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We consider the linear Cauchy problem

{
ut = a(D)u, t ∈ R

u(0) = u0
, (1)

where a(D) : X → X is a continuous linear operator on a Fréchet space X. By 
imposing a condition (which is neither stronger nor weaker than the equicontinuity 
of the powers of a(D)), we present the necessary and sufficient conditions for 
the generation of a uniformly continuous group on X, which provides the unique 
solution of (1). In addition, for every pseudodifferential operator a(D) with constant 
coefficients defined on FL2

loc, which is a Fréchet space of distributions, we also 
provide the necessary and sufficient conditions such that the restriction {et a(D)}t�0
is a well defined semigroup on L2 and E ′. We conclude that the heat equation 
solution on FL2

loc for all t ∈ R extends the standard solution on Hilbert spaces for 
t � 0.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

If A is a pseudodifferential operator, e.g., A = d
dx , we may consider the associated Cauchy problem, i.e.,

{
ut = Au, t ∈ I

u(0) = u0
, (2)
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and try to solve it for a certain class of functions u0 and a fixed interval of time I. When modeling 
biological, physical, and economic phenomena, evolution problems such as (2) arise naturally from partial 
differential equations (PDEs) by interpreting (t, x) �→ u(t, x) as a vector-valued mapping t �→ u(t, ·), e.g., 
u(t, ·) ∈ L2(RN

)
.

A function R ×RN � (t, x) �→ u(t, x) ≡
(
u(t)

)
(x) ∈ X is said to be a solution of (2) if it is differentiable 

on the temporal variable t, if it satisfies d
dtu(t, x) = Au(t, x) for every (t, x), and if it satisfies the so-called 

initial condition, i.e., u(0, x) = u0(x) for every x ∈ RN , for a given function u0 : RN → X.
The main approach involves dealing with a closed linear operator A : D(A) ⊂ X → X, which is densely 

defined on a Banach space X. This setting has yielded a rich theory over the last 50 years, which allows 
(2) to be solved by a strongly continuous semigroup 

(
T (t) : X → X

)
t�0 whenever some spectral conditions 

on A are fulfilled. However, many well-known topological vector spaces that arise during the analysis of 
PDEs are not normable, such as C1((−∞, 0]

)
in equations with infinite delay. In this setting, a natural 

trade-off arises where the good topological properties on the space must be lost to obtain better properties 
on the operators. For instance, every linear differential operator with constant coefficients is bounded on 
the Schwartz space.

Let X be a Hausdorff locally convex space (HLCS). The map

t �→ exp(tA)u0 :=
( ∞∑

n=0

tn

n!A
n

)
u0, for u0 ∈ X, (3)

provides the unique solution of (2) on X for t � 0 whenever X is sequentially complete and (An)n∈N is an 
equicontinuous family of bounded operators defined on X (see [15]).

The generation of a C0-semigroup on HLCSs such as (3) has been addressed in previous studies by 
adding a hypothesis on the generator or on the phase space X. The C0-semigroup was assumed to be 
quasi-equicontinuous by [2,12], and it was assumed to be locally equicontinuous and X was equipped with 
an auxiliary norm by [11]. Other studies considered the question in some particular Fréchet spaces, such as 
those by Dembart [5] (who considered the phase space as the space of the continuous functions defined on 
[a, b] in a fixed topological vector space E) and by Frerick et al. [7] (by setting X = KN , i.e., the collection 
of scalar sequences).

Hence, we can present some results regarding the generation of uniformly continuous groups (where the 
definition invokes stronger convergence rather than pointwise convergence) on Fréchet spaces. For example, 
we extend the main generation result obtained recently by [8] who did not establish the necessity implication 
for the exponential map convergence in the topology of bounded convergence. In addition, we provide 
further applications to linear Cauchy problems where A = a(D) is a pseudodifferential operator on FL2

loc. 
Remarkably, we extend the analytic semigroup generated by the heat operator −(1 −Δ) on L2 to the group (
e−t (1−Δ))

t∈R on FL2
loc, thereby obtaining a distributional solution of the heat equation backwards in 

time.
The remainder of this paper is organized as follows. In Section 2, we establish the generation theorem 

(Theorem 2) on abstract Fréchet spaces for bounded linear operators, which have a simple compatibility 
property with respect to the Fréchet topology. In Section 3, we apply the results in Section 2 to evolution 
problems in FL2

loc, including the definition of FL2
loc, criteria for the regularization process, and the positive 

invariance on L2.

2. Strongly compatible operators and generation theorem

Let X =
(
X, (pj)j∈N

)
be a Fréchet space and L (X) is the space of all continuous linear operators on X

(see [6,15] and the references therein).
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We require the appropriate compatibility between the operator A and the Fréchet topology on X such 
that its exponential operator is well defined and provides the solution of the associated Cauchy problem.

Definition 1. A linear operator A : X → X is said to be strongly compatible with (pj)j∈N and we write 
A ∈ Lsc(X) if for every j ∈ N,

pXj (A) := sup
pj(x)=1

pj(Ax) < ∞. (4)

If X is a Banach space, then T ∈ Lsc(X) if and only if T ∈ L (X). We note that the identity operator on X
is always strongly compatible regardless of the choice of seminorms. Actually, the definition of Lsc(X) does 
not depend on a fixed system of seminorms and because we may not know all of the continuous seminorms 
on X explicitly, it is convenient and sufficient to only compute (4) for some well known fundamental family 
of seminorms on X. Hence, it is much simpler than the condition required by [1].

Proposition 1. The countable family of seminorms 
(
pXj
)
j∈N defines a Fréchet topology on Lsc(X).

Proof. First, we observe that if A ∈ Lsc(X), then

pj(Ax) � pXj (A)pj(x) (5)

for every x ∈ X and every j. Consequently, pXj (An) � pXj (A)n for every n ∈ N.

Indeed, for a fixed j ∈ N, if x ∈ X satisfies pj(Ax) 	= 0, then x0 = 1
pj(x) x satisfies pj(Ax0) � pXj (A), 

and thus we deduce that pj(Ax) � pXj (A) pj(x) for every x ∈ X.
In addition, (5) implies that 

(
pXj
)
j∈N is a separating family of seminorms, i.e., each A 	= 0 corresponds 

at least one j ∈ N with pXj (A) 	= 0.
Now, suppose that (Ak)k∈N is a Cauchy sequence with respect to 

(
pXj
)
j∈N . By (5), we find that (Akx)k

is a Cauchy sequence in X for every x ∈ X such that the map X � x �→ Ax := limk Akx is well defined and 
linear. We only need to observe that pj(Ax) = limk pj(Akx) � limk p

X
j (Ak)pj(x) in order to conclude that 

A ∈ Lsc(X). Thus, 
(
Lsc(X), 

(
pXj
)
j∈N

)
is a Fréchet space. �

The property (4) implies that pj(Ax) = 0 whenever pj(x) = 0 for every j. According to [4], an operator 
that satisfies this property is said to be compatible with (pj)j , which was shown to be a natural condition 
for obtaining hyperbolicity.

Definition 2. A family {T (t) : t ∈ R} ⊂ L (X) is said to be a C0-group on X if T (0) = idX , T (t + s) =
T (t)T (s) and T (τ)x X−→

τ→0
x, for every s, t ∈ R and x ∈ X. We write T (·) instead of {T (t) : t ∈ R}.

The infinitesimal generator of this family A : D(A) ⊂ X → X is defined by

Ax := lim
t→0

T (t)x− x

t
,

where x ∈ D(A) if and only if the limit given above exists.
In addition, if T (t) → I in Lsc(X) as t → 0, then T (·) ⊂ Lsc(X) is said to be a uniformly continuous 

group on X.

Consider the normed spaces Xj :=
(
X/p−1

j

(
{0}

)
, ‖ · ‖j), where

‖[x]j‖j := inf pj(x− z), for [x]j in X/p−1
j

(
{0}

)
.

pj(z)=0
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We say that X is a quojection if every Xj is complete. We may assume that pj � pj+1 for every j, so 
except for an identification argument, we have

X1 ⊂ X2 ⊂ · · · ⊂ X.

In the following, we assume that X is a quojection unless stated otherwise.

Theorem 2. Let A : D(A) ⊂ X → X be a linear operator. The following are equivalent:

a. A is everywhere defined and is strongly compatible with 
(
X, (pj)j∈N

)
;

b. A is the infinitesimal generator of a uniformly continuous group T (·) on 
(
X, (pj)j∈N

)
; in which case it 

is given by

T (t) = etA :=
∞∑

n=0

(tA)n

n! ∈ Lsc(X), for every t ∈ R,

where the convergence is defined with respect to the Lsc(X)-topology.

Proof. Let A ∈ Lsc(X) and SN :=
∑N

n=0
(tA)n

n! ∈ Lsc(X). Given ε > 0,

pXj (SN − SM ) �
N∑

n=M+1

1
n!
(
t pXj (A)

)n
< ε,

for sufficiently large N , M . Clearly, e0A is the identity of X. In addition, since 
∑∞

n=0
(tA)n
n! is absolutely 

convergent, then we conclude that e(s+t)A = esAetA for all t, s ∈ R by the classical formula for the product 
of series. Moreover,

pXj (etA − idX) = pXj

( ∞∑
n=1

(tA)n

n!

)
�

∞∑
n=1

(
t pXj (A)

)n
n! = etp

X
j (A) − 1,

and thus {etA : t ∈ R} is a uniformly continuous group on X.
In addition, by the definition of the generator, if x ∈ X and t 	= 0, then we have

pj

(
etAx− x

t
−Ax

)
� 1

t

∞∑
n=2

(
t pXj (A)

)n
n! pj(x) =

(
etp

X
j (A) − 1

t
− pXj (A)

)
pj(x),

and thus A is the infinitesimal generator of {etA : t ∈ R}.
For its reciprocal, we consider the Banach spaces Xj :=

(
X/p−1

j

(
{0}

)
, ‖ · ‖j) as defined previously, and 

let Tj(t) : Xj → Xj be defined as

Tj(t)[x]j := [T (t)x]j for [x]j ∈ Xj .

Claim 1: {Tj(t) : t ∈ R} is a uniformly continuous group on Xj for every j.
We may write ‖Tj(t)[x]j‖j = infpj(z)=0 pj

(
T (t)x − T (t)z −

(
z − T (t)z

))
, which is dominated by

inf
pj(z)=0

{
pXj
(
T (t)

)
pj(x− z) + pj(z) + pj

(
T (t)z

)}
= pXj

(
T (t)

)
‖[x]j‖j ,

since T (t) is strongly compatible with (pk)k∈N such that Tj(t) ∈ L (Xj).
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Clearly, Tj(0) is the identity operator on Xj . In addition, for t, s ∈ R, we find that Tj(t)
(
Tj(s)[x]j

)
=

[T (t) ◦ T (s)x]j = Tj(t + s)[x]j and

‖Tj(t) − idXj
‖L (Xj) = sup

‖[x]j‖j=1
inf

pj(z)=0
pj
(
T (t)x− x− z

)
is dominated by sup

‖[x]j‖j=1
inf

pj(z)=0
pXj
(
T (t) − idX

)
pj(x − z) = pXj

(
T (t) − idX

) R−→
t→0

0.

The maps x �→ σj(x) := [x]j and [x]j+1 �→ πj

(
[x]j+1

)
:= [x]j are continuous and, by construction, we 

obtain 
(
Tj(t) ◦ πj

)
([x]j+1) =

(
πj ◦ Tj+1(t)

)
([x]j+1).

It is natural to seek the infinitesimal generator of T (·) by using the infinitesimal generators Aj of Tj(·)
in order to determine whether a linear operator A : X → X exists such that every Aj : Xj → Xj is simply 
the projection of A on Xj induced by σj ; i.e., [Ax]j = Aj [x]j holds for every j and x ∈ X. Indeed, this is 
the case.

Claim 2: A unique linear operator A : X → X exists that changes

X
A

σj

X

σj

Xj
Aj

Xj

(6)

into a commutative diagram for every j ∈ N. In addition, A ∈ Lsc(X) and it is the infinitesimal generator 
of T (·).

Fix x ∈ X. Every σj is surjective, so we obtain a sequence (zj)j in X that depends on x such that 
σj(zj) = Aj ◦ σj(x) for every j ∈ N, and thus

σj(zj) = Aj ◦ σj(x) = πj

(
Aj+1 ◦ σj+1(x)

)
= πj

(
σj+1(zj+1)

)
= σj(zj+1)

such that pl(zj − zk) = 0 whenever j, k � l. Hence, we define a linear operator A : X → X by setting 
Ax := limj→∞ zj , which satisfies

σj(Ax) = σj

(
lim
k→∞

zk

)
= lim

k→∞
k�j

σj(zk − zj) + σj(zj) = σj(zj) = (Aj ◦ σj) (x).

(pj)j is a separating family of seminorms, so x �→ Ax is well defined and it is the unique linear operator 
that changes (6) into a commutative diagram. Moreover,

sup
pj(x)�1

pj(Ax) = sup
pj(x)�1

{
inf

pj(z)=0
pj(Ax) − pj(z)

}
� sup

pj(x)�1

{
inf

pj(z)=0
pj(Ax− z)

}
= sup

pj(x)�1
‖[Ax]j‖j

� sup
‖[x]j‖j�1

‖Aj [x]j‖j < ∞

and the last inequality holds because ‖[x]j‖j � pj(x). Hence, A ∈ Lsc(X).
It is not difficult to see that these projections σj have a useful property, where if [xλ]j

λ∈Λ−→
Xj

[0]j for every 

j, then (xλ)λ∈Λ is convergent in X and xλ
λ∈Λ−→ 0.
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Finally, given x ∈ X, for every j ∈ N, we have[
Ax− T (t)x− x

t

]
j

= [Ax]j −
[T (t)x]j − [x]j

t
= Aj [x]j −

Tj(t)[x]j − [x]j
t

,

such that the net T (t)x− x

t
converges to Ax, for every x ∈ X. By the uniqueness of the infinitesimal 

generator, we conclude that

T (t) =
∞∑

n=0

tn

n!A
n = etA, for every t ∈ R. �

As found in the Banach spaces, groups with the same infinitesimal generator coincide.

Proposition 3. If T (·) and S(·) are uniformly continuous groups on X with

lim
t→0

T (t) − idX
t

= A = lim
t→0

S(t) − idX
t

in Lsc(X),

then T (t) = S(t) for every t ∈ R.

Corollary 4. If T (·) is a uniformly continuous group on X, then:

a. A unique operator A in Lsc(X) exists such that T (t) = etA;
b. The operator A in part (a) is the infinitesimal generator of T (·);
c. Nonnegative numbers ωj exist such that pXj

(
T (t)

)
� exp(ωj t) for every t ∈ R;

d. The map R � t �→ T (t) ∈ Lsc(X) is differentiable and

dT (t)
dt

= A ◦ T (t) = T (t) ◦A, for every t ∈ R.

Consequently, the Cauchy problem {
T ′(t) = AT (t), t ∈ R

T (0) = idX

possesses a unique solution whenever A ∈ Lsc(X) by Gronwall’s inequality.

Remark 1. Let X be a sequentially complete HLCS. Several remarks can be made, as follows.

1) According to [15], the generation result was given as follows. Let B ∈ L (X). If for every continuous 
seminorm p on X, a continuous seminorm q = q(p) on X exists such that

sup
k∈N

p
(
Bkx

)
� q(x), for every x ∈ X, (7)

then the map

X � x �→
∞∑
k=0

tBk

k! x, for every t � 0,

is well defined and continuous.
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If (7) holds, then {Bk}k∈N is said to be an equicontinuous family with respect to k. This is a result of the 
generation of a C0-semigroup with pointwise convergence. In addition, by Proposition 1, if A ∈ Lsc(X)
then

pj(Akx) � [pXj (A)]k pj(x), for every x ∈ X and for every j, k ∈ N,

which may not have the uniformity of (7) on k. Moreover, nothing is assumed regarding the other 
seminorms except for (pj)j , so the conditions are not comparable. In fact, let X = C(R) with the 
seminorms pj(φ) := sup|ξ|≤j |φ(ξ)|, j ∈ N. If A : X → X is given by Aφ = aφ, where a(ξ) = |ξ|2, ξ ∈ R, 
then Akφ = |ξ|2kφ, for any k ∈ N, so we may choose φ0 such that pj(Akφ0) = j2k for any k ∈ N. Thus, 
given j, we cannot find a continuous seminorm q such that pj(Akφ0) ≤ q(φ0) for all k ∈ N.
Moreover, Theorem 2 provides a complete characterization of a uniformly continuous group with con-
vergence in the space of operators. It should also be noted that the reciprocal of Yosida’s result requires 
that B : D(B) ⊂ X → X is known to be densely defined and that the resolvent (n idX −B)−1 ∈ L (X)
exists for every n ∈ N.

2) According to [1], a C0-semigroup {S(s) : s � 0} in X is called a (C0, 1)-semigroup if for every continuous 
seminorm p on X, a positive number σp and a continuous seminorm q = q(p) on X exist such that

p
(
S(s)x

)
� eσpsq(x), for every x ∈ X and every s � 0. (8)

Results were then established regarding the generation of (C0, 1)-semigroups (instead of uniformly 
bounded groups) and the perturbation of infinitesimal generators. By Corollary 4c, the uniformly con-
tinuous groups that we present in this study satisfy (8). However, we can also deal with a (possibly) 
smaller class of bounded linear operators on the phase space because we can extract a theory from this 
restriction that provides useful properties and applications. We aim to obtain the following properties 
based on the compatibility between the operator and the Fréchet topology of the phase space:
(i) To characterize all groups with their generators;
(ii) To provide a simple condition regarding the generators without invoking spectral theory, which is 

easier to verify based on applications than Babalola’s results; and
(iii) To obtain a tool that works suitably well for constant coefficient pseudodifferential operators and 

such that each generates a group on some Fréchet space (i.e., FL2
loc), but that allows us to compare 

each group with standard approaches based on the usual Banach spaces, especially for solving 
evolution problems.

According to Babalola’s results, given a linear operator A : X → X, we need to compute the quotients 
Xj = X/p−1

j (0), evaluate the operator A on every Xj , and apply the spectral theory of A to every Xj . 
Finally, we can then determine whether A generates a semigroup. We consider that this procedure may 
not be simple to apply. In addition, the study conducted by [1] considered the Hille–Yosida theorems 
(the semigroup was generated under a pointwise convergence by [1]) and perturbation results, where a 
single application was presented by letting the phase space be the space of all smooth functions on the 
1-torus.

3) Let Γ be a fundamental system of seminorms on X and let Lb(X) be the space L (X) equipped with 
the topology of uniform convergence on the bounded subsets of X, which is weaker than the Lsc(X)-
topology (in the sense that Lsc(X)-convergence for nets implies Lb(X)-convergence for nets). The main 
result given by [8] reads as follows: suppose that μ > 0 exists with the property that for every p ∈ Γ, 
q = q(μ, p) ∈ Γ and M = M(μ, p) � 0 exist such that

p(Akx) � Mμkq(x), for every x ∈ X and k ∈ N. (9)
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Then, A generates a uniformly continuous semigroup given by the exponential series expansion, with 
convergence in Lb(X).
If (4) holds, then (9) holds by setting μ = pXj (A), q = p and M = 1. (4) is a stronger condition, but 
it is certainly easier to compute with and it is used to topologize Lsc(X) in an appropriate manner 
such that exp(A) is well defined as the exponential Lsc(X)-series expansion. In addition, we obtained 
a complete characterization in Theorem 2, which was not achieved by [8].

4) The generation of C0-semigroups on quojections was studied by [7], where the main application consid-
ered the following question posed by [3]: if T (·) is a C0-semigroup on KN , does a bounded operator A
exist such that T (·) is represented pointwisely by the exponential series expansion of A? Answering this 
question is not our aim.

5) Other studies also dealt with C0-semigroup generation under weak assumptions, such as the semigroup 
T (·) being quasi-equicontinuous (in the sense that a constant β � 0 exists such that 

(
e−βtT (t)

)
t�0

is an equicontinuous family with respect to t) as considered by [2,12], or the semigroup T (·) being 
locally equicontinuous (in the sense that for every t � 0 and every continuous seminorm p, a continuous 
seminorm q = q(t, p) exists such that p

(
T (s)x

)
� q(x) for every 0 � s � t and x ∈ X) as investigated 

by [11].

3. Some applications to PDEs

Clearly, geometric intuition has provided useful guidance when solving differential problems by seeking 
solutions on Hilbert spaces. However, we are convinced that it has hindered our understanding of many 
phenomena. We prefer to deal with weaker topologies to obtain continuous solutions of the linear Cauchy 
problems associated with certain pseudodifferential operators, thereby allowing us to study the meaning of 
the heat equation solution backward in time.

Let φ be a Schwartz function (and we write φ ∈ S (RN , C)) and its Fourier transform is given by

(
Fφ

)
(ξ) = φ̂(ξ) =

∫
RN

e−2πix·ξφ(x) dx,

and φ �→ φ̌ denotes the inverse Fourier transform. Let S ′(RN , C) be the space of all continuous linear 
functionals defined on S (RN , C) and it is equipped with the �-weak topology (see [6,10]).

Definition 3. A pseudodifferential operator a(D) : S
(
RN

)
→ S

(
RN

)
of order m on RN with constant 

coefficients (or constant coefficients, m-ΨDO) is a linear map given by(
a(D)φ

)
(x) :=

(
a φ̂
)
ˇ(x), x ∈ RN ,

for every φ ∈ S
(
RN

)
, where a ∈ C∞(RN ) satisfies the property that for all multi-index α, a constant 

cα > 0 exists such that 
∣∣∂αa(ξ)

∣∣ � cα(1 + |ξ|)m−|α| for every ξ ∈ RN .

We now present a Fréchet space, i.e., FL2
loc, which was introduced by Treves [14], where the elements 

are distributions of D ′ comprising the space of all continuous linear functionals defined on C∞
c (RN ). This 

is quite remarkable because when considering distributions, we usually deal with the �-weak topology, 
which is generally not metrizable. In addition, every distribution u with compact support (where we write 
u ∈ E ′) and every L2 function belong to FL2

loc, so some good properties of the Fourier transform on L2

are preserved and the Paley–Wiener–Schwartz theorem can be extensively invoked.
Let FL2

loc be the completion of the metric space (E, d) constructed as follows. Let E := F−1(S ′∩L2
loc

)
be endowed with the topology generated by the seminorms pj(u) := ‖û‖L2((B(0,j)) for u ∈ E and j ∈ N, 
which is actually a separating family, and thus the function



É.R. Aragão-Costa, A.P. da Silva / J. Math. Anal. Appl. 484 (2020) 123612 9
E × E � (u, v) �→ d(u, v) :=
∞∑
j=1

2−j pj(u− v)
1 + pj(u− v)

defines a metric on E. Clearly, its topology as a complete metric space is equivalent to that generated by 
the extended seminorms pj : FL2

loc → [0, ∞), and thus FL2
loc =

(
FL2

loc, (pj)j∈N
)

is a Fréchet space.3
We provide further properties, as follows.

Proposition 5.

a. The Fourier transform F : FL2
loc → L2

loc is well defined and it is continuous;
b. Every element of FL2

loc is a distribution of D ′(RN
)
. Hence, FL2

loc is a Fréchet space of distributions;
c. L2 and E ′ are topological subspaces of FL2

loc and 
(
L2, ‖ · ‖L2

)
↪→ FL2

loc. In particular, every Sobolev 
space 

(
Hs, ‖ · ‖s

)
is continuously embedded on FL2

loc, s � 0;
d. Every constant coefficient m-ΨDO a(D) induces a strongly compatible operator on 

(
FL2

loc, (pj)j∈N
)

by 
setting

a(D)[u] :=
[
a(D)u

]
, for [u] ∈ FL2

loc.

Consequently, R � t �→ ea(D)tu0 ∈ FL2
loc provides the unique solution of

{
ut = a(D)u, t ∈ R

u(0) = u0 ∈ FL2
loc

;

e.
(
FL2

loc, (pj)j∈N
)

is a quojection.

Proof. a. Let [u] ∈ FL2
loc. If (ul)l∈N ∈ [u], then (ûl)l∈N is a Cauchy sequence in L2

loc, and thus a unique 

w ∈ L2
loc exists such that ûl

l→∞−→ w in L2
loc and we set [̂u] := w, which does not depend on the choice of 

(ul)l in [u]. Thus, we define

C∞
c � φ �→ 〈[u], φ〉 :=

∫
RN

[̂u](ξ)φ(ξ) dξ ∈ C.

b. Let K be a compact subset of RN . If supp φ ⊂ K ⊂ B(0, j), then

|〈[u], φ〉| � ‖[̂u]‖L2(B(0,j)) ‖φ‖L2(K) � |B(0, j)|1/2pj([u]) sup
K

|φ|,

so [u] is actually a distribution and we can write u instead of [u].
c. We obtain the inclusion E ′ ⊂ E by the Paley–Wiener–Schwartz theorem and the embedding 

(
L2, ‖ ·

‖L2
)
↪→ E by the Plancherel theorem, and c. follows.

d. Let a(D) be a constant coefficient m-ΨDO and [u] ∈ FL2
loc. If |ξ| � j, then

F
(
a(D)u

)
(ξ) = lim

l→∞
L2(B(0,j))

F
(
a(D)ul

)
(ξ) = lim

l→∞
L2(B(0,j))

a(ξ) ûl(ξ) = a(ξ) [̂u](ξ),

3 According to [14], this is a reflexive Fréchet space, for which the dual space, FL2
c, is the inductive limit of a sequence of Hilbert 

spaces.
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where [̂u] is the limit in L2(B(0, j)
)

of the Fourier transform of some sequence (ul)l∈N ∈ [u], by definition. 
The fact that a(D) is strongly compatible with pj follows from

pj
(
a(D)[u]

)
=

⎛⎜⎝ ∫
|ξ|�j

|a(ξ)|2
∣∣[̂u](ξ)

∣∣2 dξ
⎞⎟⎠

1/2

� ‖a‖L∞(B(0,j)) pj
(
[u]
)
.

For e., let Xj = FL2
loc/p

−1
j ({0}). We claim that every Xj ≡ L2(B(0, j)

)
. By definition, if [u] ∈ FL2

loc, 
then [

[u]
]
j

:= {[u] + [v] : pj([v]) = 0} =
{

[f ] ∈ FL2
loc : [̂f ](ξ) = [̂u](ξ) a.e. |ξ| ≤ j

}
and 

∥∥∥[[u]
]
j

∥∥∥
Xj

=
∥∥∥[̂u]

∥∥∥
L2(B(0,j))

; therefore, we can identify 
[
[u]
]
j

with [̂u]
∣∣∣
B(0,j)

. �
E ′(RN

)
is a subspace of FL2

loc, so may ask whether a semigroup {eta(D) : t � 0} in FL2
loc lets E ′(RN

)
be invariant. We provide a sufficient condition for every N and the equivalence only for N = 1. In addition, 
due to the fact that 

(
L2, ‖ · ‖L2

)
↪→ FL2

loc, we provide a complete characterization of the semigroups 
{eta(D) : t � 0} in FL2

loc that let L2(RN
)

be invariant for any N .
If z ∈ CN , then we write z = ξ + iη, with ξ = � z and η = � z in RN .

Theorem 6. Let a(D) be a constant coefficient m-ΨDO with m > 0, ξ �→ a(ξ) is its symbol, and {eta(D) :
t ∈ R} is the group generated by a(D) on FL2

loc

(
RN

)
, according to Proposition 5 (d).

a. Suppose that a(ξ) =
∑

|α|≤m aαξ
α. If m = 1 and � aα = 0 whenever |α| = 1, then

eta(D)(E ′(RN
))

⊂ E ′(RN
)
, for every t ∈ R. (10)

In addition, if N = 1, then the converse holds.
b. If a C > 0 exists such that � a(ξ) ≤ −C|ξ|m whenever |ξ| is sufficiently large, then we have the following 

regularization effect:

eta(D)(E ′(RN
))

⊂ S
(
RN

)
, for all t > 0. (11)

c. We have the following positive invariance:

eta(D)(L2(RN
))

⊂ L2(RN
)
, for all t � 0 (12)

if and only if

sup
ξ∈RN

et� a(ξ) < ∞, for all t � 0. (13)

d. If � a(ξ) � 0 whenever |ξ| is sufficiently large, then (12) holds.

Proof. a. If |α| = 1, then aα = ibj with bj ∈ R for every j = 1, 2, . . . n and

a(D) =
∑

aαD
α = a0 +

n∑
ibj(2πi)−1 ∂

∂xj
,

|α|≤1 j=1
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such that ξ �→ a(ξ) = a0 +
∑n

j=1 ibjξj . Let u ∈ E ′(RN
)
, ξ ∈ RN and t ∈ R, then

F
(
eta(D)u

)
(ξ) = eta(ξ)û(ξ) = eta0

[
e2πi

(
tb
2π
)
·ξû(ξ)

]
= eta0F

(
τ(tb/2π)u

)
(ξ),

where b = (b1, · · · , bn) and τh denotes the translation by h ∈ RN . Hence, (10) holds, eta(D) : E ′(RN
)
→

E ′(RN
)

is well defined and it coincides with eta0 times the translation by tb/2π.
Now, by setting N = 1, we suppose that (10) holds and let u ∈ E ′(R).
First, by the Paley–Wiener–Schwartz theorem, eta(D)u ∈ E ′(R) if and only if F

(
eta(D)u

)
: R → C has 

an analytic extension V = V(t,u) : C → C and the constants C = C(t,u), R = R(t,u) > 0 and L = L(t,u) ∈ N

exist such that

|V (z)| � C(1 + |z|)LeR|	 z|, for every z ∈ C.

Second, C � z �→ a(z) ∈ C is a polynomial, so we deduce that R � ξ �→ F
(
eta(D)u

)
(ξ) = eta(ξ)û(ξ)

admits a unique analytic extension, which is given by

C � z �→ eta(z)û(z) = V (z) ∈ C.

Moreover, 
∣∣F(

eta(D)u
)∣∣ = et� a(z)|û(z)| holds for every t ∈ R and z ∈ C. By combining this with the 

estimate of V , setting u = δ and t = 1, we obtain

e� a(z) � C(1 + |z|)LeR|	 z|, for every z ∈ C, (14)

which holds if and only if the order m of a(z) is equal to 1; otherwise, z �→ � a(z) is a polynomial with 
degree � 2 and onto R, which contradicts (14). Hence, we write a(ξ) = a0 + a1ξ for some a0, a1 ∈ C, and 
we claim that � a1 = 0, based on which the result follows. By (14),

e� a(ξ) = e�a0e�a1 ξ ≤ C(1 + |ξ|), for every ξ ∈ R,

which cannot be true for all ξ ∈ R if � a1 	= 0.
b. Let u ∈ E ′(RN

)
and t � 0, then RN � ξ �→ F

(
eta(D)u

)
(ξ) = eta(ξ)û(ξ) is a C∞ function. By the 

Paley–Wiener–Schwartz theorem,

|F
(
eta(D)u

)
(ξ)| = et� a(ξ)|û(ξ)| ≤ Cu(1 + |ξ|)Luet� a(ξ)

and by hypothesis, the right-hand side of this inequality vanishes at infinity faster than any power of |ξ|. 
Now, it is easy to deduce that ξ �→ F

(
eta(D)u

)
(ξ) is a Schwartz function, and thus (b) follows.

c. For u ∈ L2(RN
)
, eta(D)u ∈ L2(RN

)
if and only if F

(
eta(D)u

)
(ξ) = eta(ξ)û belongs to L2(RN

)
if and 

only if |eta(ξ)û(ξ)| = et� a(ξ)|û(ξ)| belongs to L2(RN
)
.

Suppose that (13) holds. Let u ∈ L2(RN
)

and t � 0, then

∫
RN

e2t� a(ξ)|û(ξ)|2 dξ �
(

sup
ξ∈RN

e2t� a(ξ)

)
‖û‖L2 ,

such that (12) is true. Conversely, suppose that (13) does not hold. Take t � 0, a sequence (ξn)n∈N in RN , 
and a collection of disjoint balls Bn := B(ξn; rn) such that |ξn| → ∞, e2t� a(ξn) � 2n/n and e2t� a(ξ) � 2n/2n
for every ξ ∈ Bn, and for every n ∈ N. Let fn be defined by
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RN � ξ �→ fn(ξ) := 2−n/2

|Bn|1/2
χBn

(ξ),

where χBn
denotes the characteristic function of the set Bn, then the function f :=

∑
n fn belongs to 

L2(RN
)

since

∫
RN

f2(ξ) dξ =
∫
RN

( ∞∑
n=1

f2
n(ξ)

)
dξ =

∞∑
n=1

∫
RN

f2
n(ξ) dξ =

∞∑
n=1

1
2n < ∞.

However, eta(D)f̌ does not belong to L2(RN
)

because

∫
RN

e2t� a(ξ)|f(ξ)|2 dξ =
∞∑

n=1

∫
Bn

e2t� a(ξ)f2
n(ξ) dξ �

∞∑
n=1

1
2n = ∞.

Hence, (12) does not hold for u := f̌ ∈ L2(RN
)
, and thus (c) and (d) follow. �

Therefore, in order to obtain a C0-semigroup on L2(RN
)

that is generated by a linear differential operator 
with constant coefficients, we may replace the spectral conditions in the Hille–Yosida theorem (on Banach 
spaces) by the condition (13).

Proposition 7. Consider the heat equation in RN :{
ut + u = Δu, t > 0

u(0) = u0
. (15)

If u0 ∈ FL2
loc, then the evolution problem (15) can be solved for every t ∈ R in a distributional sense. 

Moreover, if u0 ∈ L2, then this solution extends the analytic semigroup generated by −(1 −Δ) on L2 forward 
in time to a uniformly continuous group on FL2

loc for all of real time.

Proof. First, A := 1 − Δ: H2(RN
)
⊂ L2(RN , C) → L2(RN , C) is a linear operator in L2 and a sectorial 

operator with � σ(A) > 0, and thus −(1 −Δ) generates an analytic semigroup on L2 indicated by {e−At : t ≥
0}. In addition, the fractional power spaces associated with A are the usual Sobolev spaces Hs characterized 
by Bessel potentials: Hs =

{
u ∈ S ′ : (1 + 4π2|ξ|2)s/2û ∈ L2}.

Second, the map ξ �→ a(ξ) := −(1 + 4π2|ξ|2) is the symbol for the 2-ΨDO operator a(D) := −(1 − Δ) :
FL2

loc → FL2
loc, which generates a continuous group on FL2

loc denoted by {ea(D) t : t ∈ R}. In addition, 
by Corollary 6, {ea(D) t : L2 → L2}t�0 is a continuous semigroup.

Thus, we have obtained two semigroups in L2 generated by the heat operator using two different genera-
tion approaches. However, we claim that they are the same semigroup, so the group on FL2

loc extends the 
analytic semigroup defined on L2. Let t > 0 and u0 ∈ L2. First, F

(
e−tAu0

)
= e−(1+4π2|ξ|2) tû0 (as described 

by [9], page 34). Moreover, by the definition of ea(D) t, we may apply the Fourier transform to this group 
to obtain F

(
ea(D) tu0

)
= eta(ξ)û0 and because they are elements of L2, we conclude that both semigroups 

coincide on L2 by the Plancherel theorem. �
An interesting consequence of this proof is that the heat equation (15) can be solved backward in time

for any initial data u0 ∈ L2 ⊂ FL2
loc in a distributional sense. Basically, for u0 ∈ L2, the regularity of e−tAu

has three stages indexed by the time parameter: for t < 0, e−t(1−Δ)u0 ∈ FL2
loc, i.e., the solution backward 

in time belongs to a space of very low regularity; if t = 0, there is nothing to add, where u0 belongs to L2; 
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and for t > 0, e−t(1−Δ)u ∈
⋂

s∈RHs ⊂ C∞, which is the regularization effect forward in time promoted by 
this sectorial operator.

The exponential factor in F
(
e−t(1−Δ)u0

)
= e−(1+4π2|ξ|2) tû0 explains how the regularity of (15) responds 

to the time parameter since∫
RN

e−2t(1+4π2|ξ|2)(1 + |ξ|)2Mdξ < ∞, for t > 0 and M ∈ N,

and

lim
|ξ|→∞

e−2t(1+4π2|ξ|2)(1 + |ξ|)2M = ∞, for t < 0 and M ∈ N.

The key point to note is that the fractional power spaces associated with 1 − Δ are completely charac-
terized by a property that essentially connects Fourier analysis with the usual Hilbert spaces.

Example 1 (The i derivative operator on R). If A = i d
dx : H1 ⊂ L2 → L2, then we cannot solve (2) using the 

mainstream approach of Banach spaces because A does not fulfill the spectral conditions of the Hille–Yosida 
theorem. In addition, a(ξ) = −2πξ is its symbol, so it generates a semigroup {eitd/dx : t � 0} on L2 by 
Theorem 6 (c), which provides its unique solution on L2.

Example 2 (The positive power of the Laplace operator on Rn). Let α > 0. The symbol ξ �→ a(ξ) =
−(4π2|ξ|2)α is associated with the operator −(−Δ)α such that e−t(−Δ)αu ∈ S (Rn) for every t > 0 whenever 
u ∈ E ′(Rn) by Theorem 6 (b).

In particular, the solution of the Cauchy problem{
ut = −(−Δ)αu, t ∈ R

u(0) = δ,

belongs to S (RN ) for every t > 0, where δ denotes the Dirac δ-distribution.

Example 3 (The derivative operator on R). Consider the Cauchy problem{
ut = ux, t ∈ R

u(0) = u0 ∈ C∞
. (16)

Using the mainstream approach, we may impose three restrictions in order to solve (16): i) t � 0; ii) u0
has a derivative u′

0 and both are uniformly bounded continuous functions (we write u0, u′
0 ∈ Cb(R, C)); 

and iii) restrict the domain of A = d
dx so it is a closed densely defined operator on Cb(R, C). Thus, the 

C0-semigroup generated by d
dx is the translation semigroup (see [13]).

Furthermore, we can solve (16) in the (Fréchet) phase space C∞(R, C) without any further assumptions. 
In addition, the group generated by d

dx extends the C0-semigroup above. Let C∞
exp be the set of all functions 

φ ∈ C∞ such that for every m ∈ Z+ and j ∈ N, a constant M = M(φ, m, j) > 0 exists such that

sup
n∈N

sup
|x|�j

∣∣∣∣M−n dn+m

dxn+m
φ(x)

∣∣∣∣ < ∞.

Proposition 8. Every φ ∈ C∞
exp is a real analytic function. Moreover, we have the following:

a. C∞
exp is a dense subspace of C∞(R);
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b. The partial sums SN :=
N∑

n=0

tn

n!
dn

dxn
φ converges in C∞(R) to a function in C∞

exp for every φ ∈ C∞
exp and 

t ∈ R, where its limits are denoted by et
d
dxφ;

c. et
d
dx : C∞

exp → C∞
exp is well defined and it is a bounded linear operator, and thus by density, et d

dx ∈
L
(
C∞(R)

)
;

d. The family of operators {et d
dx : t ∈ R} is a uniformly continuous group on C∞(R) such that(

et
d
dxφ

)
(s) = φ(s + t), for every s ∈ R.

Proof. x �→ e−x2 belongs to C∞
exp, so we may argue that it is a mollifying function to obtain the proof. �

4. Final comments

If X is a Fréchet space and A : X → X is strongly compatible with it, then the operator exp(t A) is also 
strongly compatible and this solves the Cauchy problem{

ut = Au, t ∈ R

u(0) = u0 ∈ X
.

We have established criteria for identifying whether the semigroup generated by a constant coefficient 
m-ΨDO defined on FL2

loc

(
RN

)
acts on L2 and E ′. We also analyzed the regularization of initial data 

backward and forward by the solution group for the heat equation on FL2
loc, which extends the standard 

solution on Hilbert spaces for positive times, and this partially explains the regularization process performed 
by the exponential of the Laplacian operator.

The strong connection between the mainstream approach and the results obtained indicate that we may 
also consider hyperbolicity (see [4]), non-autonomous linear operators A = A(t), the generation of analytic 
semigroups, and semilinear problems. Moreover, it is not clear how the E ′ equipped with its original topology 
is related to its topology as a subspace of FL2

loc.
Our future research will address these problems.
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