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Abstract

We establish several results related to existence, nonexistence or bifurcation of positive solutions
for the boundary value problemAu + K (x)g(u) + |Vul* = rf(x,u) in 2,u =00nd$2, where
2 c RN (N > 2)is a smooth bounded domain<0z < 2,1 is a positive parameter, antis smooth
and has a sublinear growth. The main feature of this paper consists in the presence of the singular
nonlinearityg combined with the convection terfvu|“. Our approach takes into account both the
sign of the potentiak” and the decay rate around the origin of the singular nonlinegrithe proofs
are based on various techniques related to the maximum principle for elliptic equations.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction and the main results

Stationary problems involving singular nonlinearities, as well as the associated evolu-
tion equations, describe naturally several physical phenomena. At our best knowledge, the
first study in this direction is due to Fulks and Maybee [13], who proved existence and
uniqueness results by using a fixed point argument; moreover, they showed that solutions
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of the parabolic problem tend to the unique solution of the corresponding elliptic equation.
A different approach (see [9,10,24]) consists in approximating the singular equation with
a regular problem, where the standard techniques (e.g., monotonicity methods) can be ap-
plied and then passing to the limit to obtain the solution of the original equation. Nonlinear
singular boundary value problems arise in the context of chemical heterogeneous catalysts
and chemical catalyst kinetics, in the theory of heat conduction in electrically conduct-
ing materials, singular minimal surfaces, as well as in the study of non-Newtonian fluids,
boundary layer phenomena for viscous fluids (we refer for more details to [3,5-7,11,12]
and the more recent papers [18-23,25]). We also point out that, due to the meaning of the
unknowns (concentrations, populations, etc.), only the positive solutions are relevant in
most cases.

Let £2 be a smooth bounded domain& (N > 2). We are concerned in this paper
with the following boundary value problem:

—Au+ K(x)gw) +|Vul* =rf(x,u) in$2,
u>0 in$2, (D
u=0 onos2,

where) >0, 0<a <2 andK € C%7(2), 0< y < 1. Here f : £ x [0, 00) — [0, 00)
is a Holder continuous function which is positive ¢éhx (0, co). We assume thaf is
nondecreasing with respect to the second variable and is sublinear, that is,

(f1) the mapping0, co) 3 s — fx.s) is nonincreasing for alt € £2;
S
(f2) lim fos) _ +o00 and lim f&s) 0, uniformly for x € £2.
s—0t s §—>00 N

We assume that € C%7 (0, 00) is a nonnegative and nonincreasing function satisfying
1 lim = +4o00.
(1) X_)mg(s) +

Problem(1), has been considered in [14] in the absence of the gradient |1
and assuming that the singular tegtr) behaves like =™ around the origin, withx €
(0,1). In this case it has been shown that the sign of the extremal valuksmays a
crucial role. In this sense, we have proved in [14] thak ik 0 in §2, then problem(1),
(with @ = 0) has a unique solution in the cla8s= {u € C2(2) N C(2); g(u) € L1(£2)},
for all A > 0. On the other hand, ik > 0 in £2, then there exista* such that problem
(1), has solutions ir€ if A > A* and no solution exists it < A*. The case wher¢ is
asymptotically linearkK < 0, anda = 0 has been discussed in [8]. In this case, a major
role is played by lim_, o, f(s)/s = m > 0. More precisely, there exists a solution (which
is uniquels; € C2(2)NCL(2)ifandonlyif A < A* := A1/m. An additional result asserts
that the mapping0, A*) — u, is increasing and lim»;.« u; = +oo uniformly on compact
subsets of2.

Due to the singular character of our problgf),, we cannot expect to have solu-
tions in C2(£2). We are seeking in this paper classical solutionglof, that is, solutions
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u € C2(£2) N C(2) that verify (1),.. Closely related to our problem is the following one,
which has been considered in [15,16]:

—Au=gw)+|Vul*+rf(x,u) in$2,
u>0 in 2, (1.1)
u=>0 onas2,

where f and g verifies the above assumptioqgl), (f2) and(gl). We have proved in
[16] that if 0< a < 1 then problem (1.1) has at least one classical solution far:alD. In
turn, if 1 < a < 2, then (1.1) has no solutions for large values. of 0.

The existence results for our problef), are quite different to those of (1.1) presented
in [16]. More exactly we prove in the present paper that prob{&m (with K > 0) has
at least one solution only when> 0 is large enough ang satisfies a naturally growth
condition around the origin. We extend the results in [1, Theorem 1], corresponding to
K=0,f=f(x)anda€[0,1).

The main difficulty in the treatment @1),, is the lack of the usual maximal principle be-
tween super and sub-solutions, due to the singular character of the equation. To overcome
it, we state an improved comparison principle that fit to our proli&m (see Lemma 2.1
below).

Throughout this paper we assume tiiadatisfies assumptiornig' 1)—( f 2) andg verifies
condition(g1l).

In our first result we assume that < 0 in £2. Note thatk may vanish ord 2 which
leads us to a competition on the boundary between the potdatie) and the singular
termg(u). We prove the following result.

Theorem 1.1. Assumethat K < 0in £2. Then, for all A > 0, problem (1), has at least one
classical solution.

Next, we assume tha > 0 in £2. In this case, the existence of a solution(19;, is
closely related to the decay rate around its singularity. In this sense, we prove that problem
(1), has no solution, provided thathas a “strong” singularity at the origin. More precisely,
we have

Theorem 1.2. Assumethat K > 0in £2 and folg(s)ds = +00. Then problem (1), hasno
classical solutions.

In the following result, assuming thg(glg(s)ds < +00, we show that problenil),
has at least one solution, provided that O is large enough. Obviously, the hypothe-
sis folg(s) ds < +oo implies the following Keller—-Osserman type condition around the
origin:

1 t

—1/2
(g3 /(/ g(s)ds) dt < oo.

0 ‘0
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As proved by Bénilan et al. [2], conditiogg 3) is equivalent to th@roperty of compact
support, that is, for everyh € L1(R") with compact support, there exists a unique
wLL(RN) with compact support such that: € LL(R") and

—Au+gw)=h a.e.inkR".

Theorem 1.3. Assume that K > 0 in 2 and folg(s)ds < 400. Then there exists A* > 0
such that problem (1), has at least one classical solution if A > A* and no solution exists
if L <A*,

In the next section we establish a general comparison result between sub and super-
solutions. Sections 3-5 are devoted to the proofs of the above theorems.

2. A comparison principle

A very useful auxiliary result is the following comparison principle that improves
Lemma 3 in [22]. The proof uses some ideas from Shi and Yao [22], that goes back to
the pioneering work by Brezis and Kamin [4].

Lemma 2.1. Let ¥ :£2 x (0, 00) — R be a continuous function such that the mapping
(0,00) 3 5 > Z&9 s grictly decreasing at each x € £2. Assume that there exist v, w €
C?(£2) N C(£2) such that

(@) Aw+Y¥(x,w) <0< Av+¥(x,v) in $2;
(b) v,w>0inL2andv < w oNIL;
(€) Ave LY(2) or Aw e LY(2).

Thenv < win £2.

Proof. We argue by contradiction and assume that w is not true ins2. Then, we can
find g, 6o > 0 and a ballB € £2 such thatv — w > g9 in B and

/Uw<l1’(x,w) B '1/();, U)>dx > So. (2.1)
B

w

The caseAv € L1(£2) was presented in [22, Lemma 3]. Let us assume now thate
LY(£2) and setM = maxX{1, [Aw|;1(q)}, € = Min{1, 0, 27280/ M}. Consider a nonde-
creasing functiort € C1(R) such thatd(r) = 0, if r < 1/2, 6(r) = 1, if + > 1, and
0(t) € (0,1) if t € (1/2,1). Define

0.(1) =9(£>, teR.
&

Sincew > v on 9£2, we can find a smooth subdomdairi € 2 such that

e .
BcC " and vow<g in 2\ 2%
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Using the hypotheses (a) and (b) we deduce
/(wAv —vAwW)O. (v — w)dx
Q*

>/vw<l1/(x,w) — W();’ v)>98(v—w)dx. (2.2)

w
Q*
By (2.1) we have

/‘vw<llf(x,w) — W();’ v)>98(v —w)dx

w
Q*
>/vw<lll(x,w) - lI/(x’v))é‘s(v—w)d)c
w v
B
:/vw<l1/(x,w) — v, v)>dx = bo.
w v
B

To raise a contradiction we need only to prove that the left-hand side in (2.2) is smaller
thandg. For this purpose, we define

t

O, (1) =/s9£(s) ds, teR.
0
It is easy to see that

O (1) =0 ift<g and 0<O.(r) <2 forallreR. (2.3)

Now, using the Green theorem, we evaluate the left-hand side of (2.2):

/(wAU —vAW)O, (v — w)dx
Q*

)

3
wh, (v — w)a—vdo - /(Vw VD)0, (0 — w) dx
n
Q*

082*
, ow
— [ wo,(v—w)Vv -V —w)dx — v@e(v—w)a— do
n
% 082*
+ /(Vw V)0, (v — w)dx + / V0. (v—w)Vw - V(v — w)dx
o o

= /0;(1) —w)@Vw —wVv) - V(v —w)dx.
Q*

The above relation can also be rewritten as
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/(wAv— vAw)O. (v — w)dx
Q*
= / wh, (v —w)V(w —v) - V(v —w)dx
Q*

+ /(v —w)f(v—w)Vw V(v —w)dx.
Q*

Since [, wo. (v — w)V(w —v) - V(v — w) dx < 0, the last equality yields

/(wAv —vAw)O, (v — w)dx < /(v — w)@é(v —w)Vw -V —w)dx,
2* 2
that is,
/(wAv —vAW)O, (v — w)dx < / Vw - V(@g(v — w)) dx.
Q2 2*
Again by Green'’s first formula and by (2.3) we have

/(wAv —vAW)O (v — w)dx < / Oy (v — w)g—ZdG — / O.(v—w)Awdx
fols a2+ 2%
< - / O (v—w)Awdx < 28/ |[Aw|dx < 2eM < %0.
o foll
Thus, we have obtained a contradiction. Henegw in £2 and the proof of Lemma 2.1 is
now complete. O

3. Proof of Theorem 1.1
We need the following auxiliary result, which is proved in [23].

Lemma3.1. Let ¥ : §2 x (0, co) — R be a Hélder continuous function which satisfies

(A1) lim sup(s_l ma_xtI/(x,s)) <A1

§— 400 xXen

(A2) for eacht > 0, there exists a constant D(¢) > O such that
W, r)—W(x,s)=—-D@)(r—s) forxeQandr>s>1;
(A3) thereexist no > 0 and an open subset 29 C £2 such that

min¥(x,s) >0 for x € (0, no)
xX€ES

and
lim - 5)
540 s

=+o00 uniformly for x € £29.
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Then the problem
—Au=W¥(x,u) in$2,
{u >0 ing2, (3.1)
u=0 onas2,

has at least one classical solution u € C2(£2) N C(£2).

Fix A > 0. Obviously, ¥ (x,s) = Af(x,s) — K(x)g(s) satisfies the hypotheses in
Lemma 3.1 sinc&k < 0in £2. Hence, there exists a solutiap of the problem
—Au=Af(x,u) — Kx)g(u) ing£2,
{ u>0 in $2,
u=>0 onas2.
We observe thai, is a super-solution of proble), . To find a sub-solution, let us denote

p) =min{Af(x,1); —K(x)g(D)}, xe.

Using the monotonicity off andg, we observe thap(x) < Af(x,s) — K(x)g(s) for all
(x,5) € 2 x (0, 00). We now consider the problem
{ —Av+ |Vu|¢ =p(x) in g, (3.2)
v=0 onas2.
First, we observe that= 0 is a sub-solution of (3.2) while defined by

—Aw=p() in§,
w=0 onos2,
is a super-solution. Singe > 0 in £2 we deduce that > 0 in §2. Thus, the problem (3.2)

has at least one classical solutionWe claim thatv is positive in£2. Indeed, ifv has a
minimum in £2, say atxg, thenVuv(xg) = 0 andAv(xg) > 0. Therefore

0> —Av(xo) +[Vv|*(x0) = p(x0) > 0,

which is a contradiction. Hence mins; v = min,¢se v =0, that is,v > 0 in £2. Now
u, = v is a sub-solution ofl), and we have

—Au, < p(x) <Af(x,u) — K(x)g(up) = —Au; in £2.

Sinceu, = i, =0 on a2, from the above relation we may conclude that< i, in 2
and so, there exists at least one classical solutioriifgr. The proof of Theorem 1.1 is
now complete. O

4. Proof of Theorem 1.2

We give a direct proof, without using any change of variable, as in [25]. Let us assume
that there exists. > 0 such that the problenl), has a classical solutiom;. Since f
satisfies(f1) and (f2), we deduce by Lemma 3.1 that for all> O there existd/, €
C2(£2) such that

— AU, =Af(x,U;) in$2,
U,>0 in$2, 4.1)
U,=0 onos2.
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Moreover, there existy, c2 > 0 such that
crdist(x, 082) < Up(x) < codist(x, 052) forallx € 2. (4.2)
Consider the perturbed problem
—Au+ Kegu+e)=Arf(x,u) ing2,
u>0 in 2, 4.3)
u=~0 onos2,

whereK, = min, _5 K(x) > 0. It is clear thal; andU), are respectively sub- and super-
solution of (4.3). Furthermore, we have

AU + f(x,Up) <O< Auy + f(x,u) in 82,
Uy,up>0 ing2,

Uy=u; =0 o0nos2,

AU, e LY($2)  (sinceU, e C3(2)).

In view of Lemma 2.1 we get;, < U, in £2. Thus, a standard bootstrap argument (see
[17]) implies that there exists a solutiap € C2(£2) of (4.3) such that

us, < Uy, in 2.
Integrating in (4.3) we obtain

—/Augdx—i-K*/g(ug+8)dx=)»/f(x,u8)dx.
2 2 2
Hence

B
/ﬁderK /g(us+8)dx<M, (4.4)

where M > 0 is a positive constant. Taking into account the fact I%?tg 0 onds2,
relation (4.4) yieldX . fgg(u£+8) dx < M. Sinceu, < U, in 2, from the last inequality
we can conclude thaf, g(U;. + &) dx < C, for someC > 0. Thus, for any compact subset
o € 2 we have

/g(Ux+8)dx <C

w

Lettinge — 0™, the above relation produces ¢(U,) dx < C. Therefore

f g(U)dx <C. (4.5)

2

On the other hand, using (4.2) and the hypothg@éig(s)ds = +00, it follows

/g(UA) dx > fg(czdist(x, 8(2)) dx = 400,
Q Q

which contradicts (4.5). Henc€l), has no classical solutions and the proof of Theo-
rem 1.2 is now complete.O
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5. Proof of Theorem 1.3

Fix A > 0. We first note that/, defined in (4.1) is a super-solution ¢f),. We focus
now on finding a sub-solutiom, such thaw, < U, in £2.
Leth:[0, co) — [0, c0) be such that

h'(t) =g(h(t)) forallz >0,
h>0 in(0,00), (5.1)
h(0)=0.
Multiplying by 7’ in (5.1) and then integrating ovér, t] we have
h(t)
(W)?(t) — (W)?(s) =2/ g(r)ydr forallt>s>0.
h(s)
Sincefolg(r) dt < oo, from the above equality we deduce that we can exténid origin

by takingh’(0) = 0 and sah € C2(0, o0) N C1[0, o0). Taking into account the fact that
is increasing and” is decreasing o0, co), the mean value theorem implies that

W () (1) — 1 (0)

>h"(t) forallt>0.

t t—-0
Henceh'(¢) > th” (1), for all r > 0. Integrating in the last inequality we get
th'(t) <2h(t) foralltr>O0. (5.2)

Let ¢1 be the normalized positive eigenfunction corresponding to the first eigenvalue
of the problem

[—Au:)\u in §2,
u=~0 onos.

It is well known thatp, € C2(£2). Furthermore, by Hopf’s maximum principle there exist
8§ >0 and 2o € 2 such that|Ves| > § in 2\ 20. Let M = max{1, 2K*5~2}, where
K* =max s K (x). Since

lim —K*g(h M*(h")¢ Vg1|?1 = —o0,
ase M o A=K g (h(en) + M) (] Verl} = 00

by letting £29 close enough to the boundary @f we can assume that
—K*g(h(pn) + M*(h")* (91| V1l <0 in 2\ 0. (5.3)
We now are able to show that = Mh(g) is a sub-solution of1), providedx > 0 is
sufficiently large. Using the monotonicity gfand (5.2) we have
—Au; + K(x)gu;) +[Vu, |
< —Mg(h(pn)[Verl> + MM (p1)p1 + K*g(Mh(g1)) + M“ (W) (1) | Vea|*
< g(h(pn) (K* — MIV@1?) + 1aME (9191 + M (W) (91)| V1|
< g(h(pD)(K* — M|V1|?) + 20 Mh(g1) + M (') (1) Ver|*. (5.4)
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The definition ofM and (5.3) yield
—Au; + K(x)g(uy) + | Vuy |* <20 Mh(p1) = 20u; i 2\ 0. (5.5)
Let us choose. > 0 such that
min, g, f (x, Mh(ll@1lloc))
Mle1lloo
Then, by virtue of the assumptidif1) and (5.6) we have

S J@w) L f& Ma(lollo)

=

Uy Mlle1lloo
The last inequality combined with (5.5) yield

> 201 (5.6)

=20 in2\ Q.

—Au; + K (x0)g(uy) + [V |* < 2hau; <Af(x,u;) in 2\ Q0. (5.7)
On the other hand, from (5.4) we obtain

—Au, + K@)gw,) + |Vu, |*“ < K*g(h(p1)) + 20 Mh(p1) + M () (91)| V1|
in 2. (5.8)

Sincegy > 0in 29 and f is positive ons2g x (0, c0), we may choosg > 0 such that

A min f(x, Mh(g1))
xef2g

> max{K*g(h(g1)) + 201 Mh(p1) + M* (') (1) [Va|*}. (5.9)

x€f0

From (5.8) and (5.9) we deduce
—Au; + K()gw,) + Vuy |* <Af(x,u;) in $2o. (5.10)

Now, (5.7) together with (5.10) shows thgt= Mh(¢1) is a sub-solution of1), provided
A > 0 satisfy (5.6) and (5.9). With the same arguments as in the proof of Theorem 1.2 and
using Lemma 2.1, one can prove that< U, in £2. By a standard bootstrap argument (see
[17]) we obtain a classical solutian, such thaw, <u) < U, in £2.

We have proved thatl), has at least one classical solution when 0 is large. Set

A= {A > 0; problem(1), has at least one classical solut]on

From the above arguments we deduce thas nonempty. Lek* = inf A. We claim that
if L €A, then(x,4+00) € A. To this aim, leth; € A and Az > A1. If u;, is a solution
of (1), thenu,, is a sub-solution foK1),, while U,, defined in (4.1) forA = 1, is a
super-solution. Moreover, we have

AUp, + 22 f (x, Up,) SO Auyy + Ao f (x,uy,) in 82,

U)»z,ukl >0 in $2,

Ukz =Uy, = 0 onas2,

AU, € LY(R2).
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Again by Lemma 2.1 we gety, < Uy, in §2. Therefore, the problertl),, has at least one
classical solution. This proves the claim. Sirice A was arbitrary chosen, we conclude
that(A*, +00) C A.

To end the proof, it suffices to show thit > 0. In that sense, we will prove that there
existsA > 0 small enough such thét), has no classical solutions. We first remark that

Sin&(f(x, 5) — K(x)g(s)) = —oo uniformly forx € 2.

Hence, there exisis> 0 such that
f(x,s) — K(x)g(s) <0 forall (x,s) e 2 x(0,c). (5.11)
On the other hand, the assumptigfil) yields

flx,8) — K(x)g(s) < fx,s) < fx,0)
S S Cc

forall (x,s) € 2 x [¢, +0). (5.12)

Letm = max .5 L&, Combining (5.11) with (5.12) we find
f(x,s) — Kx)g(s) <ms forall (x,s) € 2 x (0, +00). (5.13)

Setig = min{1, A1/2m}. We show that problerl);, has no classical solution. Indeed, if
ug would be a classical solution ¢1),,, then, according to (5.13)p is a sub-solution of

—Au=%u ing,
u>0 in $2, (5.14)
u=0 onoas2.

Obviously,¢; is a super-solution of (5.14) and by Lemma 2.1 weuget ¢1 in 2. Thus,
by standard elliptic arguments, problem (5.14) has a solutiarC?(£2). Multiplying by
@1 in (5.14) and then integrating ov&r we have

Al
— <p1Audx=7 uprdx,
Q

2
that is,
—/quldxz%/uwldx.
2 Q

The above equality yield$, ug1 dx = 0, which is clearly a contradiction, sineeandg;
are positive onf2. If follows that problem(1),, has no classical solutions which means
thatA* > 0. This completes the proof of Theorem 1.31
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