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Abstract

The theorems of Balan, Casazza, Heil, and Landau concerning the removal of sets of positive density
from frames with positive excess are extended using a more general, symmetric concept of localization of
frames.
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1. Introduction

The concept of localization of frames was recently introduced independently by Grochenig
[18] and the group consisting of Balan, Casazza, Heil, and Landau (BCHL) [4,5]. Frames having
this new localization property are interesting in a number of ways; Grochenig proved that a frame
localized with respect to a Riesz basis is automatically a Banach frame for an often important
family of Banach spaces associated to the Riesz basis. This was further generalized in [12—14,
17]. Further background and examples can be found in [1,7,11]. BCHL proved that the excess
of an overcomplete localized frame has a certain degree of uniformity, and were able to give
conditions under which excess of positive density could be removed from an overcomplete lo-
calized frame. Previous work done in this direction can be found in [2,3]. As often happens when
a concept is introduced independently by several parties, the definitions found in [4,5,18] are
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different enough so that one definition is not a special case of the other, and are specific to their
respective purposes. A more general definition which encompasses both Gréchenig’s and BCH-
L’s definitions in the most useful cases is introduced in [15]. This definition allows for a useful
and natural equivalence class structure when dealing with !-self-localized frames, and extends
the results of Grochenig [15]. In this paper, we focus on extending the results of BCHL involving
removing excess of positive density. In Section 2, we define symmetric localization. In Section
3, we provide the necessary definitions from [2]. In Section 4 we extend the Density-Relative
Measure Theorem and the theorem concerning the removal of sets of positive density.

2. Symmetric localization

Before introducing the new definition, we fix basic notation. We recommend [6,8—10,16] for
additional background.

Let F = { fi}rex be a frame for a separable Hilbert space H with frame bounds A, B. The
analysis operator will be denoted C : H — 1>(X), C(f) = {{f, fx)}xex. The synthesis operator
denoted D :12(X) — H, D({cx}xex) = D_ cx fx is the adjoint of C, D = C*. The frame operator
denoted S = DC : H — H, Sf =) _,cx(f. fx) fx is a positive, invertible operator such that
A -1 < S < B-I.The canonical dual frame of F will be denoted F= {fx}xeX ={S7" filrex.
A frame sequence F = { fx}xex 1s a frame for the closure of its span.

In the following, let G be a group of the form ]_[fl: WY/ ]_[j: | Zp;. For every g =

(ainy,axny, ...,agng, my,my, ..., me) € G, let
lgl = sup{laini|, laznal. ... laanal, 8(my), 8(my), ..., 8(me)}
where
8(mj)={0 1fmj:'0;
1 otherwise.

Define a metric on G by d(g,h) = |g — h| for g,h € G. Let S,(j) denote the ball of radius n
centered at j in G and |S,,(j)| := #[S, (j)], the cardinality of S, (j).

Definition 1 (Symmetric localization). Let F = { fx}xex and € = {e,},ey be sequences in a
Hilbert space H, X and Y arbitrary index sets.

(1) (F, &) is symmetrically IP-localized if there exist maps ay : X — G, ay: Y — G such that
supcq lay' (J)I.supjeq lay ' ()| < K < oo, and r € [P(G) such that forall x € X, y € ¥,
|<fX1 ey>| S Tay(n)—ay (y)-
(2) (F, &) has uniform I? -column decay if for every € > 0 there is N > O such thatforall y € Y,
Z |(fx,ey)|P < €.
xeX\ax' (Sne (ay (»)))
(3) (F, &) has uniform P -row decay if for every € > 0 there is N¢ > 0 such that for all x € X,

> [(froe)|” <e.

ye¥\ay ' (Sye (ax (x)))

Remark 2. The terms column and row decay come from considering the cross-Grammian matrix

[{fx,ey)]x,y.
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If weletY = G and ay =id, then we have the definition of BCHL provided sup ;. |a)_(1 Nl <
K < oo. Bounded point inverses are not only desired in applications but also used in nearly all of
the theorems of BCHL so it is not a restrictive condition. This definition does not extend the def-
inition of Grochenig, however, every frame localized in the sense of Grochenig is symmetrically
localized. This is proved in [15].

Example 3. Let

. sin[(x + k)]

Fe {fk " __sin[z(x +n)] }
nez

} and &= {en =
7 (x + k) kelz, mT(x +n)

be contained in LZ(R). F is a frame with frame bounds A = B =2 and £ is an orthonormal
basis. Let ag : Z — Z be the identity function and a r: %Z — 7 defined

k if k € Z;
artk)y=1k—1/2 ifkeZt,;
k+1/2 ifkeZ™.
Then F is I? localized with respect to &, for any p > 1, as

1 if k = n:
|(fkaen)|= 0 lkaZ, k#n,
= ifk¢Z.

Ik—lnln < (|a(k)1—n\)n for |a(k) — n| # 0 so we have |(ft, €n)| < Fa()—n, Where
{1 ifg=0;
Ve = 1 .
8 er g #0,
rel?), p>1.

3. Definitions of density, measure, and excess

Throughout this section, let F = { fy}xex and £ = {e,},cy be frame sequences for Hilbert
space H, X and Y arbitrary index sets. Letay : X — G, ay :Y — G be associated maps such that
|a§1 (DI, |a;1 ()l < K < oo forall j € G. We will also use free ultrafilters for more flexibility
in convergence; free ultrafilters are discussed in Appendix A.

Definition 4. The lower and upper densities of F = { fx}xex with respect to ax are respectively
—1 .
ay S
D~ (ax) = liminf inf M
n—00 jeG  [8,(j)l
and
—1 .
ay S
D% (ax) = liminf inf M
n—o0o jeG |8, (j)l
Let ¢ = {cn}nen be any sequence, p a free ultrafilter. The density with respect to ayx, p, c is
—1
ay Sn(c
D(p.e) i= D(p.ciax) = p-lim X VW]
NeN  ISn(en)l
If any of these expressions do not exist, then the respective density is co.
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Definition 5. The relative measure of F with respect to £, p, c is

> cu=lsuieny (PE frs fi)
Mg(F, p, ¢) = p-lim =2 VW) .
NeN lay Sn(cn)l

The relative measure of € with respect to F, p, c is

Y cumt s ieny (PFCys &)
MF(E, p,e) = prlim 2= 220
NeN lay " Sn(cn)l

In the case that span(F) C span(E), Pg is the identity map so we can define the following:

The measure of F with respect to p, c is

Y eas" syt Foo Fo)
M(F, p, ¢) = p-lim = v .
NeN lay Sn(en)l

The lower and upper measures of F are respectively

era);lg'l(j)(fx’ fx>

M~ (F) =liminf inf T
"o jet lay Sn(j)I

and

> cearts, iy S f)
M (F) = limsup sup xeax_ln(]) . :
n—0o00 jeG |ax Sn(JI

If Span(£) C span(F), we can define M~ (E), MT(E), M(E, p, c) analogously.

Notice, the measure gives a kind of average over X of the diagonals of the Grammian matrix
[(ng)h fx’)]x,x’eX-

Definition 6. The excess of a frame is the greatest integer n such that n elements can be deleted
from a frame and still leave a complete set. The excess is infinite if there is no such upper bound.

Example 7. Let

;Z{ :w} and gz{en:w} ,
7'[()(? + k) ke%Z n(x + n) nez

and suppose a wE %Z — Z and ay,: Z — 7 are defined as in the previous example. Then

la=' S, (DI 2@2n+1)

_ o o
e N . S e
- i < ks S_l k)
M~ (F) = liminf inf Lica 15n<11> f' /i
n—oo jeG |a* Sn(])|
s, ISR
= liminf inf 2kea's, () b _
n—>o0o jeG 22n+1) 3

Likewise, M+ (F) = 1/2. By asimilar proof, D™ (az) = D" (az) =1land M~ () = M+ (£) = 1.
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4. Extending the results
4.1. Density-relative measure theorem

A major result in [4] relates density and relative measure such that, in particular, for £ a Riesz
basis, the relative measure and density are reciprocals of each other. This in turn allows one to
quantify the redundancy of a frame by the reciprocal of the relative measure. We extend their
theorem using the new definition. The proof is close to that of BCHL.

For the following theorem, let

= 7|a;(1SN(CN)| and my := era)?lSN(CN)<fx’fx>
1Sy (cn)l ' lag'Sn(en)l

Theorem 8 (Density-Relative Measure Theorem). Let F = { fx}rex and £ = {ey}ycy be frame
sequences for Hilbert space H, X and Y arbitrary index sets. Denote by F={ fx} vex and € =
{€y}yey the duals of F and &, respectively. Let ax : X — G, ay:Y — G be maps. If D" (ax),
D1 (ay) < o0, and (F, E) has 12-column decay and 12-row decay, then the following statements
hold:

(a) For every sequence ¢ = {cny}neN C G,

lim [dymy —dxmx]=0.
N—o00

(b) For every sequence ¢ = {cn}nen C G and free ultrafilter p,
D(p,c;ay)Mx(E, p,c)=D(p,c;ax)Mg(F, p, ).

Proof. (a) Fix some sequence ¢ = {cy}yeny © G. We must show that |dymy — dxmyx| — 0.
First, we make some preliminary observations and introduce some notation. Let A and B, A’ and
B’ denote frame bounds for F and &, respectively. Then F and &£ have frame bounds % and i,

# and %, respectively. Consequently, forx €e X and y € Y,

- 1 - 1
IAIP<B, IAP<—.  lel*<B. &l <—.
A A
Fix any € > 0. Since (F, ay, ay, £) has both 12-row decay and [2-column decay, there exists
an integer N > O such that forall y € Y,

2
Z ’(fx’ ey)‘ <€
xeX\ay' (Swe (ay ()
and for all x € X,
2
Z |(fx,ey)| <E€.
ye¥\ay ' (S, (ax (1))

Also, since DV (ax), DT (ay) < oo, we have

K =max{sup lax' (j)]. sup |a§1(j)|} < 00,
jeG jeG

and for any set I" contained in G, we have |ay' (I')| < K|I'|, |ay ' (I < K|T'.
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Let Pr, Pg denote the orthogonal projections onto Span(F), span(£), respectively. These
projections can be realized in the following way:

Prf= Z(f, fo)fe for feH and ngZZ(f, ey)ey for feH.

xeX yeyY

Therefore,
|Sn (cn)|(dymy — dxmx)

= Y @nPre)— Y (Pefofo)

yeay ' (Sn(en)) xeay' (Sy(en))
= Y Y@ fo— D D (fee)@y i)
yeay ' (Sn(en)) ¥€X xeay' (Sy(en)) YEY

We can rearrange the series as we like, since a, ! (Sy(cn)) and a;(l(SN (cn)) are finite sets and
the infinite series over x or y converges absolutely by basic frame properties.
In particular, we rewrite the equation for N > N, as

|Sn(en)|(dymy —dxmyx) = > Yo (feeEy fo)

yeay ' (Sy(en)) xeX\ay ' (Sy (cn))

- > Y )@y fo.

xeay' (Sy(en)) ye¥\ay ' (Sw(en))
We can go further, and rewrite the above equality as
|Sn(en)|dymy —dxmx) =T1 + T, — T3 — Ty,
where

= > > (ferey)(éy, fo),

yeay ' (Sy(en)) xeX\ay ' (Sytne (en))

= > > (fesey) @y, f),

yeay ' (Sn(ew)) xeay! (Sn4ne (en)\ax ' (Sy(en))

Ty = > Yo (fee) @y fo),

xeay! (Sy—ne (en)) ye¥\ay (S (en))

Ty = > Yo (feen @y fo.

xeay! (Sy(en)\ay ' (Sv-ne (en) ye¥\ay ' (Sn(en))
We will estimate each of these quantities in turn.
Estimate Ty: 1If y € a;l(SN(CN)), then ay (y) € Sy (cn). So
ay' (Sn. (ar (1)) S ax' (Sw4n. (en))-

Then by [ 2 row decay, we have

> e’ Y e <e

xeX\ay (Sy+ne (en)) xeX\ay' (Sne (ay ()
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Using this and the fact that { fx} is a frame sequence, we estimate that

) 1/2 . 1/2
i<y ( > |<fx,ey>|>( > |<éy,fx>})

yeay '(Sn(en))  xeX\ay! (Syne (en)) xeX\ay' (Sy+ne (en))

U 1 5 1/2 e \ 12
< > e (Xlleyll) <K|SN(cN)|<AA,> .

yeay' (Sw(en))

Estimate T,: We have
lay! (Sven. (em)\ay' (Snem)| < K (|Svan, (en)| = |Sn(en)|)-

Since we have frame sequences {¢,},cy and {ey},cy, we have

T3] < > (Z|<fx,ey>|2)1/2<z|<éy,fx>|2>

xeay! (Snine (en)\ax' (Swlen)) V€Y yey

< » BULP) (1A -
~X X A/ X

xe“;(l (SN+Ne (CN))\IZ)}1 (Sy(en))

1/2

B'B\'?
<K(Jswanem| - Iswen(55)

Estimate T3: This estimate is similar to the one for 77:

e /2
|T3|<K|SN_NE(cN>|<AA,) :

Estimate Ty: This estimate is similar to the one for 75:

B'B\ /2
|T4|<K(|SN(cN>|—|SN_NE<cN)|)< )

AA

Final estimate:  Applying the above estimates, we find that if N > N, then
|T1| + | T2] + | T3] + | T4]

|dymy —dxmx| <

|Sn(en)l
_ KISy (en)| <L>‘/2+ K (IS4 (en) = ISn (en)]) (B’_B)‘/2
ISn(en)| \AA’ 1Sn (en)] AA’
KISv-n.(cn)| (€ \'*
[Sn(en)] (AA’>
K (ISn (cn)| = |Sn—n, (en)]) (B’B)”2
|Sn(en)] AA)

[Sn (j)] is independent of j € G, so we have limy_, s ‘SNA(,%)‘ = C for some constant C > 0.
Thus

e\ 12 e \12
lim |dymy — dxmy| =K 0+K 0.
yim, ldymy — dxmx| (AA’) o (AA’) +

Since € was arbitrary, this implies limy_, oo (dymy — dxmyx) = 0 as required.
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(b) Since ultrafilter limits exist for any bounded sequence and furthermore are linear and
respect products, we have

0= p-lim(dymy - dex)

NeN
= (”N'leié“(d”x’k’fé“(m”) - (pN-leigl(dm) (P]\;leigl(mx)>

=D(p7c;aY)MF(5ap’c)_D(pvc;aX)ME(fvpac)' O
Consequently, we have the following result:

Theorem 9. Let F = {fi}rex and £ = {ey}ycy be frames for 'H, and let ax:X — G and
ay :Y — G be associated maps such that DV (ax) < 0o and DV (ay) < oo. If (F, &) has both
12-column and 1*-row decay, then the following statements hold:

(a) For each free ultrafilter p and sequence c, we have
D™ (ay)M™(£) < D™ (ax)M™(F) < D*(ay)M™ (&),
D™ (ay)M~ () < D (ax)M ™~ (F) < D™ (ay)M™(£),
D™ (ax)M~(F) < D™ (ay)M™(£) < D* (ax) M (F),
D™ (ax)M ™ (F) < D*(ay)M ™~ (€) < DT (ax)M ™ (F).

b) If MT (&) < gig’y{;, then there exists an infinite set 1 C X such that { fy}xex\1 is still a

frame for 'H.

Proof. (a) Since the closed span of F and £ is all of H, we have
D(p,c;ay)M(E, p,c)=D(p,c;ax)M(F, p,c)

for all p and ¢, by Theorem 8. By Lemma 2.5 found in [4], we have that there exist a free
ultrafilter p and a sequence ¢ which satisfy D™ (ax) = D(p, c; ax). Hence

D™ (ay)M~ () < D(p,¢c;ay)M(E, p,¢) = D(p, c;ax)M(F, p,¢) < D™ (ax) M™ (F).

Similarly, we have that there exist a free ultrafilter p’ and a sequence ¢’ which satisfy M*(F) =
M(E, p, c). Hence

D™ (ax)M™(F) < D(p', s ax)M(F, p', )
=D(p'.cray)M(E, p',c") < DT (ay) MF(E).
Hence
D™ (ay)M™ () < D™ (ax)M ™ (F) < D™ (ay)M ™ (©).
The other inequalities follow similarly.

(b) Suppose M*(E) < gii‘;g. By (a), D" (ax)M~(F) < Dt (ay)M™(E). So we have

.
D*ay)M*(E) Dran ey

< =1.
D*(ax) Dt (ax)
Hence, by Proposition 1 from [4], we have that there exists an infinite set / C X such that
{fx}xex\s is still a frame for H. O

M~ (F) <
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4.2. Removing sets of positive density

By posing a stronger form of localization, BCHL in [4] gave a stronger result concerning the
removal of sets of positive density.

Theorem 10. (BCHL ’05 [4]) Let F = { fi}xex be a frame sequence with frame bounds A, B
and associated map a: X — G such that

(a) 0 <D (a) < Dt (a) < oo,
(b)y MT(F) <1, and
(c) Fisl" localized with respect to its dual.

Then if we fix o such that MY (F) <a <1, for each 0 < € < 1 — « there exists a subset J C
Iy ={x e X: (fe, f) <a} such that D~ (J,a) = DT (J,a) > 0 and F\fx;}jes is a frame for
its closed linear span with frame bounds A(1 —a — €), B.

Using this theorem, we are able to prove a more general statement about the removal of subsets
with positive density.

Theorem 11. Let F = { fy}xex and € = {ey} ey be frames for H, withax: X — G, ay:Y — G
the associated maps. Assume the following:

(@) 0 <D™ (ax) < DT (ax) < oo,
(b) 0 <D™ (ay) < Dt (ay) < o0,
D~ (ax)
© M*(E) < 5o,
(d) Fisl! localized with respect to its dual,
(e) (F,E) has both I* column and row decay.

Then MY (F) < 1. Furthermore, there exists a subset J C X with positive density such that
{ fx}xex\y forms a frame for its closed linear span.

Proof. By Theorem 9, we have

M*E)D* (ay) _
D~ (ax)

The result follows from applying Theorem 10. 0O

M (F) < 1.
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Appendix A. Free ultrafilters

In order to understand density and measure as defined in the next section, we will have to
introduce the notion of free ultrafilters to define convergence for arbitrary sequences. Although
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we can define a free ultrafilter for any nonempty set, we only define it here for N. We can
understand a free ultrafilter as an element of SN/N or equivalently, as the following definition.

Definition A.1. A collection p of subsets of N is a filter if

(@) V¢ p,
(b) ifA,Bepthen ANB € p,
(c)ifAepand AC BC Nthen B € p.

A filter p is an ultrafilter if it is maximal in the sense that

(d) if p’ is a filter on N such that p C p/, then p = p’

or equivalently,

(d) for any A C N either A € p or its complement, N\ A € p.
An ultrafilter is a free ultrafilter if

(e) p contains no finite sets.

Definition A.2. Let p be an ultrafilter. Then we say that a sequence {cy}yen in C converges to
¢ € C with respect to p if for every € > 0 there exists a set A € p such that |cy — ¢| < € for all
N € A. In this case, we write

p-limey =c.
NeN

We have the following results concerning convergence with respect to free ultrafilters:

Proposition A.3. Let p be a free ultrafilter, {cN}neN a sequence.

(a) Iflimy_ ooy =c, then p-limyncy =c.

(b) Every bounded sequence converges with respect to p to an accumulation point of that se-
quence.

(¢) If ¢ is an accumulation point of a bounded sequence {cn}nNeN then there exists a free ul-
trafilter p such that p-limy.ycy = c. In particular, there exists an ultrafilter p such that
p-limy ey =liminfey and an ultrafilter q such that g-limy ey = limsupcy.

(d) p-limits are unique.

(e) p-limits are linear.

(f) p-limits respect products.

Example A.4. We show how p-limits extend the concept of ordinary convergence. Consider the
sequence {cy}neN Where
. { 1 if N is even;
Y7o if Nisodd.
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This sequence does not converge in the ordinary sense. However, let p be a free ultrafilter. By (d'),
we have that either the set of all positive even numbers is in p, or its complement, the set of all
positive odd numbers is in p. If the first case is true, then p-limyycy = 1. If the second case is
true, then p-limyycy =0.
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