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1. Introduction

The present paper contains a continuation of our developments in [13], where we discuss properties 
of cocycle mappings admitting some kind of contractivity along every fiber from the topological point 
of view. This leads (under some weak assumptions) to the conclusion that the limit set of a pullback 
trajectory of any bounded set is a singleton uniquely determined for any fiber. A natural question arises: 
what happens when we have at least one fiber having such a property (we call it here weak pullback 
contractivity along a fiber, see Section 4 below, cf. also [24])? We prove that in this case we obtain a 
semiattractor for a set-valued semiflow of so-called state multifunctions. This set can be ‘produced’ from 
the union of limit sets along weakly contractive fibers. Semiattractors were first introduced by A. Lasota 
and J. Myjak (see [21–23]) in the context of iterated function systems, single multifunctions as well as 
supports of ergodic measures for some transition Markov operators acting on measures. It is remarkable 
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that semiattractors, called also semifractals, being unique closed minimal positively invariant sets, are 
natural generalization of global strict attractors of iterated function systems and fractal sets deeply studied 
during last three decades (see for example a survey paper [3]). During the last few years the present 
author developed new results on semiattractors and other minimal invariant closed sets in the context of 
general cocycle mappings and semiflows of lower semicontinuous multifunctions [9–12]. In particular, it 
was shown therein that such sets could be used in studying of the asymptotic behavior of random and 
nonautonomous dynamical systems, where cocycle mappings arise naturally (for the basic theory see, for 
example, monographs [1], [6] and [19]). Notice that the theory of such systems is still growing area of 
nonlinear dynamics (see among others some recent papers [2], [15] [25] and [26]). It is interesting that if 
there exists a unique probability measure attractive with respect to a family of associated Markov operators, 
then the semiattractor of a considered system always exists and contains the support of this measure (see 
[23], [10] and [14]).

As in our previous works we use topological (Kuratowski’s) limits instead of commonly used Hausdorff–
Pompeiu metric. This approach lets us to consider non-compact attracting sets. Semiattractors being closed 
sets are often even unbounded.

The paper is organized as follows. The second section contains some useful preliminary results on topo-
logical limits, lower semicontinuous multifunctions and semiattractors of set-valued semiflows. In Section 3
we bring together basic facts on cocycle mappings as well as iterated function systems. In Section 4 we 
introduce a notion of weak pullback contractivity along a fiber, we present some important facts on long 
time behavior of weak contractive trajectories and the main result (Theorem 4.6) on the existence and a 
form of semiattractors of such systems. There is an important and new corollary on the behavior of iterated 
function systems (see Remark 4.7 below): an IFS needs not to contain any contracting mapping, but only 
at least one weakly contracting word (fiber) to posses the semiattractor. The last section is devoted to fiber 
structure of semiattractors. In fact, this is the very first trial to look into an internal dynamics of semiattrac-
tors. We show that the family of fibers is positively invariant with respect to the cocycle mapping. We prove 
also that the semiattractor is equal to the closure of the union of its fibers. It is a generalization of known 
results on a structure of compact attractors of finite iterated function systems (see [18, Proposition 4.3.2], 
and also [3, Sect. 6]).

2. Preliminaries

Topological limits. Let (X, �) be a metric space. By Bo(x, ε) we denote the open ball with a center x and 
a radius ε, a symbol clA stays for the closure of A ⊂ X.

Let us recall some basic definitions and notions concerning nets of sets and topological (Kuratowski’s) 
limits (see [5, Ch. 2]). Let (Σ, ≤) be a directed set. Any mapping S : Σ � σ �→ Aσ ∈ 2X is called a 
net of subsets of X and denoted as S = (Aσ)σ∈Σ. We say that a set U ⊂ X intersects almost all (or 
eventually) sets Aσ if there is a σ0 ∈ Σ such that Aσ ∩ U 	= ∅, for every σ ≥ σ0, and we say that U
intersects infinitely many (or frequently) sets Aσ if for every σ0 ∈ Σ there is a σ ≥ σ0 such that Aσ ∩U 	= ∅
holds.

We define the lower limit (or interior limit) lim infσ Aσ and the upper limit (or exterior limit) lim supσ Aσ

as follows: x ∈ lim infσ Aσ if for every ε > 0 the ball Bo(x, ε) intersects almost all sets Aσ, and x ∈
lim supσ Aσ if for every ε > 0 the ball Bo(x, ε) intersects infinitely many sets Aσ. If both limits are equal 
we say that the net (Aσ)σ∈Σ is topologically convergent. We denote this common limit as limσ Aσ and call 
it a topological limit of this net.

One can see that lim infσ Aσ = lim infσ clAσ (the same is valid for the upper limit) and lim infσ Aσ, 
lim supσ Aσ are closed sets. Moreover, if A = cl A and Aσ ⊂ A for every σ ∈ Σ, then lim infσ Aσ ⊂ A and 
lim supσ Aσ ⊂ A.
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It is clear that the following inclusions hold
⋂
σ∈Σ

clAσ ⊂ lim inf
σ

Aσ ⊂ lim sup
σ

Aσ ⊂ cl
⋃
σ∈Σ

Aσ.

It can be also verified that the following lemma is true.

Lemma 2.1. Let (Aσ)σ∈Σ be a net of nonempty subsets of a metric space X. If it is increasing, i.e. Aσ1 ⊂ Aσ2

for every σ1 < σ2, then it is topologically convergent, moreover

lim
σ

Aσ = cl
⋃
σ∈Σ

Aσ.

Similarly, if it is decreasing, i.e. Aσ1 ⊂ Aσ2 for every σ1 > σ2, then it is topologically convergent, moreover

lim
σ

Aσ =
⋂
σ∈Σ

cl Aσ.

It is obvious that if a net (Aσ)σ∈Σ is topologically convergent to a nonempty set A, then

lim
σ

dist(Aσ, A) = 0.

Here dist(A, B) = supx∈A �(x, B).
Other properties of topological limits can be found in [5] and also, in the case of countable sequences, in 

[20].
Lower semicontinuous multifunctions. Assume that X and Y are nonempty sets. By a multifunction

F : X → P(Y ) we mean the mapping from X with values in the family P(Y ) of all nonempty subsets of Y . 
Given multifunction F : X → P(Y ) and subsets A ∈ P(X), B ∈ P(Y ) we define sets

F (A) :=
⋃
x∈A

F (x)

and

F−(B) := {x ∈ X : F (x) ∩B 	= ∅}.

If in addition Z is a nonempty set and F : X → P(Y ), G : Y → P(Z) are given multifunctions we define 
the composition G ◦ F of F and G as a multifunction G ◦ F : X → P(Z) given by G ◦ F (x) = G(F (x)).

In all that follows we mostly deal with lower semicontinuous multifunctions, so let now X and Y be 
topological spaces. A multifunction F : X → P(Y ) is said to be lower semicontinuous (we will write l.s.c.
for short) if for every open set V ⊂ Y the set F−(V ) is open in X.

It is known that the below equivalences hold (see, for example, [5, Proposition 2.5.12] and [23, Proposi-
tion 2.1]).

Proposition 2.2. Assume that X and Y are topological spaces. The following conditions are equivalent:

(i) a multifunction F : X → P(Y ) is l.s.c.;
(ii) F (cl B) ⊂ cl F (B) for every B ⊂ X;
(iii) if additionally X and Y are metric spaces, then for every sequence (xn)n∈N of elements of X and an 

x ∈ X the condition limn→∞ xn = x implies F (x) ⊂ lim infn F (xn).
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Set-valued semiflows and their semiattractors. Let T be a non-trivial subgroup of additive group (R, +)
of all reals and let T+ := T ∩ (0, ∞) and T+

0 := T ∩ [0, ∞). We will consider the sets T, T+ and T+
0 as 

directed sets with natural order induced from the real line. These sets can be interpreted as sets of all 
possible ‘times’. Through the whole paper we do not assume any regularity of considered systems with 
respect to ‘time coefficient’, so we present a unified approach to all types of ‘times’ (‘discrete’, ‘continuous’ 
or ‘anything between’).

Let again (X, �) be a metric space. A family {Ft : X → P(X) : t ∈ T
+} is called a set-valued semiflow

or a multivalued semidynamical system (MSDS for short) if the following inclusion holds

Fs+t(x) ⊂ Ft ◦ Fs(x) for s, t ∈ T
+ and x ∈ X.

If the equality (the translation equation) holds instead of the inclusion above, i.e.

Fs+t(x) = Ft ◦ Fs(x) for s, t ∈ T
+ and x ∈ X,

a MSDS is called strict. Usually in the definition of a MSDS the standard initial condition

F0(x) = {x} for x ∈ X

is also added, so any MSDS can be extended on T+
0 . But from some point of view it is reasonable to consider 

semiflows without that initial condition.
Given a MSDS we define a set

C :=
⋂
x∈X

lim inf
t

Ft(x).

If C is a nonempty set it is called the semiattractor of the MSDS. Obviously, a semiattractor is a closed set. 
It is also unique, so we are right saying the semiattractor.

Let us consider the following condition:

(H) the MSDS {Ft : X → P(X) : t ∈ T
+} is strict and the multifunction Ft is l.s.c. for every t ∈ T

+.

In [11, Proposition 5.6 and Theorem 5.7] we proved what follows.

Proposition 2.3. Assume that a MSDS {Ft : X → P(X) : t ∈ T
+} satisfies condition (H). If it admits the 

semiattractor C, then the following conditions hold:

(i) if a non-void set A is such that Ft(A) ⊂ A for every t ∈ T
+, then C ⊂ A;

(ii) cl Ft(C) = C;
(iii) limt Ft(A) = C for every non-void A ⊂ C, in particular limt Ft(x) = C for every x ∈ C.

Sets satisfying the condition

Ft(A) ⊂ A for t ∈ T
+ (2.1)

are said to be positively invariant (with respect to {Ft : t ∈ T
+}). In particular, Proposition 2.3 says that 

the semiattractor C is a unique minimal closed set positively invariant with respect to the MSDS (cf. [12]).



1308 G. Guzik / J. Math. Anal. Appl. 475 (2019) 1304–1316
3. Cocycles and state multifunctions

We are going to define a cocycle mapping with some base map, fiber maps, and also an induced skew 
product semiflow. Let Ω be a nonempty set and (X, �) be an arbitrary metric space. Usually Ω is called the 
base space and X the fiber space or the phase space. Let θ = {θt : Ω → Ω : t ∈ T} be a group of bijective 
transformations, i.e.

θs+t = θt ◦ θs for s, t ∈ T and θ0 = idΩ.

The group θ is called the base flow. Consider the mapping ϕ : T
+ × Ω → XX satisfying the following 

equation

ϕ(s + t, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for s, t ∈ T
+ and ω ∈ Ω. (3.1)

Through the paper we will assume that every function ϕ(t, ω) : X → X is continuous. This assumption will 
not be repeated. A pair (θ, ϕ) is called a cocycle (over θ).

Observe that a cocycle (θ, ϕ) induces a skew product semigroup of self-mappings of Ω ×X given by

Θt(ω, x) = (θtω, ϕ(t, ω)(x)) for t ∈ T
+, ω ∈ Ω and x ∈ X,

i.e. for every s, t ∈ T
+,

Θs+t = Θt ◦ Θs.

Given a cocycle (θ, ϕ) we define the family of state multifunctions Ft : X → P(X), t ∈ T
+, by

Ft(x) := {ϕ(t, ω)(x) : ω ∈ Ω}, (3.2)

or equivalently [10, Remark 4.2]

Ft(x) := {ϕ(t, θ−tω)(x) : ω ∈ Ω} (3.3)

for every x ∈ X. Since all functions ϕ(t, ω), t ∈ T
+, ω ∈ Ω, are continuous, the state multifunction Ft is 

l.s.c. for every t ∈ T
+. It can be verified that state multifunctions form a semiflow which is not necessarily 

strict (see [11, Example 5.2]).
Suppose that A ⊂ X is such that

ϕ(t, ω)(A) ⊂ A for t ∈ T
+ and ω ∈ Ω. (3.4)

Observe that condition (3.4) implies the positive invariance (2.1) of A with respect to the semiflow {Ft :
t ∈ T

+} of state multifunctions.

Lemma 3.1. Assume that the cocycle (θ, ϕ) admits a nonempty set A ⊂ X satisfying condition (3.4). Then 
for every ω ∈ Ω the net (ϕ(t, θ−tω)(A))t∈T+ is decreasing, so it is topologically convergent and

lim
t

ϕ(t, θ−tω)(A) =
⋂

t∈T+

cl ϕ(t, θ−tω)(A).
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Proof. Indeed, if t1 < t2 then there is τ ∈ T
+ such that t2 = t1 + τ and hence, using condition (3.4) and 

the cocycle equation (3.1), we get

ϕ(t2, θ−t2ω)(A) = ϕ(t1 + τ, θ−(t1+τ)ω)(A)

= ϕ(t1, θ−t1ω) ◦ ϕ(τ, θ−(t1+τ)ω)(A)

⊂ ϕ(t1, θ−t1ω)(A).

Therefore the assertion is a straightforward consequence of Lemma 2.1. �
Given a cocycle (θ, ϕ) for ω ∈ Ω and a subset D of X we define, in the standard way, the following limit 

set

L(ω,D) :=
⋂

t∈T+

cl
( ⋃
s≥t

ϕ(s, θ−sω)(D)
)

= lim sup
t

ϕ(t, θ−tω)(D).

Finally define a family {Aω : ω ∈ Ω} with

Aω := cl
⋃
D

L(ω,D) for ω ∈ Ω, (3.5)

where the sum on the right-hand side is taken over all bounded subsets D of X.
We say that a cocycle (θ, ϕ) has the semiattractor C if it is the semiattractor of the semiflow {Ft : t ∈ T

+}
of state multifunctions.

Example 3.2. One of the most important examples of systems which can be represented as cocycles are 
iterated function systems (IFSs, for short; see [9, Example 3.1], [13, Section 6], and also [19, Example 2.10]). 
Namely, consider an arbitrary nonempty set Σ and a family of continuous mappings {Sσ : X → X : σ ∈ Σ}. 
Such a family is called an iterated function system. Let now Ω = ΣN be the set of all sequences on Σ and 
θ : Ω → Ω be a left shift operator, i.e. for ω = (σ1, σ2, ...), (θω)(n) = ω(n + 1), where ω(k) denotes the k-th 
term of the sequence ω. If now for ω ∈ Ω,

ϕ(1, ω) := Sσ1 ,

and for every n ≥ 2,

ϕ(n, ω) := Sσn
◦ ... ◦ Sσ1 ,

the pair (θ, ϕ) is a discrete cocycle (over the shift θ).
To obtain so-called inverse iterations or inverse process considered by many authors (see, for example [8], 

[17] and the references therein) let us extend the symbol space in the following way: as Ω̄ consider a set of 
all two-sided and symmetric sequences ω̄ indexed by Z \ {0}, namely ω̄(n) = ω̄(−n) = σn for n ∈ N. Then 
extending naturally on Ω̄ the left shift operator we obtain

ϕ(n, θ−nω̄) = Sσ1 ◦ ... ◦ Sσn
for n ∈ N.

Another effective way of introducing an inverse process is proposed in [17, Remark 1. (iii)].
Consider an IFS {Sσ(x) : X → X : σ ∈ Σ} and the induced cocycle (θ, ϕ) as above. Denote by F the 

Barnsley–Hutchinson multifunction given by F (x) = {Sσ(x) : σ ∈ Σ}. Denote moreover by Fn the n-th 
iterate of F . One can see that iterates of the Barnsley–Hutchinson multifunction form a strict MSDS of 
l.s.c. multifunctions, i.e. Fn = Fn for n ∈ N in this case.
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4. Weak contractivity

Let (θ, ϕ) be a cocycle and let ω ∈ Ω. We say that the cocycle is weakly pullback contractive along the 
fiber ω if for every nonempty bounded subset D of X and every ε > 0 there is a t0 = t0(ω, ε, D) ∈ T

+ such 
that

diam(ϕ(t, θ−tω)(D)) < ε (4.1)

for every t ≥ t0 or, equivalently, if for every nonempty bounded set D ⊂ X

diam(ϕ(t, θ−tω)(D)) → 0 as t → ∞. (4.2)

The set of all ω ∈ Ω such that (4.2) is satisfied for we denote as ΩT . If ΩT 	= ∅, we denote

AT = cl
⋃

ω∈ΩT

Aω (4.3)

and we refer this set as a target set.
If ΩT = Ω then the cocycle (θ, ϕ) is said to be weakly pullback contractive on fibers. This condition was 

extensively studied in our previous paper [13].
The proof of the next result is the same as that of [13, Proposition 4.1], but we present it for the 

convenience of the reader.

Proposition 4.1. Assume that the cocycle (θ, ϕ) is such that ΩT 	= ∅. Then for every nonempty and bounded 
subsets A, B of X

lim inf
t

ϕ(t, θ−tω)(A) = lim inf
t

ϕ(t, θ−tω)(B) (4.4)

and

lim sup
t

ϕ(t, θ−tω)(A) = lim sup
t

ϕ(t, θ−tω)(B) (4.5)

for every ω ∈ ΩT .

Proof. Let A, B ⊂ X be nonempty and bounded and let ω ∈ ΩT . Owing to the symmetry of the condition 
(4.4) and (4.5) it is sufficient to show that

lim inf
t

ϕ(t, θ−tω)(A) ⊂ lim inf
t

ϕ(t, θ−tω)(B)

and

lim sup
t

ϕ(t, θ−tω)(A) ⊂ lim sup
t

ϕ(t, θ−tω)(B).

We prove the first inclusion. The proof of the second one is similar.
Fix u ∈ lim inft ϕ(t, θ−tω)(A) and ε > 0. By the definition of the lower limit, there exists s0 ∈ T

+ such 
that for every t ≥ s0,

ϕ(t, θ−tω)(A) ∩Bo(u, ε/2) 	= ∅. (4.6)
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Let now t0 = t0(ε/2, A ∪B) be a number from T+ corresponding to the sum A ∪B and to ε/2 according to 
the condition (4.1). Put τ0 := max{s0, t0} and fix t ≥ τ0. By (4.6) there is a point w ∈ ϕ(t, θ−tω)(A) such 
that �(w, u) < ε/2. Therefore there is x ∈ A such that

w = ϕ(t, θ−tω)(x).

Take an arbitrary y ∈ B and set

v = ϕ(t, θ−tω)(y).

Since x, y ∈ A ∪B and t ≥ τ0 ≥ t0 the condition (4.1) implies that �(w, v) < ε/2. Consequently, �(u, v) < ε. 
Since v ∈ ϕ(t, θ−tω)(B), it follows that

ϕ(t, θ−tω)(B) ∩Bo(u, ε/2) 	= ∅.

It holds for every t ≥ τ0, therefore from the fact that ε > 0 was arbitrary we infer that u ∈
lim inft ϕ(t, θ−tω)(B). �

Proposition 4.1 implies immediately the corollary.

Corollary 4.2. If the cocycle (θ, ϕ) is such that ΩT 	= ∅, then

Aω = lim sup
t

ϕ(t, θ−tω)(D) for ω ∈ ΩT

for every nonempty bounded subset D of X, where Aω is defined by (3.5).

The next result shows that under some quite weak assumptions sets Aω for ω ∈ ΩT are singletons.

Proposition 4.3. Let (X, �) be a complete metric space. Assume that the cocycle (θ, ϕ) is such that ΩT 	= ∅. 
If it admits a nonempty bounded set A ⊂ X satisfying condition (3.4), then for every ω ∈ ΩT there is a 
unique point xω ∈ X such that Aω = {xω}. Moreover,

Aω = lim
t

ϕ(t, θ−tω)(D) for ω ∈ ΩT (4.7)

for every nonempty bounded subset D of X. In particular, the target set AT given by (4.3) is nonempty.

Proof. Putting D = A we conclude that the assertion is a consequence of Proposition 4.1, Corollary 4.2, 
Lemma 3.1 and Cantor’s characterization of complete metric spaces. The last statement also follows from 
Proposition 4.1. �
Remark 4.4. It is clear that if X is compact (so it is complete), then it is enough to put A = X in 
Proposition 4.3.

For any singleton set the formula (4.7) gives us immediately the convergence of pullback trajectories.

Corollary 4.5. Under assumptions of Proposition 4.3 for every x ∈ X the pullback trajectory
(ϕ(t, θ−tω)(x))t∈T+ along any fiber ω ∈ ΩT is convergent. More precisely, for every x ∈ X and ω ∈ ΩT we 
have

lim
t→∞

ϕ(t, θ−tω)(x) = xω.
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Now we are in position to formulate the central result of the paper.

Theorem 4.6. Let (X, �) be a complete metric space. Assume that: the cocycle (θ, ϕ) is such that ΩT 	= ∅, 
there exists a nonempty bounded set A ⊂ X satisfying condition (3.4) and the semiflow {Ft : t ∈ T

+} of 
state multifunctions is strict. Then (θ, ϕ) admits the semiattractor C, moreover

C = lim
t

Ft(AT ) = cl
⋃

t∈T+

Ft(AT ). (4.8)

In this case C is a bounded set.

Proof. Let x ∈ X. Taking into account Proposition 4.3, Corollary 4.2 and Proposition 4.1 for D = {x} and 
ω ∈ ΩT we infer that

{xω} = Aω = lim inf
t

ϕ(t, θ−tω)(A) = lim inf
t

ϕ(t, θ−tω)(x) ⊂ lim inf
t

Ft(x).

Since x is arbitrary, this implies that C 	= ∅. Moreover, by the closedness of C we get

AT ⊂ C. (4.9)

By assumptions, the MSDS {Ft : t ∈ T
+} of state multifunctions satisfies condition (H), so using (iii) of 

Proposition 2.3 we obtain from (4.9) that

C = lim
t

Ft(AT ).

Finally, by positive invariance of C ((ii) of Proposition 2.3) and inclusion (4.9) we have

Ft(AT ) ⊂ Ft(C) ⊂ C

for every t ∈ T
+ and, consequently,

cl
⋃

t∈T+

Ft(AT ) ⊂ C.

On the other hand, by properties of topological limits,

C = lim
t

Ft(AT ) ⊂ cl
⋃

t∈T+

Ft(AT ).

Since A is assumed to be a bounded set, using (i) of Proposition 2.3, we infer that C is also bounded. This 
completes the proof. �
Remark 4.7. (i) In fact, one can observe that by (ii) of Proposition 2.3 we can use any Aω for ω ∈ ΩT

instead of the whole target set AT in the formula (4.8).
(ii) Theorem 4.6 says that the existence of bounded positively invariant subset and at least one weakly 

pullback contractive fiber guarantee the existence of the semiattractor. So we obtain a new criterion on the 
existence of the semiattractor for general cocycles. Notice, that in our previously obtained parallel criterion 
[11, Corollary 5.11] we use selections having globally attractive fixed points.

(iii) One can observe that in particular case of iterated function systems the criterion above gives us a 
new power. To possess a semiattractor an IFS needs not to contain a contractive mapping in any sense, 
but only at least one contractive word (fiber) constructed by a composition of some (even infinitely many) 
transformations.
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5. Fibers of semiattractors – the internal dynamics

Let (θ, ϕ) be a cocycle and let C be its semiattractor. In this section we consider the fibers of semiattractor. 
Namely, for every ω ∈ Ω define the set

Cω :=
⋂

t∈T+

cl ϕ(t, θ−tω)(C) = lim
t

ϕ(t, θ−tω)(C) = L(ω,C).

Due to invariance properties of semiattractors and Lemma 3.1 the sets Cω are well defined. We refer the 
sets Cω as fibers of the semiattractor C.

Theorem 5.1. If C is the semiattractor of a cocycle (θ, ϕ), then

C = cl
⋃
ω∈Ω

Cω.

Proof. It is easy to observe that

cl
⋃
ω∈Ω

Cω ⊂ C.

To prove the opposite inclusion assume that y ∈ C. Let ε > 0. Since y ∈ lim inft Ft(y), therefore there is 
t0 ∈ T

+ such that

Bo(y, ε/2) ∩ Ft(x) 	= ∅

for every t ≥ t0. Given arbitrary t ≥ t0, by the definition of Ft, we can find ω0 ∈ Ω such that

�(y, ϕ(t, θ−tω0)(y)) < ε/2. (5.1)

By the definition of Cω0 and properties of topological limits to ε/4 there exists s0 ∈ T
+ such that

dist(ϕ(t, θ−tω0)(C), Cω0) < ε/4

for t ≥ s0, and, since y ∈ C,

�(ϕ(t, θ−tω0)(y), Cω0) < ε/4

for every t ≥ s0. Consequently, for an arbitrary t ≥ s0 there is z ∈ Cω0 such that

�(ϕ(t, θ−tω0)(y), z) < ε/2. (5.2)

Now if t ≥ max{t0, s0}, conditions (5.1) and (5.2) give us

�(y, z) < ε.

It means that for every y ∈ C there is a point z ∈
⋃

ω∈Ω Cω arbitrarily close to y, so

y ∈ cl
⋃
ω∈Ω

Cω.

This ends the proof of the desired equality. �
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Proposition 5.2. If (θ, ϕ) is a cocycle with semiattractor C, then the family {Cω : ω ∈ Ω} of its fibers is 
positively invariant with respect to the cocycle mapping ϕ, i.e. for every T ∈ T

+ and ω ∈ Ω the following 
inclusion holds

ϕ(T, ω)(Cω) ⊂ CθTω.

Proof. Fix T ∈ T
+ and ω ∈ Ω. By the continuity of ϕ(T, ω) and the cocycle property, since ϕ(T, θ−tω)(C) ⊂

C for every t ∈ T
+, we get

ϕ(T, ω)(Cω) = ϕ(T, ω)
( ⋂

t∈T+

cl ϕ(t, θ−tω)(C)
)
⊂

⋂
t∈T+

cl ϕ(T, ω) ◦ ϕ(t, θ−tω)(C)

=
⋂

t∈T+

cl ϕ(T + t, θ−tω)(C) =
⋂

t∈T+

cl ϕ(t, θT (θ−tω)) ◦ ϕ(T, θ−tω)(C)

⊂
⋂

t∈T+

cl ϕ(t, θT (θ−tω))(C) = CθTω. �

Remark 5.3. The results above show that the structure and properties of semiattractors are similar as 
considered in the theory of random dynamical systems global point attractors (see [7]). Nevertheless, semi-
attractors not necessarily attract all singletons but only their internal points. In our recent paper [14] we 
showed that the semiattractor is always contained in the closure of the union of fibers of any point attractor.

Now we are going to generalize some definitions proposed in [4, Section 1.4.2] in the context of iterated 
function systems on compact spaces and minimal compact invariant sets.

If C is the semiattractor of a cocycle (θ, ϕ), then it is called point-fibred if for every ω ∈ Ω the fiber Cω

is a singleton.
C is called strongly-fibred if for every open set U ⊂ X such that U ∩ C 	= ∅ there is ω ∈ Ω such that 

Cω ⊂ U .
It is called well-fibred if for every open set U ⊂ X such that U ∩ C 	= ∅ and every nonempty bounded 

subset B of C there is ω ∈ Ω such that L(ω, B) ⊂ U .
The following result is obvious.

Proposition 5.4. Let C be the semiattractor of a cocycle (θ, ϕ). Then

(i) if C is point-fibred, then it is strongly-fibred,
(ii) if C is strongly-fibred, then it is well-fibred.

Remark 5.5. As we see in some examples below, in general the opposite implications do not hold.

Theorem 4.6 implies the following corollary extending [13, Theorem 6.3].

Corollary 5.6. Let (X, �) be a complete metric space. Assume that the cocycle (θ, ϕ) is such that ΩT = Ω, 
there exists a nonempty bounded set A ⊂ X satisfying condition (3.4) and the semiflow {Ft : t ∈ T

+} of 
state multifunctions is strict. Then (θ, ϕ) admits the semiattractor C which is bounded and point-fibred.

Proof. In fact, since C exists and is bounded, we obtain, by Proposition 4.3,

Cω = Aω = {xω}

for every ω ∈ Ω. �
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The following example shows that in order to obtain a point-fibred semiattractor the condition ΩT = Ω
is a sufficient only.

Example 5.7. Consider an IFS consisting of four transformations of the plane R2 into itself given by

S1(x, y) =
(1

3x,
1
2y

)
, S2(x, y) =

(1
3x + 2

3 ,
1
2y

)
,

S3(x, y) =
(1

3x, y
)
, S4(x, y) =

(1
3x + 2

3 , y
)
.

Since S1 is a strict contraction having the unique fixed point (0, 0), using formula (4.8), by (i) of Remark 4.7
we can get the semiattractor of considered IFS as

C = cl
⋃
n∈N

Fn
(
(0, 0)

)
= C × {0},

where C is the standard Cantor set on an interval [0, 1]. This semiattractor is point-fibred, but for any R > 0
we have diam Sn

3
(
Bo((0, 0), R)

)
= 2R, n ∈ N, so ΩT 	= Ω.

The semiattractor of the system satisfying assumptions of Theorem 4.6 need not to be point-fibred.

Example 5.8. Now take into a consideration an IFS consisting of transformations of the plane R2 into itself 
given by

Sij(x, y) =
(1

3x + i

3 ,
1
3y + j

3

)
for (i, j) ∈ {0, 1, 2}2 \ {(1, 1)}.

It is well known that this system has the attractor (fractal in the sense of Hutchinson, see [16]) which is the 
Sierpinski’s carpet contained in the square [0, 1] × [0, 1]. Let us add to this system the rotation around the 
origin with the angle π/2. It is given by S11(x, y) = (−y, x). One can easy observe that such a system has 
the semiattractor C consisting of four copies of Sierpinski’s carpet filling the square Δ = [−1, 1] × [−1, 1]. It 
satisfies assumptions of Theorem 4.6 with A = Δ and ΩT 	= Ω. Observe further that for ω = (..., 11, 11, 11, ...)
we have

Cω =
⋂
n∈N

Sn
11(C) = C,

so C is not point-fibred. On the other hand it is not hard to see that for every open set U such that U∩C 	= ∅
there is Cω (being in fact a singleton) with some ω ∈ Ω such that Cω ⊂ U , so C is strongly-fibred.

In [4, Example 3.12] it is shown that the system consisting of two diffeomorphism of the circle: the first 
one being a rotation with irrational rotation number and the second one having attracting fixed point p
with derivative in this point equal to one, has the attractor (so the semiattractor, see [23] and [11]) which 
is well fibred, but it is not strongly-fibred.
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