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This paper is concerned with the fractional coupled Schrödinger system. By using 
the Nehari manifold and fibering map, we obtain the multiplicity and concentration 
of solutions for the given problem with steep potential wells, where some new 
estimates will be established. In particular, although there exist concave-convex 
nonlinearities in the coupled system, it is not necessary to assume that the 
corresponding Lebesgue norms of the weight functions of the convex terms need 
to be small enough.
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1. Introduction and main results

In this paper, we study the multiplicity and concentration behavior of nontrivial solutions for the following 
coupled elliptic system:

{
(−Δ)su + λV (x)u = f(x)|u|q−2u + α

α+β |u|α−2u|v|β , x ∈ RN ,

(−Δ)sv + λW (x)v = g(x)|v|q−2v + β
α+β |u|α|v|β−2v, x ∈ RN ,

(1.1)

where (−Δ)s is the fractional Laplacian operator with s ∈ (0, 1), the parameter λ > 0, 1 < q < 2, α, β > 1
with α + β < 2∗s = 2N/(N − 2s) and N ≥ 3. We first assume that V (x) and W (x) satisfy the following 
conditions:

(VW 1) V (x), W (x) ∈ C(RN , R) with V (x), W (x) ≥ 0 on RN ;
(VW 2) there exists c > 0 such that the set Σ �

{
x ∈ RN : V (x)W (x) < c2

}
has positive finite Lebesgue 

measure;
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(VW 3) Ω1 � intV −1(0) and Ω2 � intW−1(0) are nonempty and have smooth boundaries with Ω1 = V −1(0), 
Ω2 = W−1(0), and Ω1 ∩ Ω2 �= ∅.

For the weight functions f(x) and g(x), we assume

(FG1) f, g ∈ L∞(RN ) satisfy Θf ⊂ Σ and Θg ⊂ Σ, where Σ is given by (VW )2 and

Θf � {x ∈ RN : f(x) > 0}, Θg � {x ∈ RN : g(x) > 0};

(FG2) f, g ∈ L2∗
s/(2

∗
s−q)(RN ).

The aforementioned assumptions (VW1) − (VW3) are firstly proposed by Bartsch-Wang in their cerebrated 
paper [3] to study a scalar Schrödinger equation. The potential λV (x) and λW (x) with the above hypotheses 
are usually called by the steep potential wells.

The fractional Laplacian, (−Δ)su, in this paper can be represented [32, Lemma 3.2] as

(−Δ)su(x) = −1
2CN (s)

∫
RN

u(x + y) + u(x− y) − 2u(x)
|y|N+2s dy, ∀ x ∈ RN ,

where

CN (s) =
( ∫
RN

1 − cos ξ1
|y|N+2s dξ

)−1

, ξ = (ξ1, ξ2, · · · , ξN ).

As a consequence of [32, Proposition 3.4 and Proposition 3.6], the natural inner product and norm of 
Hs(RN ) can be defined as

(u, ϕ)Hs(RN ) =
∫
RN

[
(−Δ) s

2u(−Δ) s
2ϕ + uϕ

]
dx, and ‖u‖Hs(RN ) =

(
u, u

) 1
2
Hs(RN ).

Also the homogeneous fractional Sobolev space Ds,2(RN ) is defined by

Ds,2(RN ) =
{
u ∈ L2∗

s (RN ) : |(−Δ) s
2u| ∈ L2(RN )

}

which is the completion of C∞
0 (RN ) under the norm

‖u‖Ds,2(RN ) =
( ∫
RN

|(−Δ) s
2u|2dx

) 1
2

.

According to [12], there exists a best constant Ss > 0 such that

Ss = inf
{ ∫
RN

|(−Δ) s
2u|2dx : u ∈ Ds,2(RN ) and |u|2∗

s
= 1

}
> 0, (1.2)

where | · |r denotes the standard norm of the usual Lebesgue space with 1 ≤ r ≤ ∞.
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To deal with (1.1), we introduce the following spaces

E1 �
{
u ∈ Ds,2(RN ) :

∫
RN

V (x)u2dx < +∞
}

and

E2 �
{
u ∈ Ds,2(RN ) :

∫
RN

W (x)u2dx < +∞
}
.

Thus the natural space in this paper is the space E � E1 ×E2, which is a Hilbert space equipped with the 
inner product and norm

(z, ζ) =
∫
RN

[
(−Δ) s

2u(−Δ) s
2ϕ + V (x)uϕ + (−Δ) s

2 v(−Δ) s
2ψ + W (x)vψ

]
dx

and

‖z‖ = (z, z)1/2

for any z = (u, v) ∈ E and ζ = (ϕ, ψ) ∈ E. Given λ > 0, we let Eλ � (E, ‖ · ‖λ) be endowed with the inner 
product and norm

(z, ζ)λ =
∫
RN

[
(−Δ) s

2u(−Δ) s
2ϕ + λV (x)uϕ + (−Δ) s

2 v(−Δ) s
2ψ + λW (x)vψ

]
dx

and

‖z‖λ = (z, z)1/2λ .

Obviously, ‖z‖ ≤ ‖z‖λ if λ ≥ 1. We will show the multiplicity and concentration results of nontrivial 
solutions of (1.1) by looking for critical points of the associated functional

Jλ(z) = 1
2‖z‖

2
λ − 1

q
If,g(z) −

1
α + β

∫
RN

|u|α|v|βdx,

where

If,g
(
z) �

∫
RN

[
f(x)|u|q + g(x)|v|q

]
dx.

In view of [42], the critical points of Jλ(z) are in fact the (weak) solutions of (1.1). We say that z = (u, v)
is a (weak) solution of (1.1) if for any ζ = (ϕ, ψ) ∈ E there holds

∫
RN

[
(−Δ) s

2u(−Δ) s
2ϕ + λV (x)uϕ + (−Δ) s

2 v(−Δ) s
2ψ + λW (x)vψ

]
dx

=
∫ [

f(x)|u|q−2uϕ + g(x)|v|q−2vψ
]
dx
RN



1388 L. Shen / J. Math. Anal. Appl. 475 (2019) 1385–1403
+ α

α + β

∫
RN

|u|α−2uϕ|v|βdx + β

α + β

∫
RN

|u|α|v|β−2vψdx. (1.3)

The scalar case of (1.1), that is,

(−Δ)su + λV (x) = ξ(x)|u|q−2 + η(x)|u|r−2u, x ∈ RN , (1.4)

where s ∈ (0, 1], 1 < q < 2 < r < 2∗s with N ≥ 3 and ξ, η are two weight functions, has been paid attention 
by many scholars in the last serval decades, see [11,27] for example. Equations like (1.4) come from the 
following fractional Schrödinger equation

(−Δ)su + V (x)u = h(x, u), x ∈ RN

used to study the standing wave solutions ψ(t, x) = u(x)e−iωt for the equation

i�
∂ψ

∂t
= �

2(−Δ)αψ + W (x)ψ − h(x, ψ), x ∈ RN ,

where � is the Planck’s constant, W : RN → R is an external potential and h is a suitable nonlinearity. 
Since the fractional Schrödinger equation appears in problems involving nonlinear optics, plasma physics 
and condensed matter physics, it is one of the main objects of the fractional quantum mechanic. To know 
more about the study of fractional Schrödinger equations, the reader can refer to [22,23,8,15,35,4,19,27,28,
21,36,37] and the references therein for example.

There are extensive bibliographies in the study of the coupled elliptic systems on bounded domain see 
[16,20,10,33,34] and their references therein for example. As to the whole space, we refer the reader to 
[2,17,29,31,30]. In [17], under the assumptions (VW1) − (VW3), the authors consider a similar problem

{
−Δu + λV (x)u = α

α+β |u|α−2u|v|β , x ∈ RN ,

−Δv + λW (x)v = β
α+β |u|α|v|β−2v, x ∈ RN ,

where α, β > 1 with α+β < 2∗ = 2N/(N−2) and N ≥ 3. They establish a positive least energy solution for 
the above problem by Mountain-Pass theorem and explore the phenomenon of concentration of solutions. 
Meanwhile, for any k ∈ N+, they show that the above problem admits at least k nontrivial solutions as well 
as the concentration result for large λ > 0 by using the well-known Symmetric Mountain-Pass theorem [1]. 
Subsequently, for α, β > 1 with α + β < 6, Lv-Xiao [29] study the following coupled system of Kirchhoff 
type

⎧⎪⎪⎨
⎪⎪⎩

−
(
a + b

∫
R3 |∇u|2dx

)
Δu + λV (x)u = 2α

α+β |u|α−2u|v|β , x ∈ R3,

−
(
a + b

∫
R3 |∇v|2dx

)
Δv + λW (x)v = 2β

α+β |u|α|v|β−2v, x ∈ R3,

by assuming

(H1) V (x), W (x) ∈ C(R3, [0, ∞)) and Ω � intV −1(0) = intW−1(0) is nonempty with smooth boundary and 
Ω = V −1(0) = W−1(0);

(H2) there exist M1, M2 > 0 such that the sets 
{
x ∈ R3 : V (x) < M1

}
and 

{
x ∈ R3 : W (x) < M2

}
have 

positive finite Lebesgue measures.
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They obtain the existence and multiplicity of solutions for large λ > 0, but don’t consider the concentration 
of nontrivial solutions.

However, to the best knowledge of us, it seems that there are few works on the multiplicity and concentra-
tion of solutions to the coupled elliptic system involving concave-convex nonlinearities with steep potential 
wells. In the present paper, we mainly follow the idea of [17]. Let us point out that although the idea was 
used before for other different problems, the adaptation of the procedure to our problem is not trivial at 
all. We establish some new estimation such as the inequality (2.5) below which will play an important role 
in our proof. Moreover, the key inequalities, such as (2.17) and (2.18) below which are used to prove the 
(PS) condition, don’t seem to have appeared in previous literature. What we want to emphasize here is that 
there are two usual ways to study the concentration results, one is by the aid of the vanishing lemma [25,26], 
see [44,39,24,40,43,11,27,38] for example, the other is via the Nehari method on the limit system, see [17]
for example. But the above two methods can not be applied directly to our case. On one hand, the work 
space E = E1 × E2 which is a subspace of Ds,2(RN ) × Ds,2(RN ), not a subspace of Hs(RN ) × Hs(RN ), 
prevents us using the vanishing lemma. On the other hand, we establish two distinct nontrivial solutions 
for the limit system (see (1.5) below), so the Nehari argument does not work. Combining (2.5) and (2.18), 
we obtain (3.2) and (3.3) to overcome this difficult.

Now we give our main results.

Theorem 1.1. If 1 < q < 2, α, β > 1 with α+ β < 2∗s, assume that (FG1) − (FG2) and (VW1) − (VW3) as 
well as the following condition

(VW4) 0 < |Σ|
2∗s−q

2∗s (2−q)+
2s(1−μ)

(α+β−2)Np <

[
2 − q

α + β − q

(
1
2S

−1
s

)(μ−1)/p

S
(2∗

s/2)
2μ/p

s

] 1
α+β−2

×
[

(α + β − 2)Sq/2
s

(α + β − q)(|f |∞ + |g|∞)

] 1
2−q

,

where |Σ| denotes the Lebesgue measure of Σ given in (VW2), and

p = 2∗s
2∗s − α− β + 2 ∈ (1, 2∗s/2) and μ = 2(p− 1)

2∗s − 2 = 2(α + β − 2)
(2∗s − α− β + 2)(2∗s − 2) ∈ (0, 1).

Then there exists a constant Λ > 0 such that (1.1) has two positive solutions z+
λ = (u+

λ , v
+
λ ) and z−λ =

(u−
λ , v

−
λ ).

On the concentration of solutions, we have the following result.

Theorem 1.2. Let z±λ be the solutions obtained in Theorem 1.1. Then z±λ → z± in E as λ → ∞, and z+

(z−) is a (nontrivial) solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−Δ)su = f(x)|u|q−2u + α
α+β |u|α−2u|v|β , x ∈ Ω1,

(−Δ)sv = g(x)|v|q−2v + β
α+β |u|α|v|β−2v, x ∈ Ω2,

u = 0, x ∈ ∂Ω1,

v = 0, x ∈ ∂Ω2.

(1.5)

Furthermore, we have the following conclusions:

(1) if Θf ∩ Ω1 = ∅ and Θg ∩ Ω2 = ∅, then z+ ≡ 0;
(2) if |Θf ∩ Ω1| > 0 and |Θg ∩ Ω2| > 0, then z+ �= 0;
(3) z+ �= z−.
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The paper is organized as follows. In Section 2, we provide several lemmas, which are crucial in proving 
our main results. In Section 3, the proofs of Theorems 1.1 and 1.2 are established.

Notations. Throughout this paper we shall denote by C and Ci (i = 1, 2, · · · ) for various positive constants 
whose exact value may change from lines to lines but are not essential to the analysis of the problem. The 
set Ac is the complement set of A in RN . We use “→” and “⇀” to denote the strong and weak convergence 
in the related function space, respectively. For any ρ > 0 and any x ∈ RN , Bρ(x) denotes the ball of radius 
ρ centered at x, that is, Bρ(x) := {y ∈ RN : |y − x| < ρ}.

Let (X, ‖ · ‖) be a Banach space with its dual space (X∗, ‖ · ‖∗), and Φ be its functional on X. The 
Palais-Smale sequence at level c ∈ R ((PS)c sequence in short) corresponding to Φ means that Φ(xn) → c

and Φ′(xn) → 0 as n → ∞, where {xn} ⊂ X. If for any (PS)c sequence {xn} in X, there exists a subsequence 
{xnk

} such that xnk
→ x0 in X for some x0 ∈ X, then we say that the functional Φ satisfies the so called 

(PS)c condition.

2. Preliminaries

In this section, we present some preliminaries for the main results of this paper. It is worth mentioning 
here that the main idea of the following lemma comes from [17, Lemmas 2.1-2.2], however, we obtain a 
totally different estimate which enables us to show the (PS) condition of Jλ in another way.

In view of the constants p and μ given by the assumption (VW4), there hold

α− 1
2∗s

+ β − 1
2∗s

+ 1
p

= 1 (2.1)

and

p = 2∗sμ/2 + (1 − μ). (2.2)

Lemma 2.1. If α, β > 1 with α+ β < 2∗s and assume (VW1) − (VW2). Then for any z = (u, v) ∈ Eλ, there 
exists Λ0 � max{1, Ss|Σ|− 2s

N c−1} such that

∫
RN

|u|α|v|βdx ≤
(

1
2S

−1
s |Σ| 2sN

)(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖z‖α+β
λ .

Proof. Recalling (VW2), by using the Hölder inequality and (1.2) we have

∫
RN

|uv|dx ≤
∫
Σ

(|u|2∗
s )

1
2∗s (|v|2∗

s )
1
2∗s 1 2s

N dx + 1
λc

∫
Σc

(λV (x)u2) 1
2 (λW (x)v2) 1

2 dx

≤ |u|2∗
s
|v|2∗

s
|Σ| 2sN + 1

λc

(∫
Σc

λV (x)u2dx

) 1
2
(∫

Σc

λW (x)v2dx

) 1
2

≤ S−1
s |Σ| 2sN |(−Δ) s

2u|2|(−Δ) s
2 v|2 + 1

2λc

∫
RN

λV (x)u2 + λW (x)v2dx

≤ 1
2 max

{
S−1
s |Σ| 2sN ,

1
λc

}
‖z‖2

λ. (2.3)

It follows from (1.2) and (2.2) that
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∫
RN

|uv|pdx ≤
( ∫
RN

|uv|
2∗s
2 dx

)μ( ∫
RN

|uv|dx
)1−μ

≤
[
1
2

(
|u|2

∗
s

2∗
s

+ |v|2
∗
s

2∗
s

)]μ( ∫
RN

|uv|dx
)1−μ

≤
[
S
−2∗

s/2
s

2

(
|(−Δ) s

2u|2
∗
s

2 + |(−Δ) s
2 v|2

∗
s

2

)]μ( ∫
RN

|uv|dx
)1−μ

≤ S
−2∗

sμ/2
s ‖z‖2∗

sμ
λ

( ∫
RN

|uv|dx
)1−μ

. (2.4)

Combining (2.1) and (2.3)-(2.4), we derive
∫
RN

|u|α|v|βdx

≤
( ∫
RN

|u|2∗
sdx

)α−1
2∗s

( ∫
RN

|v|2∗
sdx

)β−1
2∗s

( ∫
RN

|uv|pdx
) 1

p

≤ S
−α+β−2

2
s ‖z‖α+β−2

λ

( ∫
RN

|uv|pdx
) 1

p

≤ S
−(2∗

s/2)
2μ/p

s ‖z‖α+β−2+2∗
sμ/p

λ

( ∫
RN

|uv|dx
) 1−μ

p

≤
(

1
2 max

{
S−1
s |Σ| 2sN ,

1
λc

})(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖z‖α+β−2+2∗
sμ/p+2(1−μ)/p

λ

=
(

1
2S

−1
s |Σ| 2sN

)(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖z‖α+β
λ (2.5)

when λ ≥ Λ0. The proof is complete. �
According to (FG1) and by some direct computations, there holds

∫
RN

f(x)|u|qdx =
∫
Σ

f(x)|u|qdx +
∫
Σc

f(x)|u|qdx ≤
∫
Σ

f(x)|u|qdx

≤ |f |∞|Σ|(2∗
s−q)/2∗

s

(
S−1
s

∫
RN

|(−Δ) s
2u|2dx

)q/2

≤ |f |∞|Σ|(2∗
s−q)/2∗

sS−q/2
s ‖z‖qλ.

(2.6)

Similarly, we have
∫
RN

g(x)|v|qdx ≤ |g|∞|Σ|(2∗
s−q)/2∗

sS−q/2
s ‖z‖qλ. (2.7)

Next we will study the so-called Nehari manifold because the variational functional Jλ(z) is not bounded 
from below on the whole space Eλ. Let us define

Nλ =
{
z ∈ Eλ\{0} : 〈J ′

λ(z), z〉 = 0
}

and then any nontrivial solution of (1.1) belongs to Nλ. Obviously, z ∈ Nλ if and only if

‖z‖2
λ = If,g(z) +

∫
|u|α|v|βdx and z = (u, v) with u �= 0 and v �= 0.
RN
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The following lemma tells us the behavior of Jλ(z) on Nλ.

Lemma 2.2. The functional Jλ(z) is coercive and bounded from below on Nλ.

Proof. For any z ∈ Nλ, since 1 < q < 2 < α + β, by (2.6) and (2.7)

Jλ(z) = Jλ(z) − 1
α + β

〈J ′
λ(z), z〉 =

(
1
2 − 1

α + β

)
‖z‖2

λ −
(

1
q
− 1

α + β

)
If,g(z)

≥
(

1
2 − 1

α + β

)
‖z‖2

λ −
(

1
q
− 1

α + β

)
(|f |∞ + |g|∞)|Σ|(2∗

s−q)/2∗
sS−q/2

s ‖z‖qλ

≥ − (2 − q)(α + β − 2)
2q(α + β)

(
α + β − q

α + β − 2(|f |∞ + |g|∞)|Σ|(2∗
s−q)/2∗

sS−q/2
s

) 1
2−q

� −M0,

which yields that Jλ(z) is coercive and bounded from below on Nλ. �
The Nehari manifold Nλ is closely linked to the function ϕλ,z(t) = Jλ(tz) for any t > 0. As we all know, 

the above map was introduced by Drábek-Pohoz̆aev [13] and discussed in Brown-Zhang [6] (or Hsu [20], 
Chen-Kuo-Wu [9]). For any z ∈ Eλ, one has

ϕλ,z(t) = t2

2 ‖z‖2
λ − tq

q
If,g(z) −

tα+β

α + β

∫
RN

|u|α|v|βdx,

ϕ′
λ,z(t) = t‖z‖2

λ − tq−1If,g(z) − tα+β−1
∫
RN

|u|α|v|βdx,

ϕ′′
λ,z(t) = ‖z‖2

λ − (q − 1)tq−2If,g(z) − (α + β − 1)tα+β−1
∫
RN

|u|α|v|βdx.

It is easy to see that for any z ∈ Eλ and t > 0, there holds

tϕ′
λ,z(t) = t2‖z‖2

λ − tqIf,g(z) − tα+β

∫
RN

|u|α|v|βdx,

which gives that ϕ′
λ,z(t) = 0 if and only if tz ∈ Nλ. In particular, ϕ′

λ,z(1) = 0 if and only if z ∈ Nλ. Arguing 
as Brown-Zhang [6], we split Nλ into three parts:

N+
λ = {z ∈ Nλ : ϕ′′

λ,z(1) > 0},
N 0

λ = {z ∈ Nλ : ϕ′′
λ,z(1) = 0},

N−
λ = {z ∈ Nλ : ϕ′′

λ,z(1) < 0}.

Therefore for any z ∈ Nλ, we have

ϕ′′
λ,z(1) = ‖z‖2

λ − (q − 1)If,g(z) − (α + β − 1)
∫
RN

|u|α|v|βdx

= (2 − q)‖z‖2
λ − (α + β − q)

∫
RN

|u|α|v|βdx (2.8)

= (2 − α− β)‖z‖2
λ + (α + β − q)If,g(z). (2.9)
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As a direct consequence of (2.9), one has

If,g(z) > 0 for any z ∈ N 0
λ ∪N+

λ .

It is similar to the argument in Brown-Zhang [6, Theorem 2.3] that we can derive the following result.

Lemma 2.3. Suppose z ∈ Eλ is a local minimizer for Jλ(z) on Nλ and z /∈ N 0
λ , then J ′

λ(z) = 0 in E∗
λ.

Inspired by the above lemma, we need to study when the case N 0
λ = ∅ happens.

Lemma 2.4. For 1 < q < 2 and α, β > 1 with α + β < 2∗s, if λ > Λ0 and assume (VW1) − (VW2), (VW4)
and (FG1), then N 0

λ = ∅.

Proof. Arguing it indirectly and suppose for any z ∈ N 0
λ , using (2.5) and (2.8) we have

(2 − q)‖z‖2
λ ≤ (α + β − q)

(
1
2S

−1
s |Σ| 2sN

)(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖z‖α+β
λ , (2.10)

which implies that

‖z‖λ ≥
[

2 − q

α + β − q

(
1
2S

−1
s |Σ| 2sN

)(μ−1)/p

S
(2∗

s/2)
2μ/p

s

] 1
α+β−2

.

Similarly, by using (2.6), (2.7) and (2.9) we obtain

‖z‖λ ≤
[
(α + β − q)(|f |∞ + |g|∞)|Σ|(2∗

s−q)/2∗
s

(α + β − 2)Sq/2
s

] 1
2−q

.

It follows from the above two formulas that

|Σ|
2∗s−q

2∗s (2−q)+
2s(1−μ)

(α+β−2)Np ≥
[

2 − q

α + β − q

(
1
2S

−1
s

)(μ−1)/p

S
(2∗

s/2)
2μ/p

s

] 1
α+β−2

[
(α + β − 2)Sq/2

s

(α + β − q)(|f |∞ + |g|∞)

] 1
2−q

,

which is a contradiction to (VW4). The proof is complete. �
To find solutions of (1.1), it is necessary to consider whether N±

λ are nonempty.

Lemma 2.5. For 1 < q < 2 and α, β > 1 with α+ β < 2∗s and assume (VW1) − (VW2), (VW4) and (FG1). 
Then for any λ > Λ0 and z ∈ Eλ\{0}, there exists

tmax =
(

(2 − q)‖z‖2
λ

(α + β − q)
∫
RN |u|α|v|βdx

) 1
α+β−2

> 0,

such that

(i) if If,g(z) ≤ 0, there is a unique t− > tmax such that t−z ∈ N−
λ and

Jλ(t−z) = sup
t≥0

Jλ(tz);
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(ii) if If,g(z) > 0, there are unique t+ and t− with 0 < t+ < tmax < t− such that t±z ∈ N±
λ and

Jλ(t+z) = inf
0≤t≤tmax

Jλ(tz) and Jλ(t−z) = sup
t≥tmax

Jλ(tz).

Proof. The proof is standard, we omit it here (see e.g. Brown-Wu [7, Lemma 2.6] and Hsu [20, Lemma 3.5]
for example). �

From Lemma 2.4, we know that Nλ = N+
λ ∪N−

λ for any λ > Λ0. Moreover, by Lemma 2.5, N±
λ �= ∅; by 

Lemma 2.2, we may define

mλ = inf
z∈Nλ

Jλ(z), m+
λ = inf

z∈N+
λ

Jλ(z), m−
λ = inf

z∈N−
λ

Jλ(z).

Then we have the following result.

Lemma 2.6. If 1 < q < 2, α, β > 1 with α + β < 2∗s, and assume (VW1) − (VW4) and (FG1) − (FG2). 
Then for any λ > Λ0 there exists d0 > 0 independent of λ such that m+

λ < 0 < d0 < m−
λ . In particular, we 

have m+
λ = mλ.

Proof. For any z ∈ N+
λ , by (2.8) we have

(2 − q)‖z‖2
λ > (α + β − q)

∫
RN

|u|α|v|βdx,

which implies that

Jλ(z) = Jλ(z) − 1
q
〈J ′

λ(z), z〉 = q − 2
2q ‖z‖2

λ + α + β − q

q(α + β)

∫
RN

|u|α|v|βdx

< −2 − q

q

(
1
2 − 1

α + β

)
‖z‖2

λ < 0.

Thus we obtain that m+
λ < 0.

Similar to (2.10), we can derive

‖z‖λ >

[
2 − q

α + β − q

(
1
2S

−1
s |Σ| 2sN

)(μ−1)/p

S
(2∗

s/2)
2μ/p

s

] 1
α+β−2

for any z ∈ N−
λ . (2.11)

Then for any z ∈ N−
λ ⊂ Nλ and by (2.6)-(2.7), we have

Jλ(z) = Jλ(z) − 1
α + β

〈J ′
λ(z), z〉 = α + β − 2

2(α + β) ‖z‖2
λ − α + β − q

q(α + β) If,g(z)

≥ ‖z‖qλ
[(

1
2 − 1

α + β

)
‖z‖2−q

λ −
(

1
α + β

− 1
q

)
(|f |∞ + |g|∞)|Σ|(2∗

s−q)/2∗
sS−q/2

s

]
.

(2.12)

Combining (2.11) and (2.12), by (VW4) there exists d0 > 0 independent of λ such that m−
λ ≥ d0. The proof 

is complete. �
The following lemma is an another version of Brézis-Lieb lemma [5], which is proved by Han [18].
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Lemma 2.7. Let {(un, vn)} ⊂ Eλ be such that (un, vn) ⇀ (u, v) in Eλ, then

lim
n→∞

∫
RN

[
|un|α|vn|β − |un − u|α|vn − v|β − |u|α|v|β

]
dx = 0. (2.13)

To find the critical points of Jλ, we need the following compactness result.

Lemma 2.8. If 1 < q < 2, α, β > 1 with α+β < 2∗s, and assume (VW1) − (VW4) and (FG1) − (FG2), then 
there exists D > 0 and Λ = Λ(D) > 0 such that Jλ satisfies the (PS)c condition in Eλ for any c < D and 
λ > Λ.

Proof. Let {zn} = {(un, vn)} be a (PS)-sequence with c < D. We know from Lemma 2.2 that {zn} is 
bounded in Eλ, and then there exists z = (u, v) ∈ Eλ such that zn ⇀ z in the sense of a subsequence. 
Furthermore, we may assume that un ⇀ u in E1 and vn ⇀ v in E2. As the argument in [17], one has

lim
n→∞

∫
RN

|un|α−2unϕ|vn|βdx =
∫
RN

|u|α−2uϕ|v|βdx, for any ϕ ∈ C∞
0 (RN )

and

lim
n→∞

∫
RN

|un|α|vn|β−2vnψdx =
∫
RN

|u|α|v|β−2vψ, for any ψ ∈ C∞
0 (RN ).

Using the Lebesgue theorem, by (FG2) one has

lim
n→∞

∫
RN

f(x)|un|q−2unϕdx =
∫
RN

f(x)|u|q−2uϕdx

and

lim
n→∞

∫
RN

g(x)|vn|q−2vnϕdx =
∫
RN

g(x)|v|q−2vϕdx.

Hence we have

0 = lim
n→∞

〈J ′
λ(zn), ζ〉 = 〈J ′

λ(z), ζ〉, for any ζ = (ϕ,ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ),

which yields that J ′
λ(z) = 0.

Now we show that zn → z in Eλ. In fact, let zn � zn − z with un � un − u and vn � vn − v. By (2.13)
and (FG2), we have

Jλ(zn) = Jλ(zn) − Jλ(z) + o(1) and J ′
λ(zn) = J ′

λ(zn) + o(1). (2.14)

On the other hand, by (FG2) we obtain

lim
n→∞

∫
RN

f(x)|un|qdx = lim
n→∞

∫
RN

g(x)|vn|qdx = 0. (2.15)

If z ≡ 0, Jλ(z) = 0; if z �= 0, Jλ(z) ≥ −M0 by Lemma 2.2. In a word, we always have Jλ(z) ≥ −M0 which 
together with (2.14)-(2.15) implies that
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D + M0 ≥ c− Jλ(z) = Jλ(zn) − 1
α + β

〈J ′
λ(zn), zn〉 + o(1)

= α + β − 2
2(α + β)

‖zn‖2
λ + o(1). (2.16)

Recalling (VW2), one has

∫
RN

|unvn|dx =
∫
Σc

|unvn|dx +
∫
Σ

|unvn|dx =
∫
Σc

|unvn|dx + o(1)

≤ 1
λc

∫
Σc

(
λV (x)|un|2

) 1
2
(
λW (x)|vn|2

) 1
2 dx + o(1) ≤ 1

2λc‖zn‖
2
λ + o(1). (2.17)

It is similar to (2.1)-(2.5) and using (2.16)-(2.17) we derive

∫
RN

|un|α|vn|βdx ≤
(

1
2λc

)(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖zn‖α+β
λ + o(1)

≤
(

1
2λc

)(1−μ)/p

S
−(2∗

s/2)
2μ/p

s

(
2(D + M0)(α + β)

α + β − 2

)(α+β−2)/2

‖zn‖2
λ + o(1)

≤ 1
2‖zn‖

2
λ + o(1),

(2.18)

whenever

λ ≥ Λ = Λ(D) � max
{

Λ0, 2p/(1−μ)
(

1
2c

)
S
−(2∗

s/2)
2μ/(1−μ)

s

(
2(D + M0)(α + β)

α + β − 2

) p(α+β−2)
2(1−μ)

}
.

Consequently, by (2.18) we have

o(1) = 〈J ′
λ(zn), zn〉 = ‖zn‖2

λ −
∫
RN

|un|α|vn|β + o(1) ≥ 1
2‖zn‖

2
λ + o(1),

which yields that zn → 0 in Eλ. The proof is complete. �
3. Proof of Theorems 1.1 and 1.2

In this section, we will prove Theorems 1.1 and 1.2. Using the Ekeland’s variational principle [14] and 
the argument in [41] (or see [20, Proposition 4.1] for example), we have the following result.

Lemma 3.1. Under the assumptions of Lemma 2.6, then for any λ > Λ0, Jλ(z) has two (PS) sequences 
{z−n } ⊂ N−

λ and {z+
n } ⊂ N+

λ at the levels m−
λ and m+

λ , respectively.

Proposition 3.2. If 1 < q < 2, α, β > 1 with α+ β < 2∗s, and assume (VW1) − (VW4) and (FG1) − (FG2). 
Then for each λ > Λ0 the functional Jλ(z) has a minimizer z+

λ ∈ N+
λ ⊂ Nλ and there hold

(i) Jλ(z+
λ ) = m+

λ = mλ < 0;
(ii) z+

λ is a nontrivial solution of (1.1).
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Proof. By Lemma 3.1, there exists {z+
n } = {(u+

n , v
+
n )} ⊂ N+

λ such that it is a (PS) sequence of Jλ at 
the level m+

λ . By Lemma 2.2, we know that {z+
n } is bounded in Eλ, passing to a subsequence if necessary, 

z+
n ⇀ z+

λ = (u+
λ , v

+
λ ) in Eλ.

We first claim that z+
λ �= 0. Arguing it indirectly and suppose that z+

λ ≡ 0, hence

lim
n→∞

If,g(z+
n ) = If,g(z+

λ ) = 0,

which implies that

0 = 〈J ′
λ(z+

n ), z+
n 〉 = ‖z+

n ‖2
λ − If,g(z+

n ) −
∫
RN

|u+
n |α|v+

n |βdx

= ‖z+
n ‖2

λ −
∫
RN

|u+
n |α|v+

n |βdx + o(1).

Therefore we have

Jλ(z+
n ) = 1

2‖z
+
n ‖2

λ − 1
q
If,g(z+

n ) − 1
α + β

∫
RN

|u+
n |α|v+

n |βdx

=
(

1
2 − 1

α + β

)
‖z+

n ‖2
λ + o(1),

which is a contradiction to limn→∞ Jλ(z+
n ) = mλ < 0 by Lemma 2.6. Hence z+

λ �= 0. By the property of 
weak convergence, it is easy to see that z+

λ ∈ N+
λ .

Now we show that z+
n → z+

λ in Eλ. Suppose the contrary, that is, ‖z+‖λ < lim infn→∞ ‖z+
n ‖λ, then

m+
λ ≤ Jλ(z+

λ ) = Jλ(z+
λ ) − 1

α + β
〈J ′

λ(z+
λ ), z+

λ 〉

=
(

1
2 − 1

α + β

)
‖z+

λ ‖2
λ −

(
1
q
− 1

α + β

)
If,g(z+

λ )

< lim inf
n→∞

Jλ(z+
n ) = m+

λ ,

a contradiction! Consequently, z+
n → z+

λ in Eλ and Jλ(z+
λ ) = m+

λ . In particular, z+
λ is a nontrivial solution 

of (1.1) by Lemma 2.3. The proof is complete. �
In view of Lemma 2.8, it is necessary to estimate m−

λ carefully. To do it, we choose two nonzero functions, 
ϕΩ1 and ψΩ2 , to satisfy ϕΩ1 ∈ C∞

0 (Ω1) and ψΩ2 ∈ C∞
0 (Ω2), where Ω1 and Ω2 are given by (VW4). Set 

e = (ϕΩ1 , ψΩ2) ∈ Eλ, then by (VW3) we have

Jλ(te) = t2

2

∫
RN

|(−Δ) s
2ϕΩ1 |2 + |(−Δ) s

2ψΩ2 |2dx− tq

q
If,g(e) −

tα+β

α + β

∫
RN

|ϕΩ1 |α|ψΩ2 |βdx.

For any λ ≥ Λ0, by Lemma 2.5 there exist positive constants t−0 and D0 independent of λ such that 
t−0 e ∈ N−

λ and

sup
t≥0

Jλ(te) = Jλ(t−0 e) = D0 > 0.

Therefore we have
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m−
λ ≤ D0 < +∞, for any λ ≥ Λ0. (3.1)

We now establish another solution of (1.1).

Proposition 3.3. If 1 < q < 2, α, β > 1 with α + β < 2∗s and assume (VW1) − (VW4) and (FG1) − (FG2), 
then for each λ ≥ Λ = Λ(D0) the functional Jλ(z) has a minimizer z−λ ∈ N−

λ ⊂ Nλ and there hold

(i) Jλ(z−λ ) = m−
λ > 0;

(ii) z−λ is a nontrivial solution of (1.1).

Proof. By Lemma 3.1, there exists {z−n } = {(u−
n , v

−
n )} ⊂ N−

λ such that it is a (PS) sequence of Jλ at 
the level m−

λ . By Lemma 2.2, we know that {z−n } is bounded in Eλ, passing to a subsequence if necessary, 
z−n ⇀ z−λ = (u−

λ , v
−
λ ) in Eλ. Recalling (3.1), we set

Λ = Λ(D0) � max
{

Λ0, 2p/(1−μ)
(

1
2c

)
S
−(2∗

s/2)
2μ/(1−μ)

s

(
2(D0 + M0)(α + β)

α + β − 2

) p(α+β−2)
2(1−μ)

}
,

up to a sequence if necessary, we obtain z−n → z−λ in Eλ by Lemma 2.8. Hence Jλ(z−λ ) = m−
λ > 0 by 

Lemma 2.6 and z−λ is a nontrivial solution of (1.1) by Lemma 2.3. �
We are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Propositions 3.2 and 3.3, the system (1.1) has two nontrivial solutions 
z±λ satisfying

Jλ(z+
λ ) = m+

λ < 0 < d0 ≤ Jλ(z−λ ) = m−
λ .

The remainder is to show z±λ are positive. Indeed, we set |z±λ | � (|u±
λ |, |v±λ |) then Jλ(z±λ ) = Jλ(|z±λ |) = m±

λ

and |z±λ | ∈ N±
λ . By Lemma 2.3, |z±λ | are solutions of (1.1) and hence we may assume that z±λ = |z±λ | are 

nonnegative. Moreover, if there exists x0 ∈ RN such that u±
λ (x0) = v±λ (x0) = 0, then (−Δ)sz±λ (x0) =(

(−Δ)su±
λ (x0), (−Δ)sv±λ (x0)

)
= (0, 0) and thus

(−Δ)sz±λ (x0) = −1
2CN (s)

∫
RN

z±λ (x0 + y) + z±λ (x0 − y) − 2z±λ (x0)
|y|N+2s dy,

which gives that

∫
RN

z±λ (x0 + y) + z±λ (x0 − y)
|y|N+2s dy = 0.

Therefore we obtain z±λ (x) ≡ (0, 0), a contradiction! Hence z±λ are positive. �
Next, we investigate the concentration result for the solutions obtained in Theorem 1.1 and give the proof 

of Theorem 1.2.

Proof of Theorem 1.2. For any sequence λn → +∞, let z±λn
= z±n = (u±

n , v
±
n ) be the critical points of Jλn

obtained in Theorem 1.1. In view of Lemma 2.6 and (3.1), we have
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D0 ≥ Jλn
(z±n ) − 1

α + β
〈J ′

λn
(z±n ), z±n 〉 =

(
1
2 − 1

α + β

)
‖z±n ‖2

λn
−

(
1
q
− 1

α + β

)
If,g(z±n )

≥
(

1
2 − 1

α + β

)
‖z±n ‖2

λn
−

(
1
q
− 1

α + β

)
(|f |∞ + |g|∞)|Σ|(2∗

s−q)/2∗
sS−q/2

s ‖z±n ‖qλn
,

which yields that ‖z±n ‖λn
are bounded. In particular, we have ‖z±n ‖ are bounded, passing to a subsequence 

if necessary, there exist z± = (u±, v±) ∈ E such that z±n ⇀ z± in E. For any ϕ ∈ C∞
0 (Ω1), then inserting 

(ϕ, 0) into (1.3) there holds
∫
RN

(−Δ) s
2u±

n (−Δ) s
2ϕdx =

∫
RN

f(x)|u±
n |q−2u±

nϕdx + α

α + β

∫
RN

|u±
n |α−2u±

nϕ|v±n |βdx,

which implies that
∫

Ω1∪Ω2

(−Δ) s
2u±(−Δ) s

2ϕdx =
∫

Ω1∪Ω2

f(x)|u±|q−2u±ϕdx + α

α + β

∫
Ω1∪Ω2

|u±|α−2u±ϕ|v±|βdx,

for any ϕ ∈ C∞
0 (Ω1). Similarly, for any ψ ∈ C∞

0 (Ω2),∫
Ω1∪Ω2

(−Δ) s
2 v±(−Δ) s

2ψdx =
∫

Ω1∪Ω2

g(x)|v±|q−2v±ψdx + β

α + β

∫
Ω1∪Ω2

|u±|α|v±|β−2v±ψdx.

We now show that u± ≡ 0 in Ωc
1. By u±

n → u± a.e. in RN one has

0 ≤
∫

RN\V −1(0)

V (x)|u±|2dx ≤ lim inf
n→∞

∫
RN

V (x)|u±
n |2dx ≤ 1

λn
‖z±n ‖2

λn
→ 0 as n → ∞,

which implies that u± = 0 a.e. in V −1(0). In view of (VW3), we know that u± ∈ Hs
0(Ω1). Similarly, we have 

v± ∈ Hs
0(Ω2). Thus z± = (u±, v±) are solutions of (1.5). We claim that

Claim 1: z±n → z± in E.
Denote κ±

n � u±
n −u± and ω±

n � v±n −v±, then τ±n � z±n −z± = (κ±
n , ω

±
n ). Since we have demonstrated that 

‖z±n ‖λn
are bounded, without loss of generality, we can assume there exist constants M± > 0 independent 

of n such that ‖z±n ‖λn
≤ M± < +∞. Consequently, we have ‖z±‖λn

≤ M± and then ‖τ±n ‖λn
≤ 2M±. In 

view of (VW2), ∫
RN

|κ±
nω

±
n |dx =

∫
Σc

|κ±
nω

±
n |dx +

∫
Σ

|κ±
nω

±
n |dx =

∫
Σc

|κ±
nω

±
n |dx + o(1)

≤ 1
λnc

∫
Σc

(
λnV (x)|κ±

n |2
) 1

2
(
λnW (x)|ω±

n |2
) 1

2 dx + o(1)

≤ 1
2λnc

‖τ±n ‖2
λn

+ o(1) ≤ 2(M±)2

λnc
+ o(1) = o(1).

Similar to (2.4), the above formula gives that

∫
RN

|κ±
nω

±
n |pdx ≤ S

−2∗
sμ/2

s ‖τ±n ‖2∗
sμ

λn

( ∫
RN

|κ±
nω

±
n |dx

)1−μ

= o(1).

As (2.5), we have
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∫
RN

|κ±
n |α|ω±

n |βdx ≤ S
−α+β−2

2
s ‖τ±n ‖α+β−2

λn

( ∫
RN

|κ±
nω

±
n |pdx

) 1
p

= o(1). (3.2)

Combining (2.13) and (3.2), there holds

lim
n→∞

∫
RN

|u±
n |α|v±n |βdx =

∫
RN

|u±|α|v±|βdx =
∫

Ω1∪Ω2

|u±|α|v±|βdx. (3.3)

Therefore by (3.3) we derive

‖z±‖2 ≤ lim
n→∞

‖z±n ‖2 ≤ lim
n→∞

‖z±n ‖2
λn

= lim
n→∞

(
If,g(z±n ) +

∫
RN

|u±
n |α|v±n |βdx

)

=
∫

Ω1∪Ω2

[
f(x)|u±|q + g(x)|v±|q

]
dx +

∫
Ω1∪Ω2

|u±|α|v±|βdx ≤ ‖z±‖2,

where we have used the fact that z± ∈ Hs
0(Ω1) ×Hs

0(Ω2) are solutions of (1.5) in the last inequality. Thus 
we complete the proof of Claim 1.

Claim 2: z− �= 0.
Arguing (2.3) for λ ≡ 1, and repeating the proving process of (2.5) we have

∫
RN

|u−
n |α|v−n |βdx ≤

(
1
2 max

{
S−1
s |Σ| 2sN ,

1
c

})(1−μ)/p

S
−(2∗

s/2)
2μ/p

s ‖z−n ‖α+β � C0‖z−n ‖α+β .

In view of (2.8), we obtain

(2 − q)‖z−n ‖2 ≤ (2 − q)‖z−n ‖2
λn

< (α + β − q)
∫
RN

|u−
n |α|v−n |βdx ≤ C0(α + β − q)‖z−n ‖α+β ,

which together with z−n → z− in E implies that z− �= 0. The proof of Claim 2 is complete.

• Θf ∩ Ω1 = ∅ and Θg ∩ Ω2 = ∅.

In view of (2.9), we have

‖z+‖2 = lim
n→∞

‖z+
n ‖2 ≤ lim

n→∞
‖z+

n ‖2
λn

≤ α + β − q

α + β − 2 lim
n→∞

If,g(z+
n ) = α + β − q

α + β − 2If,g(z
+)

= α + β − q

α + β − 2

(∫
Ω1

f(x)|u+|qdx +
∫
Ω2

g(x)|v+|qdx
)

≤ 0,

which yields that z+ ≡ 0.

• |Θf ∩ Ω1| > 0 and |Θg ∩ Ω2| > 0.

Choosing ϕΘf∩Ω1 ∈ C∞
0 (Θf ∩ Ω1) and ψΘg∩Ω2 ∈ C∞

0 (Θg ∩ Ω2) to be nontrivial, where Ω1, Ω2 and Θf , Θg

are given by (VW3) and (FG1). Set e = (ϕΘf∩Ω1 , ψΘf∩Ω2) ∈ E, then
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Jλn
(te) = t2

2

∫
RN

|(−Δ) s
2ϕΘf∩Ω1 |2 + |(−Δ) s

2ψΘg∩Ω2 |2 −
tα+β

α + β

∫
RN

|ϕΘf∩Ω1 |α|ψΘg∩Ω2 |βdx

− tq

q

( ∫
Θf∩Ω1

f(x)|ϕΘf∩Ω1 |qdx +
∫

Θg∩Ω2

g(x)|ϕΘg∩ψ2 |qdx
)
.

For any λn ≥ Λ0, by Lemma 2.5 there exist constants t+0 > 0 and �0 < 0 independent of λn such that 
t+0 e ∈ N+

λn
and

inf
0≤t≤t+0

Jλn
(te) = Jλn

(t+0 e) = �0 < 0,

which implies that Jλn
(z+

n ) = m+
λn

≤ �0 < 0. Set

J(z) = 1
2

∫
Ω1∪Ω2

|(−Δ) s
2u|2 + |(−Δ) s

2 v|2dx− 1
q
If,g|Ω1∪Ω2(z) −

1
α + β

∫
Ω1∪Ω2

|u|α|v|βdx,

where

If,g|Ω1∪Ω2(z) =
∫

Ω1∪Ω2

f(x)|u|q + g(x)|v|qdx.

Thus by z+ ∈ Hs
0(Ω1) ×Hs

0(Ω2),

J(z+) = 1
2‖z

+‖2 − 1
q
If,g(z+) − 1

α + β

∫
RN

|u+|α|v+|βdx ≤ lim
n→∞

Jλn
(z+

n ) ≤ �0 < 0,

and then z+ �= 0. The remainder is to show z+ �= z−. In fact,

0 < d0 ≤ Jλn
(z−n ) = Jλn

(z−n ) − 1
2 〈J

′
λn

(z−n ), z−n 〉

=
(

1
2 − 1

q

)
If,g(z−n ) +

(
1
2 − 1

α + β

) ∫
RN

|u−
n |α|v−n |βdx

=
(

1
2 − 1

q

)
If,g(z−) +

(
1
2 − 1

α + β

) ∫
RN

|u−|α|v−|βdx + o(1)

= J(z−) − 1
2 〈J

′(z−), z−〉 + o(1) = J(z−) + o(1),

which gives that J(z+) ≤ �0 < 0 < d0 ≤ J(z−). Therefore z+ �= z−. �
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