this paper, we will consider a 
full parameter K–S minimal system with a growth source covering the standard logistic source as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (d1∇u− χu∇v) + f(u), x ∈ Ω, t > 0,

vt = d2Δv − βv + αu, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.3)

where Ω ⊂ R
n, n ≥ 1 is a smooth bounded domain but not necessarily convex, d1, d2, α, β > 0, χ ∈ R and 

f : R → R is smooth and satisfies f(0) ≥ 0 as well as

f(s) ≤ a− μs2, ∀s ≥ 0 (1.4)

for some a ≥ 0 and μ > 0.
With the aid of the boundedness criteria ([2,50]) on how the growth source affects the boundedness for a 

general class of chemotaxis-growth systems than (1.3), we provide a detailed algorithm to derive an explicit 
formula for the lower bound μ0 of the logistic damping rate μ such that the system (1.3) admits only 
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globally bounded solutions whenever μ > μ0. For nonconvex domains, our procedure is mainly carried out 
in physically relevant settings (n = 3, 4, 5), where we have a clean and compact formula for μ0. Precisely, 
our main quantitative findings in this regard read as follows:

Theorem 1.1 (How strong a logistic damping can prevent blow-up for (1.3)). Let Ω ⊂ R
n(n ≥ 3) be a bounded 

smooth domain, the initial data (u0, v0) satisfy u0 ∈ C(Ω) and v0 ∈ W 1,p0(Ω) with some p0 > n and let f
satisfy the logistic condition (1.4) and d1, d2, α, β > 0, a ≥ 0 and χ ∈ R.

(i) For n = 3, let the lower logistic damping rate μ0 = μ0(3, d1, d2, α, χ) of μ be explicitly given by

μ0 =

⎧⎨
⎩

3
4d1

αχ, if d1 = d2, χ > 0 and Ω is convex,
3√

10−2 ( 1
d1

+ 2
d2

)α|χ|, otherwise;
(1.5)

(ii) for n = 4, 5, let the lower logistic damping rate μ0 = μ0(n, d1, d2, α, χ) of μ be explicitly given by

μ0 =

⎧⎨
⎩

n
4d1

αχ, if d1 = d2, χ > 0 and Ω is convex ,

max
{

1
3h(n, d1, d2), n√

2n+4−2 ( 1
d1

+ 2
d2

)
}
α|χ|, otherwise

(1.6)

with

h(n, d1, d2) = inf
0<ε<d1,0<η<d2

{√
n

18d2ε
+

√
1
2ε (

1
η + n

2d2
)

+
√

1
(d2−η) (

2
η + n

2d2
)
[√

2 + (d1+d2)
2
√

(d1−ε)(d2−η)

]}
.

Then, whenever μ > μ0, the chemotaxis-growth system (1.3) has a unique global-in-time classical solution 
(u, v) for which both u and v are positive and uniformly bounded in Ω × (0, ∞).

Remark 1.2 (Notes on how strong a logistic damping can prevent blow-up).

(P1) The explicit logistic damping rate μ0 given in (1.5) or (1.6) exhibits the contributions of the degra-
dation, creation and diffusion rates, etc in respective of boundedness of solutions of (1.3). That is, it 
shows how strong a logistic damping is needed to prevent blow-ups for (1.3).

(P2) The formula for μ0 is not only explicitly expressible but also is independent of the degradation rate 
β of signals, the birth rate a of cells, the size of domain Ω, initial data u0, v0 and Sobolev embedding 
constants. This gives a quantized effect of the logistic source on preventing blow-ups, and hence 
improves the boundedness principles [42,50] and the qualitative result [52].

(P3) For χ = 0 (no chemotaxis, cf. [50, Proposition 2.6]) or α = 0 (decoupled), the boundedness and global 
existence are easily seen for any μ > 0. In this sense, the form of μ0(n, d1, d2, α, χ) captures and 
respects our common understanding.

(P4) The chemo-repulsion case, i.e., χ < 0 is allowed as well in μ0.
(P5) μ0(n, d1, d2, α, χ) → ∞ as d1 → 0 or d2 → 0 (and it is decreasing in d1 and d2); thus small diffusion, 

especially, degenerate or nonlinear diffusion, enhances the possibility of the occurrence of blow-ups.
(P6) In the case that Ω is nonconvex, we have

μ
(nonconvex)
0 (3, 1, 1, 1, χ) = 9√ χ = (7.743416 · · · )χ.
10 − 2
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Hence, the very recent boundedness result, μ > 20χ obtained from (1.2) with r = 2, of Mu and 
Lin [25], and the byproduct boundedness, μ ≥ μ0(3, 1, 1, 1, 1) = 23 of Tao and Winkler [35], as their 
studied 3-D fluid system coupled with the minimal chemotaxis system (1.1), are greatly improved.

For mathematical completeness, one may wonder such an explicit formula is also available in n-D (n ≥ 6). 
Indeed, our algorithm suggests that an explicit formula for μ0 in ≥ 6-D of the form θ0(n, d1, d2)α|χ|, which 
is not clean but enjoys the first 5 properties (P1)–(P5), would be also available:

(Q1) For general n ≥ 6, no blow-ups can occur to the minimal-chemotaxis-growth model (1.3) if μ >
μ0(n, d1, d2, α, χ), where

μ0(n, d1, d2, α, χ) =
{

n
4d1

αχ, if d1 = d2, χ > 0 and Ω is convex,

θ0(n, d1, d2)α|χ|, otherwise
(1.7)

with some explicit (perhaps cumbersome) formula θ0 in terms of n, d1 and d2 with the property that 
θ0 → ∞ as either d1 → 0 or d2 → 0.

Indeed, the first case of (1.7) has been shown in [42] for the KS model (1.1) with τ = 1, see Lemma 4.8 below 
for the full-parameter model (1.3). Based on [52] and a careful and painful inspection of our procedure, it 
is quite possible to trace out the formula θ0 in (1.7). Here, we leave the rigorous justification for future 
investigations.

In nonconvex domains, the logistic damping rate μ0(n, d1, d2, α, χ) is the smallest damping rate that we 
could obtain using this procedure. While, in convex domains, we have μ(convex)

0 (3, 1, 1, 1, 1) = 0.75. A com-
parison to μ(nonconvex)

0 (3, 1, 1, 1, 1) = 7.743416 · · · as computed in (P3), indicates that convexity and equal 
diffusivity make a big difference in respective of boundedness and that the formula μ0(n, d1, d2, α, χ) may 
not be optimal even through it meets the expected properties described in (P2) and (P3), on the other hand.

This discussion leads us to ask other challenging questions left for the minimal-chemotaxis-growth 
model (1.3):

(Q2) Does there exist a critical damping rate μc
0 that distinguishes between occurrence and impossibility 

of blow-up for (1.3). That is, for a logistic source satisfying f(u) ≤ a − μu2, when μ < μc
0, blow-up 

occurs; whereas, when μ > μc
0, blow-up is impossible.

(Q3) What happens for small logistic damping μ < μ0, boundedness or blow-up?

Questions akin to (Q2) and (Q3) may have been indicated by existing literature [42,50]. To explore 
them, a combination of the references [36,37,39,45,47,48] may be of some help. A complete (quantitative 
or qualitative) description of the competition between chemotactic aggregation and logistic damping is 
definitely worthwhile for future explorations.

When logistic damping wins over chemotactic aggregation, i.e., μ > μ0 or equivalently |χ| < μ
αθ0(n,d1,d2) , 

we wish to see the explicit effects of each term in (1.3) on the long time dynamical properties of bounded 
solutions. To this end, we study the large time behavior of solution for the minimal chemotaxis model with 
a standard logistic source:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (d1∇u− χu∇v) + κu− μu2, x ∈ Ω, t > 0,

vt = d2Δv − βv + αu, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u (x) ≥ 0, v(x, 0) = v (x) ≥ 0, x ∈ Ω.

(1.8)
0 0
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For d1 = d2 = α = β = κ = 1, the uniform convergence of bounded solutions to (1/μ, 1/μ) is first 
proved in [47, Theorem 1.1] for μ/χ > 0 sufficiently large and then in [25, Theorem 1.3] for μ > 20χ; for 
d1 = d2 = α = β = 1, He and Zheng [9] modified the energy functional method from [1] to obtain the 
stability of the constant equilibria (0, 0) and (κ/μ, κ/μ) with convergence estimates [9, Theorem 3]. Next, 
for completeness and to see the role of other parameters in the large time behavior of the solutions, we 
combine the energy functional method from [1,9] to show the stability of the constant equilibria (0, 0) and 
(κ/μ, ακ/(βμ)) for the full-parameter KS model (1.8). Our precise results on the large time limit of bounded 
solutions of (1.8) are collected in the following theorem.

Theorem 1.3. Let Ω ⊂ R
n(n ≥ 1) be a bounded smooth domain, u0 ≥, �≡ 0, d1, d2, α, β, μ > 0, κ, χ ∈ R

and, finally, let μ > μ0 as obtained in Theorem 1.1 so that (u, v) be a global and bounded classical solution 
of (1.8).

(i) When κ > 0, assume additionally that

μ > μ1(d1, d2, α, β, κ, χ) = α|χ|
4

√
κ

d1d2β
. (1.9)

Then the solution (u, v) of (1.8) converges exponentially:

‖u(·, t) − κ

μ
‖L∞(Ω) + ‖v(·, t) − ακ

βμ
‖L∞(Ω) ≤ Ce−γt (1.10)

for all t ≥ 0 and some large constant C independent of t and

γ =
min

{
(μ− ακχ2

4d1d2μ
ε0), κχ2

4d1d2μ
(β − α

4ε0 )
}

(n + 2) max{μ
κ ,

κχ2

8d1d2μ
}

, ε0 = 1
2( α

4β + 4d1d2μ
2

ακχ2 ).

(ii) When κ = 0, the solution (u, v) of (1.8) converges algebraically:

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C(t + 1)−
1

n+1 (1.11)

for all t ≥ 0 and some large constant C independent of t.
(iii) When κ < 0, the solution (u, v) of (1.8) converges exponentially:

‖u(·, t)‖L∞(Ω) ≤ Ce
κ

n+1 t, ‖v(·, t)‖L∞(Ω) ≤ Ce−
1

2(n+1) min{β,−κ}t (1.12)

for all t ≥ 0 and some large constant C independent of t.

Remark 1.4 (Explicit effects on convergence and convergence rate).

(P7) The formula μ1(d1, d2, α, β, κ, χ) exhibits the explicit contributions of each gradient in (1.8) on con-
vergence and it enjoys the property in (P3). Besides, our convergence complements and refines [9, 
Theorem 3 for d1 = d2 = α = β = 1] by explicitly computing out the rates of convergence.

(P8) From Remark 1.2, we find that κ and β do not play any role in boundedness; while, they play 
big roles in the long time behavior as seen in (1.9), especially, the β-effect has not been detected 
yet in the existence literature. In particular, μ1(d1, d2, α, β, κ, χ) is decreasing in d1, d2 and β, and 
μ1(d1, d2, α, β, κ, χ) → ∞ as d1 → 0 or d2 → 0 or β → 0. Therefore, small diffusion, especially, degener-
ate or small degradation, makes the stabilization harder. This together with (P5) may provide certain 
clues on how to produce blow-up solutions for Keller–Segel chemotaxis models with logistic source.
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In chemotaxis-growth systems, the most challenging and interesting wide-open question is to detect the 
possibility of finite/infinite-time physical blow-ups (n = 3) (nonphysical radially symmetrical blow-ups has 
been demonstrated in [45] for n ≥ 5). Remarks 1.2 and 1.4, especially, (P5) and (P8) suggest certain clues 
on how to produce unbounded solutions [3,7,24,43,44]. To attack such a challenging problem, one may try 
the following chemotaxis system and perhaps its simplified version:

{
ut = ∇ · (ε1(u)∇u− u∇v) + κu− μu2, x ∈ Ω, t > 0,

τvt = ε2Δv − ε3v + u, x ∈ Ω, t > 0
(1.13)

with εi > 0(i = 2, 3) being sufficiently small and either ε1(u) being a sufficiently small positive constant or 
ε1(u) → 0 as u → ∞ (very slow diffusion at point of high densities). Indeed, for τ = 0, ε1(u) = 0, ε2 = ε3 = 1
in (1.13), verifications can be found in [23,48,49]. We leave the challenging exploration of the possibility of 
blow-ups to (1.13) (and hence (Q2) and (Q3)) for our future studies.

2. Preliminaries and subtle inequalities for (1.1)

For convenience, we start with Young’s inequality, which states, for any positive numbers p and q with 
1
p + 1

q = 1, that

ab ≤ ap

p
+ bq

q
, ∀a, b ≥ 0.

This immediately implies the so-called Young’s inequality with ε:

Lemma 2.1 (Young’ s inequality with ε). Let p and q be two given positive numbers with 1
p + 1

q = 1. Then, 
for any ε > 0, it holds

ab ≤ εap + bq

(εp)
q
p q

, ∀a, b ≥ 0.

The local solvability and extendibility of the parabolic–parabolic chemotaxis system (1.3) is well-
established by using a suitable fixed point argument and standard parabolic regularity theory; see, for 
example, [16,42].

Lemma 2.2. Let d1, d2, α, β > 0, a ≥ 0, χ ∈ R and let Ω ⊂ R
n be a bounded domain with a smooth boundary. 

Suppose that the initial data (u0, v0) satisfies u0 ∈ C(Ω) and v0 ∈ W 1,p(Ω) with some p > n and that 
f ∈ W 1,∞

loc (R) with f(0) ≥ 0. Then there is a unique, nonnegative, classical maximal solution (u, v) of the 
IBVP (1.3) on some maximal interval [0, Tmax) with 0 < Tmax ≤ ∞ such that

u ∈ C(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),

v ∈ C(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)) ∩ L∞
loc([0, Tmax);W 1,p(Ω)).

In particular, if Tmax < ∞, then

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,p(Ω) → ∞ as t → T−
max. (2.1)

For chemotaxis model without growth source, the total masses of cells are conserved. While, for chemo-
taxis system with logistic growth, this is not true but the L1-norm is bounded by integrating the u-equation 
in (1.3). The following basic lemma has been well-known, cf. [42,50], for instance.
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Lemma 2.3. Let f satisfy the logistic condition (1.4). Then the solution (u, v) of the KS system (1.3) satisfies

∫
Ω

u ≤ ‖u0‖L1 + (a + 1
4μ )|Ω|

and

∫
Ω

|∇v|2 ≤ ‖∇v0‖2
L2 + 2α2

bd2

[ a

2β |Ω| + ‖u0‖L1 + (a + 1
μ

)|Ω|
]

for all t ∈ [0, Tmax).

Next, we establish three subtle commonly used lemmas, which are refined results of the corresponding 
[42, Lemmas 2.2–2.4] even for Ω being convex. In such case, the ideas used to derive these inequalities are 
known [34,42].

Lemma 2.4. Let f satisfy the logistic condition (1.4). Then, for any p ≥ 1, the solution (u, v) of the KS 
system (1.3) satisfies

1
p

d

dt

∫
Ω

up + (p− 1)(d1 − ε)
∫
Ω

up−2| � u|2 + μ

∫
Ω

up+1 ≤ (p− 1)χ2

4ε

∫
Ω

up| � v|2 + a

∫
Ω

up−1 (2.2)

for all t ∈ (0, Tmax) and for any ε ∈ (0, d1).

Proof. For any p ≥ 1, multiplying the u-equation in (1.3) by up−1 and integrating over Ω by parts, using 
Young’s inequality with ε and the logistic condition (1.4), we conclude that

1
p

d

dt

∫
Ω

up + (p− 1)d1

∫
Ω

up−2| � u|2

= (p− 1)χ
∫
Ω

up−1 � u� v +
∫
Ω

f(u)up−1

≤ (p− 1)ε
∫
Ω

up−2| � u|2 + (p− 1)χ2

4ε

∫
Ω

up| � v|2 +
∫
Ω

up−1(a− μu2),

which gives the desired inequality (2.2). �
Lemma 2.5. For q ≥ 1, the solution (u, v) of the KS system (1.3) satisfies

1
q

d

dt

∫
Ω

|∇v|2q + (q − 1)(d2 − η)
∫
Ω

|∇v|2(q−2)|∇|∇v|2|2 + 2β
∫
Ω

|∇v|2q

≤
[ (q − 1)α2

η
+ nα2

2d2

] ∫
Ω

u2|∇v|2(q−1) + d2

∫
∂Ω

|∇v|2(q−1) ∂

∂ν
|∇v|2 (2.3)

for all t ∈ (0, Tmax) and for any η ∈ (0, d2).
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Proof. For any q ≥ 1, by using the v-equation in (1.3) and integrating by parts, we deduce that

1
q

d

dt

∫
Ω

|∇v|2q = 2
∫
Ω

|∇v|2(q−1)∇v · (d2∇Δv − β∇v + α∇u)

= d2

∫
Ω

|∇v|2(q−1)Δ|∇v|2 − 2d2

∫
Ω

|∇v|2(q−1)|D2v|2 − 2β
∫
Ω

|∇v|2q

+ 2α
∫
Ω

∇u∇v|∇v|2(q−1)

= −(q − 1)d2

∫
Ω

|∇v|2(q−2)|∇|∇v|2|2 + d2

∫
∂Ω

|∇v|2(q−1) ∂

∂ν
|∇v|2

− 2d2

∫
Ω

|∇v|2(q−1)|D2v|2 − 2β
∫
Ω

|∇v|2q + 2α
∫
Ω

∇u∇v|∇v|2(q−1),

where, from the first to the second line, we have used the point-wise identity

2 � v · � � v = �| � v|2 − 2|D2v|2, |D2v|2 =
n∑

i,j=1
|vxixj

|2. (2.4)

We use integration by parts, Young’s inequality with ε and the fact that

| � v|2 =
( n∑

i=1
vxixi

)2
≤ n

n∑
i=1

|vxixi
|2 ≤ n|D2v|2 (2.5)

to estimate the last integral as follows:

2α
∫
Ω

∇u∇v|∇v|2(q−1) = −2(q − 1)α
∫
Ω

u|∇v|2(q−2)∇v · ∇|∇v|2 − 2α
∫
Ω

u|∇v|2(q−1)Δv

≤ (q − 1)η
∫
Ω

|∇v|2(q−2)|∇|∇v|2|2 + (q − 1)α2

η

∫
Ω

u2|∇v|2(q−1)

+ 2d2

∫
Ω

|∇v|2(q−1)|D2v|2 + nα2

2d2

∫
Ω

u2|∇v|2(q−1).

Combining these two results, we obtain the desired inequality (2.3). �
Lemma 2.6. Let f satisfy the logistic condition (1.4). Then, for any p ≥ 1, q ≥ 1, the solution (u, v) of the 
KS system (1.3) verifies

d

dt

∫
Ω

up|∇v|2q + (p− 1)(d1 − ε)p
∫
Ω

up−2|∇u|2|∇v|2q + 2βq
∫
Ω

up|∇v|2q

+ (q − 1)(d2 − η)q
∫
Ω

up|∇v|2(q−2)|∇|∇v|2|2 + μp

∫
Ω

up+1|∇v|2q

≤ χ2(p− 1)p
4ε

∫
up|∇v|2(q+1) + χpq

∫
up|∇v|2(q−1)∇v∇|∇v|2
Ω Ω
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− (d1 + d2)pq
∫
Ω

up−1|∇v|2(q−1)∇u∇|∇v|2

+ qα2

(p + 1)2
[ (q − 1)

η
+ n

2d2

] ∫
Ω

up+2|∇v|2(q−1)

+ ap

∫
Ω

up−1|∇v|2q + d2q

∫
∂Ω

up|∇v|2(q−1) ∂|∇v|2
∂ν

(2.6)

for all t ∈ (0, Tmax) and for any ε ∈ (0, d1) and η ∈ (0, d2).

Proof. We use the u and v-equations in (1.3), (2.4), no flux boundary conditions for u and v and integration 
by parts to compute honestly that

d

dt

∫
Ω

up|∇v|2q = p

∫
Ω

up−1|∇v|2q[∇ · (d1∇u− χu∇v) + f(u)]

+ 2q
∫
Ω

up|∇v|2(q−1)∇v · (d2∇Δv − β∇v + α∇u)

= −p

∫
Ω

(d1∇u− χu∇v)
[
(p− 1)up−2∇u|∇v|2q + qup−1|∇v|2(q−1)∇|∇v|2

]

+ p

∫
Ω

up−1|∇v|2qf(u) + d2q

∫
Ω

up|∇v|2(q−1)Δ|∇v|2 − 2βq
∫
Ω

up|∇v|2q

− 2d2q

∫
Ω

up|∇v|2(q−1)|D2v|2 + 2αq
∫
Ω

up|∇v|2(q−1)∇u∇v

= −(d1 + d2)pq
∫
Ω

up−1|∇v|2(q−1)∇u∇|∇v|2 − d1(p− 1)p
∫
Ω

up−2|∇u|2|∇v|2q

+ p

∫
Ω

up−1|∇v|2qf(u) + χ(p− 1)p
∫
Ω

up−1|∇v|2q∇u∇v

+ χpq

∫
Ω

up|∇v|2(q−1)∇v∇|∇v|2 − d2q(q − 1)
∫
Ω

up|∇v|2(q−2)|∇|∇v|2|2

− 2d2q

∫
Ω

up|∇v|2(q−1)|D2v|2 − 2βq
∫
Ω

up|∇v|2q

+ 2αq
∫
Ω

up|∇v|2(q−1)∇u∇v + d2q

∫
∂Ω

up|∇v|2(q−1) ∂|∇v|2
∂ν

. (2.7)

The logistic condition f(u) ≤ a − μu2 gives rise to

p

∫
Ω

up−1|∇v|2qf(u) ≤ ap

∫
Ω

up−1|∇v|2q − μp

∫
Ω

up+1|∇v|2q. (2.8)

A simple use of Young’s inequality with ε shows

χ(p− 1)p
∫

up−1|∇v|2q∇u∇v ≤ ε(p− 1)p
∫

up−2|∇u|2|∇v|2q + χ2(p− 1)p
4ε

∫
up|∇v|2(q+1). (2.9)
Ω Ω Ω
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Upon integration by parts, applications of Young’s inequality with ε and (2.5), we find that

2αq
∫
Ω

up|∇v|2(q−1)∇u∇v

= −2(q − 1)qα
p + 1

∫
Ω

up+1|∇v|2(q−2)∇v · ∇|∇v|2 − 2qα
p + 1

∫
Ω

up+1|∇v|2(q−1)Δv

≤ q(q − 1)η
∫
Ω

up|∇v|2(q−2)|∇|∇v|2|2 + (q − 1)qα2

(p + 1)2η

∫
Ω

up+2|∇v|2(q−1)

+ 2d2q

∫
Ω

up|∇v|2(q−1)|D2v|2 + qnα2

2d2(p + 1)2

∫
Ω

up+2|∇v|2(q−1). (2.10)

Substituting (2.8), (2.9) and (2.10) into (2.7), after suitable rearrangements, we obtain the key inequal-
ity (2.6). �
3. Logistic damping prevents blow-up in 3-D setting

To get a clear and better understanding about how strong a logistic damping can prevent blowup phe-
nomenon in chemotaxis systems with logistic sources, we first explore the issue in the physically relevant 
case of n = 3. In this section, we will provide details to the algorithm leading to the main result (i) of 
Theorem 1.1.

For the full-parameter chemotaxis-growth system (1.3) in 3-D, we observe that, to show the L∞-bound-
edness of u, it is enough to show the L

3
2+ε-boundedness of u for some ε > 0, thanks to the boundedness 

criterion obtained in [50] via Moser iteration and in [2] via semigroup theory. This enables us to find out 
how large should μ be so that blow-up is impossible. To achieve our goal, we need to carefully collect the 
appearing constants in each derived inequalities. We shall indeed prove that ‖u(t)‖L2 is bounded. For this 
purpose, inspired by [42], our analysis consists of deriving a delicate Gronwall inequality for the coupled 
functional

z(t) := δ1

∫
Ω

u2(·, t) + δ2

∫
Ω

u(·, t)|∇v(·, t)|2 + δ3

∫
Ω

|∇v(·, t)|4 (3.1)

of the form

z′(t) + εz(t) ≤ Cε, t ∈ (0, Tmax)

for some carefully chosen positive constants δ1, δ2, δ3, ε > 0 and perhaps large Cε independent of t. Once 
this is done, the L2-and hence the L∞-boundedness of u will be obtained.

Upon easy applications of Lemma 2.4 with p = 2 and Lemma 2.5 with q = 2, we end up with the following 
two lemmas.

Lemma 3.1. Let f satisfy the logistic condition (1.4). Then the solution (u, v) of the KS system (1.3) satisfies

d

dt

∫
Ω

u2 + 2(d1 − ε1)
∫
Ω

|∇u|2 + 2μ
∫
Ω

u3 ≤ χ2

2ε1

∫
Ω

u2|∇v|2 + 2a
∫
Ω

u (3.2)

for all t ∈ (0, Tmax) and for any ε1 ∈ (0, d1).
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Lemma 3.2. The solution (u, v) of the KS system (1.3) satisfies

d
dt

∫
Ω | � v|4 + 2(d2 − ε2)

∫
Ω | � | � v|2|2 + 4β

∫
Ω | � v|4

≤ 2( n
2d2

+ 1
ε2

)α2 ∫
Ω u2| � v|2 + 2d2

∫
∂Ω | � v|2 ∂

∂ν | � v|2
(3.3)

for all t ∈ (0, Tmax) and for any ε2 ∈ (0, d2).

Lemma 3.3. Under the logistic condition (1.4), the solution (u, v) of the KS system (1.3) satisfies

d
dt

∫
Ω u| � v|2 + (μ− χ2

4ε3 )
∫
Ω u2|∇v|2 + 2β

∫
Ω u|∇v|2

≤ (d1+d2)2
4ε4

∫
Ω |∇u|2 + (ε3 + ε4)

∫
Ω |∇|∇v|2|2 + nα2

8d2

∫
Ω u3 + a

∫
Ω |∇v|2 + d2

∫
∂Ω u ∂

∂ν |∇v|2
(3.4)

for all t ∈ (0, Tmax) and for any ε3, ε4 > 0.

Proof. Lemma 2.6 with p = 1 = q reads as

d

dt

∫
Ω

u|∇v|2 + 2β
∫
Ω

u|∇v|2 + μ

∫
Ω

u2|∇v|2

≤ χ

∫
Ω

u∇v∇|∇v|2 − (d1 + d2)
∫
Ω

∇u∇|∇v|2 + nα2

8d2

∫
Ω

u3 + a

∫
Ω

|∇v|2 + d2

∫
∂Ω

u
∂|∇v|2
∂ν

(3.5)

for all t ∈ (0, Tmax). Now, applying repeatedly Young’s inequality with ε and taking into account (3.2) and 
(3.3), we infer that, for any ε3, ε4 > 0,

χ

∫
Ω

u∇v∇|∇v|2 ≤ χ2

4ε3

∫
Ω

u2|∇v|2 + ε3

∫
Ω

|∇|∇v|2|2 (3.6)

as well as

−(d1 + d2)
∫
Ω

∇u∇|∇v|2 ≤ (d1 + d2)2

4ε4

∫
Ω

|∇u|2 + ε4

∫
Ω

|∇|∇v|2|2. (3.7)

Then we substitute (3.6) and (3.7) into (3.5) to conclude (3.4). �
With these preparations, we are now ready to study the coupled functional (3.1) by means of Lemmas 3.1, 

3.2 and 3.3.

Lemma 3.4. Under the logistic condition (1.4), the solution (u, v) of the KS system (1.3) satisfies the in-
equality

d

dt

{
δ1

∫
Ω

u2 + δ2

∫
Ω

u|∇v|2 + δ3

∫
Ω

|∇v|4
}

+ (2μδ1 −
nα2

8d2
δ2)

∫
Ω

u3

+ [2(d1 − ε1)δ1 −
(d1 + d2)2

4ε4
δ2]

∫
Ω

|∇u|2 + 4βδ3
∫
Ω

|∇v|4

+ [2(d2 − ε2)δ3 − (ε3 + ε4)δ2]
∫

|∇|∇v|2|2 + 2βδ2
∫

u|∇v|2 (3.8)

Ω Ω
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+ [(μ− χ2

4ε3
)δ2 − 2( n

2d2
+ 1

ε2
)α2δ3 −

χ2

2ε1
δ1]

∫
Ω

u2|∇v|2

≤ 2aδ1
∫
Ω

u + aδ2

∫
Ω

|∇v|2 + 2d2δ3

∫
∂Ω

| � v|2 ∂

∂ν
| � v|2 + d2δ2

∫
∂Ω

u
∂

∂ν
| � v|2

for any t ∈ (0, Tmax) and any positive constants δ1, δ2 and δ3 and ε1 ∈ (0, d1), ε2 ∈ (0, d2) and ε3, ε4 > 0.

Proof. By evident multiplications and additions from Lemmas 3.1–3.3, one can readily derive the inequal-
ity (3.8). �

Motivated by (3.8), to find the possibly smallest lower bound μ0 for the damping rate μ that could be 
obtained using such method, we wish to choose εi and δi to satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2μδ1 − nα2

8d2
δ2 > 0,

2(d1 − ε1)δ1 − (d1+d2)2
4ε4 δ2 > 0,

2(d2 − ε2)δ3 − (ε3 + ε4)δ2 > 0,

(μ− χ2

4ε3 )δ2 − 2( n
2d2

+ 1
ε2

)α2δ3 − χ2

2ε1 δ1 ≥ 0.

(3.9)

The minimizer of the minimization problem (3.9) in μ will give us the smallest damping rate μ0 we are 
seeking. Our goal is then to choose εi and δi so that μ is minimized. By eliminations from (3.9), we end up 
with

⎧⎪⎨
⎪⎩

μ > nα2

16d2
δ2
δ1
, δ2

δ1
< 8(d1−ε1)ε4

(d1+d2)2 ,

μ > χ2

4ε3 + 2( n
2d2

+ 1
ε2

)α2 · ε3+ε4
2(d2−ε2) + χ2

2ε1 ·
(d1+d2)2

4ε4
2(d1−ε1)

(3.10)

for any ε1 ∈ (0, d1), ε2 ∈ (0, d2) and ε3, ε4 > 0. Next, we shall first minimize the expression in second line on 
the right-hand side of (3.10). Notice that

χ2

2ε1
·

(d1+d2)2
4ε4

2(d1 − ε1)
≥ χ2

d2
1

(d1 + d2)2

4ε4
(3.11)

with equality if and only ε1 = d1/2, and

2( n

2d2
+ 1

ε2
)α2 · ε3 + ε4

2(d2 − ε2)
≥
[ nα

(
√

2n + 4 − 2)d2

]2
(ε3 + ε4) (3.12)

with equality if and only if

ε2 = (
√

2n + 4 − 2)
n

d2.

Now, by algebraic calculations from (3.10), (3.11) and (3.12), we deduce that the second expression on the 
right-hand side of (3.10) achieves its minimum

μ0 = μ0(n, d1, d2, α, χ) := n√ ( 1 + 2 )α|χ| (3.13)

2n + 4 − 2 d1 d2
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if and only if ⎧⎨
⎩

ε1 = d1
2 , ε2 = (

√
2n+4−2)

n d2,

ε3 = (
√

2n+4−2)d2
2nα |χ|, ε4 = (

√
2n+4−2)(d1+d2)d2

2nd1α
|χ|.

(3.14)

For such well-chosen εi according to (3.14), for any μ > μ0 as given in (3.13), we can choose δi(i = 1, 2, 3)
in a way

δ1 >
(d1 + d2)2

8ε4(d1 − ε1)
, δ2 = 1, δ3 >

ε3 + ε4
2(d2 − ε2)

(3.15)

so that the second to the fourth inequality in (3.9) are satisfied. Next, for the first constraint in (3.9), we 
observe

(d1 + d2)2

8ε4(d1 − ε1)
≥ nα2

16d2

1
μ

⇐⇒ μ ≥ nα2

16d2

8(d1 − ε1)ε4
(d1 + d2)2

= (
√

2n + 4 − 2)
8(d1 + d2)

α|χ|

and

(
√

2n + 4 − 2)
8(d1 + d2)

α|χ| < n√
2n + 4 − 2

( 1
d1

+ 2
d2

)α|χ| = μ0.

Hence, the first and thus all inequalities in (3.9) are satisfied.
Finally, for any μ > μ0 as given in (3.13), we can first fix εi(i = 1, 2, 3, 4) complying with (3.14) and 

then, based on (3.15), we choose δi(i = 1, 2, 3) to further satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d1+d2)2
8ε4(d1−ε1) < δ1 < 2ε1

χ2

[
μ− χ2

4ε3 − (ε3+ε4)
(d2−ε2) (

n
2d2

+ 1
ε2

)α2
]
,

δ2 = 1,
ε3+ε4

2(d2−ε2) < δ3 <
(μ− χ2

4ε3
− χ2

2ε1
δ1)

2( n
2d2

+ 1
ε2

)α2

(3.16)

so that all inequalities in (3.9) are satisfied.
For any μ > μ0 as defined in (3.13), we shall illustrate that all integrals on the right-hand side of (3.8)

can be controlled by the dissipative terms on its left and, as a result, yielding the assertion that ‖u(t)‖L2 is 
uniformly bounded. Therefore, we conclude the statement (i) of Theorem 1.1 in physically relevant setting 
n = 3 by the L

n
2 +ε-criterion in [2,50].

Lemma 3.5. Let Ω ⊂ R
n be a bounded smooth domain, f satisfy the logistic condition (1.4) and 

d1, d2, α, β > 0, a ≥ 0 and χ ∈ R. Then, for any μ > μ0(n, d1, d2, α, χ) as given in (3.13), there exists 
a constant C(u0, v0) such that the unique nonnegative solution (u, v) of the KS system (1.3) satisfies

∫
Ω

u2(·, t) +
∫
Ω

u(·, t)|∇v(·, t)|2 +
∫
Ω

|∇v(·, t)|4 ≤ C(u0, v0), t ∈ (0, Tmax).

If n ≤ 3, then the solution (u, v) exists globally in time, i.e., Tmax = ∞ and (u(·, t), v(·, t)) is uniformly 
bounded in L∞(Ω) ×W 1,∞(Ω) for all t ∈ (0, ∞).

Proof. It follows from Lemma 3.4 that the quantity

z(t) := δ1

∫
u2 + δ2

∫
u|∇v|2 + δ3

∫
|∇v|4, t ∈ (0, Tmax),
Ω Ω Ω
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fulfills

z′(t) + βz(t) + [2(d1 − ε1)δ1 − (d1+d2)2
4ε4 δ2]

∫
Ω |∇u|2

+[2(d2 − ε2)δ3 − (ε3 + ε4)δ2]
∫
Ω |∇|∇v|2|2 + 3βδ3

∫
Ω |∇v|4

+βδ2
∫
Ω u|∇v|2 + (2μδ1 − nα2

8d2
δ2)

∫
Ω u3

≤ 2aδ1
∫
Ω u + aδ2

∫
Ω |∇v|2 + βδ1

∫
Ω u2

+2d2δ3
∫
∂Ω | � v|2 ∂

∂ν | � v|2 + d2δ2
∫
∂Ω u ∂

∂ν | � v|2.

(3.17)

In the sequel, we bound the integrals on the right-hand side of (3.17) in terms of the dissipative terms on 
its left-hand side.

Let us first focus on controlling the boundary integrals in (3.17). So far, there are a couple of existing ways 
to handle these boundary integrals, see [17,35,53], for instance. Here we would like to provide an alternative 
and transparent way to remove the technical assumption that the domain Ω be convex. The starting point 
is based on the pointwise geometric inequality

∂|∇w|2
∂ν

≤ K1(Ω)|∇w|2 on ∂Ω, (3.18)

which holds for any bounded smooth domain Ω ⊂ R
n and any w satisfying ∂w∂ν = 0 on ∂Ω, cf. [28, Lemma 4.2]. 

Here and below, Ki will denote some inessential constants. Notice also a user-friendly version of trace 
inequality with ε (cf. [32, Remark 52.9]): for any ε > 0, one has

‖w‖L2(∂Ω) ≤ ε‖∇w‖L2(Ω) + Cε‖w‖L2(Ω), ∀w ∈ H1(Ω). (3.19)

Indeed, this is immediately implied, upon a use of Young’s inequality with ε, by the following version of 
trace inequality:

‖w‖L2(∂Ω) ≤ K2‖w‖
1
2
L2(Ω)‖w‖

1
2
H1(Ω), ∀w ∈ H1(Ω). (3.20)

As a matter of fact, by the property of trace inequality (the trace operator T maps H 1
2 (Ω) continuously 

onto L2(∂Ω)), one has

‖w‖L2(∂Ω) ≤ K3‖w‖
H

1
2 (Ω)

, ∀w ∈ H
1
2 (Ω).

On the other hand, it follows from the fact that H 1
2 interpolates the spaces H0 = L2 and H1 that

‖w‖
H

1
2 (Ω)

≤ K4‖w‖
1
2
L2(Ω)‖w‖

1
2
H1(Ω), ∀w ∈ H1(Ω).

A collection of these two estimates directly leads to (3.20).
Since H1(Ω) is compactly embedded in L2(Ω) by Kondrachov and that L2(Ω) is continuously embedded 

in L1(Ω), Lion’s lemma says, for any η > 0,

‖w‖L2(Ω) ≤ η‖∇w‖L2(Ω) + η‖w‖L2(Ω) + Cη‖w‖L1(Ω), ∀w ∈ H1(Ω).

Combing this with (3.19), we conclude, for any ε > 0,

‖w‖L2(∂Ω) ≤ ε‖∇w‖L2(Ω) + Cε‖w‖L1(Ω), ∀w ∈ H1(Ω). (3.21)

This gives another elementary proof for the equivalent trace inequality stated in [35, P. 13, line -4].
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Now, with (3.18) and (3.21) at hand, we can cope with the boundary integrals in (3.17) as follows: for 
any ε > 0,

2d2δ2
∫
∂Ω | � v|2 ∂

∂ν | � v|2 + d2δ3
∫
∂Ω u ∂

∂ν | � v|2

≤ 2d2δ2K1
∫
∂Ω | � v|4 + d2δ3K1

∫
∂Ω u| � v|2

≤ K5
∫
∂Ω | � v|4 + K6

∫
∂Ω u2 = K5‖|∇v|2‖2

L2(∂Ω) + K6‖u‖2
L2(∂Ω)

≤ ε
∫
Ω |∇|∇v|2|2 + Cε

( ∫
Ω | � v|2

)2
+ ε

∫
Ω |∇u|2 + Cε

( ∫
Ω u

)2
.

(3.22)

For any μ > μ0(n, d1, d2, α, χ) as given in (3.13), we first fix εi, i = 1, 2, 3, 4 according to (3.14), and then fix 
δ1, δ2 and δ3 complying with (3.16). In this way, the inequality (3.9) is satisfied. Finally, we fix ε according 
to

ε = 1
2 min

{
2(d1 − ε1)δ1 −

(d1 + d2)2

4ε4
δ3, 2(d2 − ε2)δ3 − (ε3 + ε4)δ2

}
.

Then the boundary integrals in (3.22) will be absorbed by the terms on the left-hand side of (3.17) and 
Lemma 2.3.

Next, notice that

βδ1

∫
Ω

u2 ≤ (2μδ1 −
nα2

8d2
δ2)

∫
Ω

u3 + K7|Ω|, (3.23)

where

K7 = max{βδ1u2 − (2μδ1 −
nα2

8d2
δ2)u3|u ≥ 0} < ∞.

Finally, we substitute (3.22) and (3.23) into (3.17) and use the boundedness of ‖u‖L1 and ‖∇v‖L2 as in 
Lemma 2.3 to conclude

z′(t) + βz(t) ≤ C(u0, v0), t ∈ [0, Tmax),

which together the definition of z simply leads to

z(t) = δ1
∫
Ω u2 + δ2

∫
Ω u|∇v|2 + δ3

∫
Ω |∇v|4

≤ δ1
∫
Ω u2

0 + δ2
∫
Ω u0|∇v0|2 + δ3

∫
Ω |∇v0|4 + C(u0,v0)

β , t ∈ [0, Tmax).

This shows the uniform L2-boundedness of u(·, t) for any t ∈ [0, Tmax). Consequently, by Moser iteration, 
cf. the L

n
2 +ε-criterion in [50, Theorem 1.1] or [2, Lemma 3.2] with n = 3, we infer that Tmax = ∞ and that 

(u(·, t), v(·, t)) is uniformly bounded in L∞(Ω) ×W 1,∞(Ω) for all t ∈ (0, ∞). �
4. How strong a logistic damping can prevent blowups in n-D

4.1. Blow-up prevention by logistic source in nonconvex domains

In this subsection, based on the detailed algorithm in 3-D, we wish to provide a clue on how to compute 
the explicit logistic damping rate μ0 that suppresses blow-up whenever μ > μ0 in n-D (n ≥ 4). We will 
mainly do it for n = 4, 5. Our procedure suggests that an explicit logistic damping rate μ0 suppressing 
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blow-up whenever μ > μ0, which enjoys the properties as described in Remark 1.2, is also available in more 
higher dimensions.

When n ≤ 5, it amounts to ensuring the uniform boundedness of ‖u‖L3(Ω). In such setup, the core analysis 
then lies in deriving a subtle estimate for

z(t) := δ1

∫
Ω

u3 + δ2

∫
Ω

u2|∇v|2 + δ3

∫
Ω

u|∇v|4 + δ4

∫
Ω

|∇v|6, t ∈ (0, Tmax) (4.1)

of the form

z′(t) + ζz(t) ≤ Cζ , t ∈ (0, Tmax) (4.2)

for some well chosen positive constants δi and ζ > 0 and perhaps large Cζ independent of t. Once this 
is done, the L3-and hence the L∞-boundedness of u will be obtained, by the boundedness principles 
[2,50].

Upon trivial applications of Lemma 2.4 with p = 3 and Lemma 2.5 with q = 3, we achieve the following 
two lemmas.

Lemma 4.1. Let f satisfy the logistic condition (1.4). Then the solution (u, v) of the KS system (1.3) satisfies

d

dt

∫
Ω

u3 + 6(d1 − ε)
∫
Ω

u|∇u|2 + 3μ
∫
Ω

u4 ≤ 3χ2

2ε

∫
Ω

u3|∇v|2 + 3a
∫
Ω

u2 (4.3)

for all t ∈ (0, Tmax) and for any ε ∈ (0, d1).

Lemma 4.2. The solution (u, v) of the KS system (1.3) satisfies

d

dt

∫
Ω

|∇v|6+6(d2 − η)
∫
Ω

|∇v|2|∇|∇v|2|2 + 6β
∫
Ω

|∇v|6

≤ 3(2α2

η
+ nα2

2d2
)
∫
Ω

u2|∇v|4 + 3d2

∫
∂Ω

|∇v|4 ∂

∂ν
|∇v|2 (4.4)

for all t ∈ (0, Tmax) and for any ε2 ∈ (0, d2).

Lemma 4.3. Let f satisfy the logistic condition (1.4). Then the solution (u, v) of the KS system (1.3) verifies

d

dt

∫
Ω

u|∇v|4 + 4β
∫
Ω

u|∇v|4 + (μ− χ2

2ε1
)
∫
Ω

u2|∇v|4 + 2(d2 − η)
∫
Ω

u|∇|∇v|2|2

≤ 2(ε1 + ε2)
∫
Ω

|∇v|2|∇|∇v|2|2 + (d1 + d2)2

2ε2

∫
Ω

|∇u|2|∇v|2

+ α2

2 (1
η

+ n

2d2
)
∫
Ω

u3|∇v|2 + a

∫
Ω

|∇v|4 + 2d2

∫
∂Ω

u|∇v|2 ∂|∇v|2
∂ν

(4.5)

for all t ∈ (0, Tmax) and for any ε ∈ (0, d1), η ∈ (0, d2) and ε1, ε2 > 0.
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Proof. Lemma 2.6 with p = 1 and q = 2 reads as

d

dt

∫
Ω

u|∇v|4 + 4β
∫
Ω

u|∇v|4 + 2(d2 − η)
∫
Ω

u|∇|∇v|2|2 + μ

∫
Ω

u2|∇v|4

≤ 2χ
∫
Ω

u|∇v|2∇v∇|∇v|2 − 2(d1 + d2)
∫
Ω

|∇v|2∇u∇|∇v|2 + α2

2 (1
η

+ n

2d2
)
∫
Ω

u3|∇v|2

+ a

∫
Ω

|∇v|4 + 2d2

∫
∂Ω

u|∇v|2 ∂|∇v|2
∂ν

. (4.6)

Taking into account (4.4) of Lemma 4.2, we estimate

2χ
∫
Ω

u|∇v|2∇v∇|∇v|2 ≤ 2ε1
∫
Ω

|∇v|2|∇|∇v|2|2 + χ2

2ε1

∫
Ω

u2|∇v|4 (4.7)

and

−2(d1 + d2)
∫
Ω

|∇v|2∇u∇|∇v|2 ≤ 2ε2
∫
Ω

|∇v|2|∇|∇v|2|2 + (d1 + d2)2

2ε2

∫
Ω

|∇u|2|∇v|2. (4.8)

Then combining (4.6), (4.7) and (4.8), we get the desired inequality (4.5). �
Lemma 4.4. Let f satisfy the logistic condition (1.4). Then the solution (u, v) of the KS system (1.3) verifies

d

dt

∫
Ω

u2|∇v|2 + 2(d1 − ε)
∫
Ω

|∇u|2|∇v|2 + 2β
∫
Ω

u2|∇v|2 + (2μ− χ2

2ε3
)
∫
Ω

u3|∇v|2

≤ χ2

2ε

∫
Ω

u2|∇v|4 + 2ε4
∫
Ω

u|∇u|2+
[
2ε3 + (d1 + d2)2

2ε4

] ∫
Ω

u|∇|∇v|2|2

+ nα2

18d2

∫
Ω

u4 + 2a
∫
Ω

u|∇v|2 + d2

∫
∂Ω

u2 ∂|∇v|2
∂ν

(4.9)

for all t ∈ (0, Tmax) and for any ε ∈ (0, d1), η ∈ (0, d2) and ε3, ε4 > 0.

Proof. It follows from (2.6) with p = 2 and q = 1 in Lemma 2.6 that

d

dt

∫
Ω

u2|∇v|2 + 2(d1 − ε)
∫
Ω

|∇u|2|∇v|2 + 2β
∫
Ω

u2|∇v|2 + 2μ
∫
Ω

u3|∇v|2

≤ χ2

2ε

∫
Ω

u2|∇v|4 + 2χ
∫
Ω

u2∇v∇|∇v|2 − 2(d1 + d2)
∫
Ω

u∇u∇|∇v|2 + α2

9
n

2d2

∫
Ω

u4

+ 2a
∫
Ω

u|∇v|2 + d2

∫
∂Ω

u2 ∂|∇v|2
∂ν

. (4.10)

Taking into consideration (4.5) and (4.3), we bound

2χ
∫

u2∇v∇|∇v|2 ≤ 2ε3
∫

u|∇|∇v|2|2 + χ2

2ε3

∫
u3|∇v|2 (4.11)
Ω Ω Ω
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and

−2(d1 + d2)
∫
Ω

u∇u∇|∇v|2 ≤ 2ε4
∫
Ω

u|∇u|2 + (d1 + d2)2

2ε4

∫
Ω

u|∇|∇v|2|2. (4.12)

A substitution of (4.10) and (4.11) into (4.12) yields (4.9). �
Now, we are well-prepared to estimate the time evolution of the coupled functional (4.1) by means of 

Lemmas 4.1, 4.2, 4.3 and 4.4.

Lemma 4.5. Under the logistic condition (1.4), the solution (u, v) of the KS system (1.3) satisfies the key 
inequality

d

dt

{
δ1

∫
Ω

u3 + δ2

∫
Ω

u2|∇v|2 + δ3

∫
Ω

u|∇v|4 + δ4

∫
Ω

|∇v|6
}

+ 6βδ4
∫
Ω

|∇v|6

+ 2[3(d2 − η)δ4 − (ε1 + ε2)δ3]
∫
Ω

|∇v|2|∇|∇v|2|2 + (3μδ1 −
nα2

18d2
δ2)

∫
Ω

u4

+ [2(d1 − ε)δ2 −
(d1 + d2)2

2ε2
δ3]

∫
Ω

|∇u|2|∇v|2 + 2βδ2
∫
Ω

u2|∇v|2

+
[
(2(d2 − η)δ3 − (2ε3 + (d1 + d2)2

2ε4
)δ2

] ∫
Ω

u|∇|∇v|2|2

+ 4βδ3
∫
Ω

u|∇v|4 + 2[3(d1 − ε)δ1 − ε4δ2]
∫
Ω

u|∇u|2

+
[
(2μ− χ2

2ε3
)δ2 −

3χ2

2ε δ1 −
α2

2 (1
η

+ n

2d2
)δ3

] ∫
Ω

u3|∇v|2

+
[
(μ− χ2

2ε1
)δ3 −

χ2

2ε δ2 − 3(2α2

η
+ nα2

2d2
)δ4

] ∫
Ω

u2|∇v|4

≤ 3aδ1
∫
Ω

u2 + 2aδ2
∫
Ω

u|∇v|2 + aδ3

∫
Ω

|∇v|4 + 3d2δ4

∫
∂Ω

|∇v|4 ∂

∂ν
|∇v|2

+ 2d2δ3

∫
∂Ω

u| � v|2 ∂

∂ν
| � v|2 + d2δ2

∫
∂Ω

u2 ∂

∂ν
| � v|2

(4.13)

for all t ∈ (0, Tmax) and for all εi, δi > 0 and ε ∈ (0, d1) and η ∈ (0, d2).

Proof. By honest computations from Lemmas 4.1–4.4 and by evident multiplications and additions, one 
can readily derive the lemma. �

As to the boundary integrals on the right-hand side of (4.13), we deduce from (3.18), (3.21) and Young’s 
inequality with epsilon that
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3d2δ4

∫
∂Ω

|∇v|4 ∂

∂ν
|∇v|2 + 2d2δ3

∫
∂Ω

u| � v|2 ∂

∂ν
| � v|2 + d2δ2

∫
∂Ω

u2 ∂

∂ν
| � v|2

≤ 3d2δ4K1

∫
∂Ω

|∇v|6 + 2d2δ3K1

∫
∂Ω

u| � v|4 + d2δ2K1

∫
∂Ω

u2| � v|2

≤ K8

∫
∂Ω

u3 + K8

∫
∂Ω

| � v|6 = K8‖u
3
2 ‖2

L2(∂Ω) + +K8‖| � v|3‖2
L2(∂Ω)

≤ ξ

∫
Ω

u|∇u|2 + Cξ

(∫
Ω

u
3
2

)2
+ σ

∫
Ω

|∇v|2|∇|∇v|2|2 + Cσ

(∫
Ω

|∇v|3
)2

(4.14)

for any ξ > 0 and σ > 0.
Based on this boundary integral estimate and (4.13), we wish to select ε, η, εi, δi and μ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2[3(d1 − ε)δ1 − ε4δ2] > 0,

2[3(d2 − η)δ4 − (ε1 + ε2)δ3] > 0,

2(d1 − ε)δ2 − (d1+d2)2
2ε2 δ3 ≥ 0,

2(d2 − η)δ3 − (2ε3 + (d1+d2)2
2ε4 )δ2 ≥ 0,

3μδ1 − nα2

18d2
δ2 ≥ 0,

(2μ− χ2

2ε3 )δ2 − 3χ2

2ε δ1 − α2

2 ( 1
η + n

2d2
)δ3 ≥ 0,

(μ− χ2

2ε1 )δ3 − χ2

2ε δ2 − 3(2α2

η + nα2

2d2
)δ4 ≥ 0.

(4.15)

Only the third constraint intertwines with the fourth constraint, while this can be fulfilled since we can 
choose ε, η, εi such that

(d1 + d2)2

4ε2(d1 − ε) ≤ 2(d2 − η)
2ε3 + (d1+d2)2

2ε4

⇐⇒ (d1 + d2)2

4(d1 − ε)(d2 − η) ≤ ε2

ε3 + (d1+d2)2
4ε4

<
ε2
ε3
. (4.16)

Then algebraic manipulations from (4.15) and (4.16) show that

3μ ≥ nα2

54d2
δ2
δ1

+ χ2

4ε3 + 3χ2

4ε
δ1
δ2

+ α2

4 ( 1
η + n

2d2
) δ3δ2 + χ2

2ε1 + χ2

2ε
δ2
δ3

+ 3(2α2

η + nα2

2d2
) δ4δ3

>
√

n
18d2ε

α|χ| + χ2

4ε3 +
√

1
2ε (

1
η + n

2d2
)α|χ| + χ2

2ε1 + (2α2

η + nα2

2d2
) ε1+ε2
d2−η

>
{√

n
18d2ε

+
√

1
2ε (

1
η + n

2d2
) +

√
1

(d2−η) (
2
η + n

2d2
)
[√

2 + (d1+d2)
2
√

(d1−ε)(d2−η)

]}
α|χ|

(4.17)

With these preparations, we obtain the second assertion (ii) in Theorem 1.1.

Lemma 4.6. Let Ω ⊂ R
n be a bounded smooth domain, f satisfy the logistic condition (1.4) and d1, d2, α, β >

0, a ≥ 0 and χ ∈ R. Then, for any

μ > μ0(n, d1, d2, α, χ) := max
{1

3h(n, d1, d2),
n√

2n + 4 − 2
( 1
d1

+ 2
d2

)
}
α|χ| (4.18)

with

h(n, d1, d2) = inf
0<ε<d1,0<η<d2

{√
n

18d2ε
+

√
1
2ε (

1
η + n

2d2
)

+
√

1 ( 2 + n )
[√

2 + (d1+d2)√ ]}
,
(d2−η) η 2d2 2 (d1−ε)(d2−η)
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there exists a constant C(u0, v0) such that the unique nonnegative solution (u, v) of the chemotaxis-growth 
system (1.3) satisfies

∫
Ω

u3(·, t) +
∫
Ω

u2(·, t)|∇v(·, t)|2 +
∫
Ω

u|∇v|4 +
∫
Ω

|∇v(·, t)|6 ≤ C(u0, v0),∀t ∈ (0, Tmax).

If n ≤ 5, the solution (u, v) exists globally in time, i.e., Tmax = ∞ and (u(·, t), v(·, t)) is uniformly bounded 
in L∞(Ω) ×W 1,∞(Ω) for all t ∈ (0, ∞).

Proof. Due to μ > μ0 given in (4.18), we first know from Lemma 3.5 that

3aδ1
∫
Ω

u2 + 2aδ2
∫
Ω

u|∇v|2 + aδ3

∫
Ω

|∇v|4 ≤ K9(u0, v0) (4.19)

for all t ∈ (0, Tmax). Moreover, due to (4.17), the fact that μ > μ0 allows us to fix ε, η, εi, δi satisfying (4.16)
and (4.15). Indeed, we first choose (ε, η) = (ε0, η0) so that h is minimized, then we choose ε1 to be the 
minimizer of

χ2

2ε1
+ (2α2

η
+ nα2

2d2
) ε1
d2 − η

,

take ε3 = 1 and then fix ε2 and ε4 so that (4.16) is satisfied. Then, based on (4.15), (4.16) and (4.17), all δi
can be chosen readily.

Upon such well chosen ε, η, εi and δi, using (4.13), (4.14) and arguing as Lemma 3.5, we can easily deduce 
a Gronwall inequality for the coupled quantity z as defined by (4.1) of the form (4.2). As a matter of fact, 
by (4.13) and (4.14), we have

z′(t) + βz(t) + 2[3(d1 − ε)δ1 − ε4δ2 − ξ]
∫
Ω u|∇u|2 + (3μδ1 − nα2

18d2
δ2)

∫
Ω u4

+ 2[3(d2 − η)δ4 − (ε1 + ε2)δ3 − σ]
∫
Ω |∇v|2|∇|∇v|2|2

≤ 3aδ1
∫
Ω u2 + 2aδ2

∫
Ω u|∇v|2 + aδ3

∫
Ω |∇v|4

+ βδ1
∫
Ω u3 + Cξ

( ∫
Ω u

3
2

)2
+ Cσ

( ∫
Ω |∇v|3

)2
.

(4.20)

Now, by fixing ξ and σ sufficiently small, we deduce from (4.19), (4.20) and Hölder inequality that

z′(t) + βz(t) ≤ C(u0, v0),

directly yielding the desired boundedness stated in the lemma. In particular, it guarantees that ‖u(·, t)‖L3(Ω)
is uniformly bounded. Thus, in the case of n ≤ 5, the L

n
2 +ε-criterion [2,50] shows, that (u(·, t), v(·, t)) is 

uniformly bounded in L∞(Ω) ×W 1,∞(Ω) for all t ∈ (0, ∞). �
The algorithm for proving L2 and L3-boundedness of u may be in principle carried over to obtain 

Lr-boundedness of u for r = 4, 5, · · · inductively by establishing a Gronwall inequality for the coupled 
quantity (motivated by [42] again)

z(t) :=
r∑

k=0

δi

∫
uk|∇v|2(r−k), t ∈ (0, Tmax) (4.21)
Ω
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of the form

z′(t) + εz(t) ≤ Cε, t ∈ (0, Tmax)

for some carefully chosen positive constants δi and small ε > 0 and perhaps large Cε independent of t. In this 
process, as r becomes large, we will have more terms to handle and more boundary integrals will appear. 
While, simplification of the process is possible. In fact, for r = 2, 3, · · · , suppose that μ > μ

(r)
0 (n, d1, d2, α, χ)

is the condition under which Lr-boundedness of u (indeed, uniform boundedness of z(t) as in (4.21)) is 
guaranteed. Then, based on the procedures for r = 2 and r = 3, when μ > μ

(r−1)
0 (n, d1, d2, α, χ), the 

process for the next step r may be continued with the assumption that a = 0 and Ω be convex.
Once this is done, the Lr-boundedness of u will be obtained. Further, by choosing r = �n

2 � + 1, the 
L

n
2 +ε-criterion in [2,50] ensures the desired L∞-boundedness of u. Here, we state the following expected 

general result that offers a quantitative description on when logistic damping dominates over chemotactic
aggregation for (1.3) in Ω ⊂ R

n. While, we have to leave a rigorous examination for future study.

Proposition 4.7. Let Ω ⊂ R
n be a bounded smooth domain, f satisfy the logistic condition (1.4) and 

d1, d2, α, β > 0, a ≥ 0 and χ ∈ R. Then, for any natural number r ≥ 2, there exist a function θ(r)
0 (n, d1, d2)

which tends to infinity as d1 → 0 or d2 → 0 (and is decreasing in d1, d2) and constant C(u0, v0) such that, 
for any

μ > θ
(r)
0 (n, d1, d2)α|χ|,

the nonnegative solution (u, v) of the KS system (1.3) satisfies

r∑
k=0

∫
Ω

uk|∇v|2(r−k) ≤ C(u0, v0), t ∈ (0, Tmax).

As a result, if n ≤ 2r − 1, then (u, v) exists globally in time and (u(·, t), v(·, t)) is uniformly bounded in 
L∞(Ω) ×W 1,∞(Ω) for all t ∈ (0, ∞).

4.2. The special case that d1 = d2 and Ω ⊂ R
n is convex

In the special case that τ = 1 (equal diffusion rates) in (1.1), χ > 0 (positive chemotaxis) and Ω ⊂ R
n is 

convex, the explicit lower bound

μ >
n

4χ

ensuring global boundedness to the solution of (1.1) has been elucidated in [42] by establishing a parabolic 
inequality for a combination of u and |∇v|2. Here, in this subsection, for the full-parameter chemotaxis 
model (1.3), we will write down all the details for convenience and completeness.

Lemma 4.8. Let Ω ⊂ R
n be a bounded smooth convex domain, f satisfy the logistic condition (1.4) and 

d1, d2, α, β > 0, a ≥ 0. Assume that

d1 = d2, χ > 0, μ >
n

4d1
αχ,

the unique nonnegative solution (u, v) of the chemotaxis-growth system (1.3) exists globally in time, i.e., 
Tmax = ∞ and is bounded in the following way:



1194 T. Xiang / J. Math. Anal. Appl. 459 (2018) 1172–1200
u ≤ max
{

max
Ω̄×[0,1]

u,
1
2α max

{
max

Ω̄
(2αu(·, 1) + χ|∇v(·, 1)|2), aα

β
+ αβ

μ− nα
4d1

χ

}}

and

v ≤ max
{

max
Ω̄×[0,1]

v,
1
2β max

{
max

Ω̄
(2αu(·, 1) + χ|∇v(·, 1)|2), aα

β
+ αβ

μ− nα
4d1

χ

}}

on Ω̄ × [0, ∞). In addition, for any ε > 0,

|∇v| ≤ 1
χ

max
{

max
Ω̄

(2αu(·, ε) + χ|∇v(·, ε)|2), aα
β

+ αβ

μ− nα
4d1

χ

}
on Ω̄ × [ε,∞).

Moreover, if ‖∇v0‖L∞(Ω) < ∞, then ε can be chosen to be zero.

Proof. Taking the gradient first and then multiplying it by �v in the v-equation of (1.3) and then using 
(2.4) and the fact that d1 = d2, one derives

(| � v|2)t = d1 � | � v|2 − 2d1|D2v|2 − 2β| � v|2 + 2α� u� v. (4.22)

Multiplying the u-equation of (1.3) by 2α and the equation (4.22) by χ yields

(2αu + χ|∇v|2)t = d1Δ(2αu + χ|∇v|2) − 2d1χ|D2v|2 − 2βχ|∇v|2 − 2αχuΔv + 2αf(u).

Notice from Cauchy–Schwarz inequality and (2.5) that

−2αχuΔv ≤ nχα2

2d1
u2 + 2d1

n
χ|Δv|2 ≤ nχα2

2d1
u2 + 2d1χ|D2v|2,

we then deduce from the logistic condition f(u) ≤ a − μu2 that

(2αu + χ|∇v|2)t ≤ d1Δ(2αu + χ|∇v|2) − 2βχ|∇v|2 + 2aα− 2α(μ− nα

4d1
χ)u2. (4.23)

Recall that, for a convex domain Ω, we have the well-known fact that ∂
∂ν (| � v|2) ≤ 0 for any function 

satisfying ∂v∂ν = 0 on ∂Ω; see Matano [27, Lemma 5.3]. Consequently, from ∂u∂ν = ∂v
∂ν = 0 on ∂Ω, we get

∂

∂ν
w := ∂

∂ν
(2αu + χ|∇v|2) = 2α∂u

∂ν
+ 2χ ∂

∂ν
|∇v|2 = 2χ ∂

∂ν
|∇v|2 ≤ 0 on ∂Ω. (4.24)

Now, since μ > nα
4d1

αχ, using elementary calculations we find that

wt − d1Δw + 2βw ≤ M, (4.25)

where

M = max{2aα− 2α(μ− nα

4d1
χ)u2 + 4αβu|u ≥ 0} = 2aα + 2αβ2

μ− nα
4d1

χ
< ∞.

Recall that from Lemma 2.2 that (u, v) ∈ C2,1(Ω̄ × (0, Tmax)). So, we can perform a small time shift and 
treat any positive time as the “initial time”. Then, by (4.25) and (4.24), we conclude from the maximum 
principle and the Hopf boundary point lemma, for any ε ∈ (0, Tmax), that
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w = 2αu + χ|∇v|2 ≤ max
{

max
Ω̄

(2αu(·, ε) + χ|∇v(·, ε)|2), M2β
}

on Ω̄ × [ε, Tmax).

This gives the uniform boundedness for the coupled quantity 2αu + χ|∇v|2, and then the positiveness of χ
shows the L∞-boundedness of u and ∇v:

u ≤ max
{

max
Ω̄×[0,ε]

u,
1
2α,max

{
max

Ω̄
(2αu(·, ε) + χ|∇v(·, ε)|2), M2β

}}

on Ω̄ × [ε, Tmax) and

|∇v| ≤ 1
χ

max
{

max
Ω̄

(2αu(·, ε) + χ|∇v(·, ε)|2), M2β
}

on Ω̄ × [ε, Tmax).

These combined with the blow-up criterion (2.1) of Lemma 2.2 show that (u, v) exists globally in time, i.e., 
Tmax = ∞.

Finally, an application of maximum principle to the v-equation in (1.3) on Ω̄ × [1, ∞) yields the bound 
for v. Indeed, |∇v| is bounded if |∇v0| is. �
5. Proof of the large time behavior for the KS model (1.8)

In this section, we show the proof of Theorem 1.3, which relies on finding so-called Lyapounov functionals. 
Here, we will present all the necessary details for the clarity of obtaining the explicit convergence rates.

Proof. We modified the functional in [9] as

H(t) =
∫
Ω

(
u− κ

μ
− κ

μ
ln(μ

κ
u)
)

+ δ

∫
Ω

(v − ακ

βμ
)2, δ = κχ2

8d1d2μ
. (5.1)

Differentiating H, using the chemotaxis-logistic system (1.8) and integrating by parts, we deduce from 
Cauchy–Schwarz inequality that

d

dt
H(t) =

∫
Ω

u− κ
μ

u
ut + 2δ

∫
Ω

(v − ακ

βμ
)vt + 2δ

∫
Ω

(v − ακ

βμ
)(d2Δv − βv + αu)

=
∫
Ω

u− κ
μ

u

(
∇ · (d1∇u− χu∇v) + u(κ− μu)

)
− 2d2δ

∫
Ω

|∇v|2 + 2δ
∫
Ω

(v − ακ

βμ
)(−βv + αu)

= −κ

μ
d1

∫
Ω

|∇u|2
u2 + κ

μ
χ

∫
Ω

∇u

u
· ∇v − μ

∫
Ω

(u− κ

μ
)2

− 2d2δ

∫
Ω

|∇v|2 − 2βδ
∫
Ω

(v − ακ

βμ
)2 + 2αδ

∫
Ω

(u− ακ

βμ
)(v − ακ

βμ
)

≤ −2d2(δ −
κχ2

8d1d2μ
)
∫
Ω

|∇v|2 − (μ− 2αδε)
∫
Ω

(u− κ

μ
)2 − 2δ(β − α

4ε )
∫
Ω

(v − ακ

βμ
)2

= −(μ− 2αδε)
∫
Ω

(u− κ

μ
)2 − 2δ(β − α

4ε )
∫
Ω

(v − ακ

βμ
)2

(5.2)

for any ε > 0. Now, we wish to minimize μ by choosing ε and δ such that
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{
μ− 2αδε > 0,

β − α
4ε > 0.

⇐⇒

⎧⎨
⎩

μ > καχ2

4d1d2μ
ε,

α
4β < ε < 4d1d2μ

2

ακχ2 .
⇐⇒ μ2 >

κα2χ2

16d1d2β
. (5.3)

The last constraint is guaranteed by our assumption (1.9). Next, for fixed ε obeying (5.3), we set

η = min
{

(μ− 2αδε), 2δ(β − α

4ε )
}

= min
{

(μ− ακχ2

4d1d2μ
ε), κχ2

4d1d2μ
(β − α

4ε )
}
, (5.4)

and then we infer from (5.2), (5.3) and (5.4) that

d

dt
H(t) ≤ −η

(∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2
)
. (5.5)

Since H(t) ≥ 0, an integration of (5.5) from any t0 ≥ 0 to t yields

η

t∫
t0

(∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2
)
≤ H(t0),

giving trivially

∞∫
t0

(∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2
)
≤ H(t0)

η
. (5.6)

Thanks to Theorem 1.1, the condition μ > μ0 ensures that (u, v) is globally bounded and classical. Then 
from the parabolic regularity, we see that 

∫
Ω(u − κ

μ )2 +
∫
Ω(v − ακ

βμ )2 is uniformly bounded and uniformly 
continuous in t. This allows one to deduce from (5.6) that

∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2 → 0, as t → ∞. (5.7)

Since u, v are smooth and bounded, the standard parabolic regularity for parabolic equations (cf. [21]) shows 
there are σ ∈ (0, 1) and C such that

‖u‖
C2+σ,1+σ

2 (Ω̄×[t,t+1]) + ‖v‖
C2+σ,1+σ

2 (Ω̄×[t,t+1]) ≤ C, ∀t ≥ 1. (5.8)

Hence, by the Gagliardo–Nirenberg inequality, (5.7) and (5.8), we obtain

‖u(·, t) − κ
μ‖L∞(Ω) ≤ CGN‖u(·, t) − κ

μ‖
n

n+2
W 1,∞(Ω)‖u− κ

μ‖
2

n+2
L2(Ω)

≤ C‖u(·, t) − κ
μ‖

2
n+2
L2(Ω) → 0, as t → ∞.

(5.9)

In the same way, we get

‖v(·, t) − ακ

βμ
‖L∞(Ω) ≤ C‖v(·, t) − ακ

βμ
‖

2
n+2
L2(Ω) → 0, as t → ∞. (5.10)

Based on the definition of H in (5.1), (5.9) and (5.5), we calculate via the L’Hôpital’s rule that

lim
u→ κ

u− κ
μ − κ

μ ln(μκu)
(u− κ )2 = μ

2κ.
μ μ
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This together with (5.9) allows one to find t1 ≥ 0 such that

μ

4κ (u− κ

μ
)2 ≤ u− κ

μ
− κ

μ
ln(μ

κ
u) ≤ μ

κ
(u− κ

μ
)2, t ≥ t1,

and then the definition of H in (5.1) entails

min{ μ

4κ, δ}
(∫

Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2
)
≤ H(t), t ≥ t1 (5.11)

and

H(t) ≤ max{μ
κ
, δ}

(∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2
)
, t ≥ t1. (5.12)

Combining (5.5) and (5.12), we obtain an ordinary differential inequality:

d

dt
H(t) ≤ − η

max{μ
κ , δ}

H(t), t ≥ t1,

directly yielding

H(t) ≤ H(t1)e
− η

max{μ
κ

,δ} (t−t1)
, t ≥ t1.

This in conjunction with (5.11) tells us that

∫
Ω

(u− κ

μ
)2 +

∫
Ω

(v − ακ

βμ
)2 ≤ H(t1)

min{ μ
4κ , δ}

e
− η

max{μ
κ

,δ} (t−t1)
, t ≥ t1.

With this decay estimate at hand, we then derive from (5.9) and (5.10) that there exists a large constant 
C > 0 such that

‖u(·, t) − κ

μ
‖L∞(Ω) + ‖v(·, t) − ακ

βμ
‖L∞(Ω) ≤ Ce

− η

(n+2) max{μ
κ

,δ} (t−t1)
, t ≥ t1.

Then plugging in the definitions of δ in (5.1), η in (5.4) and taking ε = ε0 in (5.3), we obtain the desired 
exponential decay estimate (1.10).

In the case of κ = 0, the uniform boundedness and global existence of solution does not affect as long as 
μ > μ0. We integrate the first equation in the KS system (1.8) and use Hölder inequality to obtain

d

dt

∫
Ω

u = −μ

∫
Ω

u2 ≤ −μ|Ω|−1
(∫

Ω

u
)2

, t > 0,

which enables us to deduce
∫
Ω

u ≤
[
(
∫
Ω

u0)−1 + μ|Ω|−1t
]−1

≤ c1
t + 1 , t > 0. (5.13)

As before, the boundedness of u and Gagliardo–Nirenberg inequality entails
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‖u(·, t)‖L∞(Ω) ≤ CGN‖u(·, t)‖
n

n+1
W 1,∞(Ω)‖u(·, t)‖

1
n+1
L1(Ω)

≤ C
[
(
∫
Ω u0)−1 + μ|Ω|−1t

]− 1
n+1

, t > 0.
(5.14)

An integration of the second equation in (1.8) shows

d

dt

∫
Ω

v = −β

∫
Ω

v + α

∫
Ω

u ≤ −β

∫
Ω

v + c2
t + 1 . (5.15)

Solving this Gronwall inequality, we obtain

∫
Ω

v ≤ ‖v0‖L1e−βt + c2

∫ t

0
eβs

s+1
eβt

≤ ‖v0‖L1e−βt + c3
t + 1 ≤ c4

t + 1 ,

where we used the fact that

lim
t→∞

(t + 1)
∫ t

0
eβs

s+1
eβt

= 1
β

< ∞, lim
t→∞

(t + 1)e−βt = 0.

Then we conclude from (5.14) with u replaced by v that

‖v(·, t)‖L∞(Ω) ≤
c4

(t + 1)n+1 , t > 0. (5.16)

In the case of κ < 0, we integrate the first equation in (1.8) to get

d

dt

∫
Ω

u = κ

∫
Ω

u− μ

∫
Ω

u2 ≤ κ

∫
Ω

u, t > 0,

and thus ∫
Ω

u ≤ eκt
∫
Ω

u0, t > 0. (5.17)

Then the GN inequality (5.14) implies that

‖u(·, t)‖L∞(Ω) ≤ c5e
κ

n+1 t, t > 0. (5.18)

Combining (5.17) and (5.15), we derive

‖v(·, t)‖L1 ≤

⎧⎨
⎩

‖v0‖L1e−βt + c6te
−βt, if β = −κ,

‖v0‖L1e−βt + c7
eκt−e−βt

β+κ , if β �= −κ.
≤ c9e

− 1
2 min{β,−κ}t.

With this decay estimate at hand, the GN inequality (5.14) gives rise to

‖v(·, t)‖L∞(Ω) ≤ c10e
− 1

2(n+1) min{β,−κ}t, ∀t ≥ 0. (5.19)

Extracting the essential ingredients of the estimates (5.14), (5.16), (5.18) and (5.19), we readily conclude 
the decay estimates (1.10), (1.11) and (1.12). �
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