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We consider the stationary processes that have completely monotone autocovari-
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1. INTRODUCTION

Let (X)) = (X,:t € R) be a real, centered, mean-continuous, weakly
stationary process defined on a probability space (Q,.%, P), which we shall
simply call a stationary process. We write R(-) for the autocovariance
function of (X,):

R(t) = E[X,X,] (t€<R).

This paper is concerned with the asymptotic behavior of the prediction
error of (X,). We are especially interested in the case in which R(-) is
regularly varying with negative index; that is,

-p

R( A1)
VA > 0, lim =
t— o0 R(f)

for some p > 0 (see Bingham et al. [1]). This implies that R(z) is “close” to
the power function 77 with negative index for large t.
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Let H be the closed real linear hull of {X,:s € R} in L*(Q,4, P).
Then H is a real Hilbert space with inner product (Y;,Y,) == E[Y,Y,] and
norm ||Y|| == (Y,Y)"2 For I c R, put H, for the closed subspace of H
spanned by {X| : s € I}, and P, for the orthogonal projection operator of
H onto H,. We write P, for the projection operator onto the orthogonal
complement H;* of H,;ie., P,"Y =Y — P,Y for Y € H. Then, for T > 0
and ¢ > 0, the projection P,_, ;X7 may be regarded as the best linear
predictor of X7 on the observations {X, : —t <s < 0}; hence P2, ;X7 =
X; — P_, ¢ X7 as its prediction error. Similarly, P2, ;X may be re-
garded as the prediction error for the prediction of X, on the observa-
tions {X, : —» <s < 0}.

We define

Ve(t) =[P o Xe || = |PEeXe|” (T >0, 0).

After preliminary investigations, we reached the working hypothesis that,
for a wide class of (X,), regular variation of R(-) would imply the
asymptotic formula

Vﬂt)~fi{%} ds-{jOTC(s)ds} (1 > %), (1.1)

where C(-) is the canonical representation kernel of (X,) (see (2.1) below).

In [7], (1.1) is proved for a special stationary process that has a spectral
density proportional to [£]"? /(1 + ¢?) (0 < g < 1). The proof is by an
explicit calculation of IIP[£ Z,O]XTII using techniques in [2], and is not
applicable to general stationary processes. Recently, one of the authors
proved an analogue of (1.1) for discrete-time stationary processes in [6],
under some assumptions (on the AR(w)-coefficients and MA()-coeffi-
cients). The present paper arose from an attempt to prove (1.1) by a
continuous-time analogue of the method of [6]. Because of difficulties
which are proper to continuous-time processes, it is still difficult to fully
achieve this attempt. However, we have at least one nice class of stationary
processes to which we can apply the method. It is the class of stationary
processes with reflection positivity, that is, those with completely monotone
autocovariance functions.

A stationary process with autocovariance function R(:) is said to have
reflection positivity, or simply (RP), if there exists a finite Borel measure o
on (0, %) such that

R(t) = f:e"’“(r(d/\) (1 € R). (1.2)
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For example, the stationary processes with R(¢) = (1 + [¢)77, for 0 < p <
oo, satisfy (RP) (see Section 4). We refer to, e.g., [3-5, 9, 11] for earlier
work on stationary processes with (RP). We may say that the class of
stationary processes with (RP) has the advantage that it is especially suited
for asymptotic analysis. The purpose of this paper is to establish the
formula (1.1) for the class.

To state the results, we recall some notation from regular variation
theory. We write %, for the class of slowly varying functions at infinity:
the class of positive, measurable /, defined on some neighborhood [ A4, «)
of infinity, such that

VA > 0, limZ(Ax) /7 (x) = 1.

Let /€%, and choose B so that Z(-) is locally bounded on [ B, ) (cf. [1,
Corollary 1.4.2]). When we say [*/(s) ds /s = =, it means that [;/(s)ds /s
= oo, If so, then we define another slowly varying function # by

/(x) = [:/(S)

B
S ds (x=B)

(see [1, Sect. 1.5.6]). The asymptotic behavior of / (x) as x — % does not
depend on the choice of B because we have assumed [*/(s)ds/s = o.
Here is the main theorem.

THEOREM 1.1. Let T > 0, p > 0, and / € %,. Let (X,) be a stationary
process with (RP). We assume

R(t) ~t77/(t) (t > x). (1.3)
() If 0<p<1,then

1-p)’ ’
V(1) ~17! (T : {f()TC(s)ds} (t > ).
) Ifp=1and [*/(s)ds/s = =, then
L[\ ’
V() ~t 1{%} {[0 C(s)ds} (t > ).
(iii) Ifeither 1 <p <worp=1and [*/(s)ds/s < =, then
Cr /(1))

V(1) ~ 2 DR : {/0 C(s)ds} (t > ).
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We remark that (i)—(iii) above correspond to the following cases, respec-
tively: (0) [FR(¢#)dt = @ and 0 < p < 1,(Gi) [7 R(t)dt = © and p = 1, (iiiY
JoR(t) dt < . Stationary processes that satisfy (1.3) with 0 <p < 1 are
called long-memory processes. We see that the result (i) for long-memory
processes is especially simple; in this case, the index over ¢ is —1, and so
does not depend on p, and the slowly varying function Z(-) has even
disappeared.

We can state the results (i)—(iii) above more simply as follows:

THEOREM 1.1 Let p >0, T >0, and /€ %,, and let (X,) be a
stationary process with (RP). Then (1.3) implies (1.1).

We comment on the method of the proof of Theorem 1.1. We define,
fort>0and n =1,2,...,

P! =P_., ifnisodd, = P, if n is even.

[=,%)

Then, for t > 0, T > 0, and n > 2, repeated use of the orthogonal decom-
positions

1 _ 1 L _ 1L 1
Prig=FPegt Prigfwg=Pris t Pl (1.4)

yields
n—1 2
”P[fz,mXT”2 =||P<foc,01XT||2 + kZ “(szH)LPtk o Pl X ”
=1

+| Pt P PX (1.5)

(compare [6, (4.2)]). If we set

n 2
up) =[Py e Pix, | (n=1,2,.00),
Zp(t) =| Pt P PX (n=1,2,...),

then, from (1.5), we have

Vo) = X UK + Z30). (1.6)
k=1

Equation (1.6) suggests that the problem of V;(¢) could be reduced to that
of UX(t) if we could show that Z(¢) is small enough in a proper sense.
The advantage here is that U;(¢) (n = 1,2,...) are easier to handle than
V;(¢). This is because Uj'(¢) are defined only in terms of the projection
operators P _,. ; and P,_, ., which are much easier to handle than P,_, (.
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To prove (ii) and (iii) of Theorem 1.1, it is enough to use (1.6) with only
n = 2. Indeed, in this case, we can show that V,(¢) ~ U}(t) as t — «. The
proof of (i) is much harder; in this case, Uj(¢) for n > 2 are not negligible
since they turn out to have the same order of asymptotics as that of U}(z).
In order to prove (i), we must determine the asymptotic behavior of Uj(t)
for every n > 1.

To follow the line above, we need the representation of P_,. (X, in

terms of {X;: —o <X, <0}. It is at this point where the difficulties
proper to continuous-time processes arise. Formally, the representation
would be of the form [jk,(s)X_,ds with some kernel k(). Wiener
tackled this problem earlier in [13] and formally gave a formula identifying
k,(-) in terms of the outer function of the stationary process (see [2, Sect.
4.4]). However, the derivation is purely formal [2, p. 92]. In Section 2, we
establish a representation theorem of this type for stationary processes
with (RP) using the assumption (RP) essentially.

2. PROJECTION

In what follows, throughout this paper, we assume that the autocovari-
ance function R(-) of (X,) is of the form (1.2) with a finite Borel measure
o on (0,%). Then we know that (X,) is purely nondeterministic: N, H_.. ,,
= {0}. Let A(-) be the spectral density of (X,): R(t) = [* e "*A(£)d¢
for ¢t € R. It follows that {log A(£)}/(1 + £2) € LY(R). We write h(-) for
the outer function of (X,):

1 = 14+ &z logA(¢)
h(z) = mexp{sz_m N

df} (3z>0).
The canonical representation kernel C(+) of (X,) is defined by
1 =
C(t) == [ e "h(¢)dé (2.1)
27T — o

in the L*(R)-sense, where h(-) = Lim.,  , h(-+ in) € L*(R). The kernel
C(-) vanishes on (—,0) and satisfies the following equalities:

h(z) = [ e#C(r) de (32> 0), (2.2)
0
R(t) = /:C(t +5)C(s)ds (1> 0). (2.3)

See, e.g., [2; 9, Sect. 2; 12] for details.
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By [10, Theorem A; 4, Theorems 2.4 and 2.5], there exists a unique Borel
measure v on (0, ) such that

w 1
h(z)=f0 ——v(d)) (3z2>0), o

o]

/o fow A i 7 V(AN v(dX) <.

It follows that the canonical representation C(-) of (X,) admits the
following representation:

C(t) = I(O,w)(t)f:e*”‘v(d)\) (1€ R).

By (2.4) as well as [8, Theorems S1.5.1, S1.5.2 and Lemma S.1.5.2],
1/h(z) admits the representation

1 ® 1
=b —iaz — i —7(dA Sz > 0), 2.5
=) iaz zz/o ()\—iz)/\T( ) (J3z>0), (25
where a > 0, b > 0, and 7 is a Borel measure on (0, ) such that
[ dM) < oo,
fo 1+ ay T <

We note that the triple (a, b, 7) is determined uniquely by A(-), hence by
(X,). We define

G(1) = f:eﬂ)rlf(d)\) (1> 0).

Given a measurable function f: (0,0) - R, we define its Laplace
transform

foy = [ e (1) de

for x > 0 such that the integral converges absolutely. It follows from (2.2)
and (2.5) that

C(x){b+ax +xG(x)} =1 (x> 0). (2.6)
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This implies
t t
aC(1) +b[ C(s)ds + [ G(s)C(t =s)ds =1 (£>0) (2.7)
0 0

since the Laplace transforms of both sides coincide by (2.6).
We set

A() = [ee(dh) (1> 0).
0
Then A(t) = —G(¢) for every t > 0. For ¢ > 0, we define
K(s) = [A(s +w)C(t —u)ydu (s> 0).
0
As (2.7) implies [(K[(s)ds = [(G(s)C(¢t — s)ds < 1, K,(-) is integrable on

(0, ) for every t > 0.
Here is the representation of P_., (X, in terms of {X,: - <s <0}

THEOREM 2.1. For t > 0, we have
P X, = aC(1) X, +f0 K,(s)X_,ds, (2.8)

where the integral converges absolutely in H.

Proof.  Let

X,= [ Clu-s)eds) = [ Clu-s)eds)  (weR) (29)

be the canonical representation of (X,) (see, e.g., [12, Chap. III, Sect. 3]).
Define the linear map T: L*(R) — H by

1= f(=9)Eds)  (feLX®). (2.10)

Then T is a Hilbert space isomorphism of L*(R) onto H; for example, the
representation (2.9) implies that 7 is onto. From (2.9) we see that
(T7'X,)(-) = C(u + ). Moreover, since P, oIf = [%.f(=s)é(ds), we
have

(TﬁlP(—oc,O]Tf)(”) = I,(u) f(u) (feLX(R)); (2.11)

in particular, (T~'P_ . o X)) = I, . (u)C(t + - ). Thus, (2.8) follows if we
prove

Lo o(u)C(t +u) =aC(t)C(u) + fOOOKt(s)C(u —s)ds (u € R).
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However, since both sides of the equality above vanish for u < 0, it is
enough to prove

C(t+u) =aC(t)C(u) + /uK,(s)C(u —s)ds (u>0). (2.12)
0
Let x > 0. Then by (2.6) and the equalities

/:e*x“C(t + u) du =x/:oe”{jtt+SC(u) du} ds,

GA(x)f:e*”C(t +u)du = /{)we”{f(:G(u)C(t +s—u) du} ds,

the Laplace transform (e **C(t 4+ u) du is equal to
é(x){b + ax + xGA(x)}/:e*x“C(t +u) du = xC(x)F(x),
where
F(s) = bC(t +5) + a/;HSC(u) du + fOSG(u)C(t + 5 — u) du.
On the other hand, it follows from integration by parts that

K,(x) = /(:G(u)C(t —u)du —xf:e”{j;G(s +u)C(t —u) du} ds

=xf0we“{f0tG(u)C(t —u)du — /;t+SG(u)C(t +5—u) du} ds,

so_that the Laplace transform of the right-hand side of (2.12) is equal to
xC(x)H(x), where

H,(s) = bC(t) + [ G(u)C(t —u)du — [ G(u)C(t + 5 — u) du.
0

N

However, we have from (2.7) that F,(s) = H,(s) for every s > 0, and so the
uniqueness of Laplace transforms implies (2.12). |

COROLLARY 2.2. Lett > 0,T >0, and n € N.
(1) If nis odd, then we have

P PIXp = [ ds Kp(t+5,) [ ds, K, (¢ +5,)
O 0

(mod H[—t,()])'

n

fo Kx”_l(t +s”)X_l_S” ds



ASYMPTOTICS FOR PREDICTION ERRORS 307

(i) If n is even, then we have

P! PlXp = f ds; Kr(t + Sl)/ dsy K, (t +5,)
0 0

fo K, (t+s,)X, ds, (mod H[—t,()])'
Proof. 1t follows from Theorem 2.1 that, for u > 0,
PugX, = fo K(t+s)X_,_,ds (modH_,,). (2.13)

Let S, (v € R) and 0 be the Hilbert space automorphisms of H such that
S(X)=X,.,, 0(X,) =X_, for every s € R. Then we have

S;t=S_,, 60'=0, P_,.=(0S) P .(6S). (2.19)
Therefore, we have from (2.13) that, for u > 0,

PyX_\y=S_6P . oX, = fo K, (t+s)X,ds  (mod H_, ).
(2.15)

The absolute convergence of the integrals in (2.13) and (2.15) allows us to
use them repeatedly, and so we obtain the corollary. |

For T>0,¢t>0,u > 0, and k € N, we define D%(¢, u) by

DL(t,u) = f:C(ul)KT(t + v, + u) du,,
Di(tu) = [ dv, C(vy) [y C(v)
/OOA(I 5, 0, +u)Ky (1 + s, +0))ds,,
0
Di(tu) = [ du C(v,)
fwdul C(Ul)fodsk,lA(t + 8 U+ u)
0 0
'/:dskfz At + 8y + 55 + 0, y)
foodsz A(t + 55+ 5, +03)
0

faoA(t+s2+s1 + 0K (t 45, +v)ds, (k=3).
0
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We note that the integrals above are well defined since all the integrands
are non-negative.

Recall Uj(¢) from Section 1. Here is the representation of Uj(¢) in
terms of A(-) and C(-).

PROPOSITION 23. For T>0, t >0, and n € N, we have U} (t) =
[eD3(t, u)* du.

Proof. By Corollary 2.2 and (2.14), U;(¢) is equal to

2

P(im,o]fo ds; Ky(t + s])/(; ds, Ksl(t +5,) /0 K, (t+s,)X, ds,

(use the maps S, and 6 in the proof of Corollary 2.2 if n is odd). Recall
the map T: L*(R) » H from (2.10). Since (2.11) implies

(Tflp(ioc,O]Tf)(”) =1 o)(u)f(u) (fe LZ(R)),

we see that Uj(t) = [7 d3(t,u)* du, where we write d7(t,u) for the
integral

/mcls1 K, (t+ sl)[ocds2 K (t+s,) fooKs (t+s,)C(s, —u)ds,.
0 0 w !

It is enough to prove d}(t,u) = D}(t,u). By the Fubini-Tonelli theo-
rem, d}(¢,u) is equal to

jowdun C(Un)/:alsn,1 Ksn,l(t +5, + u)f:dsn,2 Ksn,z(t +5,-1)
f:dsz K, (t+ s3)[0°°1<sl(t +53)Kp(t + 5,) ds,.
First, [¢K,(t + s,)K;(t + 5,) ds, is equal to
/:{f(:lC(vl)A(t + 5y 45— 1)) dvl}KT(t +5,) ds,
- /:dvl C(Ul)f:A(t 5, + 8) Kp(1 + 5, + 0,) ds,.
Second, [¢K, (¢ + s3) A(t + 5, + 5,) ds, is equal to
f: {'CZC(UZ)A(t +s5+58, —0,) duz}A(t + 5, +5,)ds,

= /oodu2 C(Uz)fooA(t + 55 +85,)A(t + 5, + 5+ 0,) ds,.
0 0
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Repeating this argument, we finally obtain d}(¢,u) = D}(¢, u), as desired.

3. PROOF OF THEOREM 1.1

For simplicity, we set

J(t) = fO‘C(s) ds  (t>0).

Proof of Theorem 1.1(iii). 1t follows from (2.3) that

{fOOOC(s) ds} - 2[0°°R(t) dr. (3.1)

Since the assumptions on p and Z(-) imply [FR(#)dt < », we have
[5C(s)ds < . Therefore, applying the monotone convergence theorem to
(2.6), we obtain

(e

(cf. [9, Lemma 2.7]). Hence we have from [3, Lemma 3.8] that
C(t) ~bt™7/(t) (t = =).
If 1 < p < o, then it follows from [3, Theorem 4.1] that

b3

G(t) ~t'7r/(t) - (t - ).

p—1
Since G(¢) = [A(s) ds and A(-) is decreasing, this implies
A(t) ~tPZ(0)b> (1 > ») (3.2)

(cf. [1, Sect. 1.7.3]). On the other hand, if p = 1 and [*/(s) ds/s < o, then
as in the proof of [5, Theorem 1.2] we see that G(-) € I1, with Aindex
—b3. However, by de Haan’s monotone convergence theorem (cf. [1,
Theorem 3.6.8]), this also implies (3.2).

By (1.6) with n = 2, we have the lower bound for V;(2): V,(¢) > U}¢).
On the other hand, by (1.4) and Theorem 2.1, we have the upper bound
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for V. (¢):

- 2
Ve(t) =| PP e Xr ||2 ZHP[l“’]ft Ky (s)X_,ds

2

SHII K (s)X_,ds| = 2[{ dsKT(s)f0 K;(s +u)R(u) du.

(3.3)
First, we consider the lower bound. Since
A(t+T)J(T) <K;p(t) <A(t)J(T), (3.4)
it follows from (3.2) that
K, (t) ~t77Z(t)b%J(T) (t > ). (3.5)

As in [3, Lemma 3.8], this implies
[ C)Kp(t +v) do ~ 22 ()D2I(T) (1 ),
0

which by (3.1) yields

AR OIRICG)
(2p — V{7 .R(s) ds}’
(t > »).

UL(1) = [tw {LwC(U)KT(u +0) du}2 du

Next we consider the upper bound. From (3.4), it follows, as above, that

fo K (t + u)R(u) du ~ KT(t)fO R(u)ydu  (t— @);
hence

@2 (0) (T
(2p = D{J7.R(s) ds}’
(1 ).

2ftxdsKT(s)fomKT(s + u)R(u) du ~

Since the asymptotics for the upper and lower bounds coincide, (iii)
follows. |



ASYMPTOTICS FOR PREDICTION ERRORS 311

Proof of Theorem 1.1(ii)). We have from [5, Theorem 5.2] that

C(t) ~t7! _0 (t )
(270} ’
so that
1) ~ AV (o) (3.6)

(ct. [6, (5.29)].

Since [JC(¢) dt = », we see that b = 0, by letting x | 0 in (2.6). Hence,
comparing (2.6) with [5, (6.1)], we find, as in [5, Theorem 1.1(3)], that
G() € 11, with /-index —1, where /(1) =/(t){2/(¢)}~3/2. Therefore,
by de Haan’s monotone density theorem, we have A(t) ~ ¢ '/(1) as
t — oo, and so

Ki(1) ~ T 2(0I(T) (1 ). (37)
Since —K (1) = — [IA(t + v)C(T — v) dv is decreasing in ¢, this implies
“Rp(1) ~ A (DIT) (1), (38)

By the Fubini—Tonelli theorem, we have

[0 K (t +0)C(v) dv = —fo K (t +5)J(s)ds.

Using (3.6) and (3.8), we apply [5, Proposition 4.3] to the above to obtain

TKp(t+ 0)C(v) do ~ 17! /(t)JT t 3.9
J, Krlt+ )0y do~ 7t 22 (T) (=), (39)
and so
= 1 c uuvzu~_1 /(t)2 2
0k = [ {[ ks tu+ oy o du~ {2/-([)}1@)

(t > »).

On the other hand, in the same way as above, it follows that

/(1)
1/2‘](T) ([—)OO)’

'/(‘) KT(t + u)R(u) du ~t7! W
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which with (3.7) implies

(1)

2/; dsKT(s)j0 K;(s+u)R(u)du ~t~ {2/( 5

} I(T) (1),

Thus the asymptotic behavior of the upper bound in (3.3) is equal to that
of the lower bound U}(¢), and so (ii) follows. [

Proof of Theorem 1.1(1)

Step 1. For simplicity, we use the following number d € (0,1 /2) rather
than p:

Then it follows from [5, Theorem 4.1] that

C(t) ~t - ) - t— 3.10
(1) Bd.1-2d) ( )s (3.10)

where B(-, -) is the beta function (we note that the index —1/2 in [5, (4.3)]
is mistaken; it should be 1/2). As in the previous proof, we have b = 0.
Therefore, comparing [5, (3.5)] with (2.6), we obtain, as in [5, Theorem

L1G)],

G(t) ~t

(t = »).

., /(1) 2 sin(wd)
{B(d,l - 2d) } T

By the monotone convergence theorem, this implies

/(1) }l/zw (t > ). (3.11)

A ~Z_(d+l) R S
) {B(d,l —2d)

w

Step 2. We prove, for T > 0 and k € N,

UF(t) ~t ', sin*(wd)J(T)"  (t > »), (3.12)
where
(2k — 2)!!

“= mor-nm KEN-
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Choose & from the interval (0, min(d,1/(8k — 2))). By (3.10) and (3.11),
there exists M > 0 such that

< % <2t/s) MY (125 = M), (3.13)
0 < % <2max{(t/s)""" (1/s) " Y)Y (1= M, s = M)
(3.14)
(see [1, Theorem 1.5.6]). We set, for ¢ > 0,
Co(1) =To,m()C(1),  Ci(t) = Iy o()C(2).  (3.15)

For k > 3 and (i},...,i,) € {0, 1}*, we write M (¢,u;i,,...,i,) for the
integral

% C; (1) o Ci(ty) A(t(l + 54 U +u))
R R =) Jj A(7)
% A(t(1 + sy + 555 U 1))
Jj e A1)
o  A(t(1 + 55+ 5, +03))
..'/(') ds, 400
» A(t(1 + 5, + 5, +0,)) Kp(t(1+s +0y))
J A(1) ' A(1)

We also write
» C,(tv K (t(1+v,tu
Myt = [ L0 Kol 0 2 )
o C(1) A(t)
.. > Ci(wy) (= C (1)
MT(Z,u;ll,lz) :=j;J dl)z W/(-) dUl W

© A(t(1 + s, + v, +u)) Kp(t(1+s, +0vy))
) A1) ' A1)
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Then, from Proposition 2.3, we have
lee] 2
UR(r) = A COY [ EM (i) du
0

where ¥, =X, ) cp1y- As in the proof of [6, Proposition 6.1], it
follows that

%]

lim f Mp(t,u;iy,.. .,ik)2 du

t—> Y
mta J(T)’ . .
= d2k (11:19""lk:1)’
0 ((iyy-riy) # (1,...,1))

(use (3.4) and [6, (6.15)]; hence

. 2 7%%a, J(T)’
hmf {ZMT(t>u;i15-"7ik)} du: k2k( ) N
t—>x () i d

Since (3.10) and (3.11) imply

dsin(dm)

7T

(A (D)) ~ tl{ } (t > »), (3.16)

(3.12) follows.
Step 3. Recall Z}(¢) from Section 1. By Corollary 2.2, we see that
Z}(t) is at most

2

H/xds1 K (t+ sl)/oods2 K (t+s,) meS (t+s,)X, ds,
0 0 o ! "
=/ {[ ds, Kp(t+s,) [ ds, K(t +s5,)
— o0 0 0

" 2
/ K, (t+s,)C(s, +u) dsn} du
0 n—1

=Ur(1) + W7 (1),
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where
Wi (1) :=/O {/0 ds, K,(t Jrsl)f0 ds, K, (1 +5,)
. 2
/ K, (t+s,)C(s, +u) dsn} du.
0 n—1
Therefore, we have from (1.6) that
n—1 n
Y US(t) < VpT(t) < Y Uf () + Wi(t)  (n=2,3,...). (3.17)
k=1 k=1
As in the proof of Proposition 2.3, we see that W} (¢) is equal to
I {[ dv, C(v, +u) = [ dv, C(vy) [ ds,, A(t + 5, +0,)
o Yo 0 0
f ds,_, A(t +5,_; +5,_,+0U,_1)
0
/ ds, A(t + 55 + 5, + U3)
0
. 2
[ A(t + s, +5y +0,))Kp(t + 51 +0y) ds]} du.
0

We prove, for T > 0 and n > 3,
Wp(t) ~t'b,(d) sin® (wd)J(T) (1 - =), (3.18)

where we write b,(d) for the integral

d\*" e B dv, = dv,_, = dv,
(;) f du f ]—df 1—d f 1—d
0 0 (Un +Lt) 0 (Unfl) 0 (Ul)
/‘°° ds, f‘” ds,
0 (Un+sn,1+1)'+d 0 (Un,1+sn,1+sn,2+1)1+d
o ds,
-

0 (v3+s3+s,+1)

o ds,

0 (vy+s,+s + 1)1er(u1 + 5, + 1)1+d
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Choose & from the interval (0, min{(1 — 2d)/2,d/(4n — 3)}), and take

M > 0 so large that both (3.13) and (3.14) hold. We define C,(-) and C,()
by (3.15), and ¢,(-) and ¢,(-) by

®o(t) = 1o (1), @1(1) = Iy (1) (>0).
For (iy,...,i,) €1{0,1}", we define N;(¢,u;i,,...,i,) by

Np(t,usig,...,0,)

e C(t(v, +u)) = G, (tv,_y)
~—f0 dv, %—n(wn)Tfo dv, -, c()

o C, (1) A(t(l + 81+ U))
ey ) (1)
% A(t(1 + s + 80 F0,-1))
Jj %2 ()
= A1+ 5+ 5, + 0y))
<, A1)
© A(t(1 + s, + 5, +0,)) K (t(1 + s, +0y))
fo A1) ' A(1) b

Then, it follows that
2n (7 2
Wr(n) = e ACOY [ EN (i) | du,
0 i

where X, = X;
we have

i ye 0,1y as above. As in the proof of [6, Proposition 6.2],

~~~~~~

lim f NT(t,u;il,...,in)2 du

t—w Y

w2"b,(d)J(T)* . .
_ —dz” (iy,=1,...,i, = 1),

0 ((iyseoniy) # (1,...,1))
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(use (3.4)); hence

o 2 2p (d)I(T)?
limf {ZNT(t,u;il,...,in)} gy = T DIE)
0 i

i o d2n

This and (3.16) yield (3.18).
Step 4. It follows from (3.12), (3.17), and (3.18) that

n—1
a, sin**(wd) < J(T)? liminf V,(¢)t <J(T) * limsup V,(t)t
t—x

k=1 n—oo

<
k

a, sin**(wd) + b,(d)sin*"(md).
-1
However, we have b,(d) < 7 % tan*(wd) for n >3 (see [6, proof of
Theorem 6.4]); hence, letting n — oo, we obtain

lim V, ()t =J(T)" Y a, sin*(wd).
t—> o k=1

k:

Since Yja,x? % arcsin? x for |x| < 1, this yields the desired result.

4. EXAMPLES

Let (X,) be a stationary process with autocovariance function R(-) and
canonical representation kernel C(-). Let T > 0.

ExampLE 1. If R(t) = (1 +[¢D7? for 0 < p < oo, then (X,) has (RP),
for

1 o e M1
—|t[A

(1 +1eh” =f0 ¢ I'(p)

dr (1t €R).

In this case, C(+) seems to have no simple representation. By Theorem 1.1,
we have the following results (we omit the case (i) 0 < p < 1):

(i) if p =1, then

1 T 2
VT(I) NW{-{) C(s)ds} (t—)OO);
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(iii) if 1 < p < o, then
4
(2p—1D(p—1)

EXAMPLE 2. Let 1/2 <g <o If C(t) =1 + )77 (¢ > 0), then (X,)
has (RP) (see [4, Theorem 2.6]).

() If1/2<gq < 1, then

{[OTC(S) ds}2 (1 > ).

VT(t) ~ t*(ZP*U .

% 1
~p@e-D T
R(t) ~t ¢4 fo (1 +3) ds (t — »)

(cf. [5, Theorem 4.1]). Hence, by Theorem 1.1(i), we have
2
V() ~t {1+ 1) -1 (1o ).
(i) If ¢ =1, then R(t) ~¢t 'logt as t —> = by [5, Theorem 5.2].
Hence, by Theorem 1.1(ii), we have

(t = »).

Gii)) If ¢ > 1, then R(t) ~t79[7C(s)ds as t - © (cf. [3, Lemma
3.8]). Therefore, by Theorem 1.1(iii) and (3.1), we have

(1—@+1) Y

V t) ~ t_(2‘l_1).

(t = ).
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