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We analyze a continuous time stochastic SIS epidemiological model, describing the 
transmission dynamics of infectious diseases where infected individuals can become 
susceptible again after recovery. The infectivity period of infected individuals can be 
influenced dynamically by a decision maker, with the aim to minimize the expected 
aggregated economic costs due to illness and drug treatment. This stochastic control 
problem is investigated under two alternative assumptions about the information 
available. If a complete and exact measurement of the size of the infected population 
is available at any time, then the optimal control is sought in a state-feedback 
form and the related Hamilton-Jacobi-Bellman (HJB) equation can be used. If no 
state measurement is available, then the optimal control is sought in an open-loop 
form and the problem can be reformulated as an optimal control problem for the 
Kolmogorov forward equation. In both cases, deriving optimality conditions requires 
non-standard arguments due to the degeneracy of the involved HJB and Kolmogorov 
equations. Based on the obtained theoretical results, the role of the information 
pattern is numerically investigated.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

SIS-models form a class of simple prototypical epidemiological models. They assume that individuals can 
be infected multiple times throughout their lives with no immunity after each infection. Typical examples 
mentioned in literature are rota-viruses, some sexually transmitted as well as bacterial infections, see e.g. 
[17,5].
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In the following we denote the number of infected individuals1 at time t ≥ 0 by x(t) and the number 
of susceptible individuals by y(t). We will use capital letters, when referring to stochastic entities. These 
notations differ from the usual notations in epidemiology (I(t) for infected and S(t) for susceptible) but are 
more in line with the conventions in stochastic calculus. Throughout this paper we restrict the discussion 
to the simplest case of a stationary population. Normalizing the population size to one,

x(t) + y(t) = 1,

means that x(t) and y(t) represent the fractions of infected and susceptible individuals. In this setup it 
suffices to regard only the number of infected, replacing y(t) by 1 − x(t) wherever it appears.

The basic SIS model involves two parameters: the disease transmission coefficient (or strength of infection) 
β > 0, leading to a force of infection (or incidence rate) of βx(t), and the recovery rate γ > 0. The force 
of infection models the rate at which susceptible individuals become infected, while the recovery rate is the 
rate at which infected individuals become susceptible again. One can interpret the reciprocal 1/γ as the 
average duration of infection.

Within this setup, the deterministic SIS model is described by the ordinary differential equation

dx(t)
dt = βx(t) (1 − x(t)) − γx(t), (1)

x(0) = x0 ∈ [0, 1],

which has an explicit solution whose properties are well known, see e.g. [27]. In particular the equation can 
be solved explicitly. Moreover, if the basic reproduction number R0 = β

γ is larger than 1, then the number 
of infected converges to a positive stable equilibrium (the disease becomes endemic), while otherwise it 
converges to zero (the disease dies out).

While many different approaches for stochastic epidemiological models exist in literature, see e.g. [11]
or Chapter 6 of [20], in the present paper we analyze a diffusion-type version of the above SIS model: the 
deterministic equation (1) is replaced by a stochastic (Ito) differential equation (SDE)

dX(t) = [β (1 −X(t))X(t) − γX(t)] dt + σ [(1 −X(t))X(t)] dB(t), (2)

X(0) = x0 ∈ (0, 1).

Here σ is a positive real number, B(·) represents a standard Brownian motion in R and the solution X(·)
of (2) is a one dimensional Ito diffusion process (in contrast to x(·), which is a deterministic function).

Such a formulation can be obtained, if one e.g. assumes that the parameter β in (1) is not constant and 
deterministically known but random, when β dt is replaced with the specification

dβ̂(t) = β dt + σ dB(t).

In this way it is possible to model random fluctuations of the parameter around the value β. Here the 
volatility parameter σ > 0 models the uncertainty of the true parameter process β̂.

Keeling and Rohani [19] call the specification of noise used in (2) external parameter noise (in contrast to 
constant noise, scaled additive noise and heterogeneous parameter noise). While in other noise specifications 
the number of infected is directly subject to random fluctuations, here the parameters of an originally 
deterministic epidemiological model are disturbed by random noise due to external unpredictable forces. 
See also [1,2,10] for possible underlying mechanisms.

1 Strictly speaking, “number of susceptible/infected individuals” means “size of the susceptible/infected sub-population”, which 
is a real number.
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So far, the literature on stochastic epidemiological SDE-models mainly focuses on descriptive models, 
where the parameters – in our case β, σ and in particular γ are static and fixed. The simple stochastic SIS 
model (2) e.g., has been analyzed in [16], see also [12,6] and [23]. The diffusion term of (2) may become zero, 
which complicates the analysis considerably. While it is not possible to solve this equation analytically, the 
four cited papers analyze the existence of stationary distributions. [23] shows their existence if the modified 
basic reproduction number R0 − 1

2
σ2

γ is larger than one and also gives an explicit representation of the 
stationary density.

In the present paper we focus on finite time horizons and make a step from descriptive to optimization 
models in the stochastic context. To this end, we assume that the “natural” development of the disease 
can be influenced by a decision maker. Various specifications are possible, but here we focus on the case 
where the decision maker is able to control the recovery rate γ that reflects the duration of the infectivity 
period of the infected individual, leading to faster recovery. The recovery rate can be controlled dynamically 
over time, which leads to a stochastic optimal control problem. Such a control can be implemented e.g. 
by increasing the treatment capacity or the efficiency of medication, dependent on time or the observed 
circumstances.

Using (deterministic) optimal control theory in epidemiological models dates from the early days of this 
theory, see e.g. [26]. The literature is vast and varies from simple compartmental models, as the SIS one, 
to models involving distributed dynamics (heterogeneity in space, age, contact rates, etc.). We mention [4], 
where treatment and prevention (vaccination) are used as controls in a SIR model, [7] and [8] where control 
theory with treatment and vaccination is applied to a SIRS model in a network. An extended SIR-type 
model with the same controls is investigated in the recent paper [9], which also contains more detailed 
bibliography on the mathematical tools involved. Besides optimal control theory, also alternative approaches 
to optimization and control of deterministic epidemiological models have been proposed in literature, see 
e.g. the broad survey [28].

There is also some work on (static) optimization for stochastic epidemiological models in literature. 
Several papers analyze vaccination in a stochastic environment, see e.g. [3]. [23] analyzes cost optimal long 
term treatment for two kinds of stochastic SIS models, aiming at their stationary distribution. The recent 
work [24] numerically compares several (fixed) control strategies for SIS processes on networks. However, 
optimality of stochastic control problems for epidemiological models seems to be a largely neglected topic so 
far. As we will see later, one reason may be that for epidemiological SDE-models usually there are implied 
boundaries due to the fact that the diffusion term is not bounded away from zero. This issue requires 
separate analysis depending on the concrete model specification, and does not allow to use the “usual” 
standard results on optimal control.

From a mathematical point of view, the main contribution of this work consists in dealing with this kind 
of degeneracy in the analysis of the underlying partial differential equations. We do this for a specification 
with fully observable states and for a specification, where it is not possible to observe the states over the 
planning horizon.

In order to clarify the issue we first consider the deterministic SIS model (1). Over the whole paper we 
will use the notations

a(x, u) = βx (1 − x) − (γ + u)x, b(x) = σ2x2 (1 − x)2 (3)

(the notation b will come into play a bit later).
As before, we assume that γ is the recovery rate without any action by the decision maker, while γ+u(t)

is the recovery rate at time t if a control u(t) ≥ 0 is applied at t. Thus the control variable u(t) can be 
interpreted as treatment, accelerating recovery.

Then, building on the model (1) it is reasonable to consider the following standard optimal control 
problem, further referred to as the Deterministic Problem (DP):



668 P. Grandits et al. / J. Math. Anal. Appl. 476 (2019) 665–695
min
u

T̂

0

e−rt [F (x(t), u(t))] dt + c3x(T ),

subject to

dx(t)
dt = a(x(t), u(t)), x(0) = x0 ∈ [0, 1], (4)

u(t) ≥ 0,

where [0, T ] is the given planning horizon, r ≥ 0 is an interest rate (which can be taken equal to zero). 
Moreover, F (x, u) is some cost function, depending on the number of infected and on the control and c3x(T )
is the expected accumulated future cost of the individuals that remain infected at T (can be taken equal to 
zero if the disease is expected to nearly die out till time T ).

We mention that DP is formulated as an open-loop problem (the control function u is sought as a function 
of time only), but even if a feedback control is allowed, in absence of disturbances it would generate the 
same optimal trajectory x(t) as the optimal open-loop control.

Using a cost function F , we assume that the control is costly, especially in case it is decided that the 
administration of the drug has to take place widely at the population level during an epidemic. Over the 
whole paper we give results for one specific cost model, that can be motivated as follows. We assume that all 
infected individuals are equally treated, that the cost is proportional to the number of treated individuals, 
x(t), and the cost per a treated individual depends quadratically on the treatment effort u(t), which means 
that it is marginally increasing in u(t). Therefore, we specify the overall control costs per unit time as 
c2x(t)u(t)2, where c2 is a positive constant. In addition, taking an economic point of view, we assume that 
any infected individual creates for the society cost c1 > 0 per unit of time, due to lost working hours and 
standard medical care, not including the treatment u. This leads to the cost function

F (x, u) = c1x + c2xu
2. (5)

For one of the stochastic counterparts of the DP (the case of exact measurement and feedback control, see 
the two model cases described below) exclusively this cost specification will be used. Any alternative cost 
specification would afford a compatible verification theorem. In the open-loop formulation of the stochastic 
problem, a more general form of the cost function F is considered. The more general results are used to 
derive results for the original specification (5) for completeness.

Now we consider stochastic counterparts of DP. Since the Ito equation (2) generates a stochastic process, 
rather than a single trajectory, the information pattern becomes of crucial importance. Note that throughout 
this paper we will write E [·] for the expectation and – if X(t) denotes a stochastic process – Et,x [·] or even 
Et [·] for the conditional expectation given X(t) = x. We consider the following two “extreme” cases.

1. Full information case (Section 2). Here we assume that at any time t the exact current number of 
infected individuals becomes known to the decision maker. Correspondingly, the optimal control (which is 
a stochastic process) can be sought in feedback form: u = u(X(s), s). Then the following optimal control 
problem (called further Stochastic Feedback Problem – SFP) becomes relevant:

min
u

E
T̂

0

e−rs [F (X(s), u(X(s), s))] ds + c3E [X(T )] . (6)

subject to
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dX(s) = a(X(s), u(X(s), s)) ds +
√

b(X(s)) dB(s), X(0) = x0 ∈ (0, 1], (7)

u(X(s), s) ≥ 0. (8)

Here the methods of stochastic control can be applied, in particular the Hamilton-Jacobi-Bellman (HJB) 
equation, which is employed for the analysis in Section 2. We show that the constraint u(x, t) ≥ 0 is not 
necessary at the optimum and use the related necessary condition for the HJB equation to derive a reduced 
partial differential equation for the value function of the SFP. Strict arguments (including a regularity 
result and a verification theorem) are given for showing that under certain standing assumptions the unique 
solution of the reduced equation in fact is the value function of the SFP.

2. No information case (Section 3). Exact information about the current state of the disease is usually not 
available, especially in less developed countries. Therefore, we consider a second “extreme” scenario, where 
the probability density of X(0) is given, but no information about the current state becomes available 
over the planning horizon [0, T ]. In this case the feedback control cannot be implemented, therefore the 
optimal control is sought as function only of time: u = u(t). Then a Stochastic Open-loop Problem (SOP) 
is considered, which has a similar formulation as SFP, but with u(X(t), t) replaced by u(t), a deterministic 
function of time. The HJB equation cannot be applied directly in this case. Still it is possible to use the 
Ito-Lemma in order to formulate a verification theorem that comes close to a HJB-formulation. However, 
we will see that this needs quite strong restrictions on the control function. Therefore we take a different 
approach. Namely, we employ the Kolmogorov-forward (or Fokker-Planck) equation related to (7), which 
describes the evolution of the density of X(t) over time. Then SOP can be reformulated as an optimal 
control problem for a second order parabolic partial differential equation (the Fokker-Planck equation). In 
Section 3 we present and strictly prove Pontryagin type optimality conditions, which provide also a base 
for a numerical procedure.

The results for both model versions are used for an extensive illustrative example in Section 4, where 
both, the SFP and the SOP are solved numerically. While the reduced partial differential equation for 
the value function analyzed in Section 3 is used for solving the SFP, we use the steepest descent method 
for PDE-constraint optimal control problems in order to solve the SOP. In addition, we also solve the 
deterministic problem in a standard way. In particular we use the numerical results for comparing optimal 
solutions under differing information patterns: Assuming that reality is represented by the dynamics of the 
SOP, we analyze the gain (in terms of the objective function of SOP) from using the SOP instead of using 
the deterministic model DP. This quantifies the value of using the stochastic approach SOP. Moreover we 
also analyze the situation where the same dynamics still represents the reality for a decision maker, but 
another agent is able to observe the states. The expected gain that the agent may achieve (using SFP) 
compared to the decision maker (SOP) gives us an estimate for the amount that the decision maker is 
willing to pay for the information related to the observed states.

In the short Section 5 we discuss the possibility to include vaccination in the stochastic SIS model.

Acknowledgment

We wish to thank three anonymous referees for their valuable suggestions.

2. The stochastic closed loop optimal control problem

In the following we consider a decision maker who is able to observe the realized states X(t) at any time 
t ∈ [0, T ] and who therefore is also able to react to these observations by choosing a feedback (that is, a 
state and time dependent) control u(x, t). In this section we discuss properties of the optimization problem 
SFP (see (6)–(8)) in the HJB framework, including a regularity result and a verification theorem for the 



670 P. Grandits et al. / J. Math. Anal. Appl. 476 (2019) 665–695
associated value function. This is done for the cost specification (5) with the following additional assumption 
needed for technical reasons in the proof of the verification result.

Assumption 1. The constant c3 in our model fulfills c3 < c̃3, where c̃3 is the positive solution of the equation

−γc3 + e−rT c1 −
erT

4c2
c23 = 0.

2.1. Stochastic control for the SIS model with SDE constraints

With X(t) observable at time t, the relevant σ-field is F = {Ft = σ(X(t))}, i.e. the σ-field generated by 
the process X. The control u(·, ·), is a function (0, 1) × [0, T ] → R of observed states and time. The set of 
admissible feedback control functions, A, is given by

A := {u(x, t)|u is Lipschitz w.r.t. t ∈ [0, T ] and locally Lipschitz w.r.t. x ∈ [0, 1), u ≥ 0}. (9)

In order to apply the dynamic programming approach we embed SFB into a family of problems 
parametrized by the initial time t and initial state x:

V (x, t) = min
u

Et,x

⎡
⎣ T̂

t

e−rs [F (X(s), u(X(s), s))] ds + c3X(T )

⎤
⎦ (10)

subject to

dX(s) = a(X(s), u(X(s), s)) ds +
√

b(X(s)) dB(s) X(t) = x, (11)

u(X(s), s) ≥ 0. (12)

Remark 1. It is important to keep in mind the fact that, provided u(x, t) ≥ 0 as assumed in our problem 
specification, the process X(t), described by (11), stays in I = (0, 1) forever, when started within this 
interval. The diffusion term b(x) = σ2x2 (1 − x)2 equals zero at x = 0 and x = 1. Moreover, the derivative 
of b(x) also is equal to zero at these points, which in consequence leads to prescribed boundaries: at x = 1
the drift is negative, hence there is an entrance boundary, whereas at x = 0 we have a(0, t) = 0, which 
indicates a natural boundary (see e.g. [15] p. 119). As a natural boundary, x = 0 is absorbing but is never 
reached if the process starts in I = (0, 1). In similar manner the entrance boundary x = 1 is never reached.

For a fixed function u, the backward operator L related to (11) is given by

LV (x, t) = Vt(x, t) + a(x, u(x, t))Vx(x, t) + 1
2b(x)Vxx(x, t),

and we denote

LuV (x, t) = Vt(x, t) + a(x, u)Vx(x, t) + 1
2b(x)Vxx(x, t). (13)

Moreover, the related Hamilton-Jacobi-Bellman (HJB) equation is given by

inf
u≥0

{
LuW (x, t) + e−rtF (x, u)

}
= 0 (14)

W (x, T ) = c3x,

which can be written as
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Wt(x, t) + a(x, 0)Wx(x, t) + 1
2b(x)Wxx(x, t) + e−rtc1x + inf

u≥0

{
e−rtc2xu

2 − uxWx(x, t)
}

= 0 (15)

W (x, T ) = c3x.

In the following subsection we will show a regularity result and a verification theorem, in particular it is 
shown that under certain regularity conditions the HJB equation has a solution, which is the optimal value 
function of the SFB problem (10). Here, we start with some simple facts about the optimal value function 
V and the optimal control u, namely that V is monotonically increasing in its first argument and that the 
optimal u is nonnegative, even when the condition u(X(s), s) ≥ 0 is omitted in SFB (10).

To this end, consider the optimization problem

V(x, t) = min
u

Et,x

⎡
⎣ T̂

t

e−rs [F (X(s), u(X(s), s))] ds + c3X(T )

⎤
⎦ (16)

subject to

dX(s) = a(X(s), u(X(s), s)) ds +
√

b(X(s)) dB(s) X(t) = x, (17)

which is in fact (10)-(12) without the restriction on u.

Lemma 1. The value function V(x, t) of problem (16)-(17) is strictly increasing in x.

Proof. Consider two states x0, x1 with x0 < x1. For i ∈ {0, 1}, denote an optimal strategy for a process 
starting at xi at time t by u∗

i (x, t) and the corresponding state process by X∗
i (t). Using some ε > 0 define 

the following (non-optimal) strategy for a controlled process X̃0(t), starting at state x0 at time t:

ũ0(x, t) =
{
u∗

1(x, t) − ε if x < X∗
1 (t)

u∗
1(x, t) if x = X∗

1 (t).
(18)

In addition, define the stopping time τ = inf
{
t : X̃0(t) = X∗

1 (t)
}

with inf ∅ = T and denote Ṽ(x1, t) =
E
[´ T

t
e−rs

(
c1X̃0(s) + c2X̃0(s)ũ1(X̃0(s), s)2

)
ds + c3X̃0(T )

]
Then we have X̃0(s) ≤ X∗

1 (s) almost surely at each time t ∈ [0, T ] and (due to continuity of the sample 
paths) τ > 0 almost surely. For t ∈ [0, τ ∧ T ) we have X̃0(s) < X∗

1 (s). Furthermore ũ0(s, x) ≤ u∗
1(s, x) is 

ensured by (18). This implies

V(x1, t) − Ṽ(x0, t) = c1E

⎡
⎣ τ∧Tˆ

t

e−rs
(
X∗

1 (s) − X̃0(s)
)

ds +
T̂

τ∧T

e−rs
(
X∗

1 (s) − X̃0(s)
)

ds

⎤
⎦

+c2E

⎡
⎣ T̂

0

e−rs
(
X∗

1 (s)u∗
1(X∗

1 (s), s)2 − X̃0(s)ũ0(X̃0(s), s)2
)

ds

⎤
⎦

+c3
[
X∗

1 (T ) − X̃0(T )
]
> 0,

because the first integral is positive (τ > 0), whereas all other integrals as well as the last line are nonnegative.
Finally, because ũ0 is not the optimal strategy for a controlled process starting at x0, we have

V(x0, t) ≤ Ṽ(x0, t) < V(x1, t). �



672 P. Grandits et al. / J. Math. Anal. Appl. 476 (2019) 665–695
It seems that the constraint u(x, t) ≥ 0 may complicate the situation. However, based on Lemma (1) it 
can be shown that this constraint is irrelevant for the optimal solution.

Lemma 2. The optimal control u∗ of (16)-(17) is nonnegative. It follows that it also solves (10)-(12) and 
therefore that V (x, t) is strictly monotone increasing in x.

Proof. Let u∗(x, t) be an optimal control for (16)-(17) and denote the related state process by X∗(t).
Suppose that u∗(t) < 0 with positive probability on a set S of points in time, where S has positive 

Lebesgue-measure and choose a point in time τ1 such that P (u(x, τ1) < 0) > 0 and P (u(x, t) < 0) > 0 for 
t in a set S1 ⊆ S with λ(S1) > 0. Define now the control law

u′(x, t) =
{
u∗(x, t) for t < τ1

|u∗(x, t)| for t ≥ τ1.

Write X ′(t) for the related process of states. Because X∗(τ1) = X ′(τ1) we have almost surely d(X∗(τ1) −
X ′(τ1)) ≥ 0 and d (X∗(τ1) −X ′(τ1)) = −2 · u∗(τ1)X∗(τ1) > 0 with positive probability. Therefore it can be 
inferred that X∗(t) ≥ X ′(t) almost surely and X∗(t) > X ′(t) with positive probability for t in some (maybe 
small) interval [τ1, τ2). In addition, u∗(x, t)2 = u′(x, t)2 holds almost surely. These facts imply

Eτ1

τ2ˆ

τ1

e−rs
(
c1X

∗(s) + c2X
∗(s)u∗(X∗(s), s)2

)
ds > Eτ1

τ2ˆ

τ1

e−rs
(
c1X

′(s) + c2X
′(s)u′(X ′(s), s)2

)
ds. (19)

Moreover, at time τ2 the inequality X∗(τ2) > X ′(τ2) implies

V(X ′(τ2), τ2) < V(X∗(τ2), τ) (20)

by Lemma 1.
It follows that a strategy u′′ with related process X ′′ that switches from u∗ to u′ at time τ1 and switches 

back to u∗ at time τ2 is a better strategy than keeping the optimal strategy u∗ over the whole planning 
horizon. This contradicts the assumption that u∗ is optimal, if τ1 < T . Hence, u∗(x, t) ≥ 0 for problem 
(16)-(17), the condition u∗(x, t) ≥ 0 is redundant in (10)-(12), and V (x, t) = V(x, t) holds. By applying 
Lemma 1, the function V (x, t) must then be strictly monotone increasing. �

The minimization in the HJB equation (14) leads to

u∗(t) = ert

2c2
Wx(x, t), (21)

which is true only if the process starts in the open interval (0, 1) – when x = 0 is almost surely never 
reached. Applying this result, reduces the HJB equation to the nonlinear equation

Wt(c, t) + a(x, 0)Wx(x, t) + 1
2b(x)Wxx(x, t) + e−rtc1x− ert

4c2
x [Wx(x, t)]2 = 0. (22)

In fact we will show below (see Corollary 1) that there exists a smooth enough solution W of the equation 
(22) which fulfills Wx(x, t) ≥ 0. This readily implies that W is also a solution of the HJB-equation (14)
with optimal control (21).
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2.2. A regularity result and the verification theorem

In order to show that the solution of the HJB equation (14), resp. (22), is indeed the value function of 
our problem, we will have to show a so called verification result. To prove this, one needs some regularity 
for the solution of the HJB equation. We provide this in the following theorem. Note that here and in the 
following C2+β,1+ β

2 denotes the space of functions, such that second derivative with respect to x is Hölder 
continuous with index β and the first derivative with respect to t is Hölder continuous with index β2 .

Theorem 1. Equation (22) has at least one solution W (x, t), which is bounded by a positive constant M and 
which is an element of C2+β,1+β/2(Qt), with 0 < β < 1 and QT := {(x, t)|ε ≤ x ≤ 1 − ε, 0 ≤ t ≤ T}, for 
arbitrary small positive ε. Moreover, W (x, t) is uniformly continuous at x = 0.

Proof. We want to apply in this proof standard results for parabolic Cauchy problems, see [25], hence we 
will first transform our x-variable to a z-variable, varying on ] −∞, ∞[. So let z = φ(x), with φ ∈ C∞ and 
φ : (0, 1) →] −∞, ∞[. We will need to have control of the transformation near the boundary, so we prescribe 
its value there explicitly, whereas we just impose φ to be strictly monotone increasing in the middle part, 
i.e.

φ(x) :=

⎧⎪⎨
⎪⎩

ln x, x ∈ ]0, 1
10 ],

strict. mon. increasing, x ∈ ] 1
10 ,

9
10 [,

− ln(1 − x), x ∈ [ 9
10 , 1[.

(23)

Hence, we also have

0 < const ≤ φ′(x) ≤ Const

|φ′′(x)| ≤ Const (24)

for x ∈ [ 1
10 , 

9
10 ]. Performing the transformation, we find

Wx = Wzzx =

⎧⎪⎨
⎪⎩

Wze
−z, x ∈ ]0, 1

10 ],
Wzφ

′(φ(−1)(z)), x ∈ ] 1
10 ,

9
10 [,

Wze
z, x ∈ [ 9

10 , 1[,
(25)

and

Wxx =

⎧⎪⎨
⎪⎩

Wzze
−2z −Wze

−2z, x ∈ ]0, 1
10 ],

Wzzφ
′(φ(−1)(z))2 + Wzφ

′′(φ(−1)(z)), x ∈ ] 1
10 ,

9
10 [,

Wzze
2z + Wze

2z, x ∈ [ 9
10 , 1[.

(26)

It is a lengthy, but elementary calculation to plug this transformation into the equation (22). The result is

Wt + κ1(z)Wz + κ2(z)Wzz + ert

4c2
κ3(z)W 2

z + κ4(z) = 0. (27)

We do not provide the functions κi explicitly, but we give their properties, which we will need in the sequel, 
i.e.

κi(z) ∈ C∞(−∞,∞), i = 1, ...4

|κi(z)| ≤ const., z ∈ [− ln 10, ln 10], i = 1, ...4 (28)

κi(z) ≥ const. > 0, z ∈ [− ln 10, ln 10], i = 2, ...4.
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Finally, the boundary condition transforms to

W (z, T ) = c3φ
(−1)(z) = c3

⎧⎪⎨
⎪⎩

ez, z ≤ − ln 10,
φ(−1)(z), z ∈ ]− ln 10, ln 10[,
1 − e−z, z ≥ ln 10.

(29)

We want to apply Theorem V.8.1 in [25], and in order to get useful information from this theorem, it is 
helpful to transform also the dependent variable via W̃ (z, t) := W (z,t)

h(z) , with h(z) ∈ C∞(R) and

h(z) :=

⎧⎪⎨
⎪⎩

ez, z ≤ − ln 10,
strict. mon. increasing, z ∈ ]− ln 10, ln 10[,
1, z ≥ ln 10.

(30)

Moreover, we choose h(z) s.t. it fulfills

|h′(z)| ≤ const., ∀z ∈ R,

|h′′(z)| ≤ const., ∀z ∈ R, (31)

h(z) ∈ [1/10, 1], z ∈ [− ln 10, ln 10].

We also introduce the “backwards time” τ := T − t. Performing all these transformations gives after some 
elementary calculations instead of (27)

W̃τ − W̃zz ·

⎧⎪⎨
⎪⎩

σ2 (1 − ez)2

κ2(z)
σ2 (1 − e−z)2

+ W̃ 2
z

er(T−τ)

4c2
·

⎧⎪⎨
⎪⎩

1
h(z)κ3(z)
(1 − e−z) e2z

+ W̃W̃z
er(T−τ)

4c2
·

⎧⎪⎨
⎪⎩

2
h′(z)κ3(z)
0

+W̃z ·

⎧⎪⎨
⎪⎩

−β(1 − ez) + γ + σ2(1 − ez)2 − 2σ2(1 − ez)2
−κ1(z) − 2(h′(z)/h(z))κ2(z)
−β(1 − e−z) + γ(ez − 1) − σ2(1 − e−z)2

+ W̃ 2 e
r(T−τ)

4c2
·

⎧⎪⎨
⎪⎩

1
((h′(z))2/h(z))κ3(z)
0

+W̃ ·

⎧⎪⎨
⎪⎩

−β(1 − ez) + γ + σ2(1 − ez)2 − σ2(1 − ez)2
−κ1(z)(h′(z)/h(z)) − κ2(z)(h′′(z)/h(z))
0

− e−(T−τ)c1 ·

⎧⎪⎨
⎪⎩

1
φ(−1)(z)/h(z)
1 − e−z

= 0 (32)

with the initial condition

W̃ (z, 0) = c3φ
(−1)(z)
h(z) = c3

⎧⎪⎨
⎪⎩

1, z ≤ − ln 10,
φ(−1)(z)/h(z), − ln 10 < z < ln 10,
1 − e−z, z ≥ ln 10.

(33)

In this equation and in some of the following ones we adopt the convention that the first line holds always 
for z ≤ − ln 10, the third line for z ≥ ln 10 and the second one for the area in-between

As announced earlier, we now apply Theorem V.8.1 in [25]. In order to do this, we match first some 
notation and find using V.(6.4) there

∂a1

∂W̃z

(z, τ, W̃ , W̃z) =

⎧⎪⎨
⎪⎩

σ2(1 − ez)2,
κ2(z),
σ2(1 − e−z)2.

(34)
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Moreover, A(z, τ, W̃ , W̃z) denotes in our case all the terms of the l.h.s. of equation (32), but the W̃τ and 
the W̃zz-term.

We now start to check the assumptions of Theorem V.8.1. Concerning assumption a), it is clear that our 
initial condition, defined by (33), is bounded and an element of C2+β(Ω), for all bounded domains Ω ⊂ R.

We proceed with condition b) : Equation V.(8.6) there is satisfied by our (34) and the third line of (28). 
Concerning the condition on A, we find that in our case

A(z, τ, W̃ , 0)W̃ ≥ −b1|W̃ |3 − b2

holds for some positive constants b1, b2, because all the coefficients of W̃ 2, W̃ and “1” in (32) are uniformly 
bounded. This means that the second condition of b) with Φ(τ) = b1τ

2 is fulfilled.
Coming to condition c), we first find

a1(z, τ, W̃ , W̃z) = W̃z

⎧⎪⎨
⎪⎩

σ2(1 − ez)2,
κ2(z),
σ2(1 − e−z)2,

(35)

and, using V.(6.4) of [25], one gets

a(z, τ, W̃ , W̃z) = A(z, τ, W̃ , W̃z) + ∂a1

∂W̃
W̃z + ∂a1

∂z
= A(z, τ, W̃ , W̃z) + W̃z

⎧⎪⎨
⎪⎩

−2σ2(1 − ez)ez,
κ′

2(z),
2σ2(1 − e−z)2e−z.

(36)

We have to check the conditions b) and c) of Theorem V.6.1 in [25] now. One easily sees that a1 and a are 
continuous with respect to its variables and that a1 is also differentiable.

Let now QT := [−N1, N2] × [0, T ], for some (large) positive constants N1, N2. One first finds that the 
constants of inequality V.(6.9/1) are independent of QT in our case.

Concerning the inequality V.(6.9/2), we realize for later use the

Fact 1. The constants in inequality V.(6.9/2) depend on N2 but not on N1.

The reason for this are the e2z, resp. the (ez − 1) terms in the coefficient of W̃ 2
z , resp. W̃z of (32).

Finally, the Hölder continuity conditions of Theorem V.6.1c are easily seen to be satisfied. All in all, we 
can now apply Theorem V.8.1, giving us the following.

Assertion 1. There exists at least one solution W̃ (z, τ) of the Cauchy problem (32)+(33) in [0, T ] ×R, which 
does not exceed a positive constant M in modulus and belongs to C2+β,1+β/2(QT ) with QT := [−N1, N2] ×
[0, T ] for some (large) positive constants N1, N2. Moreover, because of Fact 1 above, it is also an element 
of C2+β,1+β/2(]−∞, N2] × [0, T ]).

Now, transforming back to the original variables, Assertion 1 provides almost Theorem 1, we just have 
to show continuity at x = 0. But this is easy: By Assertion 1, we have |W̃ (z, τ)| ≤ const. for all (z, t) ∈
[−∞, N2] × [0, T ], giving |W (z, τ)| ≤ const.h(z), or |W (z, τ)| ≤ const.ez, for z ≤ − ln 10. Hence, finally 
|W (x, τ)| ≤ const.x, for x ≤ 1/10. �

In a next step we will have to show that a solution W (x, t) of (22), provided by Theorem 1, fulfills 
Wx(x, t) ≥ 0 (we know this already for the value function, see Lemma 2). Once we know this, one gets 
that the optimizer u∗ appearing in the HJB equation (14) is also nonnegative and given by the formula 
u∗ = ert Wx. This allows us in the proof of the verification theorem to restrict to nonnegative controls.
2c2
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The method of our proof will be the following. We first consider an approximating optimization problem, 
analogous to the original one, but where we prescribe an artificial boundary condition at x = 1 − ε. For 
this problem we do not have to show that the upper boundary is an entrance boundary. So a standard 
verification theorem will show that the solution of the HJB equation W (ε) is the value function V (ε) of our 
approximating problem. If we choose the artificial boundary condition properly, a simple modification of 
Lemma 2 will show V (ε)

x > 0, hence W (ε)
x > 0. Going with epsilon to zero, will yield the desired result.

So let us start with the definition of the approximating problem

V (ε)(x, t) = min
u∈Aε

Et,x

⎡
⎢⎣

τ(ε)ˆ

t

e−rs [F (X(s), u(X(s), s))] ds

+c3X(τ (ε))1{X(τ (ε))<1−ε} + Ψ(ε)(X(τ (ε)))1{X(τ (ε))=1−ε}

]
, (37)

where τ (ε) is the stopping time τ (ε) := inf{s ≥ t|X(s) = 0} ∧ inf{s ≥ t|X(s) = 1 − ε} = inf{s ≥ t|X(s) =
1 − ε}, with the convention inf ∅ = T and accounting for the fact that x = 0 is a natural boundary (see 
Remark 1). Moreover, Aε := {u(x, t)|u is Lipschitz w.r.t. t ∈ [0, T ] and x ∈ [0, 1 − ε]} are the admissible 
strategies. The state process is as in Lemma 1. For the artificial boundary condition we assume

Ψ(ε)(t) ∈ C∞([0, T ]), (Ψ(ε))′(t) ≤ 0. (38)

We now consider the boundary value problem

W
(ε)
t + [βx(1 − x) − γx]W (ε)

x + σ2x2(1 − x)2W (ε)
xx + e−rtc1x− ert

4c2
x(W (ε)

x )2 = 0,

W (ε)(x, T ) = c3x,

W (ε)(0, t) = 0,

W (ε)(1 − ε, t) = Ψ(ε)(t). (39)

If we impose a compatibility condition on our boundary data at the point (1 − ε, T ), i.e., if we assume that 
the first line of (39) holds in this point, we get

(Ψ(ε))′(T ) + O(ε) − γc3 + e−rT c1 −
erT

4c2
c23 = 0

Now, Assumption 1 guarantees that one can find a function Ψ(ε) fulfilling (38), as well as the compatibility 
condition, for ε small enough. As the compatibility condition is fulfilled now, one finds, using the beginning 
of chapter V.8 of [25], the following lemma.

Lemma 3. The boundary value problem (39) has a solution in C2+β,1+β/2([0, 1 − ε] × [0, T ]), which converges 
– as ε → 0, after possibly extracting a subsequence – together with its derivatives on ]0, 1[ to W (x, t), a 
solution provided by Theorem 1.

We proceed with the announced verification result for the approximating problem.

Proposition 1. A C2+β,1+β/2([0, 1 − ε] × [0, T ]) solution W (ε) of the boundary value problem (BVP)

inf
{
LuW (ε) + F (x, u)

}
= 0,
u∈R
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W (ε)(x, T ) = c3x,

W (ε)(0, t) = 0,

W (ε)(1 − ε, t) = Ψ(ε)(t),

is the value function of problem (37). (Hence, there is only one such solution.)

Proof. Note that the BVP above is just another way of writing the system (39) (Lu stands for the generator 
of our state process).

We first remark that our assumption u ∈ Aε guarantees a unique strong solution of the underlying SDE. 
Applying Ito’s formula to W (ε), which is regular enough, gives

W (ε)(X(τ (ε)), τ (ε)) = W (ε)(x, t) +
τ(ε)ˆ

t

LuW (ε)(X(s), s) ds +
τ(ε)ˆ

t

W (ε)
x (X(s), s)

√
b(X(s)) dB(s).

Since σ and W (ε)
x are bounded, the last integral is a true martingale and vanishes in the expectation. This 

gives

Et,x

⎡
⎢⎣

τ(ε)ˆ

t

F (X(s), u(s)) ds + W (ε)(X(τ (ε)), τ (ε))

⎤
⎥⎦ = W (ε)(x, t) + Et,x

⎡
⎢⎣

τ(ε)ˆ

t

F (X(s), u(s))

+ LuW (ε)(X(s), s) ds

⎤
⎥⎦ .

By the HJB equation in the formulation of the proposition, the expectational value in the r.h.s. of the last 
equation is greater or equal to 0 for a general admissible strategy u, whereas it is equal to zero for the 
optimizer u∗. This concludes our proof. �

Checking the proof of Lemma (2), we note that it holds as well for our approximating optimization 
problem, because of the second assumption in (38). This gives W (ε)

x (x, t) = V
(ε)
x (x, t) > 0 and, together 

with Lemma 3, we end up with

Corollary 1. A solution W (x, t) provided by Theorem 1 fulfills Wx(x, t) ≥ 0 for (x, t) ∈ [0, 1) × [0, T ].

Because of (21) this corollary implies that the restriction u(t) ≥ 0 in the definition (9) of the admissible 
set is fulfilled automatically.

Finally we come to the main result of this section

Theorem 2. A solution W given by Theorem 1 is the value function of problem (10)-(12) for 0 ≤ x < 1
under Assumptions 1. (Hence, there is only one such solution.)

Proof. Let τ (ε) be as it is defined after equation (37) and let u ∈ A, then we get, as in the proof of 
Proposition 1,

Et,x

⎡
⎢⎣

τ(ε)ˆ

t

F (X(s), u(s)) ds + W (X(τ (ε)), τ (ε))

⎤
⎥⎦ ≥ W (x, t).
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Since x = 1 is entrance (see the discussion in Remark 1), we can define the stopping time τ as τ :=
inf{s ≥ t|X(s) = 0}, with the convention inf ∅ = T . There is a natural boundary at x = 0 (see Remark 1), 
hence we get a.s. τ (ε) → τ = T , for ε → 0. Since the state process X(t) is continuous and W (x, t) is 
continuous on [0, 1) × [0, T ], we conclude W (X(τ (ε)), τ (ε)) → W (X(τ), τ) a.s. By bounded convergence (W
is bounded) and monotone convergence (ν is positive), we end up with

Et,x

⎡
⎣ T̂

t

F (X(s), u(s)) ds + W (X(T ), T, )

⎤
⎦ ≥ W (x, t).

If we take instead of an arbitrary u the optimizer u∗, we get instead of the inequality an equality above, 
which concludes the proof. �
Remark 2. Let us finally remark that the existence of a strong solution of the underlying SDE (11) for our 
admissible strategies ut follows by Exercise IX.2.10 of the monograph [32].

3. The stochastic open-loop optimal control problem

In this section we investigate the stochastic optimal control problem SOP without state observation, 
in which only (deterministic) open-loop controls, u = u(t) are implementable. The only state-information 
available is the probability distribution of X(0), represented by its density function p0(·) : [0, 1] → R+

0 , so 
that P (a ≤ X(0) ≤ b) =

´ b

a
p0(x) dx for any interval 0 ≤ a ≤ b ≤ 1. This initial distribution can be based 

on statistical estimation or on subjective probabilistic views.
The stochastic optimal open-loop control problem, SOP, reads as

U(p0(·)) = min
u

E

⎡
⎣ T̂

0

e−rs [F (X(s), u(s))] ds + c3X(T )

⎤
⎦ (40)

subject to

dX(s) = a(X(s), u(s)) ds +
√
b(X(s)) dB(s),

X(0) is a random variable with probability density p0(x).

We embed SOP into a family of optimization problems

U(t) = min
u

E

⎡
⎣ T̂

t

e−rs [F (X(s), u(s))] ds + c3X(T )

⎤
⎦ (41)

subject to

dX(s) = a(X(s), u(s)) ds +
√
b(X(s)) dB(s), (42)

X(t) is a random variable with (unconditional) probability density p(x, t), (43)

parametrized by time t ∈ [0, T ]. U(t) is the optimal rest value of SOP on [t, T ]. With p(x, 0) = p0(x) we 
have U(p0(·)) = U(0). Moreover, if u∗ is the optimal control function of SOP, we define the conditional 
value function as the expectation

U(x, t) = Et,x

⎡
⎣ T̂

t

e−rs [F (X(s), u∗(s))] ds + c3X(T )

⎤
⎦ (44)
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We consider two approaches with different admissible control set: in Subsection 3.1 the HJB conditions 
are modified in order to deal with the no information case. Here the cost specification (5) is used. In 
Subsection 3.2 we formulate a control problem based on the related Fokker-Planck equation, which allows 
for much more general cost models (and also more general stochastic dynamics). Applied to the cost model 
(5), both approaches lead to comparable results.

3.1. Analyzing the open-loop problem with stochastic calculus

In this section we use stochastic calculus for deriving a sufficient condition for optimal solutions of the 
open-loop problem. As we will see, this condition is in some sense very similar to the HJB-condition but 
accounts for the fact that the states cannot be observed.

For technical reasons, in this subsection we restrict the set of admissible controls to functions u : [0, T ] →
[0, ∞) with bounded derivatives up to order 3.

Nonnegativity again is a natural assumption for the control in our context. Moreover it ensures that 
there is an entrance boundary at x = 1 (which can be ensured also by the weaker assumption u(t) > −γ). 
This fact is used in the proof of the following Theorem. Note however, that the arguments in the proof of 
Lemma 2 – showing the nonnegativity is automatically fulfilled in the optimum – can be applied also to the 
open loop problem.

Theorem 3. For any admissible control u(·) (in the sense of this subsection) the PDE

Lu(s)Q (x, s) + e−rsF (x, u(s)) = 0, (45)

Q(x, T ) = c3x for x ∈ (0, 1),

with Lu defined in (13), has a unique C2([0, 1] × [0, T ])-solution Q. Moreover, if an admissible control û and 
the related solution Q̂ of (45) satisfy

û(s) = argmin
u

E
[
LuQ̂(X(s), s) + e−rsF (X(s), u)

]
(46)

for all s ∈ [t, T ], then û is an optimal control of SOP (41) and

Q̂(x, s) = U(x, s). (47)

This also leads to

EQ̂(X(s), s) = U(s). (48)

Proof. Equation (45) is a linear second order equation with non-negative characteristic form (b(x) · ξ2 is 
obviously nonnegative for any x ∈ [0, 1] and ξ ∈ R). Applying the Fichera-classification (see e.g. [13]) to 
the piecewise smooth boundary of our equation, we get Σ0 = {0} × (0, T ), Σ1 = (0, 1) × {0} ∪ {1} × (0, T ), 
Σ2 = (0, 1) × {T} and Σ3 = ∅. This shows that (45) is a well formulated first boundary-value problem (i.e. 
the boundary condition is formulated on Σ2∪Σ3). Observe now that due to the assumed properties of u the 
coefficients of (45) as well as the function F have bounded derivatives up to order 3 on the whole domain 
[0, 1] × [0, T ]. Moreover the coefficients can be extended outside the domain with the same smoothness and 
keeping nonnegativity of the characteristic form (e.g., set b(x) = σ2x2(1 − 2x) for small negative x). The 
function x 
→ c3x is linear. Furthermore the intersection of any two of the sets Σ3, Σ2, Σ0 ∪Σ1 is nonempty. 
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Using the result in [29] p. 775, we get that there exists a solution2 with bounded derivatives up to order 3. 
Altogether, this implies that the solution is in W 3,p((0, 1) × (0, T )) for any p>0.

The rectangle [0, 1] × [0, T ] has a Lipschitz boundary and we can apply Sobolev’s embedding results 
(see e.g. [18], Theorem 1.14) to infer that Q can be represented (almost everywhere) by a C2([0, 1] ×
[0, T ])-function. This gives enough regularity for applying Ito’s formula to the solution Q. Moreover, we 
have a natural boundary at x = 0 and an entry boundary at x = 1 (recall that u(t) ≥ 0 by assumption) – 
both points are never reached if the process starts in the interior. Based on the dynamics (42) and using 
some starting point X(t) = x0, we therefore get

Q(X(T ), T ) = Q(x0, t) +
T̂

t

LuQ(X(s), s) ds +
T̂

t

Qx(X(s), s)
√

b(X(s)) dB(s).

Since b and Qx are bounded on (0, 1), the last integral is a true martingale and vanishes in expectation. 
This gives

Et,x

⎡
⎣ T̂

t

e−rsF (X(s), u(s)) ds + Q(X(T ), T )

⎤
⎦ = Q(x0, t) + Et,x

⎡
⎣ T̂

t

e−rsF (X(s), u(s)) (49)

+ LuQ(X(s), s) ds

⎤
⎦ .

If (45) holds, the expectation on the right-hand side vanishes, i.e.

Et,x

⎡
⎣ T̂

t

e−rsF (X(s), u(s)) ds + c3X(T )

⎤
⎦ = Q(x0, t). (50)

Moreover, the start value x0 was chosen arbitrarily so far. Applying now the assumption that X(t) is 
distributed with density function p(x, t) and taking expectation at both sides of (49), we get

E

⎡
⎣ T̂

t

e−rsF (X(s), u(s)) ds + Q(X(T ), T )

⎤
⎦ = E [Q(X(t), t)] +

T̂

t

E
[
e−rsF (X(s), u(s)) (51)

+ Lu(t)Q(X(s), s)
]

ds.

If now u∗(t) is the minimizer of (46), it minimizes the right-hand and hence also the left hand side of (51). 
Again the integral at the right hand side vanishes by (45) and in consequence

EQ(X(t), t) = U(t). (52)

Plugging u∗ into (50), we also get

Q(x, t) = U(x, t). � (53)

2 Strictly speaking, the result is valid for equations that involve a further term c(x)Q(x, t) in the left hand side, such that c(x)
is negative and bounded by a constant that is small enough. For parabolic PDEs however, this always can be achieved by a simple 
transformation of Q.
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We mention that restricting the set of admissible control to 3 times differentiable functions, as in this 
subsection, may be too strong. Moreover, while it is clear that condition (46) is equivalent to the optimality 
condition

u(t) = ert

2c2
E[X(t)Qx(X(t), t)]

EX(t) , (54)

it is not clear at this point, how the conditions given in Theorem 1 can be used for calculations, in particular 
how the expectations in (54) could be calculated. For this reason, in the next subsection, we employ a more 
general approach, which uses arguments from PDE-constraint optimization.

3.2. The optimal control problem for the related Fokker-Planck equation

Denote D := [0, 1] × [0, T ]. Because X(t) is a (Markovian) diffusion process, the objective function in (40)
can be rewritten in terms of the transition density function p : D → [0, ∞). This leads to the equivalent 
formulation

U = min
u

¨

D

e−rtF (x, u(t)) p(x, t) dx dt +
1ˆ

0

c3 x p(x, T ) dx (55)

subject to

pt(x, t) = −[a(x, u(t))p(x, t)]x + 1
2[b(x)p(x, t)]xx, (56)

p(x, 0) = p0(x), p(1, t) = 0, (57)

where the subscripts t and x mean partial differentiation. This is the Kolmogorov-forward (or Fokker-Planck) 
equation of the diffusion process (see e.g. [14] p. 132).

We remind that according to the specification of the functions a and b in (3), we have

a(0, u) = 0, a(1, u) = −(γ + u) < 0, b(0) = b′(0) = b(1) = b′(1) = 0. (58)

Then the boundary condition (57) is equivalent to the zero-flux condition at x = 1:

0 = a(1, u(t)) p(1, t) − 1
2

∂

∂x
[b(x)p(x, t)]x=1 = a(1, u(t)) p(1, t).

This condition ensures conservation of the probability mass at the “entrance boundary” x = 1. A similar 
boundary condition is not needed at the “natural boundary” (in the Feller terminology, see e.g. [15], p. 119) 
x = 0, since the flux there is automatically equal to zero due to (58).

Introducing the notations

A(x) = 1
2b(x), B(x, u) = a(x, u) − 1

2bx(x), C(x, u) = ax(x, u) − 1
2bxx(x), f(x, t) = 0, (59)

we can rewrite (56) (for a given measurable control u(t) ≥ 0 inserted in B and C) in the symmetric form

pt − (Apx)x + Bpx + Cp = f. (60)
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Thus problem (55) is a special case of the following problem:

minimize
{
J(u) :=

¨

D

h(x, t, u(t)) p(x, t) dx dt +
1ˆ

0

g(x) p(x, T ) dx
}
, (61)

where in our particular case h(x, t, u) = e−rtF (x, u) and g(x) = c3x.
In fact, in the analysis below we do not use the particular forms of A, B, C, and f . We consider the 

more general problem (61) subject to (60) and (57). Admissible controls are all measurable and bounded 
functions u : [0, T ] → [0, ̄u], where ū ≥ 0 is an upper bound for the control.

For this more general problem we assume that the functions A, B, C, h, and f (where A depends only on 
x, B and C depend on (x, u), f depends on (x, t), h depends on (x, t, u)) and the derivatives Ax, Axx, Bx, 
Bu, Cu, and hu are Lipschitz continuous; there are constants ĉ1 and ĉ2 such that the following inequalities 
are fulfilled for every x ∈ [0, 1] and u ∈ [0, ̄u]:

A(0) = A(1) = A′(0) = A′(1) = 0, B(1, u) < 0,

A(x) ≥ ĉ1x
2, |B(x, u)| + |Bu(x, u)| + |Buu(x, u)| ≤ ĉ2x. (62)

Clearly, the last conditions are fulfilled for our original SIS problem due to (59) and (3). Some of them may 
be weakened, but we do not aim for generality in this paper.

Below we briefly introduce some preliminary material, which is not quite standard and seems not to be 
available in the literature in the form that is needed in the optimal control context. The reason is that the 
function A in the elliptic term of (60) degenerates (even together with its first derivative) on the boundary 
x ∈ {0, 1}, which requires special care.

Denote

V := {v : (0, 1] → R : v is locally absolutely continuous, v ∈ L2(0, 1), x vx ∈ L2(0, 1)}.

Here vx is the derivative of v, which exists almost everywhere. With the scalar product

〈v, q〉 :=
1ˆ

0

[v(x)q(x) + x2vx(x)qx(x)] dx + v(1)q(1), v, q ∈ V,

V is a Hilbert space. Denote by V ∗ its dual space, and by 〈v∗, v〉V ∗,V – the pairing of V ∗ and V .
For a Banach space Y we denote by L2(0, T ; Y ) the space of all functions y : (0, T ) → Y such that

‖y‖L2(0,T ;Y ) :=

⎛
⎝ T̂

0

‖y(t)‖2 dt

⎞
⎠

1/2

< ∞.

It is said that y ∈ L2(0, T ; Y ) has a weak derivative z, written later as ẏ = z, if

T̂

0

ϕ̇(t)y(t) dt = −
T̂

0

ϕ(t)z(t) dt ∀ϕ ∈ C∞
c (0, T ),

where the integrals are in the sense of Bochner. In particular, we will use the spaces L2(0, T ; V ), L2(0, T ; V ∗)
and
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W := {p ∈ L2(0, T ;V ) : ṗ ∈ L2(0, T ;V ∗)}.

It is known (see e.g. [35, Theorem 3.10]) that every element of W actually belongs to C([0, T ]; V ) (defined 
similarly as L2(0, T ; V ) but using the uniform norm), and for every two elements p, λ ∈ W the formula for 
integration by parts is valid:

T̂

0

〈ṗ(t), λ(t)〉V ∗,V dt = 〈p(T ), λ(T )〉L2(0,1) − 〈p(0), λ(0)〉L2(0,1) −
T̂

0

〈λ̇(t), p(t)〉V ∗,V dt. (63)

In the space V × V we define the following bi-linear functional depending on u ≥ 0:

B(q, v;u) :=
1ˆ

0

[A(x)qxvx + B(x, u)qxv + C(x, u) q v] dx−B(1, u) q(1)v(1).

From the definition of V and the properties of A and B it is easy to verify that B is well defined. Indeed, 
using (62) we have

‖Aqxvx‖L1 ≤ 1
2‖Axx‖L∞ ‖xqx‖L2 ‖xvx‖L2 ≤ 1

2‖Axx‖L∞ ‖q‖V ‖v‖V ,

‖B(x, u)qxv‖L1 ≤ ‖B/x‖L∞ ‖xqx‖L2 ‖v‖L2 ≤ ĉ2‖q‖V ‖v‖V .

Definition. A function p : D → R is a weak solution of equation (60) with side conditions (57) (for a fixed 
admissible control u(·)) if p ∈ W ,

〈ṗ(t), v〉V ∗,V + B(p(t), v;u(t)) = 〈f(t), v〉L2(0,1) for every v ∈ V and a.e. t ∈ (0, T ),

and p(·, 0) = p0(·).

We mention that, thanks to the inequality B(1, u) �= 0, the last term of B ensures satisfaction of the 
boundary condition p(1, t) = 0.

Now, let us fix a reference admissible control u, and introduce the so-called adjoint equation:

λ̇ + (Aλx)x + (Bλ)x − Cλ = −h, (64)

with the end-condition

λ(x, T ) = g(x). (65)

Notice that by changing the time variable t −→ T−t we obtain the following equation for μ(x, t) = λ(x, T−t):

μ̇− (A(x)μx)x − (B(x, u(T − t))μ)x + C(x, u(T − t))μ = h(x, T − t, u(T − t)).

This equation has a similar form as (60) with the difference that the transport term is now −Bμ, and since 
−B(1, u(t)) > 0 and A(1) = 0, there is no need of a boundary condition at x = 1 (“natural boundary” in 
the Feller terminology, see e.g. [15], p. 119).

Correspondingly, the definition of a solution is a slight modification of the previous one. Namely, a 
solution of (64), (65) is any element λ ∈ W such that

〈λ̇(t), v〉V ∗,V + D(λ(t), v;u(t)) = −〈h(·, t, u(t)), v〉L2(0,1) ∀ v ∈ V and a.e. t ∈ (0, T ),



684 P. Grandits et al. / J. Math. Anal. Appl. 476 (2019) 665–695
and λ(T ) = g, where

D(q, v;u) :=
1ˆ

0

[−A(x)qxvx + (B(x, u)q)xv − C(x, u)qv] dx, q, v ∈ V,

Proposition 2. Given any measurable selection u(·) of the interval [0, ̄u], both systems (60), (57) and (64), 
(65) have unique solutions, p and λ, respectively, in the space W . Moreover, there exists a constant c
(depending on the functions A, B, and C, and the numbers ū and T , but not on f , p0, and the particular 
choice of the measurable selection u of [0, ̄u]), such that

max
t∈[0,1]

‖p(·, t)‖L2(0,1) + ‖p‖L2(0,T ;V ) ≤ c
(
‖p0‖L2(0,1) + ‖f‖L2(D)

)
.

The proof of this proposition adopts known approaches combining [30][Chapter 1] and [35, Chapter 3]. 
It is long but does not involve new ideas, therefore we do not present it here. Issues of regularity of the 
solution of problem (60), (57) will not be discussed (and used) in order to keep the presentation as focused 
as possible.

We introduce the notation

H(x, t, p, q, u, μ) := h(x, t, u)p− (B(x, u)q + C(x, u)p)μ.

The following is the main result of this section.

Theorem 4. Let û be an admissible control and let p̂ and λ be the corresponding solutions of the primal 
equation (60), (57) and the adjoint equation (64), (65), respectively.

(i) Then for every number M ≥ 0 there exists a constant c(M) such that the inequality

∣∣∣∣∣∣J(u) − J(û) −
T̂

0

J ′(û)(t) (u(t) − û(t)) dt

∣∣∣∣∣∣ ≤ c(M)‖u− û‖2
L2(0,T )

is fulfilled for every measurable selection u(·) of [0, ̄u + M ]. Here J ′(û) ∈ L∞(0, T ) is defined as

J ′(û)(t) =
1ˆ

0

Hu(x, t, p̂(x, t), p̂x(x, t), û(t), λ(x, t)) dx.

(ii) If û is an optimal control, then the following maximum condition holds:

1ˆ

0

H(x, t, p̂(x, t), p̂x(x, t), û(t), λ(x, t)) dx = min
u∈[0,ū]

1ˆ

0

H(x, t, p̂(x, t), p̂x(x, t), u, λ(x, t)) dx.

We mention that property (i) directly implies Fréchet differentiability of the mapping L∞(0, T ) � u 
→
J(u) with the L∞-representative J ′(u)(·) of the derivative. However, property (i) is stronger (as resembling 
some properties of an L2-derivative), and this is essential for application of the gradient projection method 
for solving the optimal control problem at hand.

Proof. Let M be arbitrarily fixed and u be an arbitrary measurable selection of [0, ̄u + M ]. Denote ε :=
‖u − û‖L2(0,T ). Let p be the corresponding solution of equations (60), (57). Further, we abbreviate
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B̂(x, t) := B(x, û(t)), Ĉ(x, t) := C(x, û(t)), ĥ(x, t) := h(x, t, û(t)),
Δp = p− p̂, ΔB(x, t) := B(x, u(t)) −B(x, û(t)),

ΔC(x, t) := C(x, u(t)) − C(x, û(t)), Δh(x, t) := h(x, t, u(t)) − h(x, t, û(t)).

Then the following equations are satisfied:

Δpt − (AΔpx)x + B Δpx + C Δp = −ΔB(x, t) p̂x(x, t) − ΔC(x, t) p̂(x, t), (66)

Δp(x, 0) = 0, Δp(1, x) = 0.

We shall apply to the above equation Proposition 2 with p0 = 0 and f = −ΔB(x, t) p̂x(x, t) −ΔC(x, t) p̂(x, t). 
For this we need the following estimations that use the assumptions about A and B, the definition of the 
space V and the fact that p ∈ C([0, T ]; V ). First,

¨

D

|ΔC(x, t)p̂(x, t)|2 dx dt ≤
T̂

0

ĉ4|u(t) − û(t)|2
1ˆ

0

|p̂(x, t)|2 dx dt

= ĉ4

T̂

0

|u(t) − û(t)|2 ‖p̂(·, t)‖2
L2(0,1) dt ≤ ĉ4‖p̂‖2

C([0,T ];V ) ε
2,

where ĉ4, and also ĉ5, etc., below, are constants (independent of ε). Second, for some measurable function 
Bu(x, t) ∈ Bu(x, [u(t), ̂u(t)]) we have

¨

D

|ΔB(x, t)p̂x(x, t)|2 dx dt =
T̂

0

1ˆ

0

|Bu(x, t)(u(t) − û(t))|2 |p̂x(x, t)|2 dx dt

≤
T̂

0

1ˆ

0

|Bu(x, t)/x|2 |u(t) − û(t)|2 ‖p̂(·, t)‖2
V dx dt ≤ c23‖p̂‖2

C([0,T ];V ) ε
2.

The obtained estimation of ‖f‖L2(D), together with Proposition 2, implies existence of a constant ĉ5
which is independent of ε and such that

‖Δp‖L2(0,T ;V ) ≤ ĉ5ε. (67)

Now, we rewrite equation (66) in the more detailed form

Δpt − (AΔpx)x + B̂ Δpx + Ĉ Δp = −ΔB p̂x − ΔC p̂ + γ,

where γ = −ΔB Δpx − ΔC Δp. We notice that

ĉ5ε ≥ ‖Δp‖L2(0,T ;V ) ≥ ‖Δp‖L2(D) + ‖xΔpx‖L2(D).

Thus

‖γ‖L2(D) ≤ ‖ΔB Δpx‖L2(D) + ‖ΔC Δp‖L2(D) ≤ ‖(ΔBu/x)(u− û) (xΔpx)‖L2(D) + ĉ6ε
2 ≤ ĉ7ε

2.

Let λ be the solution of the adjoint equation (64), (65) corresponding to û and p̂. Since λ(t) ∈ V for a.e. 
t, we have

〈Δ̇p(t), λ(t)〉V,V ∗ + B(Δp(t), λ(t); û(t)) = −〈ΔB(t) p̂x(t) + ΔC(t) p̂(t), λ(t)〉L2(0,1) + 〈γ(t), λ(t)〉L2(0,1).
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Using the integration by part formula (63) and the relations Δp(x, 0) = 0, λ(x, T ) = g(x) we obtain that

−
T̂

0

〈λ̇(t),Δp(t)〉V ∗,V dt + 〈g,Δp(T )〉L2(0,1) +
T̂

0

B(Δp(t), λ(t); û(t)) dt

= −
T̂

0

〈(ΔB(t)p̂x(t) + ΔC(t)p̂(t)), λ(t)〉L2(0,1) dt + ζ1, (68)

where |ζ1| ≤ ĉ8ε
2 and ĉ8 is independent of ε and the particular choice of the selection u of [0, ̄u + M ].

The term 
´ T

0 B(Δp(t), λ(t); ̂u(t)) dt contains the integral 
˜

D
B̂λΔpx dx dt, in which we want to shift 

the differentiation from Δp to λ. Applying integration by parts needs a special care, due to the (a priori) 
possible unboundedness of Δp and λ at x = 0. For this reason we first show that for every t ∈ [0, T ] there 
exists a sequence xk ∈ (0, 1], xk → 0, such that xkΔp(xk, t)λ(xk, t) converges to zero. Indeed, if for some t
such a sequence does not exist then there exist α > 0 and β > 0 such that x|Δp(x, t)λ(x, t)| ≥ α for any 
x ∈ (0, β]. Since Δp(·, t), λ(·, t) ∈ L2(0, 1), the function |Δp(·, t) λ(·, t)| is integrable, which contradicts the 
inequality |Δp(·, t) λ(·, t)| ≥ α/x on (0, β].

Then, due to the absolute integrability of B̂λΔpx, B̂λxΔp (already shown) and B̂xλΔp with respect to 
x, we have (skipping the fixed arguments t and û(t) in the notations)

1ˆ

0

B̂(x)λ(x)Δpx(x) dx = lim
k

1ˆ

xk

B̂(x)λ(x)Δpx(x) dx

= lim
k

⎡
⎣B̂(1)λ(1)Δp(1) − B̂(xk)λ(xk)Δp(xk) −

1ˆ

xk

[Bx(x)λ(x)Δp(x) + [B(x)λx(x)Δp(x)] dx

⎤
⎦

= B̂(1)λ(1)Δp(1) −
1ˆ

0

[Bx(x)λ(x)Δp(x) + [B(x)λx(x)Δp(x)] dx,

where we also use the inequality |B(x, u)| ≤ ĉ2x in (62). Substituting the obtained expression in (68) we 
obtain the equality

−
T̂

0

〈λ̇(t),Δp(t)〉V ∗,V dt +
1ˆ

0

λT (x)Δp(x, T ) dx +
T̂

0

D(λ(t),Δp(t); t, û(t)) dt

= −
¨

D

(ΔB(x, t)p̂x(x, t) + ΔC(x, t)p̂(x, t))λ(x, t) dx dt + ζ1.

Having in mind the definition of solution of the adjoint equation and the fact that Δp(t) ∈ V , we obtain 
that

1ˆ

0

g(x)Δp(x, T ) dx = −
¨

D

ĥ(x, t)Δp(x, t) dx dt (69)

−
¨

(ΔB(x, t)p̂x(x, t) + ΔC(x, t)p̂(x, t))λ(x, t) dx dt + ζ1.
D
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Now consider the difference

J(u) − J(û) =
¨

D

[h(x, t, u(t)) p(x, t) − h(x, t, û(t)) p̂(x, t)] dx dt +
1ˆ

0

g(x) Δp(x, T ) dx,

which, using the properties of h and (67), can be represented (skipping the arguments (x, t)) as

J(u) − J(û) =
¨

D

[ĥΔp + Δh p̂ + ΔhΔp] dx dt +
1ˆ

0

g(x) Δp(x, T ) dx

=
¨

D

[ĥΔp + Δh p̂] dx dt +
1ˆ

0

g(x) Δp(x, T ) dx + ζ2,

where |ζ2| ≤ ĉ9‖u − û‖2
L2(0,T ) = ĉ9 ε

2. Using (69), we obtain that

J(u) − J(û) =
¨

D

[ĥΔp + Δh p̂] dx dt−
¨

D

ĥΔp dx dt

−
¨

D

(ΔB(x, t)p̂x(x, t) + ΔC(x, t)p̂(x, t))λ(x, t) dx dt + ζ1 + ζ2

=
¨

D

[H(x, t, p̂(x, t), p̂x(x, t), u(t), λ(x, t))

−H(x, t, p̂(x, t), p̂x(x, t), û(t), λ(x, t))] dx dt + ζ1 + ζ2. (70)

Using the abbreviation Ĥ(x, t, u) := H(x, t, p̂(x, t), p̂x(x, t), u, λ(x, t)) we represent in a standard way

Ĥ(x, t, u(t)) − Ĥ(x, a, û(t))

= Ĥu(x, t, û(t))(u(t) − û(t)) +
1ˆ

0

[Ĥu(x, t, û(t) + s(u(t) − û(t))) − Ĥu(x, t, û(t))] ds (u(t) − û(t)).

Combining this with (70) and using the particular form of the function H and again the properties (62) in 
a similar way as above, we obtain the representation in part (i) of the theorem and the boundedness of the 
function J ′(û)(t).

Now let û be an optimal control. Then applying (70) to controls of the form

u(t) =
{

v if t ∈ [τ, τ + ε′],
û(t) if t /∈ [τ, τ + ε′]},

where v ∈ [0, ̄u], τ ∈ (0, T ), and ε′ > 0 is so small that τ +ε′ ≤ T and 4ū2ε′ ≤ ε (so that 
´ τ+ε′

τ
|v− û(t)| dt ≤

ε), one can prove the second claim of the theorem in a standard way. �
The second part of Theorem 4 gives a Pontryagin type necessary optimality condition for the problem 

(61), (60), (57). The first part provides a formula for calculation of the derivative of the objective functional 
with respect to the control function in the space L2(0, T ), in directions that are bounded. This derivative 
can be used for computing an approximate solution by using the gradient projection method, as we do it 
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in our numerical experiments in Section 4 (although the justification needs a lot more work that we do not 
present in this paper).

We mention that with the particular specifications for our original SIS model the adjoint equation (64)
(by substituting the definitions (59)) takes the form

−λt = a(x, u)λx + 1
2b(x)λxx + e−rtF (x, t, u). (71)

If we apply Theorem 4 to the original problem (55)-(57), respectively (40), we can see a very close relation 
to Theorem 3.

Corollary 2. Let the assumptions of Theorem 4 be fulfilled with optimal p̂, ̂u, ̂λ. Moreover let X̂(s) denote 
the process defined by

dX̂(t) = a(X̂(t), û(t)) dt +
√
b(X̂(t)) dB(t). (72)

Then the equations

Lû(s)λ̂ (x, s) + e−rsF (x, û(s)) = 0, (73)

λ̂(x, T ) = c3x for x ∈ (0, 1),

are fulfilled and

û(s) = argmin
u

E
[
Luλ̂(X̂(s), s) + e−rsF (X̂(s), u)

]
(74)

holds for all s ∈ [t, T ]. (We remind that the notation Lu is introduced in (13).)

Proof. Clearly, the adjoint equation (71) for û, ̂λ can be reformulated as (72). Observe now that (using the 
definitions (59) and applying integration by parts) we have (without denoting the dependencies on (x, s))

1ˆ

0

H(x, s, p̂(x, s), p̂x(x, s), û(s), λ̂(x, s)) dt (75)

=
1ˆ

0

[
h(x, s, û(s)) +

(
a(x, û(s)) − 1

2bx(x)
)
λ̂x(x, s)

]
p̂(x, s) ds

= E
[
h(X̂(s), s, û(s)) +

(
a(X̂, s), û(s)) − 1

2bx(X̂(s))
)
λ̂x(X̂(s), s)

]
.

Because b(·) and λ̂t do not depend on u, minimizing (75) is equivalent to minimizing (74). �
This shows that the results in Theorems 4 and 3 are fully consistent with each other: in fact, (73) and 

(74) are the main conditions in Theorem 3.

4. The role of information in the stochastic SIS optimal control problem: a numerical study

Based on an illustrative example, in this section we investigate what improvement in the decision per-
formance is brought by the availability of exact measurements of the current state. This numerical analysis 
uses the results in sections 2 and 3, where state-feedback (for the SFP problem) or open-loop controls (SOP) 
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are involved, respectively. In addition, we compare these performance assessments with the ones obtained 
by using the deterministic model (DP), assuming that the stochastic model represents the reality.

In order to ensure comparability we take a viewpoint immediately before X(0) = x0 is realized and 
assume that X(0) is distributed according to the density p0(x) as assumed in Section 3. The expectation

W(p0(·)) = E [V (X(0), 0)] =
1ˆ

0

V (x)p0(x) dx,

where V was defined for SFP in (10), then gives the minimal expected cost for a decision maker, who is able 
to observe all values X(t) and to calculate state-dependent strategies. This expectation can be compared 
with the optimal value U(p0(·)), i.e. the minimal expected cost for a decision maker who is not able to 
observe any values of the process X(t), see (40).

The value of observation

V O = U(p0(·)) −W(p0(·))

expresses the value of the additional information, achieved by observing the state values over time. Clearly, 
V O is positive, because restricting u(x, t) to u(t) puts an additional constraint on the original optimization 
problem. In our case the difference can be interpreted as the (maximal) amount of money, a decision maker 
without the possibility to observe the process X(t) is willing to pay in order to acquire full information 
about X(t) at any time t. In the context of disease modelling, V O helps to assess the meaningfulness of 
improved reporting schemes: a small value speaks against improved efforts, whereas large values suggest 
that investment in information will pay off later. The idea of V O is closely related to the notion of value of 
information, where W(p0(·)) is calculated as the expectation of a clairvoyant’s optimal value. The value of 
information, introduced in [31], has a long history in stochastic optimization, see e.g. also [34].

When considering optimal control in a stochastic context, one may ask the question, whether the sub-
stantial extra effort for using SDE and/or PDE constraints is worthwhile. In our case, the deterministic 
SIS model (1) could be easily reduced to the deterministic control problem (1), where the starting value 
is chosen as x0 = E [X(0)] =

´ 1
0 xp0(x) dx. In this way one replaces distributions and stochastic processes 

by (instantaneous) expectations and gets a simpler, ODE constraint problem, which can be treated by 
classical methods. The question then is, how much (in terms of objective value) we lose if the system is in 
fact stochastic (according to either (10) or (55)), but decisions are based on the deterministic model (1). 
We therefore calculate the optimal control ud(t) for (1) and plug it into the Fokker-Planck equation of the 
stochastic system, which leads to a transition density pd(x, t) for a decision maker who faces the stochastic 
system but nevertheless uses the deterministic model:

∂pd(x, t)
∂t

= − ∂

∂x
a(x, ud(t))pd(x, t) + 1

2
∂2

∂x2 [b(x)pd(x, t)] ,

pd(1, t) = 0,

pd(x, 0) = p0(x).

The cost for this strategy is given by

R(p0(·)) =
T̂

t

1ˆ

0

e−rsF (X(s), u(s))pd(x, s) dx ds +
1ˆ

0

c3 x pd(x, T ) dx.

It is then possible to compare R, U and W. Clearly we have R(p0(·)) ≥ U(p0(·)) ≥ W(p0(·)). In particular 
the difference
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V SOL = R(p0(·)) − U(p0(·))

expresses the value of the stochastic open loop solution (55), whereas

V SCS = R(p0(·)) −W(p0(·))

is the value of the stochastic closed loop solution (10).
In the following example the value function V (x, t) = W (x, t) of the stochastic control problem (10)

was calculated by solving the HJB equation (14) numerically. The related optimal control u(x, t) is then 
calculated from (21).

For finding the optimal solution of the Fokker-Planck system (55) we used the Fréchet derivative J ′ given 
in Theorem 4 and applied the gradient projection method described e.g. in [35], Section 5.9.1 (see also 
[21] for convergence results). All partial differential equations (the HJB equation as well as all PDEs used 
within the gradient projection descent algorithm) were solved by the numerical method of lines (see e.g. 
[33]). Finally, we solved the deterministic problem (1) by the steepest descent method for ODE constraint 
control problems, see e.g. [22] p. 334. All the algorithms were implemented in Wolfram Mathematica™.

As a numerical example we compare now the effects of available information and of a low versus a high 
volatility parameter value. This example is purely illustrative with no specific disease in view. We choose 
γ = 1 and β = 4.5. This setup may be interpreted as a disease where the mean length of infection is one 
time unit, e.g. a week, whereas each infected person infects 4.5 persons in the mean over this time unit. In 
the deterministic model without control (1) such a setup describes a disease which does not die out (the 
basic reproduction number is R0 = 4.5) and has a stationary point (endemic equilibrium) at

x̄ = 1 − γ

β
= 0.7̇.

For the volatility parameter σ we consider two cases: low volatility with σ = 0.5 and high volatility with 
σ = 2.7. In all cases we plan over a horizon of T = 8 time units and the cost parameters are chosen as 
c1 = 15.0, c2 = 80.0, c3 = 0.0. The discount rate is set to r = 0.00057, which corresponds to an interest 
rate of 3% p.a. if time units are weeks. Finally, we assume that distribution of the initial value X(0) was 
estimated as a uniform distribution with density.

p0(x) =
{

20 if x ∈ [0.03, 0.08] ,
0 else.

This expresses the view that the initial fraction of infected individuals lies between 0.03 and 0.08, but each 
fraction in this range is equally likely.

Fig. 1 shows the transition density function p(x, t) for the optimal solution of the Fokker-Planck constraint 
problem (55) when σ = 0.5 (low volatility case). The optimal value is (within the accuracy of three digits) 
equal to the optimal value of the deterministic solution, i.e.

U(p0(·)) ≈ R(p0(·)) ≈ 73.816.

This shows that the value of the open loop solution V SOL is vanishingly small in this case, which can 
be interpreted as a sort of justification for using deterministic control in case of low volatility. Visually, the 
transition density in Fig. 1 shows time dependent densities (cuts parallel to the x-axis) with small variation.

We consider now the case with larger volatility parameter σ = 2.7. Fig. 2 shows a comparison between 
the deterministic optimal control and the stochastic optimal open loop control. While both strategies use 
more control at the beginning (which is due to the fact that we chose c3 = 0 in this example), the stochastic 
control uses higher values over the whole planning period.
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Fig. 1. Low volatility case σ = 0.5: Transition density p(x, t) for the optimal solution of the Fokker-Planck constraint problem (55).

Fig. 2. High volatility case σ = 2.7: Comparison between the optimal control for the deterministic problem (dashed line) and the 
optimal open loop control for the stochastic model (solid line).

The related transition density when applying the optimal open loop control is shown in Fig. 3. Here the 
control is able to bring down the number of infected near to zero and hold them there with high probability. 
Still there is a substantial probability that the disease grasps a high fraction of the population.

The stochastic open loop solution leads to a substantial reduction in expected costs: we have U(p0(·)) ≈
36.167 for the optimal value of SOP and R(p0(·)) ≈ 38.147 for the expected cost of the deterministic 
solution, hence the value of the stochastic open loop problem is given by V SOL ≈ 1.98. Note that already 
using the deterministic solution leads to a slight reduction of costs compared to the case without control 
(u(x, t) = 0), where the expected cost is equal to 39.669.

Finally we consider the full information case SFP, i.e. the solution of problem (10). The optimal transition 
density and the optimal control function are shown in Fig. 4.

The transition density shows that the probabilities of staying near zero can be substantially improved, 
when being able to observe the states. The likelihoods of high fractions of infected then can be reduced a lot, 
also compared with the optimal open loop solution. The optimal control function again shows some decrease 
over time. More important are the differences in treatment intensities when compared over possible states. 
It shows that when it is possible to observe the states, one would put high effort per case if the fraction 
of infected is small, whereas the effort per case has to be reduced a lot if the number of cases becomes 
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Fig. 3. High volatility case σ = 2.7: Transition density p(x, t) for the optimal solution of the Fokker-Planck constraint problem (55). 
The third axis (density p(x, t)) is cut at p = 2.5, so the small values contain substantially more probability mass then shown in 
the picture.

Fig. 4. High volatility case: (a) transition density and (b) optimal feedback control u(x, t) for the stochastic control problem (10). 
The third axis (density p(x, t)) is cut at p = 2.5, so the small values contain substantially more probability mass then shown in 
the picture. Note also that the x-axis is cut at x = 0.5 as the surface becomes very flat for larger values of x.

larger. Being able to observe the values of the process X(t) is very valuable: the optimal value of the control 
problem is W(p0(·)) = 24.507 and the value of observation therefore is V O ≈ 11.66.

For both stochastic optimization model SOP and SFP and also for the deterministic approach, with 
σ = 2.7 the respective transition densities shows a similar twin-peaked visual pattern. There is a region 
near zero and a region with higher fraction of infected where the system tends to be concentrated. Because 
the pictures would look quite similar to Fig. 3 at first glance, we do not show the transition densities for all 
the models. Instead we summarize the differences between the cases in Table 1, which shows the values of the 
related cumulative distribution functions of X(T ) at the end time T = 8 for selected fractions of infected. 
Not only SFP dominates SOP, SOP dominates the deterministic and the deterministic solution dominates 
the model without control in terms of the expected costs. In addition the same order of dominance can be 
observed at all considered fractions of infected: the probability that the fraction of infected is smaller or 
equal to the value given in the first column is larger for SFP than for SOP, larger for SOP than for the 
deterministic solution and larger for the deterministic solution than without any control.

5. A remark about vaccination

As one of the anonymous referees suggested, one can incorporate vaccination (prior to the beginning of 
the disease) into basically the same stochastic model as considered in this paper. We shortly describe the 
idea.
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Table 1
Expected costs and cumulative distribution function for the analyzed approaches (no control 
with u(x, t) = 0, deterministic DP, no observation SOP and full observation SFP).

Infected x No control Deterministic No observation (SOP) Full observation (SFP)
39.669 38.147 36.167 24.507

0.001 0.24535 0.25891 0.31358 0.85869
0.010 0.31168 0.32767 0.38703 0.86568
0.100 0.38831 0.40631 0.46629 0.87559
0.200 0.41923 0.43767 0.49630 0.88084
0.500 0.49929 0.51762 0.57010 0.89649

The second line shows the expected costs of the respective (optimal) strategies. The rest of the 
table shows the values of the cumulative distribution function Pm(X(T ) ≤ x) at time T = 8 for 
the respective models at the fraction x of infected individuals specified in the first column.

Let v ∈ [0, 1) be the fraction of the population vaccinated before the outburst of the epidemic disease, 
and let κ ∈ (0, 1] be the fraction of the vaccinated individuals who become immune. Then we can modify 
the equation (2) as

dX(t) = [β (1 − κv −X(t))X(t) − γX(t)] dt + σ [(1 − κv −X(t))X(t)] dB(t),

X(0) = x0 ∈ (0, 1).

If c(v) is the cost of vaccinating fraction v of the population, we obtain the following extension of problem 
(6):

min
v,u(·)

E
T̂

0

e−rs [F (X(s), u(X(s), s))] ds + c3E [X(T )] + c(v).

Here the decision parameter v ∈ [0, 1) is a scalar, while u(·) is either a feedback or open-loop control, 
depending on the information pattern as above in the paper. Observe that for a fixed v the problem is 
completely analogous to (2), (6), with the only difference that now the range of X is [0, 1 − κv] instead of 
[0, 1]. Thus the problem for fixed v can be solved in the same way as in the case without vaccination. The 
scalar minimization is then a matter of repeated calculations.

We also mention that including vaccination during the disease may lead to complications in the stochastic 
case, since the control variable representing vaccination may appear (depending on the particular model) 
in the diffusion term of the relevant equations.

6. Conclusions

In this paper we analyze the stochastic SIS model both in the full information case (SFP) and in the no 
information case (SOP). In particular, we give (under some technical assumptions)

• a sufficient optimality condition (the HJB equation) together with a verification theorem for the optimal 
solution of the SFP.

• a sufficient optimality condition with verification theorem for the SOP under quite strong assumptions 
about the control function, using stochastic calculus as the basis.

• a necessary optimality condition for the SOP under weaker assumptions, applying the idea of optimiza-
tion under PDE-constraints.

It turns out that the two approaches for the SOP lead to formally identical optimality conditions, but the 
sufficiency requires more regularity of the optimal control. In a numerical part we compare the solutions 
(the control functions) of SFP and SOP with each other and with the solution of the deterministic problem. 
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Plugging these solutions into the same stochastic dynamics leads to the insight that using stochastic opti-
mization has an advantage over using just (instantaneous) expectation for defining the dynamics. Moreover 
it also leads to decreasing expected costs if one is able to observe the number of infected individuals over 
time, thus the measurement information has a quantitative value for the decision maker.

Clearly several open questions have to be left for further research: The SIS model is one of the simplest 
epidemiological models, so it is natural to apply the basic ideas of stochastic SFP and SOP to more elab-
orated models (e.g. more compartments or heterogeneity). In the optimization model so far we restricted 
the consideration to controlling the recovery rate (which only influences the drift), while it might also be 
important to influence the infection process (e.g. by vaccination). Moreover, one may also consider different 
forms of the cost function.
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