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between the global hypoellipticity of P and global subelliptic estimates.
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1. Introduction

This note aims to study the global hypoellipticity of strongly invariant operators defined on a closed 
smooth manifold M . More precisely, consider a linear continuous operator P : D ′(M) → D ′(M) that 
commutes with an elliptic operator E defined on M and assume that the domain of the adjoint operator 
P ∗ contains C∞(M).

The assumption of commutativity introduces on M a Fourier analysis relative to the elliptical operator 
E and the assumption on the domain of the adjoint operator ensures that the Fourier coefficients of Pu are 
the product of its matrix symbol σP by the Fourier coefficient of u ∈ C∞(M). For more details, see Section 
4 of [9].

We recall that an operator L is globally hypoelliptic on M if the conditions u ∈ D ′(M) and Lu ∈ C∞(M)
imply u ∈ C∞(M). This global property has been widely studied on the torus, see [3–7,11–20], and on 
compact Lie groups, see [8,22,23].

The first study on the global hypoellipticity of differential operators that commute with an elliptic 
operator on a closed manifold was presented by S. Greenfield and N. Wallach in 1973, see [14]. More 
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recently, in [9], J. Delgado and M. Ruzhansky have developed a theory on strongly invariant operators 
by obtaining a precise characterization of the necessary and sufficient conditions to construct a consistent 
Fourier analysis with respect to an elliptic operator on a closed manifold. Using this characterization, in [1,2]
was studied the global hypoellipticity in a class of strongly invariant operators with separation of variables 
in a specific Cartesian product of compact manifolds.

In this note, we use the characterization obtained by Delgado and Ruzhansky to characterize the global 
hypoellipticity and to extend the results obtained by Greenfield and Wallach to the context of strongly 
invariant operators defined on a closed manifold.

First, in Section 2, we introduce the notation and the results necessary for the development of this 
note. Next, in Section 3, we present a version, for strongly invariant operators, of Greenfield’s and Wallach’s 
classical theorem, which relates global hypoellipticity of an operator to the behavior of its symbol at infinity. 
As an application, in Section 4, we introduce the notation necessary to translate our main result into the 
context of Lie groups, and we present concrete examples of globally hypoelliptic operators on the sphere 
S3 and the torus T 2. Finally, in Section 5, we study some of the connections between global hypoellipticity 
and the validity of global subelliptic estimates.

2. Fourier analysis associated to an elliptic operator

Let N0 = N ∪ {0}, 〈·, ·〉 be the usual inner product of Cd and M be a d-dimensional closed smooth 
manifold endowed with a positive measure dx. Consider the space L2(M) of square integrable complex-
valued functions on M with respect to dx and denote by Hs(M) the standard Sobolev space of order s on 
M , thus

C∞(M) =
⋂
s∈R

Hs(M) and D ′(M) =
⋃
s∈R

Hs(M).

Following the construction proposed by J. Delgado and M. Ruzhansky (see [9]), we introduce a discrete 
Fourier analysis in M that is associated to an elliptic operator. Let E = E(x, Dx) be a fixed classical positive 
elliptic pseudo-differential operator of order ν ∈ R, then:

1. the eigenvalues of E, counted without multiplicities, form a sequence

0 = λ0 < λ1 < λ2 < . . . −→ ∞; (2.1)

2. for each λj , the eigenspace Eλj
of E has finite dimension dj , Eλj

is a subspace of C∞(M) and

∞∑
j=0

dj(1 + λj)−2n < ∞. (2.2)

3. there is an orthonormal basis {ekj ; 1 ≤ k ≤ dj and j ∈ N0} for L2(M) consisting of smooth eigenfunctions 
of E such that for each j ∈ N0, {e1

j , e
2
j , . . . , e

dj

j } is an orthonormal basis of Eλj
and

L2(M) =
⊕
j∈N0

Eλj
;

4. the Fourier coefficients of f ∈ L2(M), with respect to this orthonormal basis, are given by

f̂(j, k) .=
∫

f(x)ekj (x)dx, 1 ≤ k ≤ dj , j ∈ N0.
M
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We also write f̂(j) =
(
f̂(j, 1), . . . , f̂(j, dj)

)
, j ∈ N0;

5. if u ∈ D ′(M), then û(j, k) .= u(ekj ) and

u =
∑
j∈N0

dj∑
k=1

û(j, k)ekj (x) =
∑
j∈N0

〈û(j), ej(x)〉 ,

where û(j) =
(
û(j, 1), . . . , ̂u(j, dj)

)
and ej(x) =

(
e1
j (x), . . . , edj

j (x)
)
;

6. smooth functions on M are characterized by

f ∈ C∞(M) ⇔ ∀N ∈ N,∃CN > 0,∀� ∈ N, ‖f̂(�)‖ ≤ CN (1 + λ�)−N ; (2.3)

and, by duality, distributions are characterized by

u ∈ D ′(M) ⇔ ∃N ∈ N,∃C > 0,∀� ∈ N, ‖û(�)‖ ≤ Cf(1 + λ�)N . (2.4)

7. for a distribution u ∈ D ′(M) we have

u ∈ Hs(M) ⇔
∞∑
j=0

dj∑
k=1

(1 + λj)2s/ν |û(j, k)|2 < ∞.

The next results and definitions are a consequence of the results and remarks in Section 4 of [9].

Proposition 2.1. Let P : C∞(M) → C∞(M) be a linear operator. If the domain of P ∗ contains C∞(M), 
then the following conditions are equivalent:

(i) For each j ∈ N0, we have P (Eλj
) ⊂ Eλj

.
(ii) For each j ∈ N0 and 1 ≤ k ≤ j, we have PEekj = EPekj .
(iii) For each � ∈ N0 there exists a matrix σ(�) ∈ Cd�×d� such that for all ekj

P̂ ekj (�,m) = σ(�)mkδj�. (2.5)

(iv) For each � ∈ N0 there exists a matrix σ(�) ∈ Cd�×d� such that

P̂ f(�) = σ(�)f̂(�), f ∈ C∞(M). (2.6)

The matrices σ(�) in (2.5) and in (2.6) coincide. Moreover, if P extends to a linear continuous operator 
P : D ′(M) → D ′(M), then the above properties are also equivalent to:

(v) PE = EP on L2(M).

Definition 2.2. If any of the equivalent conditions (i) − (iv) are satisfied, we say that the operator P is 
invariant with respect to E (or simply E-invariant) and its matrix symbol is the sequence σP of matrices 
given by properties (iii) and (iv).

If P extends to a linear continuous operator P : D ′(M) → D ′(M) and satisfies any of the equivalent 
conditions (i) − (v), we say that P is strongly invariant with respect to E.
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Any E-invariant operator P can be written in the following way:

Pf(x) =
∞∑
�=0

d�∑
m=1

(σP (�)f̂(�))mem� (x) =
∞∑
�=0

[
σP (�)f̂(�)

]
e�(x). (2.7)

In particular,

Pekj (x) =
dj∑

m=1
σP (j)mke

m
j (x). (2.8)

Proposition 2.3. Let P be an E-invariant operator with symbol σP satisfying the following property: there 
exist C > 0 and m ∈ R such that

‖σP (�)‖L (Eλ�
) ≤ C(1 + λ�)m/ν , � ∈ N0,

where ‖σP (�)‖L (Eλ�
) denotes the operator norm in Eλ�

. Then, P extends to a bounded operator from Hs(M)
to Hs−m(M), for every s ∈ R.

Let us denote by Σ the class of all matrix symbols, that is,

Σ .= {σ : N0 � � �→ σ(�) ∈ Cd�×d�}.

Definition 2.4. We say that a symbol σ ∈ Σ has moderate growth if there are N ∈ N and C > 0 such that

‖σ(�)‖L (Eλ�
) ≤ C(1 + λ�)N/ν , � ∈ N0. (2.9)

If σ ∈ Σ has moderate growth, the order of σ is defined by

ord(σ) .= inf{N ∈ R; (2.9) holds}.

When the symbol of an E-invariant operator P has moderate growth, we define the order of P as being the 
order of its symbol σP .

In the remainder of this note, we fix on M a classical positive elliptic pseudo-differential operator E =
E(x, Dx) of order ν ∈ R. Moreover, whenever we refer to an invariant (or strongly invariant) operator, it 
shall mean that such invariance occurs with respect to the operator E.

3. Global hypoellipticity for strongly invariant operators

Let P : C∞(M) −→ C∞(M) be a strongly invariant operator. By (2.6), for each � ∈ N0 there exists a 
matrix σP (�) ∈ Cd�×d� such that

P̂ f(�) = σP (�)f̂(�), f ∈ C∞(M). (3.1)

We claim that the relation (3.1) remains valid for elements of D ′(M). Indeed, if u ∈ D ′(M) and {ur}r∈N
is a sequence in C∞(M) such that ur → u in D ′(M), then ûr(j, k) → û(j, k), for any j ∈ N0 and 1 ≤ k ≤ dj .

Since Pur ∈ C∞(M) and Pur → Pu in D ′(M), then for any j ∈ N0 and 1 ≤ k ≤ dj we have 
P̂ ur(j, k) → P̂ u(j, k).
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However, P̂ ur(j, k) = (σP (j)ûr(j))k, therefore ûr(j, k) → û(j, k) and P̂ ur(j, k) → (σP (j)û(j))k. This 
shows that P̂ u(j, k) = (σP (j)û(j))k and thus

P̂ u(�) = σP (�)û(�), for all u ∈ D ′(M). (3.2)

Definition 3.1. An operator P : D ′(M) → D ′(M) is globally hypoelliptic on M if the conditions u ∈ D ′(M)
and Pu ∈ C∞(M) imply that u ∈ C∞(M).

To relate the global hypoellipticity of an operator to the behavior of its symbol at infinity, we introduce 
the following number.

Definition 3.2. Let σ ∈ Σ be a symbol. For each � ∈ N0, we define

m(σ(�)) .= inf{‖σ(�)v‖; v ∈ Cd� and ‖v‖ = 1}.

Theorem 3.3. A strongly invariant operator P : D ′(M) → D ′(M) is globally hypoelliptic if and only if there 
exist constants L, m and R such that

m(σP (j)) ≥ L(1 + λj)m/ν , whenever j ≥ R. (3.3)

Proof. Let u ∈ D ′(M) such that Pu = f ∈ C∞(M). By (3.2) we have

f̂(�) = σP (�)û(�), � ∈ N.

By hypothesis, for each j ≥ R, we have m(σP (j)) �= 0, that is σ(j) is invertible for any j ≥ R, and we 
can write

û(j) = σP (j)−1f̂(j).

Therefore, if j ≥ R,

‖û(j)‖ ≤ ‖σP (j)−1‖ ‖f̂(j)‖ ≤ m(σP (�))−1‖f̂(j)‖ ≤ 1
L

(1 + λj)−m/ν‖f̂(j)‖.

Given N ∈ N, take K ∈ N such that K > N − m
ν . Since f ∈ C∞(M), by (2.3), there is CK > 0 such 

that

‖f̂(j)‖ ≤ CK(1 + λj)−K , j ∈ N0.

Thus, for j ≥ R,

‖û(j)‖ ≤ 1
L
CK(1 + λj)−m/ν−K ≤ CK

L
(1 + λj)−N .

It follows from (2.3) that u ∈ C∞(M), therefore P is globally hypoelliptic.
On the other hand, proceeding by contradiction, we will construct an element f ∈ D ′(M)\C∞(M) such 

that Pf ∈ C∞(M), which will prove that P is not globally hypoelliptic, contradicting the hypothesis.
Suppose that for any L, m, and R, it is possible to find j > R such that

m(σ(j)) < L(1 + λj)m/ν .
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In particular, for L = R = 1 and m = −ν, there is j1 > 1 such that m(σP (j1)) < (1 + λj1)−1, thus there 
exists aj1 ∈ Cdj1 with ‖aj1‖ = 1 and ‖σP (j1)aj1‖ < (1 + λj1)−1.

Next, for L = 1, R = j1 and m = −2ν, there is j2 > j1 such that m(σP (j2)) < (1 + λj2)−2, thus there 
exists aj2 ∈ Cdj2 with ‖aj2‖ = 1 and ‖σP (j2)aj2‖ < (1 + λj2)−2.

Proceeding by induction, we obtain a sequence {ajk}k∈N , with ajk ∈ Cdjk , ‖ajk‖ = 1 and

‖σP (jk)ajk‖ < (1 + λjk)−k, for all k ∈ N. (3.4)

Now define

f
.=

∞∑
�=0

d�∑
m=1

f̂(�,m)em� ,

where

f̂(�) =
{
ajk , if � = jk for some k ≥ 1,
0, otherwise.

Since ‖f̂(�)‖ ≤ 1 ≤ (1 + λ�), for all � ∈ N0, by (2.4) we have f ∈ D ′(M). Moreover, by (2.3) we have 
f /∈ C∞(M) because ‖f̂(jk)‖ = 1, for all k ∈ N.

Now let us prove that Pf ∈ C∞(M). Since P is strongly invariant with respect to E we have

Pf =
∞∑
k=0

djk∑
r=1

P̂ f(jk, r)erjk =
∞∑
k=0

djk∑
r=1

(σP (jk)f̂k(jk))rerjk .

By (3.4) we have

‖P̂ f(jk)‖ = ‖σP (jk)f̂(jk)‖ ≤ (1 + λjk)−k.

Let N ∈ N such that 1 + λjk ≥ 1, for all k ≥ N . Thus for k ≥ N we have

‖P̂ f(jk)‖ ≤ (1 + λjk)−k ≤ (1 + λjk)−N ,

and for k < N we obtain

‖P̂ f(jk)‖ ≤ (1 + λjk)−k = (1 + λjk)N−k(1 + λjk)−N , k ∈ N.

Setting CN
.= max{(1 + λjk)N−k : 1 ≤ k ≤ N}, then

‖P̂ f(jk)‖ ≤ CN (1 + λjk)−N , k ∈ N.

Thus, by condition (2.3), Pf ∈ C∞(M), which finishes the proof. �
Definition 3.4. The exponent of hypoellipticity of a globally hypoelliptic operator P , denoted h(P ), is the 
supreme of all m ∈ R such that the condition (3.3) is satisfied. If P is not globally hypoelliptic, we set 
h(P ) .= −∞.

Remark 3.5. If P is a globally hypoelliptic invariant operator, then the property (3.3) holds for all m ≤ h(P ). 
In particular, if P has order N , then h(P ) ≤ N .
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4. Compact Lie groups

Let G be a compact Lie group and g its Lie algebra. By Theorem 3.6.2 of [10], g can be written as

g = g′ ⊕ z,

where g′ is a Lie subalgebra of g on which the Killing form is negative definite, and z is the kernel of the Killing 
form. Let 〈·, ·〉

g′ be the inner product induced by the Killing form and let {Y1, . . . , Yn} be a orthonormal 
basis of g′. For z, choose any inner product Ad–invariant and consider {Z1, . . . Zm} an orthonormal basis of 
z. Observe that the sum of these inner products is an inner product Ad–invariant on g, denoted by 〈·, ·〉

g
, 

and we have that B = {Y1, . . . , Yn, Z1, . . . , Zm} is an orthonormal basis of g. One can shows that

LG = −
n∑

i=1
Y 2
i −

m∑
j=1

Z2
j ,

is the Laplacian-Beltrami operator on G for the metric induced by 〈·, ·〉
g
. Notice that

LG = Ω −
m∑
j=1

Z2
j ,

where Ω is the Casimir element of g, which implies that LG commutes with any element of g. Let Ĝ be 
the set of equivalence classes of irreducible continuous unitary representations of G. Since G is compact 
we have Ĝ is a discrete set. Furthermore, for each equivalence class [ξj ] ∈ Ĝ we may pick a matricial 
representation ξj : G → Cdξ×dξ as representative. We have that the matrix elements of ξ are eigenfunctions 
of LG associated to the same eigenvalue that we will denote by −λ2

[ξj ], so

LG(ξj)mn = −λ2
[ξj ](ξj)mn, 1 ≤ m,n ≤ dξj .

Set

{ekj }1≤k≤dj
=

{√
dξj (ξj)mn

}
1≤m,n≤dξj

,

where dj := d2
ξj

and k represents an entry of the matrix (ξj) following the lexicographical order:

(m,n) ≤ (m′, n′) ⇐⇒ m < m′ or {m = m′ and n ≤ n′}.

Then we have the subspaces

Hj ≡ H[ξj ]
.= span{ekj ; 1 ≤ k ≤ j} = span{(ξj)mn; 1 ≤ m,n ≤ dξj}.

By Peter-Weyl theorem, we have that {ekj }1≤k≤j is an orthonormal basis of L2(G) with the norm induced 
by the normalized Haar measure of G.

We point out that the condition (2.1) may not be satisfied because it can occurs λ[ξj ] = λ[ξj′ ] for j �= j′. 
Since the eigenspaces of the Laplacian LG are finite dimensional, a same eigenvalues can repeat only for 
finitely many representations and so this is not a problem for the results obtained.
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Let P : D′(G) → D′(G) be a left-invariant operator on G. In Section 6 of [9] the authors show that

σP (j) =

⎛⎜⎜⎜⎜⎝
τP (ξj) 0 · · · 0

0 τP (ξj) · · · 0
...

...
. . .

...
0 0 · · · τP (ξj)

⎞⎟⎟⎟⎟⎠ ∈ Cdj×dj

satisfies the conditions (iii) and (iv) of Proposition 2.1, where each element τP (ξj) ∈ Cdξj
×dξj has compo-

nents τP (ξj)mn = (Pξjmn
)(e), 1 ≤ m, n ≤ dξj , and e is the unit element of G. Therefore P is a strongly 

invariant operator on G with respect to LG.
Assume that τP (ξj) is a diagonalizable matrix, for each j ∈ N0. Setting λr(ξj) the eigenvalues of τP (ξj), 

1 ≤ r ≤ dξj , counted with multiplicity, we have that

m(σP (j)) = m(τP (ξj)) = min
1≤r≤dξj

|λr(ξj)|.

By Theorem 3.3, the left-invariant operator P is globally hypoelliptic if and only if there exist constants L, 
N and R such that

|λr(ξj)| ≥ L 〈ξj〉N , for all 1 ≤ r ≤ dξj , whenever j ≥ R,

where 〈ξj〉 .= (1 + λ2
[ξj ])

1/2.

Example 4.1. Let X ∈ g, q ∈ C, and consider the operator

P = X + q.

Here X acts on functions as

Xf(x) = d
dtf(x exp(tX))

∣∣∣∣
t=0

,

and it extends naturally to distributions as

〈Xu, f〉 .= −〈u,Xf〉 .

We have that τX(ξj) is diagonalizable for every j ∈ N0 and its eigenvalues can be written as iλr(ξj), 
with λr(ξj) ∈ R, for all j ∈ N0, 1 ≤ r ≤ dξj (see Remark 10.4.20 of [21]).

Thus, P is globally hypoelliptic if and only if there exist constants L, N and R such that

|λr(ξj) − iq| ≥ L 〈ξj〉N , for all 1 ≤ r ≤ dξj , whenever j ≥ R.

In particular, when q ∈ R \ {0}, the operator P = X + q is globally hypoelliptic in G.

Example 4.2. When G = S3 we can identify Ŝ3 with 1
2N0 and the symbol of the neutral operator ∂0 can be 

expressed as

τ∂0(�) = imδmn,

for all � ∈ 1N0, −� ≤ m, n ≤ �, � −m, � −n ∈ N0. Here, the dimension of each eigenspace is d� = 2� +1 and
2
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〈�〉 =
√

1 + �(� + 1) ∼ 1 + �.

Hence, the operator P = ∂0 + q is globally hypoelliptic if and only if there are constants L, N, R such 
that

|m− iq| ≥ L(1 + �)N ,

for all −� ≤ m ≤ �, � −m ∈ N0, whenever � ≥ R.
Therefore P is globally hypoelliptic if and only if q /∈ i1

2Z, recovering the results from [22].
Consider now the operator P = −LG + ∂2

0 . As discussed before, we have that

τP (ξj)mn = (�(� + 1) −m2)δmn.

Notice that �2 −m2 ≥ 0, so

|�(� + 1) −m2| ≥ �, for all − � ≤ m ≤ �, � ∈ 1
2N.

By Theorem 3.3 we conclude that P is globally hypoelliptic with h(P ) = 1. On the other hand, for the 
operator P = −LG − 2∂2

0 we have

τP (ξj)mn = (�(� + 1) − 2m2)δmn.

Solving the equation �2 + � − 2m2 = 0 on �, we obtain

� = −1 +
√

1 + 8m2

2 ,

which lead us to the Pell’s equation u2−8m2 = 1. Notice that (u1, m1) = (3, 1) is a solution of this equation. 
Moreover, {

uk+1 = 3uk + 8mk

mk+1 = 3mk + uk

is also solution of u2 − 8m2 = 1, for all k ∈ N. We have � ∈ N because uk is even, for any k ∈ N, and 
we have m ≤ �. Therefore, the operator P is not globally hypoelliptic because its symbol is singular for 
infinitely many indexes.

Example 4.3. Let G = T 2(∼= R2/Z2) be the two-dimensional torus. Since the eigenfunctions of the Laplacian 
operator are

(t, x) ∈ T 2 �→ (2π)−2e2πi(ξt+ηx), with (ξ, η) ∈ Z2,

denoting by H(ξ,η)
.= span{e2πi(ξt+ηx)}, we have that

L2(T 2) =
⊕
�∈N0

E�, where each E�
.=

⊕
ξ2+η2=�

H(ξ,η).

Finally, from Remark 2.6 of [9], invariant operators relative to {H(ξ,η)} are also invariant operators 
relative to {E�}.



10 A. Kirilov, W.A.A. de Moraes / J. Math. Anal. Appl. 486 (2020) 123878
Consider now the operator

P = ∂t + c∂x, with c ∈ C

Clearly PLT2 = LT2P and P is a strongly invariant operator with (matrix) symbol

τP (ξ, η) = i(ξ + cη) ∈ C, (ξ, η) ∈ Z2

Since dH(ξ,η) = 1 and

〈(ξ, η)〉 =
√

1 + ξ2 + η2 ∼ (1 + |ξ| + |η|),

then P = ∂t + c∂x is globally hypoelliptic in T 2 if and only if there are constants C, N, R such that

|ξ + cη| ≥ C(1 + |ξ| + |η|)N , whenver |ξ| + |η| ≥ R. (4.1)

When Im(c) �= 0 the condition (4.1) is satisfied because we have |ξ + cη| ≥ C, where C = max{1, Im(c)}, 
whenever (ξ, η) �= (0, 0). If c ∈ Q, we obtain infinitely many pairs (ξ, η) ∈ Z2 such that |ξ+ cη| = 0, so there 
is no R satisfying (4.1). Finally, for c ∈ R \Q the condition (4.1) is equivalent to say that c is an irrational 
non-Liouville number.

Therefore, P is globally hypoelliptic if and only if either Im(c) �= 0 or c is an irrational non-Liouville 
number.

5. Global subelliptic estimates

We denote by kerP the kernel of a linear operator P : D ′(M) → D ′(M), and by (kerP )Hs the kernel of 
P in Hs(M) which naturally inherits a Hilbert space structure from Hs(M).

Lemma 5.1. Let P be a strongly invariant operator of order d > 0. If kerP ⊂ C∞(M) then the dimension 
of kerP is finite.

Proof. By Corollary 2.3, P extends to a continuous linear operator from Hs(M) to Hs−d(M), for every 
s ∈ R. Let i : Hs(M) → Hs−d(M) be the natural injection, then i maps (kerP )Hs onto (kerP )Hs−d , since 
kerP ⊂ C∞(M). It follows from the Rellich-Kondrachov Lemma that the inclusion i : Hs(M) ↪→ Hs−d(M)
is compact, therefore kerP = (kerP )Hs = (kerP )Hs−d is finite-dimensional. �
Proposition 5.2. Let P be a strongly invariant operator. Then, for all j ∈ N, there exists Cj > 0 such that

‖σP (j)f̂(j)‖ ≥ Cj‖f̂(j)‖, for all f ⊥ (kerP )Hs .

Proof. First, note that if f ⊥ (kerP )Hs and f̂(j) �= 0, for some j ∈ N, then

‖σP (j)f̂(j)‖ �= 0.

Indeed, suppose that there are j0 ∈ N and f0 ⊥ (kerP )Hs such that ‖σP (j0)f̂0(j0)‖ = 0 and f̂0(j0) �= 0. 
Note that

f |Eλj0
=

dj0∑
f̂(j0, k)ekj0
k=1
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and, by construction, Pf |Eλj0
= (σP (j0)f̂0(j0))�ej0 = 0.

This way, f |Eλj0
∈ kerP and 〈f, f |Eλj0

〉Hs = 0, since f ⊥ kerP . So f̂(j0) = 0, which leads us to a 
contradiction.

Now we prove the proposition. Fixed j ∈ N, suppose by contradiction that there is a sequence of functions 
fk ⊥ (kerP )Hs such that f̂k(j) �= 0 and

‖σP (j)f̂k(j)‖ ≤ 1
k
‖f̂k(j)‖, k ∈ N.

Thus, for hk = 1
‖f̂k(j)‖

dj∑
r=1

f̂k(j, r)erj we have hk �= 0 and

‖σP (j)ĥk(j)‖ ≤ 1
k
. (5.1)

Moreover

‖hk‖2
t =

dj∑
r=1

(1 + λj)2t/ν |ĥk(j, r)|2 = dj(1 + λj)2t/ν , k ∈ N0.

Thus, the sequence {hk}k∈N is limited in Ht(M), for all t ∈ R. From the Rellich-Kondrachov Lemma, 
we have that {hk} has, for every t ∈ R, a convergent subsequence. In particular, by also denoting {hk} the 
convergent subsequence, there exists g ∈ Hs(M) such that hk → g in Hs(M), which implies that

‖g‖s =
√

dj(1 + λj)s/ν . (5.2)

Since hk ⊥ kerP , for each k ∈ N, we obtain g ⊥ kerP . By continuity of P , we have Phk → Pg. By (5.1), 
we have Phk → 0. Thus, Pg = 0 and g ∈ kerP . Therefore, g = 0, which contradicts (5.2). �

For the next result let us recall that the exponent of hypoellipticity h(P ) of a globally hypoelliptic 
operator P , is the supreme of all m ∈ R such that

m(σP (j)) ≥ L(1 + λj)m/ν , whenever j ≥ R,

where the constants L, m and R are given by Theorem 3.3.

Proposition 5.3. Let P be a strongly invariant operator. If P is globally hypoelliptic, then there is C > 0, 
such that, for all m < h(P ), we have

‖Pf‖s ≥ C‖f‖s+m, for all f ⊥ (kerP )Hs . (5.3)

Proof. Since P is globally hypoelliptic, by Theorem 3.3 and Definition 3.4, for m < h(P ), there are L > 0
and R ∈ N such that

m(σP (j)) ≥ L(1 + λj)m/ν , for all j ≥ R.

And by Theorem 5.2, for each j ∈ N, there is Cj > 0 such that

‖σP (j)f̂(j)‖ ≥ Cj‖f̂(j)‖, for all f ⊥ (kerP )Hs .

Thus
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‖Pf‖2
s =

∞∑
j=0

(1 + λj)2s/ν‖σP (j)f̂(j)‖2

≥
R−1∑
j=1

(1 + λj)2s/νCj‖f̂(j)‖2 +
∞∑

j=R

(1 + λj)2s/νL2(1 + λj)2m/ν‖f̂(j)‖2

≥ C̃2
R−1∑
j=1

(1 + λj)2(s+m)/ν‖f̂(j)‖2 + L2
∞∑

j=R

(1 + λj)2(s+m)/ν‖f̂(j)‖2

≥ C2
∞∑
j=1

(1 + λj)2(s+m)/ν‖f̂(j)‖2 = C2‖f‖2
s+m,

where C̃
.= min{Cj(1 + λj)−m/ν ; 1 ≤ j < R} and C

.= min{C̃, L} > 0. �
The last proposition gives a necessary condition for the global hypoellipticity of strongly invariant op-

erators on M . On the other hand, it is easy to prove that if inequality (5.3) holds for any m > 0 and 
kerP ⊂ C∞(M), then this condition is also sufficient. Therefore, given its importance, we shall highlight 
this condition for further reference:{

kerP ⊂ C∞(M) and ∃C > 0 such that, if m > 0 and s ∈ R

then ‖Pf‖s ≥ C‖f‖s+m, for all f ⊥ (kerP )Hs .
(5.4)

Proposition 5.4. Let P be a strongly invariant operator of order d and m > 0. Then P satisfies (5.4) if and 
only if there is a constant K > 0 such that

‖f‖s+m ≤ K(‖f‖s + ‖Pf‖s), f ∈ C∞(M). (5.5)

Proof. Sufficiency. Recall that P extends to a continuous linear operator on all Sobolev spaces. Therefore, 
if f ∈ C∞(M), we can write f = f1 + f2, with f1 ∈ (kerP )Hs and f2 ⊥ (kerP )Hs . Thus, Pf = Pf2 and 
‖f‖2

s = ‖f1‖2
s + ‖f2‖2

s. In particular, ‖f‖s ≥ ‖f1‖s.
Since kerP ⊂ C∞(M), by Lemma 5.1, the dimension of kerP is finite and all the norms on kerP are 

equivalent. Therefore, there is K1 > 0 such that

‖g‖s+m ≤ K1‖g‖s, g ∈ kerP.

By (5.4), we have ‖Pf2‖s ≥ C‖f2‖s+m, thus

‖f‖s+m ≤ ‖f1‖s+m + ‖f2‖s+m ≤ K1‖f1‖s + C−1‖Pf2‖s
≤ K1‖f‖s + C−1‖Pf‖s ≤ K(‖f‖s + ‖Pf‖s).

Necessity. Let f ∈ D ′(M) such that Pf = 0. Since D ′(M) =
⋃

s H
s(M), then we have f ∈ Hs(M) for some 

s ∈ R. By (5.5) we have f ∈ Hs+m(M) and replacing s by s +m we get f ∈ Hs+2m. By induction we have 
f ∈

⋂
s H

s(M) = C∞(M), hence kerP ⊂ C∞(M).
Now, assume that the inequality (5.4) is not valid, then it is possible to obtain a sequence of functions 

fj ⊥ (kerP )Hs such that ‖fj‖s+m = 1, for all j ∈ N and ‖Pfj‖s → 0, as j → ∞.
By the Rellich-Kondrachov Lemma, {fj} has a convergent subsequence fjk → g in Hs(M) and, by 

continuity, we have Pfjk → Pg in Hs−d(M). Since ‖Pfj‖s → 0, we have ‖Pfj‖s−d → 0, therefore Pg = 0
and g ∈ kerP . However, fj ⊥ (kerP )Hs and fj → g ∈ Hs(M), hence g ⊥ (kerP )Hs .
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In this way, we have g ∈ (kerP )Hs ∩ (kerP )⊥s , which implies that g = 0. On the other hand, by (5.5), 
1 = ‖fj‖s+m ≤ K(‖fj‖s + ‖Pfj‖s). When j → ∞ we have 1 ≤ K‖g‖s = 0, which is a contradiction. So the 
inequality (5.4) is true. �
Proposition 5.5. Let P be a strongly invariant operator of order d ≥ 0 and m > 0. Then (5.5) implies that

{
kerP ⊂ C∞(M) and P (C∞(M)) is closed
in C∞(M) with the D ′(M) relative topology,

(5.6)

that is, if fj , g ∈ C∞(M) and Pfj → g in Hs(M), for some s ∈ R, then g = Ph, for some h ∈ C∞(M).

Proof. By using the same arguments from the proof of Proposition 5.4, we have kerP ⊂ C∞(M). So, let 
us show that P (C∞(M)) is closed in C∞(M) with the D ′(M) relative topology.

Let fj , g ∈ C∞(M) such that Pfj → g in Hs(M), then we can assume that fj ⊥ (kerP )Hs , for all j ∈ N. 
Indeed, for each fj ∈ C∞(M) we can write fj = f1j + f2j , with f1j ∈ (kerP )Hs and f2j ⊥ (kerP )Hs . Since 
kerP ⊂ C∞(M) and fj ∈ C∞(M), we have f2j ∈ C∞(M) and Pf2j = Pfj → g.

Let us treat the cases when {‖fj‖s} is bounded and when {‖fj‖s} is unbounded separately.
First assume that {‖fj‖s} is bounded. Since {Pfj} is convergent in Hs(M), the sequence {‖Pfj‖s} is 

bounded and, by (5.5), we have that {‖fj‖s+m} is bounded. Thus, by the Rellich-Kondrachov Lemma, the 
sequence {fj} has a convergent subsequence in Hs(M), which we continue to denote {fj}. Let h ∈ Hs(M)
such that fj → h in Hs(M), by continuity of P , we have Pfj → Ph in Hs−d(M). Since Pfj → g in Hs(M)
and d ≥ 0, then s − d < s and we have Ph = g.

Finally, by (5.5), ‖h‖s+m ≤ K(‖h‖s + ‖Ph‖s) = K(‖h‖s + ‖g‖s). Thus, h ∈ Hs+m(M). By induction we 
have h ∈

⋂
s H

s(M) = C∞(M).
Now, assume that {‖fj‖s} is unbounded. Then it is possible to obtain a subsequence, which we continue 

to denote {fj}, such that ‖fj‖s → ∞.
Since {‖Pfj‖s} is bounded, because Pfj → g in Hs(M), setting f̃j = fj/‖fj‖s we have

‖P f̃j‖s = ‖Pfj‖s
‖fj‖s

−→ 0.

By (5.5), ‖f̃j‖s+m ≤ K(‖f̃j‖s + ‖P f̃j‖s), which implies that {‖f̃j‖s+m} is bounded. Now, by the Rellich-
Kondrachov Lemma, this sequence has a convergent subsequence in Hs(M), which we continue to denote 
by {f̃j}. Thus, f̃j → t ∈ Hs(M) and Pt = 0, hence t ∈ kerP .

However, f̃j ⊥ kerP in Hs(M), thus t ⊥ kerP and t = 0. Moreover

‖t‖s = lim
j→∞

‖f̃j‖s = 1,

which contradicts the statement of t = 0. Then {‖fj‖s} must be bounded, once we take it as perpendicular 
to kerP . �
Theorem 5.6. Any strongly invariant operator P , defined on M , satisfying condition (5.6) is globally hypoel-
liptic.

Proof. Let P be a strongly invariant operator on M and assume that Pf = g ∈ C∞(M), with f ∈ D ′(M). 
Since D ′(M) =

⋃
s H

s(M), then f ∈ Hs(M), for some s ∈ R. By density, we obtain a sequence {fj}j in 
C∞(M) such that fj → f in Hs(M), and therefore Pfj → Pf = g in Hs−d(M). Thus, by (5.6), there is 
h ∈ C∞(M) such that Ph = g and P (f − h) = Pf − Ph = g − g = 0, that is, f − h ∈ kerP .
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Since kerP ⊂ C∞(M), we have f − h ∈ C∞(M). Thus, f = (f − h) + h ∈ C∞(M) and P is globally 
hypoelliptic. �
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