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1. Introduction

For a fixed integer n � 2, let B = Bn denote the open unit ball in Rn . Given α > −1 real and 1 � p < ∞, we let
L p
α = L p(Vα) denote the weighted Lebesgue spaces on B where dVα denotes the weighted measure defined by

dVα(x) = (
1 − |x|2)α dV (x).

Here V denotes the Lebesgue volume measure on B . For α = 0, we have L p = L p
0 = L p(V ). For simplicity, we use the

notation dy = dV (y), etc.
For 1 � p < ∞ and α > −1 real, we let

bp
α = L p

α ∩ h(B)

denote the weighted harmonic Bergman space, where h(B) is the space of all harmonic functions in B . In case α = 0, we
have bp = bp

0 . As is well known, b2 is a closed subspace of L2 and hence is a Hilbert space. Since each point evaluation in
B is a bounded linear functional on the Hilbert space b2

α , for each x ∈ B there exists a unique function Rα
x = Rα(x, ·) in b2

α
such that it satisfies the following reproducing formula:

f (x) =
∫
B

f (y)Rα
x (y)dVα(y), f ∈ b2

α.

The function Rα
x (y), x, y ∈ B is called the reproducing kernel of b2

α . One can write Rα
x (y) for a series involving extended

zornal harmonics; see [6]. Note that the kernel Rα
x (y) is real and symmetric. We also have the following estimate of these

kernels:
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∣∣Rα
x (x)

∣∣ ≈ (
1 − |x|2)−(n+α)

and
∣∣Rα

x (y)
∣∣ � [x, y]−(n+α),∣∣∇y Rα

x (y)
∣∣ � [x, y]−(n+α+1) (1.1)

for all x, y ∈ B . From now on, ∇y denotes the gradient with respect to y-variable and

[x, y] =
√

1 − 2x · y + |x|2|y|2.
Since the function Rα(x, y) is bounded in y whenever x is fixed, we can consider the following integral operator

Q α( f )(x) =
∫
B

f (y)Rα(x, y)dVα(y), f ∈ L1
α.

It is easy to show that the operator Q α maps L2
α boundedly onto the harmonic Bergman space b2

α .
To state our main result, we write ρ and β for the pseudo-hyperbolic and hyperbolic metrics on B , respectively; see

Section 2 for the definitions. The following theorem is our main result in this paper.

Theorem 1.1. Let 1 � p < ∞ and α > −1. Then the following conditions are equivalent:

(a) f ∈ bp
α .

(b) There exists a continuous function g ∈ L p
α such that∣∣ f (x) − f (y)

∣∣ � ρ(x, y)
[

g(x) + g(y)
]

for all x, y ∈ B.
(c) There exists a continuous function g ∈ L p

α such that∣∣ f (x) − f (y)
∣∣ � β(x, y)

[
g(x) + g(y)

]
for all x, y ∈ B.

(d) There exists a continuous function g ∈ L p
α+p such that∣∣ f (x) − f (y)

∣∣ � |x − y|[g(x) + g(y)
]

for all x, y ∈ B.

Analogous result for Bergman spaces of holomorphic functions are proved in [7].
In case p = ∞ and α = 0, we can replace the harmonic Bergman space bp

α by the harmonic Bloch space.
The harmonic Bloch space B is the space of harmonic functions f on B such that the function (1 − |x|2)|∇ f (x)| is

bounded on B . Note that it is a Banach space equipped with norm

‖ f ‖B = ∣∣ f (0)
∣∣ + sup

x∈B

(
1 − |x|2)∣∣∇ f (x)

∣∣.
The harmonic little Bloch space B0 is the space of harmonic functions f ∈ B for which (1 −|x|2)|∇ f (x)| is vanishing on ∂ B .
For each α > −1, one can see that Q α : L∞ → B is bounded by Lemmas 4 and 5 of [5].

As a companion result for the harmonic Bloch space, we have the following. Here, we denote C0 = C0(B).

Theorem 1.2. The following conditions are equivalent:

(a) f ∈ B (B0 resp.).
(b) There exists a continuous function g ∈ L∞ (C0 resp.) such that∣∣ f (x) − f (y)

∣∣ � ρ(x, y)
[

g(x) + g(y)
]

for all x, y ∈ B.
(c) There exists a continuous function g ∈ L∞ (C0 resp.) such that∣∣ f (x) − f (y)

∣∣ � β(x, y)
[

g(x) + g(y)
]

for all x, y ∈ B.
(d) There exists a continuous function (1 − |x|2)g(x) in L∞ (C0 resp.) such that∣∣ f (x) − f (y)

∣∣ � |x − y|[g(x) + g(y)
]

for all x, y ∈ B.
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In Section 2 we review Möbius transformations and some metrics on B . Also some properties of them are stated and
proved. In Section 3 we prove norm equivalences in terms of radial, gradient and invariant gradient norms. In the last
section, our main theorems are proved.

2. Preliminaries

We first recall Möbius transformations on B . All relevant details can be found in [1, pp. 17–30] or [3]. Let a ∈ B . The
canonical Möbius transformation φa that exchanges a and 0 is given by

φa(x) = a + (
1 − |a|2)(a − x∗)∗

for x ∈ B (note φa = −Ta in the notation of [1]). Here x∗ = x/|x|2 denotes the inversion of x relative to the sphere ∂ B .
Avoiding x∗ notation, we have

φa(x) = (1 − |a|2)(a − x) + |a − x|2a

[x,a]2
.

Here, as elsewhere, we write x · y for the dot product of x, y ∈ Rn . The map φa is an involution of B , i.e., φ−1
a = φa . The

following results are well-known identities:∣∣φa(x)
∣∣ = |x − a|

[x,a] ,

1 − ∣∣φa(x)
∣∣2 = (1 − |x|2)(1 − |a|2)

[x,a]2
, (2.1)

[
φa(x),a

] = 1 − |a|2
[x,a] , (2.2)

Jφa(x) =
(

1 − |a|2
[x,a]2

)n

, (2.3)

where Jφa denotes the Jacobian of φa .
We now recall the pseudo-hyperbolic and hyperbolic metrics on B . Let ρ be the pseudo-hyperbolic metric on B defined

by

ρ(x, y) = ∣∣φy(x)
∣∣ = |x − y|

[x, y] ,

where

φx(y) = (1 − |x|2)(x − y) + |x − y|2x

[y, x]2

for x, y ∈ B . Also, we write β for the hyperbolic metric on B defined by

β(x, y) = 1

2
log

1 + ρ(x, y)

1 − ρ(x, y)

for x, y ∈ B .
For a ∈ B and r ∈ (0,1), let Er(a) denote the pseudo-hyperbolic ball with radius r and center a. A straightforward

calculation shows that Er(a) is a Euclidean ball with

(center) = 1 − r2

1 − r2|a|2 a and (radius) = 1 − |a|2
1 − r2|a|2 r. (2.4)

This leads to the next lemma.

Lemma 2.1. The inequalities

1 − ρ(x, y)

1 + ρ(x, y)
� 1 − |x|2

1 − |y|2 � 1 + ρ(x, y)

1 − ρ(x, y)

and

1 − ρ(x, y)

1 + ρ(x, y)
� [x,a]

[y,a] � 1 + ρ(x, y)

1 − ρ(x, y)

hold for x, y,a ∈ B.
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Proof. See Lemmas 2.1 and 2.2 of [3]. �
Note that (2.4) implies that

∣∣Er(a)
∣∣ = |B|

(
1 − |a|2

1 − r2|a|2 r

)n

. (2.5)

Here, |E| = V (E) for Borel sets E ⊂ B . Consequently, we obtain by Lemma 2.1 an estimate on size of pseudo-hyperbolic
balls: Given δ, t ∈ (0,1), there is a positive constant C = C(δ, t,n) such that

C−1 � |Er1 (x)|
|Er2(y)| � C, y ∈ Er3 (x),

whenever r1, r2, r3 < δ and t < r1/r2 < t−1.
The following relations can be proved by a simple calculation.

Lemma 2.2. Let x, y ∈ B and y = tx where t is a scalar. Then we have

lim
y→x

ρ(y, x)

|x − y| = lim
y→x

β(x, y)

|x − y| = 1

1 − |x|2 .

Lemma 2.3. Let 1 � p < ∞ and r ∈ (0,1). Then there exists a positive constant C = C(r) such that∣∣ f (x)
∣∣p � C

(1 − |x|2)n

∫
Er (x)

∣∣ f (y)
∣∣p

dy

for x ∈ B and f ∈ h(B).

Proof. Note that we see by (2.4) that Er(0) is a Euclidean ball with center 0 and radius r. Using Jensen’s inequality and (2.5),
we obtain for f ∈ h(B)∣∣ f (0)

∣∣p � 1

|Er(0)|
∫

Er (0)

∣∣ f (y)
∣∣p

dy = 1

rn|B|
∫

Er (0)

∣∣ f (y)
∣∣p

dy.

Since [x, y] � |x − y| � 1 − |x|, we have after replacing f by f ◦ φx and making a change of variable,

∣∣ f (0)
∣∣p � 1

rn|B|
∫

Er (x)

∣∣ f (y)
∣∣p

(
1 − |x|2
[y, x]2

)n

dy � C

(1 − |x|2)n

∫
Er (x)

∣∣ f (y)
∣∣p

dy

for x ∈ B . We have the desired result. �
3. Norm equivalences

The following is change of variable formula for weighted Lebesgue spaces.

Proposition 3.1. Suppose α > −1 is real and f is in L1
α . Then∫

B

f ◦ φ dVα =
∫
B

f (x)
(1 − |a|2)n+α

[x,a]2(n+α)
dVα(x),

where φ is any Möbius transformation of B and a = φ(0).

Proof. Note that∫
B

f (U x)dVα(x) =
∫
B

f (x)dVα(x) (3.1)

for any orthogonal transformation U on B .
Let a = φ(0). Then there exists a orthogonal transformation U such that φ = φaU . From (3.1), we may assume that

φ = φa . Eqs. (2.1) and (2.3) imply that
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∫
B

f ◦ φ(x)dVα(x) =
∫
B

f ◦ φ(x)
(
1 − |x|2)α dx

=
∫
B

f (x)
(
1 − ∣∣φa(x)

∣∣2)α
Jφa(x)dx

=
∫
B

f (x)
(1 − |a|2)n+α

[x,a]2(n+α)
dVα(x),

which completes the proof. �
For α > −1 and c real, we define Iα,c as follows:

Iα,c(x) =
∫
B

(1 − |y|2)α
[x, y]n+α+c

dy, x ∈ B.

The following estimate for Iα,c is taken from Lemma 2.5 of [3].

Lemma 3.2. Let α > −1 and c real. Then

Iα,c(x) ≈
⎧⎨⎩

1 if c < 0,

1 − log(1 − |x|2) if c = 0,

(1 − |x|2)−c if c > 0

for x ∈ B. The constants suppressed above are independent of x.

We use the notation D for the radial differentiation defined by

D f (x) =
n∑

j=1

x j D j f (x), x ∈ B

for functions f ∈ C1(B). Here, D j denotes the partial differentiation with respect to the jth component. It is easy to see
that D f is harmonic if f is.

For f , a twice differentiable function in B , we define the invariant Laplacian �̃ f by

(�̃ f )(x) = �( f ◦ φx)(0), x ∈ B,

where φx is a Möbius transformation that exchanges a and 0. The following result explains why the operator �̃ is called
invariant Laplacian.

Proposition 3.3. Let f be twice differentiable in B. Then �̃( f ◦ φ) = (�̃ f ) ◦ φ for all Möbius transformations φ .

Proof. For fixed a ∈ B , let a = φ(x). Then we have

φ ◦ φx = φa ◦ U

for some orthogonal transformation U . Note that the Laplacian commutes with orthogonal transformations, namely,

�( f ◦ U ) = (� f ) ◦ U

for f ∈ C2(B); see [2] for details.
Thus we have

�̃( f ◦ φ)(x) = �( f ◦ φ ◦ φx)(0) = �( f ◦ φa ◦ U )(0)

= �( f ◦ φa)(0) = �̃ f (a)

= (�̃ f ) ◦ φ(x).

The proof is complete. �
From a simple computation, the invariant Laplacian can be described in terms of Laplacian and radial derivative as

follows:
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Proposition 3.4. Let f be a twice differentiable in B. Then

�̃ f (x) = (
1 − |x|2)2

(� f )(x) + 2(n − 2)
(
1 − |x|2)D f (x)

for x ∈ B.

Proof. Recall that

φx(y) = (1 − |x|2)(x − y) + |x − y|2x

[y, x]2
.

For fixed x ∈ B , we write φx(y) = (φ1(y), . . . , φn(y)) where

φi(y) = (1 − |x|2)(xi − yi) + |x − y|2xi

[y, x]2
.

Direct calculation implies that D jφi(0) = (|x|2 − 1)δi j and

D2
j φi(0) =

{
2xi(|x|2 − 1) if i = j,

2xi(1 − |x|2) if i �= j.

Here and elsewhere δi j is a Kronecker delta. Thus we have by the chain rule

�( f ◦ φx)(0) = (
1 − |x|2)2

n∑
i, j=1

[
(D j Di f )(x)δi j

n∑
k=1

δ jk

]
+

n∑
i=1

(Di f )(x)
n∑

j=1

(
D2

j φi
)
(0)

= (
1 − |x|2)2

n∑
i=1

(
D2

i f
)
(x) +

n∑
i=1

(Di f )(x)
(

D2
i φi

)
(0) +

n∑
i=1

(Di f )(x)
∑
i �= j

(
D2

j φi
)
(0)

= (
1 − |x|2)2

(� f )(x) + 2
(|x|2 − 1

) n∑
i=1

xi(Di f )(x) + 2(n − 1)
(
1 − |x|2) n∑

i=1

xi(Di f )(x)

= (
1 − |x|2)2

(� f )(x) + 2(n − 2)
(
1 − |x|2)D f (x).

The proof is complete. �
Given f harmonic on B , we define ∇̃ f (x) of f at x by

∇̃ f (x) = ∇( f ◦ φx)(0)

for x ∈ B . We call |∇̃ f | the invariant gradient of f at x by the following proposition.

Proposition 3.5. Let f ∈ h(B). Then |∇̃ f | is Möbius invariant, namely,∣∣∇̃( f ◦ φ)(x)
∣∣ = ∣∣(∇̃ f ) ◦ φ(x)

∣∣
for any Möbius transformation φ .

Proof. Note that

�
(| f |2)(x) =

n∑
j=1

D2
j

(| f |2)(x) = 2
n∑

j=1

{[
D j f (x)

]2 + f (x)
(

D2
j f

)
(x)

}
= 2

{∣∣∇ f (x)
∣∣2 + 2 f (x)� f (x)

}
(3.2)

for a twice differentiable function f in B .
Let f ∈ h(B). Then we have by (3.2)

�̃
(| f |2)(0) = �

(| f |2)(0) = 2
∣∣∇ f (0)

∣∣2 = 2
∣∣∇̃ f (0)

∣∣2
.

From this, we have

2
∣∣∇̃ f (x)

∣∣2 = 2
∣∣∇( f ◦ φx)(0)

∣∣2 = �̃
(| f ◦ φx|2

)
(0) = �̃

(| f |2)(x). (3.3)

Combining (3.3) with Proposition 3.3, we obtain the desired result. �
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Lemma 3.6. For f ∈ h(B),(
1 − |x|2)∣∣D f (x)

∣∣ �
(
1 − |x|2)∣∣∇ f (x)

∣∣ = ∣∣∇̃ f (x)
∣∣

holds for all x ∈ B.

Proof. By the Cauchy–Schwarz inequality for Rn , we have the first inequality. To prove the second inequality, we fix x ∈ B
and write

φx(y) = (
φ1(y), . . . , φn(y)

)
,

where

φi(y) = (1 − |x|2)(xi − yi) + |x − y|2xi

[y, x]2
.

Note that

(D jφi)(0) = (|x|2 − 1
)
δi j,

where δi j is a Kronecker delta. Also, the chain rule implies

D j( f ◦ φx)(y) =
n∑

i=1

(Di f )
(
φx(y)

)
(D jφi)(y).

From these facts, we have

∣∣∇̃ f (x)
∣∣2 = ∣∣∇( f ◦ φx)(0)

∣∣2 =
n∑

j=1

∣∣∣∣∣
n∑

i=1

(Di f )(x)(D jφi)(0)

∣∣∣∣∣
2

=
n∑

j=1

∣∣∣∣∣
n∑

i=1

(Di f )(x)
(|x|2 − 1

)
δi j

∣∣∣∣∣
2

= (
1 − |x|2)2

n∑
j=1

∣∣D j f (x)
∣∣2 = (

1 − |x|2)2∣∣∇ f (x)
∣∣2

.

Thus, we have the desired result. �
Theorem 3.7. Let 1 � p < ∞ and α > −1. Then the following conditions are equivalent:

(a) f ∈ bp
α .

(b) (1 − |x|2)D f (x) ∈ L p
α .

(c) (1 − |x|2)|∇ f (x)| ∈ L p
α .

(d) |∇̃ f (x)| ∈ L p
α .

Remark. In case α = 0, one can obtain the equivalences of (a)–(c) by some application of Theorem 1.3 of [4].

Proof. Lemma 3.6 shows that (d) is equivalent to (c), and (c) implies (b).
(b) ⇒ (a): Assume (b). Taking m = 1 and r = α > −1 in the proof of the part ‖ f ‖ � ‖ f ‖p,m,1 in Theorem 5.1 of [4], we

get ∫
B

∣∣ f (x)
∣∣p(

1 − |x|2)α dx �
∫
B

∣∣D f (x)
∣∣p(

1 − |x|2)p+α
dx + ∣∣ f (0)

∣∣p

so that∫
B

∣∣ f (x)
∣∣p

dVα(x) �
∫
B

∣∣(1 − |x|2)D f (x)
∣∣p

dVα(x).

From this we have the desired the desired result.
(a) ⇒ (d): Assume (a) and fix β > α and observe that there exists a constant C1 > 0 such that

∣∣∇g(0)
∣∣p =

(∑
i

∣∣Di g(0)
∣∣2

)p/2

� C1

∫
B

∣∣g(y)
∣∣p

dVβ(y)

for all harmonic g in B; See Corollary 8.2 in [2]. Let g = f ◦ φx where x ∈ B . Making a change of variables according to
Proposition 3.1, we obtain
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∣∣∇̃ f (x)
∣∣p = ∣∣∇( f ◦ φx)(0)

∣∣p = ∣∣g(0)
∣∣p � C1

∫
B

∣∣g(y)
∣∣p

dVβ(y)

= C1

∫
B

∣∣ f ◦ φx(y)
∣∣p

dVβ(y) = C1
(
1 − |x|2)n+β

∫
B

| f (y)|p dVβ(y)

[x, y]2(n+β)
.

An application of Fubini’s theorem and Lemma 3.2 then gives∫
B

∣∣∇̃ f (x)
∣∣p

dVα(x) � C1

∫
B

(
1 − |x|2)n+β

∫
B

| f (y)|p

[x, y]2(n+β)
dVβ(y)dVα(x)

= C1

∫
B

∣∣ f (y)
∣∣p

dVβ(y)

∫
B

(1 − |x|2)n+β+α

[x, y]2(n+β)
dV (x)

� C2

∫
B

| f (y)|p

(1 − |y|2)β−α
dVβ(y)

= C2

∫
B

∣∣ f (y)
∣∣p

dVα(y)

for some constant C2 > 0 and all f harmonic in B . Actually, replacing f by f − f (0), we have∫
B

∣∣∇̃ f (x)
∣∣p

dVα(x) � C2

∫
B

∣∣ f (x) − f (0)
∣∣p

dVα(x).

This completes the proof. �
For harmonic Bloch space, we have the following result.

Theorem 3.8. Let α > −1. Then the following conditions are equivalent:

(a) f ∈ B (B0 resp.).
(b) |∇̃ f (x)| ∈ L∞ (C0 resp.).
(c) (1 − |x|2)D f (x) ∈ L∞ (C0 resp.).
(d) f = Q α g for some g ∈ L∞ (C0 resp.).

Proof. Lemma 3.6 and Theorem 1.4 of [4] imply that (a) ⇔ (b) ⇒ (c). Thus we just show that (c) ⇒ (d) and (d) ⇒ (b).
(c) ⇒ (d): Assume (c). This gives f ∈ B by Theorem 1.4 of [4]. We let S f denote the function defined by

S f (x) = (
1 − |x|2)[D f (x) + (n/2 + 1) f (x)

]
for x ∈ B . Then we have S : B → L∞ is bounded and S B0 ⊂ C0. We also have Q α S is the identity on B from Lemma 10
of [5]. Taking g = S f , we have g ∈ L∞ and easily check that f = Q α(S f ). Thus we have the desired result.

(d) ⇒ (b): Assume that f = Q α g for some g ∈ L∞ .
Fix x ∈ B . Making the change of variables with (2.1) and (2.3) implies that

f ◦ φx(z) =
∫
B

g(y)Rα
(
φx(z), y

)
dVα(y)

=
∫
B

g
(
φx(y)

)
Rα

(
φx(z),φx(y)

)(
1 − ∣∣φx(y)

∣∣2)α
Jφx(y)dy

=
∫
B

g
(
φx(y)

)
Rα

(
φx(z),φx(y)

)( (1 − |y|2)(1 − |x|2)
[y, x]2

)α(
1 − |x|2
[y, x]2

)n

dy

=
∫
B

g
(
φx(y)

)
Rα

(
φx(z),φx(y)

) (1 − |y|2)α(1 − |x|2)n+α

[y, x]2(n+α)
dy.

Using Lemma 3.6 with (1.1) and (2.2), we get
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∣∣∇̃ f (x)
∣∣ �

∫
B

∣∣g
(
φx(y)

)∣∣∣∣∇Rα
(
φx(0),φx(y)

)∣∣ (1 − |y|2)α(1 − |x|2)n+α+1

[y, x]2(n+α)
dy

� ‖g‖∞
∫
B

1

[x, φx(y)]n+α+1

(1 − |y|2)α(1 − |x|2)n+α+1

[y, x]2(n+α)
dy

= ‖g‖∞
∫
B

(1 − |y|2)α
[y, x]n+α−1

dy.

From Lemma 3.2, we have (b).
Similarly, the left part can be shown, and so its proof is omitted. �

4. Proof of the main theorems

Finally, we prove our first main theorem.

Proof of Theorem 1.1. (b) ⇒ (a): Assume (b) and fix x ∈ B . For a scalar t , write y = tx. Then we have

| f (x) − f (y)|
|x − y| � ρ(x, y)

|x − y|
[

g(x) + g(y)
]

for all x, y ∈ B with x �= y. Let y approach x in the radial direction. Applying Lemma 2.2, we have(
1 − |x|2)∣∣D f (x)

∣∣ � 2g(x)

for all x ∈ B . According to Theorem 3.7, we have desired result.
(a) ⇒ (b): For any f ∈ bp

α and for any x ∈ B , we have

f (x) − f (0) =
1∫

0

x · ∇ f (tx)dt.

For a fixed r ∈ (0,1), let ρ(x,0) < r. Then we have∣∣ f (x) − f (0)
∣∣ � |x| sup

{∣∣∇ f (y)
∣∣: y ∈ Er(0)

}
.

Note that |∇ f (y)| ≈ |∇̃ f (y)| for y ∈ Er(0). So, there exists a positive constant C1 = C1(r) such that∣∣ f (x) − f (0)
∣∣ � C1ρ(x,0) sup

{∣∣∇̃ f (y)
∣∣: y ∈ Er(0)

}
for all x ∈ Er(0).

Replace f by f ◦ φy then replace x by φy(x) and use the Möbius invariance of the pseudo-hyperbolic metric and Propo-
sition 3.5. Then we obtain∣∣ f (x) − f (y)

∣∣ � C1ρ(x, y) sup
{∣∣∇̃ f (z)

∣∣: z ∈ Er(x)
}

for all x, y ∈ B with ρ(x, y) < r. Let

g(x) = | f (x)|
r

+ C1 sup
{∣∣∇̃ f (z)

∣∣: z ∈ Er(x)
}
.

Thus g is continuous on B and∣∣ f (x) − f (y)
∣∣ � ρ(x, y)

[
g(x) + g(y)

]
for all x, y ∈ B .

Now, it remains to show that g ∈ L p
α . Let

g(x) = | f (x)|
r

+ h(x),

where h(x) = C1 sup{|∇̃ f (z)|: z ∈ Er(x)}. Since f ∈ L p
α , it suffice to show that h ∈ L p

α . By Lemma 2.3, there exists a positive
constant C2 = C2(r) such that

h(x)p � C2

(1 − |x|2)n

∫
h(y)p dy � 1

(1 − |x|2)n−p

∫ ∣∣∇ f (y)
∣∣p

dy
Er (x) Er (x)
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for all x ∈ B . Let χx denote the characteristic function of the set Er(x), then we have

h(x)p � 1

(1 − |x|2)n−p

∫
B

∣∣∇ f (y)
∣∣p

χx(y)dy

for all x ∈ B . Using Fubini’s theorem, we obtain∫
B

h(x)p dVα(x) �
∫
B

(
1 − |x|2)p+α−n

∫
B

∣∣∇ f (y)
∣∣p

χx(y)dy dx

=
∫
B

∣∣∇ f (y)
∣∣p

∫
B

(
1 − |x|2)p+α−n

χy(x)dx dy

=
∫
B

∣∣∇ f (y)
∣∣p

∫
Er (y)

(
1 − |x|2)p+α−n

dx dy.

Combining this with Lemma 2.1, we have∫
B

h(x)p dVα(x) �
∫
B

∣∣∇ f (y)
∣∣p(

1 − |y|2)p+α
dy.

This implies that h ∈ L p
α by Lemma 3.7. Thus, we have (b).

(b) ⇒ (c): Since ρ � β , if the condition (b) holds then the condition (c) holds for the same function g .
(c) ⇒ (a): If the condition (c) holds, then we have by Lemma 2.2(

1 − |x|2)∣∣D f (x)
∣∣ � 2g(x)

for all x ∈ B . Thus Lemma 3.7 implies (a).
(d) ⇒ (a): Assume that (d) holds, namely, there exists a continuous function g ∈ L p

α+p such that∣∣ f (x) − f (y)
∣∣ � |x − y|[g(x) + g(y)

]
(4.1)

for all x, y ∈ B . Letting y approach x in the direction of a real coordinate axis we have∣∣∣∣ ∂ f

∂xk
(x)

∣∣∣∣ � 2g(x), 1 � k � n

so that∣∣∇ f (x)
∣∣ � 2

√
ng(x)

for all x ∈ B . This together with the assumption g ∈ L p
α+p implies that (1 − |x|2)|∇ f (x)| is in L p

α . Thus we have f ∈ bp
α by

Theorem 3.7.
(b) ⇒ (d): Assume (b). Since ρ(x, y) = |x − y|/[x, y], we have by the assumption there exists a continuous function

h ∈ L p
α such that∣∣ f (x) − f (y)

∣∣ � ρ(x, y)
[
h(x) + h(y)

] = |x − y|
{

h(x)

[x, y] + h(y)

[y, x]
}
.

Note that

[x, y] =
∣∣∣∣ x

|x| − y|x|
∣∣∣∣ � 1 − |x||y|

for all x, y ∈ B . Thus we have∣∣ f (x) − f (y)
∣∣ � |x − y|

{
h(x)

1 − |x| + h(y)

1 − |y|
}

= |x − y|[g(x) + g(y)
]
,

where

g(x) = h(x)

1 − |x| � 2h(x)

1 − |x|2 .

Since h ∈ L p
α , we have g ∈ L p

α+p . The proof is complete. �
In the same manner we can prove Theorem 1.2.
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Proof of Theorem 1.2. (a) ⇒ (b): For any f ∈ B and for any x ∈ B , we have

f (x) − f (0) =
1∫

0

x · ∇ f (tx)dt.

For a fixed r ∈ (0,1), let ρ(x,0) < r. Then we have∣∣ f (x) − f (0)
∣∣ � |x| sup

{∣∣∇ f (y)
∣∣: y ∈ Er(0)

}
.

Note that |∇ f (y)| ≈ |∇̃ f (y)| for y ∈ Er(0). So, there exists a positive constant C1 = C1(r) such that∣∣ f (x) − f (0)
∣∣ � C1ρ(x,0) sup

{∣∣∇̃ f (y)
∣∣: y ∈ Er(0)

}
for all x ∈ Er(0).

Replace f by f ◦ φy then replace x by φy(x) and use the Möbius invariance of the pseudo-hyperbolic metric and Propo-
sition 3.5. Then we obtain∣∣ f (x) − f (y)

∣∣ � C1ρ(x, y) sup
{∣∣∇̃ f (z)

∣∣: z ∈ Er(x)
}

for all x, y ∈ B with ρ(x, y) < r. Let

g(x) = | f (x)|
r

+ C1 sup
{∣∣∇̃ f (z)

∣∣: z ∈ Er(x)
}
.

Thus g is continuous on B and∣∣ f (x) − f (y)
∣∣ � ρ(x, y)

[
g(x) + g(y)

]
for all x, y ∈ B .

Now, it remains to show that g ∈ L∞ . Let

g(x) = | f (x)|
r

+ h(x),

where h(x) = C1 sup{|∇̃ f (z)|: z ∈ Er(x)}. By Theorem 3.8, we have h ∈ L∞ and f = Q α g for some g ∈ L∞ . From the bound-
edness of Q α on L2

α , we get f ∈ L∞ .
All the other proof is followed by the same method as in the proof of Theorem 1.1 with Theorem 3.8. The proof is

complete. �
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