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Nowadays the topic of sampling in a shift-invariant space is having a significant impact: it
avoids most of the problems associated with classical Shannon’s theory. Under appropriate
hypotheses, any multivariate function in a shift-invariant space can be recovered from
its samples at Z

d . However, in many common situations the available data are samples
of some convolution operators acting on the function itself: this leads to the problem
of multivariate generalized sampling in shift-invariant spaces. This extra information on
the functions in the shift-invariant space will allow to sample in an appropriate sub-
lattice of Z

d . In this paper an L2(Rd) theory involving the frame theory is exhibited.
Sampling formulas which are frame expansions for the shift-invariant space are obtained.
In the case of overcomplete frame formulas, the search of reconstruction functions
with prescribed good properties is allowed. Finally, approximation schemes using these
generalized sampling formulas are included.

© 2009 Elsevier Inc. All rights reserved.

1. Statement of the problem

The classical Whittaker–Shannon–Kotel’nikov sampling theorem states that any function f band-limited to [−1/2,1/2],
i.e., f (t) = ∫ 1/2

−1/2 f̂ (w)e2π it w dw , t ∈ R, may be reconstructed from its sequence of samples { f (n)}n∈Z as

f (t) =
∞∑

n=−∞
f (n) sinc(t − n), t ∈ R,

where sinc denotes the cardinal sine function, sinc(t) = sinπt/πt . Thus, the Paley–Wiener space of functions band-limited
to [−1/2,1/2] is generated by the integer shifts of the sinc function. The WSK sampling formula has its counterpart in d
dimensions. It reads:

f (t) =
∑
α∈Zd

f (α) sinc(t1 − α1) . . . sinc(td − αd), t = (t1, . . . , td) ∈ R
d,

where now the function f is band-limited to the d-dimensional cube [−1/2,1/2]d , i.e., f (t) = ∫
[−1/2,1/2]d f̂ (x)e2π ix�t dx,

t ∈ R
d .

Although Shannon’s sampling theory has had an enormous impact, it has a number of problems, as pointed out by
Unser in [28,29]: It relies on the use of ideal filters; the band-limited hypothesis is in contradiction with the idea of a finite

* Corresponding author.
E-mail addresses: agarcia@math.uc3m.es (A.G. García), gperez@euitt.upm.es (G. Pérez-Villalón).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.01.057

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:agarcia@math.uc3m.es
mailto:gperez@euitt.upm.es
http://dx.doi.org/10.1016/j.jmaa.2009.01.057


398 A.G. García, G. Pérez-Villalón / J. Math. Anal. Appl. 355 (2009) 397–413
duration signal; the band-limiting operation generates Gibbs oscillations; and finally, the sinc function has a very slow
decay, which makes computation in the signal domain very inefficient. Besides, in several dimensions it is also inefficient to
assume that a multidimensional signal is band-limited to a d-dimensional interval.

Moreover, many applied problems impose different a priori constraints on the type of functions. For this reason, sampling
and reconstruction problems have been investigated in spline spaces, wavelet spaces, and general shift-invariant spaces. See,
for instance, [1,29,36] and the references therein.

In many practical applications, signals are assumed to belong to some shift-invariant space of the form: V 2
ϕ :=

spanL2 {ϕ(t − α): α ∈ Z
d} where the function ϕ in L2(Rd) is called the generator of V 2

ϕ . Assuming that ϕ ∈ L2(Rd) is a

stable generator, i.e., the sequence {ϕ(t − α)}α∈Zd is a Riesz basis for V 2
ϕ , the shift-invariant space V 2

ϕ can be described as

V 2
ϕ =

{∑
α∈Zd

aαϕ(t − α): {aα} ∈ �2(
Z

d)}⊂ L2(
R

d). (1)

On the other hand, in many common situations the available data are samples of some filtered versions of the signal it-
self. This leads to generalized sampling (or average sampling following some recent authors [3]) in V 2

ϕ : Suppose that s linear

time-invariant systems (filters) L j , j = 1,2, . . . , s, are defined on the shift-invariant subspace V 2
ϕ of L2(Rd). In mathematical

terms we are dealing with (continuous) operators which commute with shifts. The goal is to recover any function f in V 2
ϕ

from an appropriate subsequence of the set of samples {(L j f )(α)}α∈Zd, j=1,2,...,s , by means of a sampling formula which is

a frame expansion in V 2
ϕ . Recall that a sequence { fn} is a frame for a separable Hilbert space H if there exist two constants

A, B > 0 (frame bounds) such that

A‖ f ‖2 �
∑

n

∣∣〈 f , fn〉∣∣2 � B‖ f ‖2 for all f ∈ H.

Given a frame { fn} for H the representation property of any vector f ∈ H as a series f = ∑
n cn fn is retained, but, unlike

the case of Riesz bases, the uniqueness of this representation (for overcomplete frames) is sacrificed. Suitable frame coef-
ficients cn which depend continuously and linearly on f are obtained by using the dual frames {gn} of { fn}, i.e., {gn} is
another frame for H such that f = ∑

n〈 f , gn〉 fn = ∑
n〈 f , fn〉gn for each f ∈ H. For more details on the frame theory see

the superb monograph [5] and the references therein.
Under appropriate hypotheses, any function in a shift-invariant space in L2(Rd) can be recovered from its samples in the

lattice Z
d of R

d (see [26]). If we sample the function on the sub-lattice MZ
d , where M denotes a matrix of integer entries

with positive determinant, we are using the sampling rate 1/(det M) and, roughly speaking, we will need the generalized
samples {(L j f )(Mα)}α∈Zd, j=1,2,...,s from s � det M linear systems L j for the recovery of f . The one-dimensional case has

been treated in [8,12,30]: Under suitable hypotheses, we can recover any function in V 2
ϕ from the sequence of generalized

samples {(L j f (rn)}n∈Z, j=1,2,...,s , where the number of channels is s � r ∈ N.
In this work we obtain, in the light of the L2(Rd)-theory, sampling formulas for V 2

ϕ of the type

f (t) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j(t − Mα), t ∈ R
d, (2)

where the sequence of reconstruction functions {S j(·− Mα)}α∈Zd, j=1,2,...,s forms a frame for the shift-invariant space V 2
ϕ . To

this end, first observe that the shift-invariant space V 2
ϕ is the image of L2[0,1)d under the isomorphism Tϕ : L2[0,1)d → V 2

ϕ ,

which maps the orthonormal basis {e−2π iα�x}α∈Zd for L2[0,1)d onto the Riesz basis {ϕ(t − α)}α∈Zd for V 2
ϕ .

Next we express the generalized samples {(L j f )(Mα)}α∈Zd, j=1,2,...,s as the inner products of the function F = T −1
ϕ f ∈

L2[0,1)d with respect to a particular frame in L2[0,1)d . Searching for its dual frames we obtain those expansions for F in
L2[0,1)d having the samples {(L j f )(Mα)}α∈Zd, j=1,2,...,s as the frame coefficients. These frame expansions have precisely
the form

F = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)d j(x)e−2π iα�M�x in L2[0,1)d, (3)

where the functions d j ∈ L2[0,1)d , j = 1,2, . . . , s, are obtained by solving a matrix equation[
d1(x), . . . ,ds(x)

]
G(x) = [1,0, . . . ,0] a.e. in [0,1)d, (4)

where G(x) is an s× (det M) matrix of functions defined in [0,1)d (the so-called modulation matrix in the filter-bank jargon)
which only depends on the generator ϕ and on the systems L j , j = 1,2, . . . , s (see (12) infra).

Finally, applying the isomorphism Tϕ to the frame expansion (3) for F we will obtain the aforesaid sampling expansions
for f = Tϕ F in V 2

ϕ , where S j = Tϕd j , j = 1,2, . . . , s.
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Besides, the perturbation theory for frames gives generalized irregular sampling for appropriate sequences of perturbed
generalized samples {(L j f )(Mα + ε j,α)}α∈Zd, j=1,2,...,s .

Moreover, in the oversampling case, i.e., whenever s > det M , we are dealing with overcomplete frames and several
different dual frames allow us to obtain a variety of reconstruction functions. Thus we can try to find some reconstruction
functions S j , j = 1,2, . . . , s, with “good properties", such as compact support, exponential decay, etc. As one can see in the
present paper, this relies on the search of solutions of Eq. (4) with prescribed properties. From a mathematical point of
view, this is equivalent to solving Eq. (4) whenever the entries of the matrix function G(x) belong to a prescribed algebra of
functions.

On the other hand, as pointed out in [21] by Lei et al., there are many ways to construct approximation schemes with
shift-invariant spaces. Among them, they cite cardinal interpolation, quasi-interpolation, projection and convolution (see
also [4,17,18]). This paper shows that a generalized sampling formula like (2) allows to construct an L2(Rd)-approximation
scheme as follows: For a suitable smooth function f (in a Sobolev space), consider the operator Γ , formally defined as

(Γ f )(t) := (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j(t − Mα), t ∈ R
d.

The aim is to obtain a good approximation of f by means of the scaled operator Γ h given by Γ h := σhΓ σ1/h , where
σh f := f (·/h), h > 0. For f in an appropriate Sobolev space we obtain an estimation for the L2-approximation error of the
type ‖Γ h f − f ‖2 = O(hr) as h → 0+ , where r ∈ N denotes the approximation order which coincides with the order of the
Strang–Fix conditions satisfied by the generator ϕ .

Looking for an estimation like the one above with respect to the L∞-norm leads to extend the sampling formula (2) to
the larger space

V ∞
ϕ := spanL∞

{
ϕ(t − α): α ∈ Z

d}.
Thus, for any function f in an appropriate Sobolev space, we obtain an analogous estimation for the L∞-approximation
error: Namely, ‖Γ h f − f ‖∞ = O(hr) as h → 0+ where now the approximation order r depends both on the order of the
Strang–Fix conditions satisfied by the generator ϕ , and on the greatest order of the partial derivatives appearing in the
systems L j , if any.

All these steps will be carried out throughout the remaining sections.

2. Introducing multivariate generalized sampling in V 2
ϕ

In this section we introduce the needed preliminaries on the shift-invariant space V 2
ϕ , on the linear time-invariant

systems L j , and on the lattices in Z
d in order to derive a generalized sampling theory in V 2

ϕ . Moreover, we study some

sequences in L2[0,1)d which play a crucial role in what follows.

2.1. Preliminaries on the shift-invariant space V 2
ϕ

Let ϕ ∈ L2(Rd) be a stable generator for the shift-invariant space

V 2
ϕ :=

{∑
α∈Zd

aαϕ(· − α): {aα}α∈Zd ∈ �2(
Z

d)}⊂ L2(
R

d),
i.e., the sequence {ϕ(· − α)}α∈Zd is a Riesz basis for V 2

ϕ . A Riesz basis in a separable Hilbert space is the image of an
orthonormal basis by means of a bounded invertible operator. Recall that the sequence {ϕ(· − α)}α∈Zd is a Riesz sequence
in L2(Rd), i.e., a Riesz basis for V 2

ϕ if and only if

0 < ‖Φ‖0 � ‖Φ‖∞ < ∞,

where ‖Φ‖0 denotes the essential infimum of the function Φ(w) := ∑
β∈Zd |ϕ̂(w + β)|2 in [0,1)d , and ‖Φ‖∞ its essential

supremum. Furthermore, ‖Φ‖0 and ‖Φ‖∞ are the optimal Riesz bounds [5, p. 143].
We assume throughout the paper that the functions in the shift-invariant space V 2

ϕ are continuous on R
d . Equivalently,

that the generator ϕ is continuous on R
d and the function

∑
α∈Zd |ϕ(t − α)|2 is uniformly bounded on R

d (see [26,36]).
Thus, any f ∈ V 2

ϕ is defined on R
d as the pointwise sum f (t) =∑

α∈Zd aαϕ(t − α) for each t ∈ R
d .

Besides, V 2
ϕ is a reproducing kernel Hilbert space (RKHS) since the evaluation functionals are bounded in V 2

ϕ . Indeed, for

each fixed t ∈ R
d we have∣∣ f (t)

∣∣2 � ‖ f ‖2

‖Φ‖0

∑
d

∣∣ϕ(t − α)
∣∣2, f ∈ V 2

ϕ, (5)

α∈Z



400 A.G. García, G. Pérez-Villalón / J. Math. Anal. Appl. 355 (2009) 397–413
where we have used Cauchy–Schwartz’s inequality on f (t) =∑
α∈Zd aαϕ(t − α), and the Riesz basis condition

‖Φ‖0

∑
α∈Zd

|aα |2 � ‖ f ‖2 � ‖Φ‖∞
∑
α∈Zd

|aα |2, f ∈ V 2
ϕ.

Inequality (5) shows that convergence in the L2(Rd)-norm implies pointwise convergence which is uniform on R
d .

The reproducing kernel of V 2
ϕ is given by k(t, s) =∑

α∈Zd ϕ(t −α)ϕ∗(s − α) where the sequence {ϕ∗(· −α)}α∈Zd denotes
the dual Riesz basis of {ϕ(· − α)}α∈Zd . Recall that the Fourier transform of the function ϕ∗ is ϕ̂∗ = ϕ̂/Φ .

On the other hand, the space V 2
ϕ is the image of L2[0,1)d by means of the isomorphism Tϕ : L2[0,1)d → V 2

ϕ which maps

the orthonormal basis {e−2π iα�x}α∈Zd for L2[0,1)d onto the Riesz basis {ϕ(t − α)}α∈Zd for V 2
ϕ : For F ∈ L2[0,1)d we have

(Tϕ F )(t) :=
∑
α∈Zd

F̂ (α)ϕ(t − α), t ∈ R
d,

where F̂ (α), α ∈ Z
d , are the Fourier coefficients of F , i.e., for each α ∈ Z

d , F̂ (α) := ∫
[0,1)d F (x)e2π iα�x dx.

Notice that any function f = Tϕ F in V 2
ϕ , where F ∈ L2[0,1)d , can be expressed as

f (t) = 〈
F , Zϕ(t, ·)〉L2[0,1)d , t ∈ R

d,

where Zϕ denotes the Zak transform of ϕ . Recall that the Zak transform of f ∈ L2(Rd) is formally defined in R
2d as

(Z f )(t, x) :=∑
β∈Zd f (t + β)e−2π iβ�x . See [15] for properties and uses of the Zak transform.

The following shifting property of Tϕ will be used later: For F ∈ L2[0,1)d and α ∈ Z
d we have

Tϕ

[
F (·)e−2π iα�·](t) = Tϕ[F ](t − α), t ∈ R

d. (6)

2.2. The linear time-invariant systems L j

We consider s linear time-invariant systems L j in L2(Rd) such that L j f = h j ∗ f , j = 1,2, . . . , s, of the following types:

(a) The impulse response h j of L j belongs to L1(Rd) ∩ L2(Rd). Thus, for any f ∈ V 2
ϕ we have

(L j f )(t) := [ f ∗ h j](t) =
∫
Rd

f (x)h j(t − x)dx, t ∈ R
d.

(b) The impulse response h j is a linear combination of partial derivatives of shifted delta functionals, i.e.,

(L j f )(t) :=
∑

|β|�N j

c j,β Dβ f (t + d j,β ), t ∈ R
d.

If there is a system of this type, we also assume that
∑

α∈Zd |Dβϕ(t − α)|2 is uniformly bounded on R
d for |β| � N j .

Whenever the linear system L j is of type (a), the Minkowski inequality for integrals shows that the sequence
{(L jϕ)(t + β)}β∈Zd ∈ �2(Zd) for any fixed t ∈ R

d (see [12, Lemma 1]). Trivially, the same applies for L j of type (b). There-

fore, for any fixed t ∈ R
d , the function (Z L jϕ)(t, x) := ∑

β∈Zd (L jϕ)(t + β)e−2π iβ�x belongs to L2[0,1)d and the following

expression for L j holds: For any f = Tϕ F ∈ V 2
ϕ we have

(L j f )(t) = 〈
F , Z L jϕ(t, ·)〉L2[0,1)d , t ∈ R

d. (7)

The proof is analogous to the one of [12, Lemma 2]. In particular, for any α ∈ Z
d we have

(L j f )(α) = 〈
F , Z L jϕ(0, ·)e−2π iα�·〉

L2[0,1)d =
∫

[0,1)d

F (x)g j(x)e2π iα�x dx, (8)

where the functions g j , j = 1,2, . . . , s, given by

g j(x) := Z L jϕ(0, x) =
∑
β∈Zd

(L jϕ)(β)e−2π iβ�x ∈ L2[0,1)d, (9)

will play a central role throughout this paper.
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2.3. Lattices in Z
d

Given a nonsingular matrix M with integer entries, we consider the lattice in Z
d generated by M , i.e.,

Lat(M) := {
Mα: α ∈ Z

d}⊂ Z
d.

Without loss of generality we can assume that det M > 0; otherwise we can consider M ′ = M E where E is some d × d
integer matrix satisfying det E = −1. Trivially, Lat M = Lat M ′ . We denote by M� and M−� the transpose matrices of M and
M−1 respectively. The following useful generalized orthogonal relationship holds (see [31]):∑

k∈N (M�)

e−2π iα�M−T k =
{

det M, α ∈ Lat(M),

0, α ∈ Z
d \ Lat(M),

(10)

where

N
(
M�) := Z

d ∩ {
M�x: x ∈ [0,1)d}.

The set N (M�) has det M elements (see [31] or [32]). One of these elements is zero, say i1 = 0; we denote the rest of
elements by i2, . . . , idet M ordered in any form.

Note that the sets, defined as Q k := M−�ik + M−�[0,1)d , k = 1,2, . . . ,det M , satisfy (see [32, p. 110]):

Q k ∩ Q k′ = ∅ if k �= k′ and Vol

(
det M⋃
k=1

Q k

)
= 1.

Thus, for any function F integrable in [0,1)d and Z
d-periodic we have

∫
[0,1)d F (x)dx =∑det M

k=1

∫
Q k

F (x)dx.

Given s linear time-invariant systems L j , j = 1,2, . . . , s, the aim is to recover any function f ∈ V 2
ϕ from its generalized

samples at a lattice Lat(M) of Z
d , i.e., from the sequence of samples {(L j f )(Mα)}α∈Zd, j=1,2,...,s . Eq. (8) gives

(L j f )(Mα) = 〈
F , g j(x)e−2π iα�M�x〉

L2[0,1)d , α ∈ Z
d and j = 1,2, . . . , s. (11)

As a consequence, the recovery of the function F = T −1
ϕ f ∈ L2[0,1)d , and hence of f ∈ V 2

ϕ , from the sequence of gen-
eralized samples leads us to study the properties (completeness, Bessel, frame, or Riesz basis properties) of the sequence
{g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s in L2[0,1)d .

2.4. The sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s in L2[0,1)d

Next, we carry out the study of the completeness, Bessel, frame, or Riesz basis properties of the sequence
{g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s in L2[0,1)d . To this end, we introduce the s × (det M) matrix of functions

G(x) :=

⎡⎢⎢⎣
g1(x) g1(x + M−�i2) · · · g1(x + M−�idet M)

g2(x) g2(x + M−�i2) · · · g2(x + M−�idet M)
.
.
.

.

.

.
.
.
.

.

.

.

gs(x) gs(x + M−�i2) · · · gs(x + M−�idet M)

⎤⎥⎥⎦=
[

g j(x + M−�ik)
]

j=1,2,...,s
k=1,2,...,det M

, (12)

and its related constants

AG := ess inf
x∈[0,1)d

λmin
[
G∗(x)G(x)

]
, BG := ess sup

x∈[0,1)d
λmax

[
G∗(x)G(x)

]
,

where G∗(x) denotes the transpose conjugate of the matrix G(x), and λmin (respectively λmax) the smallest (respectively the
largest) eigenvalue of the positive semidefinite matrix G∗(x)G(x). Observe that 0 � AG � BG � ∞. Note that in the definition
of the matrix G(x) we are considering the Z

d-periodic extension of the involved functions g j , j = 1,2, . . . , s.
The following result remains true for arbitrary functions g j in L2[0,1)d , j = 1,2, . . . , s, not necessarily given by (9).

Lemma 1. Let g j be in L2[0,1)d for j = 1,2, . . . , s and let G(x) be its associated matrix as in (12). Then:

(a) The sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a complete system for L2[0,1)d if and only if the rank of the matrix G(x) is

det M a.e. in [0,1)d.
(b) The sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a Bessel sequence for L2[0,1)d if and only if g j ∈ L∞[0,1)d (or equivalently

BG < ∞). In this case, the optimal Bessel bound is BG/(det M).
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(c) The sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a frame for L2[0,1)d if and only if 0 < AG � BG < ∞. In this case, the optimal
frame bounds are AG/(det M) and BG/(det M).

(d) The sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a Riesz basis for L2[0,1)d if and only if it is a frame and s = det M.

Proof. Properties (a), (b) and (c) depend on the behaviour of the �2-norm of the sequence of inner products
{〈F , g j(·)e−2π iα�M�·〉L2[0,1)d }α∈Zd, j=1,2,...,s for any function F ∈ L2[0,1)d . First, we obtain a representation for this �2-norm

by using that the sequence {e2π iα�M�x}α∈Zd is an orthogonal basis for L2(M−�[0,1)d). For any F ∈ L2[0,1)d we have

〈
F (x), g j(x)e−2π iα�M�x〉

L2[0,1)d =
∫

[0,1)d

F (x)g j(x)e2π iα�M�x dx =
det M∑
k=1

∫
Q k

F (x)g j(x)e2π iα�M�x dx

=
∫

M−�[0,1)d

det M∑
k=1

F
(
x + M−�ik

)
g j
(
x + M−�ik

)
e2π iα�M�x dx, (13)

where we have considered the Z
d-periodic extension of F . Then,

s∑
j=1

∑
α∈Zd

∣∣〈F (x), g j(x)e−2π iα�M�x〉
L2[0,1)d

∣∣2 = 1

det M

s∑
j=1

∥∥∥∥∥
det M∑
k=1

F
(
x + M−�ik

)
g j
(
x + M−�ik

)∥∥∥∥∥
2

L2(M−�[0,1)d)

.

Denoting F(x) := [F (x), F (x + M−�i2), . . . , F (x + M−�idet M)]� the equality above reads

s∑
j=1

∑
α∈Zd

∣∣〈F (x), g j(x)e−2π iα�M�x〉
L2[0,1)d

∣∣2 = 1

det M

∥∥G(x)F(x)
∥∥2

L2
s (M−�[0,1)d)

, (14)

where we have denoted L2
s (M−�[0,1)d) := L2(M−�[0,1)d) × · · · × L2(M−�[0,1)d) (s times) with the usual norm.

On the other hand, using that the function g j is Z
d-periodic, we obtain that the set {g j(x + M−�ik + M−�i1),

g j(x + M−�ik + M−�i2), . . . , g j(x + M−�ik + M−�idet M)} has the same elements as {g j(x + M−�i1), g j(x + M−�i2), . . . ,

g j(x + M−�idet M)}. Thus the matrix G(x + M−�ik) has the same columns of G(x), possibly in a different order. Hence,
rank G(x) = det M a.e. in [0,1)d if and only if rank G(x) = det M a.e. in M−�[0,1)d . Moreover,

AG = ess inf
x∈M−�[0,1)d

λmin
[
G∗(x)G(x)

]
, BG = ess sup

x∈M−�[0,1)d
λmax

[
G∗(x)G(x)

]
. (15)

To prove (a), assume that there exists a set Ω ⊆ M−�[0,1)d with positive measure such that rank G(x) < det M , x ∈ Ω .
Then, there exists a measurable function v(x), x ∈ Ω , such that G(x)v(x) = 0 and |v(x)| = 1 in Ω . This function can be
constructed as in [20, Lemma 2.4]. Define F ∈ L2[0,1)d such that F(x) = v(x) if x ∈ Ω , and F(x) = 0 if x ∈ M−�[0,1)d \ Ω .
Hence, from (14) we obtain that the system is not complete. Conversely, if the system is not complete, by using (14) we
obtain a F(x) different from 0 in a set with positive measure such that G(x)F(x) = 0. Thus rank G(x) < det M on a set with
positive measure.

Parts (b) and (c) in Lemma 1 have been proved in [12, Lemma 3] for the univariate case. By using (14) and (15), the
proofs for the general case are completely analogous.

To prove (d) we assume that det M = s and that the sequence is a frame. We see that it is also a Riesz basis by proving
that the analysis operator

Λ : L2[0,1)d → �2
s , Λ(F ) := {〈

F (x), g j(x)e−2π iα�M�x〉
L2[0,1)d

}
α∈Zd, j=1,2,...,s

is surjective (see [5, Theorem 6.5.1]). To this end, notice that when det M = s the matrix G(x) is a square matrix and
hence, the condition AG > 0 implies that the inverse matrix G−1(x) exists and its entries are essentially bounded. Let
{c j,α}α∈Zd, j=1,2,...,s be an element of �2

s . For j = 1,2, . . . , s we define the function

ξ j(x) := (det M)
∑
α∈Zd

c j,αe−2π iα�M�x,

and let F be the function such that F(x) = G−1(x)[ξ1(x), . . . , ξs(x)]� , x ∈ M−�[0,1)d . This function belongs to L2[0,1)d

because the entries of G−1(x) are essentially bounded. We have that G(x)F(x) = [ξ1(x), . . . , ξs(x)]� , and using (13) we obtain
that
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〈
F (x), g j(x)e−2π iα�M�x〉= ∫

M−�[0,1)d

det M∑
k=1

F
(
x + M−�ik

)
g j
(
x + M−�ik

)
e2π iα�M�x dx

=
∫

M−�[0,1)d

ξ j(x)e2π iα�M�x dx = c j,α,

and consequently, Λ(F ) = {c j,α}α∈Zd, j=1,2,...,s .

Conversely, assume that the sequence {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a Riesz basis. Let { f j,α}α∈Zd, j=1,2,...,s be its dual
Riesz basis. Then, by using (13) we obtain∫

M−�[0,1)d

det M∑
k=1

f j′,0
(
x + M−�ik

)
g j
(
x + M−�ik

)
e2π iα�M�x dx = δα,0δ j, j′ .

Therefore, for j, j′ = 1,2, . . . , s, we have

det M∑
k=1

f j′,0
(
x + M−�ik

)
g j
(
x + M−�ik

)= (det M)δ j, j′ a.e. in [0,1)d.

Thus the matrix G(x) has a right inverse; in particular, s � det M . As a consequence of (a) we have s � det M and, finally,
s = det M . �

Next we discuss the meaning of Lemma 1, whenever the functions g j , j = 1,2, . . . , s, are given by (9), in terms of the
average sampling terminology introduced by Aldroubi et al. in [3]. Thus, following [3], we say that:

1. The set of systems {L1, L2, . . . , Ls} is an M-determining filtering sampler for V 2
ϕ if the only function f ∈ V 2

ϕ satisfying

L j f (Mα) = 0 for all j = 1,2, . . . , s and α ∈ Z
d is the zero function.

2. The set of systems {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2
ϕ if there exist two positive constants C1 and

C2 such that

C1‖ f ‖2 �
s∑

j=1

∑
α∈Zd

∣∣L j f (Mα)
∣∣2 � C2‖ f ‖2 for all f ∈ V 2

ϕ.

If {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2
ϕ , then any function f ∈ V 2

ϕ can be recovered, in a stable way, from

the sequence of generalized samples. Roughly speaking, the operator which maps f ∈ V 2
ϕ into the sequence of samples

{L j f (Mα)}α∈Zd, j=1,2,...,s has a bounded inverse. An M-determining filtering sampler for V 2
ϕ can distinguish between two

distinct functions in V 2
ϕ , but the recovery is not necessarily stable. Notice that from (11), parts (a) and (c) of Lemma 1 read

as follows:

1. The set of systems {L1, L2, . . . , Ls} is an M-determining filtering sampler for V 2
ϕ if and only if rank G(x) = det M a.e. in

[0,1)d (and hence, necessarily, s � det M).
2. The set of systems {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2

ϕ if and only if 0 < AG � BG < ∞.

These properties can be expressed in terms of the function det[G∗(x)G(x)]. Indeed, as rank G(x) = det M if and only if
det[G∗(x)G(x)] �= 0, we have that the set of systems {L1, L2, . . . , Ls} is an M-determining filtering sampler for V 2

ϕ if and
only if

det
[
G∗(x)G(x)

] �= 0 a.e. in [0,1)d.

Provided that the function g j ∈ L∞[0,1)d for each j = 1,2, . . . , s (or equivalently BG < ∞), since det[G∗(x)G(x)] is the
product of the eigenvalues, we have that(

λmin
[
G∗(x)G(x)

])det M � det G∗(x)G(x) �
(
λmax

[
G∗(x)G(x)

])(det M)−1
λmin

[
G∗(x)G(x)

]
� B(det M)−1

G λmin
[
G∗(x)G(x)

]
,

and therefore, the set of systems {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2
ϕ if and only if

ess inf
d

det
[
G∗(x)G(x)

]
> 0.
x∈[0,1)
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If the functions g j , j = 1,2, . . . , s, are continuous on R
d , the above condition reads: det[G∗(x)G(x)] �= 0 for all x ∈ [0,1)d .

Hence, the set {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2
ϕ if and only if

rank G(x) = det M for all x ∈ [0,1)d. (16)

3. Generalized sampling in V 2
ϕ

In the above section we have proved that, provided that the functions g j ∈ L∞[0,1)d for each j = 1,2, . . . , s, the set
{L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2

ϕ if and only if AG > 0. In this section we obtain the corresponding

stable sampling formulas leading to the recovery of any function f ∈ V 2
ϕ from the sequence of its generalized samples

{L j f (Mα)}α∈Zd, j=1,2,...,s . The sampling formula will be unique in the case s = det M . These, explicitly given, sampling
formulas consist of the major difference with the analogous results included in [3].

3.1. Generalized regular sampling

Now we prove that the expression (8) allows us to obtain F from the generalized samples {L j f (Mα)}α∈Zd, j=1,2,...,s .

Applying the isomorphism Tϕ we get generalized regular sampling formulas in V 2
ϕ .

Assume that g j ∈ L∞[0,1)d for j = 1,2, . . . , s; then, F (x)g j(x) ∈ L2[0,1)d . Hence using (10) and (8), for j = 1,2, . . . , s we
obtain that

(det M)
∑
α∈Zd

(L j f )(Mα)e−2π iα�M�x =
∑
α∈Zd

(L j f )(α)e−2π iα�x
∑

k∈N (M�)

e−2π iα�M−�k

=
∑

k∈N (M�)

∑
α∈Zd

(L j f )(α)e−2π iα�(x+M−�k)

=
∑

k∈N (M�)

F
(
x + M−�k

)
g j
(
x + M−�k

)
.

This can be written in matrix form as

G(x)F(x) = (det M)

[ ∑
α∈Zd

(L1 f )(Mα)e−2π iα�M�x, . . . ,
∑
α∈Zd

(Ls f )(Mα)e−2π iα�M�x
]�

in L2[0,1)d , where the matrix function G(x) is given in (12) and F(x) denotes the vector F(x) := [F (x), F (x + M−�i2),

. . . , F (x + M−�idet M)]� .
In order to recover the function F , let [d1(x), . . . ,ds(x)] be a vector with entries in L∞[0,1)d such that[

d1(x), . . . ,ds(x)
]
G(x) = [1,0, . . . ,0] a.e. in [0,1)d.

Later, we will show that a necessary and sufficient condition for the existence of such a vector is that AG > 0. As a conse-
quence, we get

F (x) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)d j(x)e−2π iα�M�x in L2[0,1)d. (17)

Finally, the isomorphism Tϕ gives

f (t) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)(Tϕd j)(t − Mα), t ∈ R
d,

where we have used the shifting property (6) and that the shift-invariant space V 2
ϕ is a RKHS. In addition, much more can

be said about the above sampling expansion. In fact, the following result holds:

Theorem 1. Assume that the functions g j given in (9) belong to L∞[0,1)d for each j = 1,2, . . . , s. Let G(x) be the associated matrix
defined in [0,1)d as in (12). The following statements are equivalents:

(a) AG > 0;
(b) The set of systems {L1, L2, . . . , Ls} is an M-stable filtering sampler for V 2

ϕ ;

(c) There exists a vector [d1(x), . . . ,ds(x)] with entries d j ∈ L∞[0,1)d satisfying[
d1(x), . . . ,ds(x)

]
G(x) = [1,0, . . . ,0] a.e. in [0,1)d; (18)
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(d) There exists a frame for V 2
ϕ having the form {S j(· − Mα)}α∈Zd, j=1,2,...,s such that for any f ∈ V 2

ϕ

f = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j(· − Mα) in L2(
R

d). (19)

In case the equivalent conditions are satisfied we have that the reconstruction functions S j , j = 1,2, . . . , s, in the sampling formula (19)
are necessarily given through a vector [d1(x), . . . ,ds(x)] satisfying (18), by

S j(t) =
∑
α∈Zd

d̂ j(α)ϕ(t − α), t ∈ R
d, (20)

where d̂ j(α), α ∈ Z
d, are the Fourier coefficients of d j , i.e., d j(x) =∑

α∈Zd d̂ j(α)e−2π iα�x. The sampling series in (19) also converges
absolutely and uniformly on R

d.
If s = det M then the sequence {S j(· − Mα)}α∈Zd, j=1,2,...,s is a Riesz basis for V 2

ϕ and the sampling functions S j , j = 1,2, . . . , s,

satisfy the interpolation property (L j′ S j)(Mα) = δ j, j′δα,0 , where j, j′ = 1,2, . . . , s and α ∈ Z
d.

Proof. Part (c) in Lemma 1 proves that conditions (a) and (b) are equivalent.
If AG > 0 then ess infx∈[0,1)d det[G∗(x)G(x)] > 0 and, consequently, there exists the pseudo-inverse matrix G†(x) =

[G∗(x)G(x)]−1G∗(x); its entries are essentially bounded and its first row satisfies (18); therefore (a) implies (c).
If [d1(x), . . . ,ds(x)] satisfies (18) with d j ∈ L∞[0,1)d , we have proved earlier that formula (19) holds in L2(Rd) where

S j is equal to Tϕd j or, equivalently, is given by (20). Since we have assumed that g j ∈ L∞[0,1)d for each j = 1,2, . . . , s,

Lemma 1(b) proves that {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a Bessel sequence in L2[0,1)d . The same argument proves that

{(det M)d j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is also a Bessel sequence in L2[0,1)d . These two Bessel sequences satisfy (see (11)
and (17)):

F (x) = (det M)

s∑
j=1

∑
α∈Zd

〈
F , g j(x)e−2π iα�M�x〉

L2[0,1)d d j(x)e−2π iα�M�x, F ∈ L2[0,1)d.

Hence, they form a pair of dual frames for L2[0,1)d (see [5, Lemma 5.6.2]). Since S j(t − Mα) = Tϕ[d j(·)e−2π iα�M�·](t) and
Tϕ is an isomorphism, the sequence {S j(t − Mα)}α∈Zd, j=1,2,...,s is a frame for V 2

ϕ ; hence (c) implies (d).

Notice that since we have assumed that {g j(x)e−2π iα�M�x}α∈Zd, j=1,2,...,s is a Bessel sequence with bound BG/(det M)

and (L j f )(Mα) = 〈F , g j(x)e−2π iα�M�x〉L2[0,1)d , we have

s∑
j=1

∑
α∈Zd

∣∣L j f (Mα)
∣∣2 � BG

det M
‖F‖2 �

BG‖T −1
ϕ ‖2

det M
‖ f ‖2, f ∈ V 2

ϕ.

If {S j(t − Mα)}α∈Zd, j=1,2,...,s is a frame for V 2
ϕ , then formula (19) gives a stable way to recover f ∈ V 2

ϕ from its generalized
samples. Indeed,

‖ f ‖2 = (det M)2

∥∥∥∥∥
s∑

j=1

∑
α∈Zd

(L j f )(Mα)S j(· − Mα)

∥∥∥∥∥
2

� (det M)2C
s∑

j=1

∑
α∈Zd

∣∣L j f (Mα)
∣∣2,

where C is a Bessel bound for {S j(t − Mα)}α∈Zd, j=1,2,...,s . Hence the set {L1, L2, . . . , Ls} is an M-stable filtering sampler

for V 2
ϕ . Therefore (d) implies (b).

The pointwise convergence in the sampling series is absolute due to the unconditional convergence of a frame expansion;
it is uniform on R

d as a consequence of (5).
If s = det M then, according to Lemma 1(d), the frame {S j(· − Mα)}α∈Zd, j=1,2,...,s = {Tϕd je−2π iα�M�·}α∈Zd, j=1,2,...,s is a

Riesz basis for V 2
ϕ . Applying formula (19) for f = S j′ and having in mind the uniqueness of the coefficients in a Riesz basis,

we get the interpolatory property (L j′ S j)(Mα) = δ j, j′δα,0. �
The equivalence between conditions (a), (b) and (d) in Theorem 1 was established in [3] for average sampling, at the

lattice Z
d , in finitely-generated shift-invariant spaces by using another techniques. Notice that our generalized sampling

on the more general sampling lattice MZ
d can be seen as a problem of generalized sampling in a finitely-generated shift-

invariant space on the sampling lattice Z
d . Indeed, the generalized sampling of the functions f =∑

α∈Zd aαϕ(· −α) at MZ
d

can be thought as a bounded map from �(Zd) to (�2(MZ
d))s:

{aα}α∈Zd �→
{∑

d

aα L jϕ(Mβ − α)

}
1� j�s, β∈Zd

,

α∈Z
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or also as

{
at
α

}
1�t�det M,α∈Zd �→

{
det M∑
t=1

∑
α∈Zd

at
α J jϕt(β − α)

}
1� j�s, β∈Zd

,

where J j f (u) := [L j{ f (u + M−1·)}](0), ϕt(·) := ϕ(M · − jt), and { j1, j2, . . . , jdet M} = Z
d ∩ (M[0,1)d), which can be seen as

generalized sampling at Z
d of the functions f having the form: f =∑det M

t=1
∑

α∈Zd at
αϕt(· − α). The sampling formulas (19),

explicitly given by using (c), are the novelty of the result proved here.
The solutions of (18) with entries in L∞[0,1)d are exactly the first row of the (det M) × s matrices of the form

D(x) = G†(x) + U(x)
[
Is − G(x)G†(x)

]
, (21)

where G†(x) is the pseudo-inverse matrix of G(x), G†(x) = [G∗(x)G(x)]−1G∗(x), and U(x) is an arbitrary (det M) × s matrix
with entries in L∞[0,1)d . Indeed, if the vector [d1(x), . . . ,ds(x)] satisfies (18), it can be easily checked that the (det M) × s
matrix D(x) := [d j(x + M−�ik)] k=1,2,...,det M

j=1,2,...,s
is a left inverse of the matrix G(x), and it can be expressed in the form (21) by

taking U(x) = D(x). Conversely, any matrix of the form (21) is a left inverse of G(x) and its first row satisfies (18).
Finally, notice that if the functions g j , j = 1,2, . . . , s, are continuous on R

d , the condition (a) in Theorem 1 reads:
rank G(x) = det M for all x ∈ R

d (see (16)).

3.2. Irregular sampling: jitter error

Given an error sequence ε := {ε j,α}α∈Zd, j=1,2,...,s in R
d , the aim in this section is to study when it is possible to recover

any function f ∈ V 2
ϕ from the sequence of perturbed samples {(L j f )(Mα + ε j,α)}α∈Zd, j=1,2,...,s . Having in mind expres-

sion (7) for the systems L j , j = 1,2, . . . , s, for f = Tϕ F ∈ V 2
ϕ we have

(L j f )(Mα + ε j,α) = 〈
F , (Z L jϕ)(ε j,α, ·)e−2π iα�M�·〉

L2[0,1)d , α ∈ Z
d, (22)

where we have used that (Z L jϕ)(Mβ + ε j,β , x) = (Z L jϕ)(ε j,β , x)e2π iβ�M�x for any β ∈ Z
d . Eq. (22) leads us to study the

frame property of the perturbed sequence {(Z L jϕ)(ε j,α, ·)e−2π iα�M�·}α∈Zd, j=1,2,...,s in L2[0,1)d .

On the other hand, we know that, whenever 0 < AG � BG < ∞, the sequence {(Z L jϕ)(0, ·)e−2π iα�M�·}α∈Zd, j=1,2,...,s is

a frame for L2[0,1)d with optimal frame bounds AG/(det M) and BG/(det M). In the case of s = det M , the above sequence
is a Riesz basis for L2[0,1)d .

One possibility is to use frame perturbation theory in order to find the suitable error sequences for which the sequence
{(Z L jϕ)(ε j,α, ·)e−2π iα�M�·}α∈Zd, j=1,2,...,s is a frame for L2[0,1)d . The following result on frame perturbation, which proof
can be found in [5, p. 354] will be used later:

Lemma 2. Let { fn}∞n=1 be a frame for the Hilbert space H with frame bounds A, B, and let {gn}∞n=1 be a sequence in H. If there exists
a constant R < A such that

∞∑
n=1

∣∣〈 fn − gn, f 〉∣∣2 � R‖ f ‖2 for each f ∈ H,

then {gn}∞n=1 is a frame for H with bounds A(1 − √
R/A)2 and B(1 + √

R/B)2 .
If { fn}∞n=1 is a Riesz basis, then {gn}∞n=1 is a Riesz basis.

Given an error sequence ε := {ε j,α}α∈Zd, j=1,2,...,s ⊂ R
d we define on �2(Zd) the operator Dε = [Dε,1, . . . , Dε,s], where

Dε, jc :=
{ ∑

β∈Zd

[
L jϕ(Mα − β + ε j,α) − L jϕ(Mα − β)

]
cβ

}
α∈Zd

for each c = {cβ}β∈Zd ∈ �2(Zd). The operator norm is defined as usual

‖Dε‖ := sup
c∈�2(Zd)\{0}

‖Dεc‖�2
s (Zd)

‖c‖�2(Zd)

,

where ‖Dεc‖2
2 d :=∑s

j=1 ‖Dε, jc‖2
2 d for each c ∈ �2(Zd).
�s (Z ) � (Z )
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Theorem 2. Assume that g j ∈ L∞[0,1)d for j = 1,2, . . . , s with AG > 0. If the error sequence ε := {ε j,α}α∈Zd, j=1,2,...,s satisfies the

inequality ‖Dε‖2 < AG/(det M), then there exists a frame {Sε
j,α}α∈Zd, j=1,2,...,s for V 2

ϕ such that, for any f ∈ V 2
ϕ

f (t) =
s∑

j=1

∑
α∈Zd

(L j f )(Mα + ε j,α)Sε
j,α(t), t ∈ R

d, (23)

where the convergence of the series is in the L2(Rd)-sense, absolute and uniform on R
d. Moreover, when s = det M the sequence

{Sε
j,α}α∈Zd, j=1,2,...,s is a Riesz basis for V 2

ϕ , and the interpolation property (Ll Sε
j,α)(Mβ + ε j,β ) = δ j,lδα,β holds.

Proof. The sequence {(Z L jϕ)(0, ·)e−2π iα�M�·}α∈Zd, j=1,2,...,s is a frame (a Riesz basis if s = det M) for L2[0,1)d with frame

(Riesz) bounds AG/(det M) and BG/(det M). For any F (x) =∑
γ ∈Zd cγ e−2π iγ �x in L2[0,1)d we have

s∑
j=1

∑
α∈Zd

∣∣〈(Z L jϕ)(ε j,α, ·)e−2π iα�M�· − (Z L jϕ)(0, ·)e−2π iα�M�·, F (·)〉L2[0,1)d

∣∣2
=

s∑
j=1

∑
α∈Zd

∣∣∣∣〈∑
β∈Zd

[
L jϕ(β + ε j,α) − L jϕ(β)

]
e−2π i(Mα−β)�·,

∑
γ ∈Zd

cγ e−2π iγ �·
〉

L2[0,1)d

∣∣∣∣2

=
s∑

j=1

∑
α∈Zd

∣∣∣∣ ∑
β∈Zd

[
L jϕ(β + ε j,α) − L jϕ(β)

]
cMα−β

∣∣∣∣2

=
s∑

j=1

∑
α∈Zd

∣∣∣∣ ∑
β∈Zd

[
L jϕ(Mα − β + ε j,α) − L jϕ(Mα − β)

]
cβ

∣∣∣∣2

=
s∑

j=1

∥∥Dε, j{cγ }γ ∈Zd

∥∥2
�2(Zd)

� ‖Dε‖2
∥∥{cγ }γ ∈Zd

∥∥2
�2(Zd)

= ‖Dε‖2‖F‖2
L2[0,1)d .

By using Lemma 2, the sequence {(Z L jϕ)(ε j,α, ·)e−2π iα�M�·}α∈Zd, j=1,2,...,s is a frame for L2[0,1)d (a Riesz basis if s =
det M). Let {hε

j,α}α∈Zd, j=1,2,...,s be its canonical dual frame. Hence, for any F ∈ L2[0,1)d we have

F =
s∑

j=1

∑
α∈Zd

〈
F (·), (Z L jϕ)(ε j,α, ·)e−2π iα�M�·〉

L2[0,1)d hε
j,α =

s∑
j=1

∑
α∈Zd

(L j f )(Mα + ε j,α)hε
j,α in L2[0,1)d.

Applying the isomorphism Tϕ , one gets (23) in L2(Rd) where Sε
j,α = Tϕhε

j,α . Since Tϕ is an isomorphism between L2[0,1)d

and V 2
ϕ , the sequence {Sε

j,α}α∈Zd, j=1,2,...,s is a frame for V 2
ϕ (a Riesz basis if s = det M).

Pointwise convergence in the sampling series is absolute due to the unconditional character of a frame. The uniform
convergence on R

d is a consequence of the reproducing property (5) in V 2
ϕ . The interpolatory property in the case s = det M

follows from the uniqueness of the coefficients with respect to a Riesz basis. �
Formula (23) in Theorem 2 is useless from a practical point of view, since the frame {Sε

j,α}α∈Zd, j=1,2,...,s , which depends
on the error sequence {ε j,α}α∈Zd, j=1,2,...,s , is impossible to determine. As a consequence, in order to recover any function

f ∈ V 2
ϕ from the samples {L j f (Mα + ε j,α)}α∈Zd, j=1,2,...,s we should use the frame algorithm (see [10]). In order to approx-

imate the sequence {aα}α∈Zd ∈ �2(Zd) defining f ∈ V 2
ϕ , the frame algorithm can be implemented in the �2(Zd) setting as in

Ref. [13].
Following the techniques in [13] (see also Refs. [9,26]), whenever the generator ϕ and the impulse responses of the

systems L j , j = 1,2, . . . , s, are compactly supported one could obtain a bound for ‖Dε‖ in terms of δ := sup j,α ‖ε j,α‖∞ .
Finally, it is worth to mention the recent related Refs. [6,22,33].

3.3. L2-approximation properties

We denote by W r
2(R

d) := { f : ‖Dγ f ‖2 < ∞, |γ | � r} the usual Sobolev space, and by | f | j,2 :=∑
|β|= j ‖Dβ f ‖2, 0 � j � r,

the corresponding seminorm of a function f ∈ W r
2(R

d). We assume here that all the systems L j , j = 1,2, . . . , s, are of
type (a), i.e., L j f = h j ∗ f , belonging the impulse response h j to the Hilbert space L2(Rd). Recall that a Lebesgue measurable
function h : R

d → C belongs to the Hilbert space L2(Rd) if
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|h|2 :=
( ∫

[0,1)d

( ∑
α∈Zd

∣∣h(t − α)
∣∣)2

dt

)1/2

< ∞.

Notice that L2(Rd) ⊂ L1(Rd)∩ L2(Rd). Moreover, ‖{h ∗ f (α)}α∈Zd ‖2 � |h|2‖ f ‖2 (see [19, Theorem 3.1]); thus the sequence of
generalized samples {(L j f )(Mα)}α∈Zd, j=1,2,...,s belongs to �2(Zd) for any f ∈ L2(Rd). Besides, we assume that the generator
ϕ satisfies the Strang–Fix conditions of order r, i.e.,

ϕ̂(0) �= 0, Dβϕ̂(α) = 0, |β| < r, α ∈ Z
d \ {0}.

Given a vector d := [d1, . . . ,ds] with entries in L∞[0,1)d and satisfying (18), first we note that the operator Γd : (L2(Rd),

‖ · ‖2) → (V 2
ϕ,‖ · ‖2) given by

(Γd f )(t) := (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,d(t − Mα), t ∈ R
d,

is a well-defined bounded operator onto V 2
ϕ . Besides, Γd f = f for all f ∈ V 2

ϕ .

Under appropriate hypotheses we prove that the scaled operator Γ h
d := σhΓdσ1/h , where σh f := f (·/h) for h > 0, ap-

proximates, in the L2-norm sense, any function f in the Sobolev space W r
2(R

d) as h → 0+ . Concretely we have:

Theorem 3. Assume that ess supt∈Rd
∑

α∈Zd |ϕ(t +α)|(1 + |t +α|)r < ∞ for some r ∈ N. Let d be a vector with entries in L∞[0,1)d

and satisfying (18). If the generator ϕ satisfies the Strang–Fix conditions of order r, then, for each f ∈ W r
2(R

d) and h > 0, the L2-
approximation error satisfies∥∥ f − Γ h

d f
∥∥

2 � K | f |r,2hr,

where the constant K is independent of f and h.

Proof. Using that Γ h
d ξ = ξ for each ξ ∈ σh V 2

ϕ then, for each f ∈ L2(Rd) and ξ ∈ σh V 2
ϕ , Lebesgue’s Lemma [7, p. 30] gives∥∥ f − Γ h

d f
∥∥

2 �
(
1 + ‖Γd‖) min

ξ∈σh V 2
ϕ

‖ f − ξ‖2,

where we have used that ‖Γ h
d ‖ = ‖Γd‖. Now, for each f ∈ W r

2(R
d) and h > 0 there exists a function ξh ∈ σh V 2

ϕ such that

‖ξh − f ‖2 � K̃ | f |r,2hr,

where the constant K̃ is independent of f and h (see [21, Theorem 5.2]), from which we obtain the desired result. �
Notice that the approximation property given in Theorem 3 is similar to those given by integral operators in [21].

4. Decay properties of the reconstruction functions

For the efficiency and stability of the reconstruction process given in Theorem 1, it is very desirable for the reconstruction
functions S j , j = 1,2, . . . , s to be well localized; see the papers [11,16,24] and the references therein. In this section we study
two particular cases, reconstruction functions with exponential decay and reconstruction functions with compact support,
by using directly formulas (20).

Thus we prove that whenever the generator ϕ and the functions L jϕ , j = 1,2, . . . , s, decay exponentially fast, there are
many sampling formulas like (19) involving reconstruction functions S j with exponential decay, i.e., there exist constants
C > 0 and q ∈ (0,1) such that∣∣S j(t)

∣∣� Cq|t|, t ∈ R
d.

First we introduce some complex notation, more convenient for this study. We denote zα := zα1
1 zα2

2 . . . zαd
d for z =

[z1, . . . , zd] ∈ C
d , α = [α1, . . . ,αd] ∈ Z

d, and the d-torus by T d := {z ∈ C
d: |z1| = |z2| = · · · = |zd| = 1}. We define

g j(z) :=
∑
μ∈Zd

L jϕ(μ)z−μ, G(z) := [
g j
([

z1e2π im�
1 ik , . . . , zde2π im�

d ik
])]

j=1,2,...,s
k=1,2,...,det M

,

where m1, . . . ,md denote the columns of the matrix M−1. Note that for the vector z = [e2π ix1 , . . . , e2π ixd ] we have
G(x) = G(z). Provided that the functions g j are continuous on R

d , we have the following result: There exists a vector
d = [d1, . . . ,ds] with entries essentially bounded in T d and satisfying
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d(z)G(z) = [1,0, . . . ,0] for all z ∈ T d (24)

if and only if

rank G(z) = det M for all z ∈ T d. (25)

For j = 1,2, . . . , s, the corresponding reconstruction function S j,d in the sampling formula (19) is

S j,d(t) =
∑
α∈Zd

d̂ j(α)ϕ(t − α), (26)

where d̂ j(α), α ∈ Z
d , are the Laurent coefficients of the functions d j , i.e., d j(z) =∑

α∈Zd d̂ j(α)z−α .
Let H denote the algebra of all holomorphic functions in a neighborhood of the d-torus T d . Note that the elements in H

are characterized as admitting a Laurent series where the sequence of coefficients decays exponentially fast [19].
The following theorem shows that, whenever the generator ϕ and the functions L jϕ , j = 1,2, . . . , s have exponential

decay, if the vector d has entries in H then the reconstruction function S j,d has also exponential decay. It also proves that
condition (25) is also sufficient for the existence of a vector d with entries in H and satisfying (24). Its proof uses the
standard technique for proving extensions of Wiener 1/ f Lemma in group algebras.

Theorem 4. Assume that the generator ϕ and the functions L jϕ , j = 1,2, . . . , s, have exponential decay. Then, there exists a vector
d = [d1, . . . ,ds] with entries in H and satisfying d(z)G(z) = [1,0, . . . ,0] for all z ∈ T d if and only if rank G(z) = det M for all z ∈ T d.

In this case, all of such vectors d are given as the first row of a (det M) × s matrix D(z) of the form

D(z) = G†(z) + U(z)
[
Is − G(z)G†(z)

]
, (27)

where U(z) is any (det M)× s matrix with entries in H and G†(z) := [G∗(z)G(z)]−1G∗(z). The corresponding reconstruction functions
S j,d , j = 1,2, . . . , s, given by (26) have exponential decay.

Proof. The hypotheses say that g j ∈ H, j = 1,2, . . . , s; thus det[G∗(z)G(z)] ∈ H. Assuming that rank G(z) = det M for all
z ∈ T d we have that det[G∗(z)G(z)] �= 0 for all z ∈ T d and then, the matrix [G∗(z)G(z)]−1 has entries in H. As a consequence,
the entries of G†(z) = [G∗(z)G(z)]−1G∗(z) belong to H. Now it is easy to check, as we did in Section 3, that all the vectors
d with entries in H and satisfying (24) are given as the first row of matrices D(z) satisfying (27), where the entries of U(z)
belong to H.

Since d j ∈ H, j = 1,2, . . . , s, their Laurent coefficients d̂ j(α) have exponential decay, i.e., there exist C > 0 and q ∈ (0,1)

such that |d̂ j(α)| � Cq|α| , α ∈ Z
d , j = 1,2, . . . , s. Without loss of generality, we can also assume that |ϕ(t)| � Cq|t| , for all

t ∈ R
d; then the reconstruction functions S j,d(t) =∑

α∈Zd d̂ j(α)ϕ(t − α), j = 1,2, . . . , s, satisfy∣∣S j,d(t)
∣∣� C

∑
α∈Zd

q|α|∣∣ϕ(t − α)
∣∣� C2

( ∑
α∈Zd

q2|α|
)

q|t|, t ∈ R
d. �

Notice that, in particular, the solution obtained from the pseudo-inverse matrix G†(z), which is unique in the case
s = det M , gives reconstruction functions S j,d with exponential decay.

4.1. Reconstruction functions with compact support

If the generator ϕ has compact support, then the reconstruction function S j,d has compact support whenever the sum
in (26) is finite. As a consequence, in order to get generalized sampling formulas with reconstruction functions of compact
support, we have to solve the following problem: Given a matrix G(z) whose entries are Laurent polynomials, we have to
find a left inverse matrix D(z) of G(z) whose entries are also Laurent polynomials. This problem is related to the perfect
reconstruction FIR (finite impulse response) filter-banks theory, and it has been studied by several authors. See, for instance,
[23,34,35] and the references therein. From [34, Theorems 5.1 and 5.6] the following result can be easily deduced:

Theorem 5. Let G(z) be an s ×m matrix whose entries are Laurent polynomials. Then, there exists an m × s matrix D(z) whose entries
are also Laurent polynomials satisfying D(z)G(z) = Im if and only if rank G(z) = m for all z ∈ (C \ {0})d.

From this theorem, we derive the following corollary:

Corollary 1. Assume that the generator ϕ and the functions L jϕ , j = 1,2, . . . , s, have compact support. Then, there exists a vector
d = [d1, . . . ,ds] whose entries are Laurent polynomials and satisfying d(z)G(z) = [1,0, . . . ,0] if and only if

rank G(z) = det M for all z ∈ (
C \ {0})d

.

The reconstruction functions S j,d , j = 1,2, . . . , s, obtained from such vectors d by (26) have compact support.
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A vector d(z) satisfying d(z)G(z) = [1,0, . . . ,0] whose entries are Laurent polynomials can be obtained by solving a linear
system whose unknowns are precisely the coefficients of d j(z), j = 1,2, . . . , s. From one of these vectors, say d̃ = [̃d1, . . . , d̃s],
we can get all of them. Indeed, it is easy to check that they are given by the first row of the (det M) × s matrices of the
form

D(z) = D̃(z) + U(z)
[
Is − G(z)D̃(z)

]
, (28)

where D̃(z) := [̃d j([z1e2π im�
1 ik , . . . , zde2π im�

d ik ])] k=1,2,...,det M
j=1,2,...,s

and U(z) is any (det M) × s matrix with Laurent polynomial

entries.
The interested reader can find in [23,34,35] methods to check if the condition in the theorem holds, and also another

method to find a particular solution D̃(z) of (28). Both involve the use of Gröbner bases.
Finally, notice that having reconstruction functions with compact support implies low computational complexity and

truncation errors are avoided. A related topic is the local reconstruction in shift-invariant spaces which invokes only finite
samples to reconstruct a function on a bounded interval: See the two recent papers [25,27].

5. Sampling formulas in V ∞
ϕ

The aim in this section is to validate the sampling formulas

f (t) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,d(t − Mα), t ∈ R
d,

obtained in Section 3 for the shift-invariant space V 2
ϕ , in a larger space. To this end, assume that the generator ϕ ∈ L∞(Rd)∩

C(Rd). Recall that a Lebesgue measurable function φ : R
d → C belongs to the Banach space L∞(Rd) if

|φ|∞ := ess sup
t∈[0,1)d

∑
α∈Zd

∣∣φ(t − α)
∣∣< ∞.

For 1 � p � ∞ we have that L∞(Rd) ⊂ L p(Rd); in particular, L∞(Rd) ⊂ L2(Rd). Observe that if there are constants C > 0
and δ > 0 such that∣∣φ(t)

∣∣� C

1 + |t|d+δ
, t ∈ R

d,

then φ ∈ L∞(Rd).
Let V ∞

ϕ be the L∞-closure of the linear span of the integer translates of ϕ , i.e.,

V ∞
ϕ := spanL∞

{
ϕ(t − α): α ∈ Z

d}.
As the integer translates of ϕ are �2-stable (they form a Riesz sequence in L2(Rd)), then this space can be expressed as
V ∞

ϕ = {ϕ ∗′ a: a ∈ c0(Z
d)}, where ϕ ∗′ a denotes the semi-discrete convolution

∑
α∈Zd a(α)φ(· − α) and c0(Z

d) denotes the

space of sequences on Z
d vanishing at ∞ (see the proof of Lemma 5.1 in [21]). As a consequence, V ∞

ϕ is a set of continuous

functions on R
d and the set inclusion V 2

ϕ ⊂ V ∞
ϕ holds.

5.1. Generalized regular sampling in V ∞
ϕ

Let A be the set of functions of the form f (x) =∑
α∈Zd a(α)e−2π iα�x with a ∈ �1(Zd). The space A, normed by ‖ f ‖A :=

‖a‖1 and with pointwise multiplication is a commutative Banach algebra. If f ∈ A and f (x) �= 0 for every x ∈ R
d , the

function 1/ f is also in A by Wiener’s Lemma.
Consider s linear time-invariant systems L j , j = 1,2, . . . , s, as in Section 2. In addition, assume that Dβϕ ∈ L∞(Rd) ∩

C(Rd), |β| � m, where m is the largest order among the partial derivatives appearing in the systems of type (b) (m = 0 if
no partial derivatives appear).

Thus we have that {L jϕ(α)}α∈Zd ∈ �1(Zd) for the systems of the type (b). This is also true for the systems of type (a)
since ‖{ϕ ∗ h(α)}‖1 � ‖h‖1|ϕ|∞ (see [19, Theorem 3.1]). As a consequence, the Fourier transforms of these sequences, which
are precisely the functions g j , j = 1,2, . . . , s, defined in (9), belong to the algebra A. The next result describes when Eq. (18)
has a solution d with entries in the algebra A:

Lemma 3. There exists a vector d = [d1, . . . ,ds] with entries d j in the algebra A, j = 1,2, . . . , s, and satisfying

d(x)G(x) = [1,0, . . . ,0], x ∈ [0,1)d (29)

if and only if rank G(x) = det M for all x ∈ R
d.



A.G. García, G. Pérez-Villalón / J. Math. Anal. Appl. 355 (2009) 397–413 411
Proof. The proof is the same as the one in [14, Lemma 1] although for a slightly different matrix G. �
For any vector d satisfying the above lemma, Theorem 1 gives the corresponding sampling formula in V 2

ϕ :

f (t) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,d(t − Mα), t ∈ R
d, (30)

where S j,d = Tϕd j , j = 1,2, . . . , s. In particular, formula (30) holds for the space span{ϕ(· − α)}α∈Zd .
The reconstruction functions S j,d , j = 1,2, . . . , s, are determined from the Fourier coefficients of d j , i.e., d̂ j(α) :=∫

[0,1)d d j(x)e2π iα�x dx, α ∈ Z
d . More specifically,

S j,d(t) =
∑
α∈Zd

d̂ j(α)ϕ(t − α), t ∈ R
d. (31)

Since d̂ j ∈ �1(Zd), j = 1,2, . . . , s, and ϕ ∈ L∞(Rd), we obtain that the reconstruction functions S j,d ∈ L∞(Rd), j = 1,2, . . . , s
(notice that |φ ∗′ a|∞ � |φ|∞‖a‖1, see [19, Theorem 2.1]).

By using a density argument, in the next theorem we extend the sampling formula (30) to the whole space V ∞
ϕ in a

pointwise sense.

Theorem 6. Let d = [d1, . . . ,ds] be a vector with entries d j in the algebra A, j = 1,2, . . . , s, and satisfying (29). Then, for any f ∈ V ∞
ϕ

the following sampling formula holds pointwise:

f (t) = (det M)

s∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,d(t − Mα), t ∈ R
d, (32)

where the reconstruction function S j,d , given by (31), belongs to L∞(Rd) for j = 1,2, . . . , s.
Moreover, assuming that ϕ, Dβϕ ∈ C0(R

d) for |β| � m, (i.e., ϕ and its derivatives are continuous on R
d vanishing at infinity), then

the convergence of the sampling series in (32) is also absolute and uniform on R
d.

Proof. Consider the Banach space Cm
b (Rd) of all functions f which, together with all their partial derivatives Dβ f of order

|β| � m, are continuous and bounded on R
d with the norm ‖ f ‖Cm

b
:= max|β|�m supt∈Rd |Dβ f (t)|.

For any vector d with entries in A and satisfying (29) there exists a constant K > 0 such that, for each f ∈ Cm
b (Rd),∣∣(Γd f )(t)

∣∣� K‖ f ‖Cm
b

for all t ∈ R
d, (33)

where (Γd f )(t) := (det M)
∑s

j=1
∑

α∈Zd (L j f )(Mα)S j,d(t − Mα). For the proof, see [14, Lemma 2].

Let f ∈ V ∞
ϕ and a ∈ c0(Z

d) such that f (t) =∑
α∈Zd a(α)ϕ(t − α). For n ∈ N we define

fn(t) :=
∑

|α|�n

a(α)ϕ(t − α).

From the assumptions on ϕ we have that fn ∈ Cm
b (Rd). Moreover, for |β| � m and n > l > 0, we have∣∣Dβ( fn − fl)(t)

∣∣� ∑
l<|α|�n

∣∣a(α)
∣∣∣∣Dβϕ(t − α)

∣∣� sup
l<|α|�n

∣∣a(α)
∣∣∣∣Dβϕ

∣∣∞, t ∈ R
d.

Since the sequence a ∈ c0(Z
d), { fn}∞n=1 is a Cauchy sequence in the Banach space Cm

b (Rd), we deduce that fn converges in
the Cm

b -norm to f as n → ∞. In particular f ∈ Cm
b (Rd). Using that the sampling formula holds for fn ∈ span{ϕ(· − α)}α∈Zd

and inequality (33) we obtain that, for all t ∈ R
d ,

0 �
∣∣ fn(t) − Γd f (t)

∣∣= ∣∣[Γd( fn − f )
]
(t)

∣∣� K‖ fn − f ‖Cm
b

→ 0 as n → ∞,

and then Γd f (t) = f (t) for all t ∈ R
d . This proves that the sampling formula (32) holds pointwise.

It remains to prove the absolute and uniform convergence of the series in (32). Let |β| � m. Assuming that Dβϕ ∈ C0(R
d)

we have that Dβ fk ∈ C0(R
d). Since Dβ f M converges uniformly to Dβ f on R

d , and C0(R
d) is a closed subspace in L∞(Rd),

we obtain that Dβ f ∈ C0(R
d). From this fact and using the Lebesgue dominated convergence theorem (whenever L j is a

system of type (a)), we obtain that {(L j f )(Mα)}α∈Zd ∈ c0(R
d) for each j = 1,2, . . . , s. Hence, by using that S j,d ∈ L∞(Rd)

and the inequality



412 A.G. García, G. Pérez-Villalón / J. Math. Anal. Appl. 355 (2009) 397–413
∑
|α|>n

∣∣(L j f )(Mα)S j,d(t − Mα)
∣∣� sup

|α|>n

∣∣(L j f )(Mα)
∣∣|S j,d|∞, t ∈ R

d, n ∈ N,

we obtain that the series in (32) converges absolutely and uniformly on R
d . �

Observe that, under the assumed hypotheses, in the proof of the theorem we have obtained that

V ∞
ϕ ⊂ Cm

b

(
R

d). (34)

In the case that the continuous functions ϕ and Dβϕ , |β| � m, belong to the Wiener space W (L∞, �1) :=
{ f :

∑
n∈Z

‖ f χ[n,n+1)‖∞ < ∞}, then the generator ϕ and its derivatives Dβϕ , |β| � m, belong to L∞(Rd) ∩ C0(R
d).

Finally, notice that our space V ∞
ϕ differs from the shift-invariant space V∞(ϕ) introduced in [2]. Following this reference,

under appropriate hypotheses, a similar sampling result can be proved for functions in V∞(ϕ) having locally uniform
convergence.

5.2. L∞-approximation properties

We denote by W r∞(Rd) := { f : ‖Dγ f ‖∞ < ∞, |γ | � r} the usual Sobolev space, and by | f | j,∞ := ∑
|β|= j ‖Dβ f ‖∞ ,

0 � j � r, the corresponding seminorm of a function f ∈ W r∞(Rd). In [17], Jia proved the following remarkable result about
approximation by means of a quasi-projection operator (see [17] for the most general L p version):

Theorem 7. Let φ ∈ W j∞(Rd), 0 � j < r and φ̃ ∈ L1(Rd) be compactly supported functions and let Q be the quasi-projection operator
given by

(Q f )(t) :=
∑
α∈Zd

〈
f , φ̃(· − α)

〉
L2(Rd)

φ(t − α). (35)

If Q π = π for every polynomial π of degree at most r − 1, then

| f − Q h f | j,∞ � Khr− j| f |r,∞, f ∈ W r∞
(
R

d),
where Q h := σh Q σ1/h and K is a constant independent of h > 0 and f .

From this result, and assuming that the generator ϕ satisfies the Strang–Fix conditions of order r, we deduce by using
Theorem 6 that, for any function f ∈ C0(R

d) ∩ W r∞(Rd)∥∥Γ h
d f − f

∥∥∞ = O
(
hr−m) as h → 0+.

Theorem 8. Assume that ϕ is a compactly supported generator in W r∞(Rd) where r > m, with m being the largest order of the partial
derivatives appearing in the systems L j . Let d = [d1, . . . ,ds] be a vector with entries in the algebra A and satisfying (29). If the
generator ϕ satisfies the Strang–Fix conditions of order r then, for each f ∈ C0(R

d)∩ W r∞(Rd) and 0 < h � 1, the following inequality
holds: ∥∥ f − Γ h

d f
∥∥∞ � K | f |r,∞hr−m,

where Γ h
d := σhΓdσ1/h and the constant K is independent of f and h.

Proof. From Theorem 6 we have that Γ h
d ξ = ξ , for any ξ ∈ σh V ∞

ϕ and h > 0. From (34), ξ ∈ Cm
b (Rd), and from (33), there

exists a constant M > 0 such that ‖Γdl‖∞ � M‖l‖Cm
b

for all l ∈ Cm
b (Rd). Hence, for any f ∈ Cm

b (Rd) and 0 < h � 1, we obtain
that ∥∥ f − Γ h

d f
∥∥∞ � ‖ f − ξ‖∞ + ∥∥ξ − Γ h

d f
∥∥∞ = ‖ f − ξ‖∞ + ∥∥Γ h

d (ξ − f )
∥∥∞ = ‖ f − ξ‖∞ + ∥∥Γdσ1/h(ξ − f )

∥∥∞
� ‖ f − ξ‖∞ + M

∥∥σ1/h(ξ − f )
∥∥

Cm
b

� ‖ f − ξ‖∞ + M‖ξ − f ‖Cm
b

� (1 + M)‖ξ − f ‖Cm
b
, ξ ∈ σh V ∞

ϕ , (36)

where we have used that σ1/h(ξ − f ) ∈ Cm
b (Rd).

Given φ = ϕ satisfying the Strang–Fix conditions of order r, there exists a compactly supported function φ̃ ∈ L1(Rd)

satisfying the conditions of Theorem 7. An example of such a function φ̃ can be found in [21, Theorem 6.1]. Let Q be
the quasi-projection operator defined in (35). Note that for f ∈ C0(R

d) we have that {〈 f , φ̃(· − α)〉L2(Rd)}α∈Zd ∈ c0(Z
d) and

hence Q f ∈ V ∞
ϕ . Moreover, from Theorem 7, for j = 0,1, . . . ,m, we have that

| f − Q h f | j,∞ � K jh
r− j | f |r,∞, f ∈ W r∞

(
R

d),
where the constants K j , 0 � j � m, are independent of f and h. By using (36), for any f ∈ C0(R

d) ∩ W r∞(Rd), we obtain
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∥∥ f − Γ h
d f

∥∥∞ � C inf
ξ∈σh V ∞

ϕ

‖ξ − f ‖Cm
b

� C‖Q h f − f ‖Cm
b

= C max
|β|�m

∥∥Dβ Q h f − Dβ f
∥∥∞ � C

m∑
j=0

|Q h f − f | j,∞

� C | f |r,∞
m∑

j=0

K jh
r− j � C

(
m∑

j=0

K j

)
| f |r,∞hr−m,

where the constant C is independent of f and h. �
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