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Abstract

We establish several results related to existence, nonexistence or bifurcation of positive so
for the boundary value problem−∆u + K(x)g(u) + |∇u|a = λf (x,u) in Ω, u = 0 on∂Ω, where
Ω ⊂ R

N (N � 2) is a smooth bounded domain, 0< a � 2,λ is a positive parameter, andf is smooth
and has a sublinear growth. The main feature of this paper consists in the presence of the
nonlinearityg combined with the convection term|∇u|a . Our approach takes into account both
sign of the potentialK and the decay rate around the origin of the singular nonlinearityg. The proofs
are based on various techniques related to the maximum principle for elliptic equations.
 2005 Elsevier Inc. All rights reserved.

Keywords: Singular elliptic equation; Sublinear boundary value problem; Maximum principle; Convection
Bifurcation

1. Introduction and the main results

Stationary problems involving singular nonlinearities, as well as the associated
tion equations, describe naturally several physical phenomena. At our best knowled
first study in this direction is due to Fulks and Maybee [13], who proved existence
uniqueness results by using a fixed point argument; moreover, they showed that so

* Corresponding author.
E-mail address: vicentiu.radulescu@ucv.ro (V. Rădulescu).
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A different approach (see [9,10,24]) consists in approximating the singular equation
a regular problem, where the standard techniques (e.g., monotonicity methods) can
plied and then passing to the limit to obtain the solution of the original equation. Non
singular boundary value problems arise in the context of chemical heterogeneous c
and chemical catalyst kinetics, in the theory of heat conduction in electrically con
ing materials, singular minimal surfaces, as well as in the study of non-Newtonian fl
boundary layer phenomena for viscous fluids (we refer for more details to [3,5–7,1
and the more recent papers [18–23,25]). We also point out that, due to the meaning
unknowns (concentrations, populations, etc.), only the positive solutions are relev
most cases.

Let Ω be a smooth bounded domain inR
N (N � 2). We are concerned in this pap

with the following boundary value problem:{−∆u + K(x)g(u) + |∇u|a = λf (x,u) in Ω,

u > 0 in Ω,

u = 0 on∂Ω,

(1)λ

whereλ > 0, 0< a � 2 andK ∈ C0,γ (Ω̄), 0 < γ < 1. Heref : Ω̄ × [0,∞) → [0,∞)

is a Hölder continuous function which is positive on̄Ω × (0,∞). We assume thatf is
nondecreasing with respect to the second variable and is sublinear, that is,

(f 1) the mapping(0,∞) � s �→ f (x, s)

s
is nonincreasing for allx ∈ Ω̄;

(f 2) lim
s→0+

f (x, s)

s
= +∞ and lim

s→∞
f (x, s)

s
= 0, uniformly for x ∈ Ω̄.

We assume thatg ∈ C0,γ (0,∞) is a nonnegative and nonincreasing function satisfying

(g1) lim
s→0+ g(s) = +∞.

Problem(1)λ has been considered in [14] in the absence of the gradient term|∇u|a
and assuming that the singular termg(t) behaves liket−α around the origin, withα ∈
(0,1). In this case it has been shown that the sign of the extremal values ofK plays a
crucial role. In this sense, we have proved in [14] that ifK < 0 in Ω̄ , then problem(1)λ
(with a = 0) has a unique solution in the classE = {u ∈ C2(Ω) ∩ C(Ω̄); g(u) ∈ L1(Ω)},
for all λ > 0. On the other hand, ifK > 0 in Ω̄ , then there existsλ∗ such that problem
(1)λ has solutions inE if λ > λ∗ and no solution exists ifλ < λ∗. The case wheref is
asymptotically linear,K � 0, anda = 0 has been discussed in [8]. In this case, a m
role is played by lims→∞ f (s)/s = m > 0. More precisely, there exists a solution (whi
is unique)uλ ∈ C2(Ω)∩C1(Ω̄) if and only if λ < λ∗ := λ1/m. An additional result asser
that the mapping(0, λ∗) �→ uλ is increasing and limλ↗λ∗ uλ = +∞ uniformly on compact
subsets ofΩ .

Due to the singular character of our problem(1)λ, we cannot expect to have sol
tions inC2(Ω̄). We are seeking in this paper classical solutions of(1)λ, that is, solutions
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u ∈ C2(Ω) ∩ C(Ω̄) that verify (1)λ. Closely related to our problem is the following on
which has been considered in [15,16]:{−∆u = g(u) + |∇u|a + λf (x,u) in Ω,

u > 0 in Ω,

u = 0 on∂Ω,

(1.1)

wheref andg verifies the above assumptions(f 1), (f 2) and (g1). We have proved in
[16] that if 0< a < 1 then problem (1.1) has at least one classical solution for allλ � 0. In
turn, if 1< a � 2, then (1.1) has no solutions for large values ofλ > 0.

The existence results for our problem(1)λ are quite different to those of (1.1) presen
in [16]. More exactly we prove in the present paper that problem(1)λ (with K > 0) has
at least one solution only whenλ > 0 is large enough andg satisfies a naturally growt
condition around the origin. We extend the results in [1, Theorem 1], correspond
K ≡ 0, f ≡ f (x) anda ∈ [0,1).

The main difficulty in the treatment of(1)λ is the lack of the usual maximal principle b
tween super and sub-solutions, due to the singular character of the equation. To ov
it, we state an improved comparison principle that fit to our problem(1)λ (see Lemma 2.1
below).

Throughout this paper we assume thatf satisfies assumptions(f 1)–(f 2) andg verifies
condition(g1).

In our first result we assume thatK < 0 in Ω . Note thatK may vanish on∂Ω which
leads us to a competition on the boundary between the potentialK(x) and the singula
termg(u). We prove the following result.

Theorem 1.1. Assume that K < 0 in Ω . Then, for all λ > 0, problem (1)λ has at least one
classical solution.

Next, we assume thatK > 0 in Ω̄ . In this case, the existence of a solution to(1)λ is
closely related to the decay rate around its singularity. In this sense, we prove that p
(1)λ has no solution, provided thatg has a “strong” singularity at the origin. More precise
we have

Theorem 1.2. Assume that K > 0 in Ω̄ and
∫ 1

0 g(s) ds = +∞. Then problem (1)λ has no
classical solutions.

In the following result, assuming that
∫ 1

0 g(s) ds < +∞, we show that problem(1)λ
has at least one solution, provided thatλ > 0 is large enough. Obviously, the hypoth
sis

∫ 1
0 g(s) ds < +∞ implies the following Keller–Osserman type condition around

origin:

(g3)

1∫ ( t∫
g(s) ds

)−1/2

dt < ∞.
0 0
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As proved by Bénilan et al. [2], condition(g3) is equivalent to theproperty of compact
support, that is, for everyh ∈ L1(RN) with compact support, there exists a uniqueu ∈
W1,1(RN) with compact support such that∆u ∈ L1(RN) and

−∆u + g(u) = h a.e. inR
N.

Theorem 1.3. Assume that K > 0 in Ω̄ and
∫ 1

0 g(s) ds < +∞. Then there exists λ∗ > 0
such that problem (1)λ has at least one classical solution if λ > λ∗ and no solution exists
if λ < λ∗.

In the next section we establish a general comparison result between sub and
solutions. Sections 3–5 are devoted to the proofs of the above theorems.

2. A comparison principle

A very useful auxiliary result is the following comparison principle that impro
Lemma 3 in [22]. The proof uses some ideas from Shi and Yao [22], that goes ba
the pioneering work by Brezis and Kamin [4].

Lemma 2.1. Let Ψ : Ω̄ × (0,∞) → R be a continuous function such that the mapping
(0,∞) � s �→ Ψ (x,s)

s
is strictly decreasing at each x ∈ Ω . Assume that there exist v,w ∈

C2(Ω) ∩ C(Ω̄) such that

(a) ∆w + Ψ (x,w) � 0� ∆v + Ψ (x, v) in Ω ;
(b) v,w > 0 in Ω and v � w on ∂Ω ;
(c) ∆v ∈ L1(Ω) or ∆w ∈ L1(Ω).

Then v � w in Ω .

Proof. We argue by contradiction and assume thatv � w is not true inΩ . Then, we can
find ε0, δ0 > 0 and a ballB � Ω such thatv − w � ε0 in B and∫

B

vw

(
Ψ (x,w)

w
− Ψ (x, v)

v

)
dx � δ0. (2.1)

The case∆v ∈ L1(Ω) was presented in [22, Lemma 3]. Let us assume now that∆w ∈
L1(Ω) and setM = max{1,‖∆w‖L1(Ω)}, ε = min{1, ε0,2−2δ0/M}. Consider a nonde
creasing functionθ ∈ C1(R) such thatθ(t) = 0, if t � 1/2, θ(t) = 1, if t � 1, and
θ(t) ∈ (0,1) if t ∈ (1/2,1). Define

θε(t) = θ

(
t

ε

)
, t ∈ R.

Sincew � v on ∂Ω , we can find a smooth subdomainΩ∗ � Ω such that

B ⊂ Ω∗ and v − w <
ε

in Ω \ Ω∗.

2
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Using the hypotheses (a) and (b) we deduce∫
Ω∗

(w∆v − v∆w)θε(v − w)dx

�
∫

Ω∗
vw

(
Ψ (x,w)

w
− Ψ (x, v)

v

)
θε(v − w)dx. (2.2)

By (2.1) we have∫
Ω∗

vw

(
Ψ (x,w)

w
− Ψ (x, v)

v

)
θε(v − w)dx

�
∫
B

vw

(
Ψ (x,w)

w
− Ψ (x, v)

v

)
θε(v − w)dx

=
∫
B

vw

(
Ψ (x,w)

w
− Ψ (x, v)

v

)
dx � δ0.

To raise a contradiction we need only to prove that the left-hand side in (2.2) is sm
thanδ0. For this purpose, we define

Θε(t) =
t∫

0

sθ ′
ε(s) ds, t ∈ R.

It is easy to see that

Θε(t) = 0 if t <
ε

2
and 0� Θε(t) � 2ε for all t ∈ R. (2.3)

Now, using the Green theorem, we evaluate the left-hand side of (2.2):∫
Ω∗

(w∆v − v∆w)θε(v − w)dx

=
∫

∂Ω∗
wθε(v − w)

∂v

∂n
dσ −

∫
Ω∗

(∇w · ∇v)θε(v − w)dx

−
∫

Ω∗
wθ ′

ε(v − w)∇v · ∇(v − w)dx −
∫

∂Ω∗
vθε(v − w)

∂w

∂n
dσ

+
∫

Ω∗
(∇w · ∇v)θε(v − w)dx +

∫
Ω∗

vθ ′
ε(v − w)∇w · ∇(v − w)dx

=
∫

Ω∗
θ ′
ε(v − w)(v∇w − w∇v) · ∇(v − w)dx.

The above relation can also be rewritten as
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∫
Ω∗

(w∆v − v∆w)θε(v − w)dx

=
∫

Ω∗
wθ ′

ε(v − w)∇(w − v) · ∇(v − w)dx

+
∫

Ω∗
(v − w)θ ′

ε(v − w)∇w · ∇(v − w)dx.

Since
∫
Ω∗ wθ ′

ε(v − w)∇(w − v) · ∇(v − w)dx � 0, the last equality yields∫
Ω∗

(w∆v − v∆w)θε(v − w)dx �
∫

Ω∗
(v − w)θ ′

ε(v − w)∇w · ∇(v − w)dx,

that is,∫
Ω∗

(w∆v − v∆w)θε(v − w)dx �
∫

Ω∗
∇w · ∇(

Θε(v − w)
)
dx.

Again by Green’s first formula and by (2.3) we have∫
Ω∗

(w∆v − v∆w)θε(v − w)dx �
∫

∂Ω∗
Θε(v − w)

∂v

∂n
dσ −

∫
Ω∗

Θε(v − w)∆w dx

� −
∫

Ω∗
Θε(v − w)∆w dx � 2ε

∫
Ω∗

|∆w|dx � 2εM <
δ0

2
.

Thus, we have obtained a contradiction. Hencev � w in Ω and the proof of Lemma 2.1 i
now complete. �

3. Proof of Theorem 1.1

We need the following auxiliary result, which is proved in [23].

Lemma 3.1. Let Ψ : Ω̄ × (0,∞) → R be a Hölder continuous function which satisfies

(A1) lim sup
s→+∞

(
s−1 max

x∈Ω̄

Ψ (x, s)
)

< λ1;
(A2) for each t > 0, there exists a constant D(t) > 0 such that

Ψ (x, r) − Ψ (x, s) � −D(t)(r − s) for x ∈ Ω̄ and r � s � t;
(A3) there exist η0 > 0 and an open subset Ω0 ⊂ Ω such that

min
x∈Ω̄

Ψ (x, s) � 0 for x ∈ (0, η0)

and

lim
s↓0

Ψ (x, s)

s
= +∞ uniformly for x ∈ Ω0.
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Then the problem{−∆u = Ψ (x,u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.1)

has at least one classical solution u ∈ C2(Ω) ∩ C(Ω̄).

Fix λ > 0. Obviously, Ψ (x, s) = λf (x, s) − K(x)g(s) satisfies the hypotheses
Lemma 3.1 sinceK < 0 in Ω . Hence, there exists a solutionūλ of the problem{−∆u = λf (x,u) − K(x)g(u) in Ω,

u > 0 in Ω,

u = 0 on∂Ω.

We observe that̄uλ is a super-solution of problem(1)λ. To find a sub-solution, let us deno

p(x) = min
{
λf (x,1);−K(x)g(1)

}
, x ∈ Ω̄.

Using the monotonicity off andg, we observe thatp(x) � λf (x, s) − K(x)g(s) for all
(x, s) ∈ Ω × (0,∞). We now consider the problem{−∆v + |∇v|a = p(x) in Ω,

v = 0 on∂Ω.
(3.2)

First, we observe thatv = 0 is a sub-solution of (3.2) whilew defined by{−∆w = p(x) in Ω,

w = 0 on∂Ω,

is a super-solution. Sincep > 0 in Ω we deduce thatw � 0 in Ω . Thus, the problem (3.2
has at least one classical solutionv. We claim thatv is positive inΩ . Indeed, ifv has a
minimum inΩ , say atx0, then∇v(x0) = 0 and∆v(x0) � 0. Therefore

0� −∆v(x0) + |∇v|a(x0) = p(x0) > 0,

which is a contradiction. Hence minx∈Ω̄ v = minx∈∂Ω v = 0, that is,v > 0 in Ω . Now
uλ = v is a sub-solution of(1)λ and we have

−∆uλ � p(x) � λf (x, ūλ) − K(x)g(ūλ) = −∆ūλ in Ω.

Sinceuλ = ūλ = 0 on ∂Ω , from the above relation we may conclude thatuλ � ūλ in Ω

and so, there exists at least one classical solution for(1)λ. The proof of Theorem 1.1 i
now complete. �

4. Proof of Theorem 1.2

We give a direct proof, without using any change of variable, as in [25]. Let us as
that there existsλ > 0 such that the problem(1)λ has a classical solutionuλ. Sincef

satisfies(f 1) and (f 2), we deduce by Lemma 3.1 that for allλ > 0 there existsUλ ∈
C2(Ω̄) such that{−∆Uλ = λf (x,Uλ) in Ω,

Uλ > 0 in Ω, (4.1)

Uλ = 0 on∂Ω.
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Moreover, there existc1, c2 > 0 such that

c1 dist(x, ∂Ω) � Uλ(x) � c2 dist(x, ∂Ω) for all x ∈ Ω. (4.2)

Consider the perturbed problem{−∆u + K∗g(u + ε) = λf (x,u) in Ω,

u > 0 in Ω,

u = 0 on∂Ω,

(4.3)

whereK∗ = minx∈Ω̄ K(x) > 0. It is clear thatuλ andUλ are respectively sub- and supe
solution of (4.3). Furthermore, we have

∆Uλ + f (x,Uλ) � 0� ∆uλ + f (x,uλ) in Ω,

Uλ,uλ > 0 in Ω,

Uλ = uλ = 0 on∂Ω,

∆Uλ ∈ L1(Ω)
(
sinceUλ ∈ C2(Ω̄)

)
.

In view of Lemma 2.1 we getuλ � Uλ in Ω . Thus, a standard bootstrap argument (
[17]) implies that there exists a solutionuε ∈ C2(Ω̄) of (4.3) such that

uλ � uε � Uλ in Ω.

Integrating in (4.3) we obtain

−
∫
Ω

∆uε dx + K∗
∫
Ω

g(uε + ε) dx = λ

∫
Ω

f (x,uε) dx.

Hence

−
∫

∂Ω

∂uε

∂n
ds + K∗

∫
Ω

g(uε + ε) dx � M, (4.4)

whereM > 0 is a positive constant. Taking into account the fact that∂uε

∂n
� 0 on ∂Ω ,

relation (4.4) yieldsK∗
∫
Ω

g(uε +ε) dx � M . Sinceuε � Uλ in Ω̄ , from the last inequality
we can conclude that

∫
Ω

g(Uλ + ε) dx � C, for someC > 0. Thus, for any compact subs
ω � Ω we have∫

ω

g(Uλ + ε) dx � C.

Letting ε → 0+, the above relation produces
∫
ω

g(Uλ)dx � C. Therefore∫
Ω

g(Uλ)dx � C. (4.5)

On the other hand, using (4.2) and the hypothesis
∫ 1

0 g(s) ds = +∞, it follows∫
Ω

g(Uλ)dx �
∫
Ω

g
(
c2 dist(x, ∂Ω)

)
dx = +∞,

which contradicts (4.5). Hence,(1)λ has no classical solutions and the proof of Th
rem 1.2 is now complete.�
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5. Proof of Theorem 1.3

Fix λ > 0. We first note thatUλ defined in (4.1) is a super-solution of(1)λ. We focus
now on finding a sub-solutionuλ such thatuλ � Uλ in Ω .

Let h : [0,∞) → [0,∞) be such that


h′′(t) = g(h(t)) for all t > 0,

h > 0 in (0,∞),

h(0) = 0.

(5.1)

Multiplying by h′ in (5.1) and then integrating over[s, t] we have

(h′)2(t) − (h′)2(s) = 2

h(t)∫
h(s)

g(τ ) dτ for all t > s > 0.

Since
∫ 1

0 g(τ) dτ < ∞, from the above equality we deduce that we can extendh′ in origin
by takingh′(0) = 0 and soh ∈ C2(0,∞) ∩ C1[0,∞). Taking into account the fact thath′
is increasing andh′′ is decreasing on(0,∞), the mean value theorem implies that

h′(t)
t

= h′(t) − h′(0)

t − 0
� h′′(t) for all t > 0.

Henceh′(t) � th′′(t), for all t > 0. Integrating in the last inequality we get

th′(t) � 2h(t) for all t > 0. (5.2)

Let ϕ1 be the normalized positive eigenfunction corresponding to the first eigenvaλ1
of the problem{−∆u = λu in Ω,

u = 0 on∂Ω.

It is well known thatϕ1 ∈ C2(Ω̄). Furthermore, by Hopf’s maximum principle there ex
δ > 0 andΩ0 � Ω such that|∇ϕ1| � δ in Ω \ Ω0. Let M = max{1,2K∗δ−2}, where
K∗ = maxx∈Ω̄ K(x). Since

lim
dist(x,∂Ω)→0+

{−K∗g
(
h(ϕ1)

) + Ma(h′)a(ϕ1)|∇ϕ1|a
} = −∞,

by lettingΩ0 close enough to the boundary ofΩ we can assume that

−K∗g
(
h(ϕ1)

) + Ma(h′)a(ϕ1)|∇ϕ1|a < 0 in Ω \ Ω0. (5.3)

We now are able to show thatuλ = Mh(ϕ1) is a sub-solution of(1)λ providedλ > 0 is
sufficiently large. Using the monotonicity ofg and (5.2) we have

−∆uλ + K(x)g(uλ) + |∇uλ|a
� −Mg

(
h(ϕ1)

)|∇ϕ1|2 + λ1Mh′(ϕ1)ϕ1 + K∗g
(
Mh(ϕ1)

) + Ma(h′)a(ϕ1)|∇ϕ1|a
� g

(
h(ϕ1)

)(
K∗ − M|∇ϕ1|2

) + λ1Mh′(ϕ1)ϕ1 + Ma(h′)a(ϕ1)|∇ϕ1|a
� g

(
h(ϕ1)

)(
K∗ − M|∇ϕ1|2

) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|a. (5.4)
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The definition ofM and (5.3) yield

−∆uλ + K(x)g(uλ) + |∇uλ|a � 2λ1Mh(ϕ1) = 2λ1uλ in Ω \ Ω0. (5.5)

Let us chooseλ > 0 such that

λ
minx∈Ω̄0

f (x,Mh(‖ϕ1‖∞))

M‖ϕ1‖∞
� 2λ1. (5.6)

Then, by virtue of the assumption(f 1) and (5.6) we have

λ
f (x,uλ)

uλ

� λ
f (x,Mh(‖ϕ1‖∞))

M‖ϕ1‖∞
� 2λ1 in Ω \ Ω0.

The last inequality combined with (5.5) yield

−∆uλ + K(x)g(uλ) + |∇uλ|a � 2λ1uλ � λf (x,uλ) in Ω \ Ω0. (5.7)

On the other hand, from (5.4) we obtain

−∆uλ + K(x)g(uλ) + |∇uλ|a � K∗g
(
h(ϕ1)

) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|a
in Ω0. (5.8)

Sinceϕ1 > 0 in Ω̄0 andf is positive onΩ̄0 × (0,∞), we may chooseλ > 0 such that

λ min
x∈Ω̄0

f
(
x,Mh(ϕ1)

)
� max

x∈Ω̄0

{
K∗g

(
h(ϕ1)

) + 2λ1Mh(ϕ1) + Ma(h′)a(ϕ1)|∇ϕ1|a
}
. (5.9)

From (5.8) and (5.9) we deduce

−∆uλ + K(x)g(uλ) + |∇uλ|a � λf (x,uλ) in Ω0. (5.10)

Now, (5.7) together with (5.10) shows thatuλ = Mh(ϕ1) is a sub-solution of(1)λ provided
λ > 0 satisfy (5.6) and (5.9). With the same arguments as in the proof of Theorem 1
using Lemma 2.1, one can prove thatuλ � Uλ in Ω . By a standard bootstrap argument (s
[17]) we obtain a classical solutionuλ such thatuλ � uλ � Uλ in Ω .

We have proved that(1)λ has at least one classical solution whenλ > 0 is large. Set

A = {
λ > 0; problem(1)λ has at least one classical solution

}
.

From the above arguments we deduce thatA is nonempty. Letλ∗ = inf A. We claim that
if λ ∈ A, then (λ,+∞) ⊆ A. To this aim, letλ1 ∈ A andλ2 > λ1. If uλ1 is a solution
of (1)λ1, thenuλ1 is a sub-solution for(1)λ2 while Uλ2 defined in (4.1) forλ = λ2 is a
super-solution. Moreover, we have

∆Uλ2 + λ2f (x,Uλ2) � 0 � ∆uλ1 + λ2f (x,uλ1) in Ω,

Uλ2, uλ1 > 0 in Ω,

Uλ2 = uλ1 = 0 on∂Ω,

∆Uλ ∈ L1(Ω).
2
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Again by Lemma 2.1 we getuλ1 � Uλ2 in Ω . Therefore, the problem(1)λ2 has at least on
classical solution. This proves the claim. Sinceλ ∈ A was arbitrary chosen, we conclu
that(λ∗,+∞) ⊂ A.

To end the proof, it suffices to show thatλ∗ > 0. In that sense, we will prove that the
existsλ > 0 small enough such that(1)λ has no classical solutions. We first remark tha

lim
s→0+

(
f (x, s) − K(x)g(s)

) = −∞ uniformly for x ∈ Ω.

Hence, there existsc > 0 such that

f (x, s) − K(x)g(s) < 0 for all (x, s) ∈ Ω × (0, c). (5.11)

On the other hand, the assumption(f 1) yields

f (x, s) − K(x)g(s)

s
� f (x, s)

s
� f (x, c)

c
for all (x, s) ∈ Ω × [c,+∞). (5.12)

Let m = maxx∈Ω̄
f (x,c)

c
. Combining (5.11) with (5.12) we find

f (x, s) − K(x)g(s) < ms for all (x, s) ∈ Ω × (0,+∞). (5.13)

Setλ0 = min{1, λ1/2m}. We show that problem(1)λ0 has no classical solution. Indeed,
u0 would be a classical solution of(1)λ0, then, according to (5.13),u0 is a sub-solution of


−∆u = λ1

2 u in Ω,

u > 0 in Ω,

u = 0 on∂Ω.

(5.14)

Obviously,ϕ1 is a super-solution of (5.14) and by Lemma 2.1 we getu0 � ϕ1 in Ω . Thus,
by standard elliptic arguments, problem (5.14) has a solutionu ∈ C2(Ω̄). Multiplying by
ϕ1 in (5.14) and then integrating overΩ we have

−
∫
Ω

ϕ1∆udx = λ1

2

∫
Ω

uϕ1 dx,

that is,

−
∫
Ω

u∆ϕ1 dx = λ1

2

∫
Ω

uϕ1 dx.

The above equality yields
∫
Ω

uϕ1 dx = 0, which is clearly a contradiction, sinceu andϕ1
are positive onΩ . If follows that problem(1)λ0 has no classical solutions which mea
thatλ∗ > 0. This completes the proof of Theorem 1.3.�

Acknowledgments

The authors are partially supported by Programme EGIDE-Brancusi between University of Craiova a
versité de Picardie Jules Verne in Amiens. M. Ghergu is also partially supported by Grant MEC-CNCS
25/2005. Both authors are also partially supported by Grant CNCSIS “Nonlinearities and singularities in
matical physics.”
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