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Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y ,
respectively. For f ∈ A, the peripheral spectrum of f , denoted by σπ ( f ) = {λ ∈ σ( f ): |λ| =
‖ f ‖}, is the set of spectral values of maximum modulus. A map T : A → B is weakly
peripherally multiplicative if σπ (T ( f )T (g))∩σπ ( f g) �= ∅ for all f , g ∈ A. We show that if T
is a surjective, weakly peripherally multiplicative map, then T is a weighted composition
operator, extending earlier results. Furthermore, if T1, T2 : A → B are surjective mappings
that satisfy σπ (T1( f )T2(g)) ∩ σπ ( f g) �= ∅ for all f , g ∈ A, then T1( f )T2(1) = T1(1)T2( f )
for all f ∈ A, and the map f 	→ T1( f )T2(1) is an isometric algebra isomorphism.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and background

The study of a map, not assumed to be linear, between Banach algebras that preserves some property or subset of
the spectrum of elements has become known as a spectral preserver problem. If X is a first-countable, compact Hausdorff
space, C(X) is the space of complex-valued, continuous functions on X , and T : C(X) → C(X) is a surjective map that
satisfies σ(T ( f )T (g)) = σ( f g) for all f , g ∈ C(X), Molnár [1] showed that there exists a homeomorphism ϕ : X → X such
that T ( f )(x) = T (1)(x) f (ϕ(x)) for all f ∈ C(X) and all x ∈ X , i.e. T is a weighted composition operator. In particular, if
T (1) = 1, then T is an isometric algebra isomorphism. In [2], Rao and Roy proved that the underlying domain need not be
first-countable and that similar results hold when the mapping T is a mapping from a uniform algebra A ⊂ C(X) – where
X is the maximal ideal space of A – onto itself. This was generalized further by Hatori et al. in [3], to the case where
the underlying domains of A and B need not be the maximal ideal spaces. Throughout, A ⊂ C(X) and B ⊂ C(Y ) refer to
uniform algebras on an arbitrary compact Hausdorff spaces.

In fact, the full spectrum need not be preserved to achieve results of this type; it can be replaced by the peripheral
spectrum,

σπ( f ) = {
λ ∈ σ( f ): |λ| = ‖ f ‖}, (1)

the set of spectral values of maximum modulus, where ‖ f ‖ denotes the uniform norm of f ∈ A. Mappings that satisfy
σπ(T ( f )T (g)) = σπ ( f g) are called peripherally multiplicative, and it was shown in [4] that if A and B are uniform algebras
on compact Hausdorff spaces X and Y , respectively, and T : A → B is a surjective, peripherally multiplicative mapping, then
T is a weighted composition operator. If, in addition, T (1) = 1, then T is an isometric algebra isomorphism. Related work
on peripherally multiplicative mappings in settings outside of uniform algebras can be found in [5].
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The proofs of each of the results above proceed by constructing a homeomorphism between the Choquet boundaries of
the algebras A and B , and this is done by analyzing the effect of T on the peaking functions. The set of peaking functions in
a uniform algebra A is the collection

P(A) = {
h ∈ A: σπ (h) = {1}},

i.e. the set of functions h such that |h(x)| � 1 for all x ∈ X and |h(x)| = 1 if and only if h(x) = 1.
Again it is possible to generalize these results and ask whether or not the entire peripheral spectrum must be multi-

plicatively preserved, and it turns out that the answer is no. In [6], it was shown that mappings T : A → B between uniform
algebras that satisfy T (P (A)) = P (B), T (1) = 1, and

σπ

(
T ( f )T (g)

) ∩ σπ ( f g) �= ∅ (2)

must be isometric algebra isomorphisms. A mapping that satisfies (2) is called weakly peripherally multiplicative, and the first
goal of this work is to show that preserving the peaking functions is an unnecessary assumption to guarantee that such
a map is a weighted composition operator, in the case that the underlying domains are first-countable. Whereas A and B
refer to uniform algebras on arbitrary compact Hausdorff spaces, we denote by A and B uniform algebras on first-countable
compact Hausdorff spaces.

Theorem 1. Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y , respectively, and let T : A → B
be surjective and weakly peripherally multiplicative. Then the map Φ : A → B defined by Φ( f ) = T (1)T ( f ) is an isometric algebra
isomorphism.

In fact, in this case it is again true that T is a weighted composition operator. This extends the results in [6], in the case
that the underlying spaces X and Y are first-countable; related results have been shown in algebras of Lipschitz functions
[7,8] and in function algebras without units [9].

A natural next step is to analyze pairs of mappings that jointly satisfy criteria such as (2). Hatori et al. have shown [10]
that if T1, T2 : A → B are surjections between uniform algebras such that σπ (T1( f )T2(g)) = σπ ( f g), then T1 and T2 must
be weighted composition operators. We extend their results – under the assumption of first-countability – and the results
above by the following:

Theorem 2. Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y , respectively, and let
T1, T2 : A → B be surjective maps satisfying

σπ

(
T1( f )T2(g)

) ∩ σπ( f g) �= ∅ (3)

for all f , g ∈ A. Then T1( f )T2(1) = T1(1)T2( f ) holds for all f ∈ A, and the mapping Φ : A → B defined by Φ( f ) = T1( f )T2(1) is
an isometric algebra isomorphism.

The maximizing set of f ∈ A, denoted M( f ) = {x ∈ X: | f (x)| = ‖ f ‖}, is the set of points where f attains its maximum
modulus; the maximizing set of a peaking function h is often called its peak set. The collection of peaking functions that
contain a point x0 ∈ X in their peak set is denoted by Px0 (A) = {h ∈ P (A): x0 ∈ M(h)}, and a point x ∈ X is called a weak
peak point (or strong boundary point or p-point) if

⋂
h∈Px(A) M(h) = {x}. Equivalently, x ∈ X is a weak peak point if and only

if for every open neighborhood U of x, there exists a peaking function h ∈ Px(A) such that M(h) ⊂ U . It is well known that
in uniform algebras the Choquet boundary of A, denoted δA, is the set of all weak peak points. An important relationship
between δA and the peripheral spectrum of functions in a uniform algebra is that, given λ ∈ σπ ( f ), there exists an x ∈ δA
such that f (x) = λ.

A fundamental use of the peaking functions is that they can multiplicatively isolate the values of functions at points of
the Choquet boundary. This fact, originally due to Bishop [11, Theorem 2.4.1], has been generalized in many directions (e.g.
[6, Lemma 3], [3, Lemma 2.3], among several others). This result is essential to the work here, so we include the version
given by Hatori et al. in [12].

Lemma 1. (See [12, Proposition 2.2].) Let A be a uniform algebra on a compact Hausdorff space X, x0 ∈ δA, and f ∈ A. If f (x0) �= 0,
then there exists h ∈ Px0 (A) such that σπ ( f h) = { f (x0)}. If f (x0) = 0, then for any ε > 0 there exists a peaking function h ∈ Px0 (A)

such that ‖ f h‖ < ε.

A strong peak point is a point x ∈ X such that M( f ) = {x} for some f ∈ A. Clearly, if x ∈ X is a strong peak point, then
x ∈ δA, but the converse is not true in general, as uniform algebras need not have any strong peak points [13, Ex. 10, p. 54].
If X is first-countable, however, then all weak peak points are strong peak points [14, Lemma 12.1, p. 56], leading to the
following corollary:
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Corollary 1. Let A be a uniform algebra on a first-countable, compact Hausdorff space X ; let x0 ∈ δA; and let f ∈ A be such that
f (x0) �= 0. Then there exists h ∈ P (A) such that M(h) = M( f h) = {x0}. In particular, σπ ( f h) = { f (x0)}.

Proof. Let x0 ∈ δA, then, since X is first-countable, {x0} is a Gδ set. Thus there exists a countable collection of open sets
{Un}∞n=1 such that

⋂∞
n=1 Un = {x0}. Since x0 ∈ δA, for each n there exists an hn ∈ Px0 (A) such that M(hn) ⊂ Un . Thus⋂∞

n=1 M(hn) = {x0}. Set h = ∑∞
n=1

hn
2n , then h ∈ P (A) and M(h) = {x0}. By Lemma 1, there exists a k ∈ P (A) such that

σπ( f k) = { f (x0)}. Therefore kh ∈ P (A) is the peaking function we seek, and M( f kh) = {x0}. �
Note that the difference between this and Lemma 1 is that this result ensures the peak set of h consists solely of the

point x0.
Following the arguments in [8], for each x ∈ X we define the set

Fx(A) = {
f ∈ A: ‖ f ‖ = ∣∣ f (x)

∣∣ = 1
}
.

Notice that Px(A) ⊂ Fx(A) and that f , g ∈ Fx(A) imply f g ∈ Fx(A). A useful property of these sets is that they can identify
elements of the Choquet boundary, as shown by the following lemma.

Lemma 2. Let A be a uniform algebra on a compact Hausdorff space X, x ∈ δA, and x′ ∈ X. Then x = x′ if and only if Fx(A) ⊂ Fx′ (A).

Proof. The forward direction is clear, so we suppose Fx(A) ⊂ Fx′ (A) and x �= x′ . Since X is Hausdorff, there exist open sets
U , V such that x ∈ U , x′ ∈ V , and U ∩ V = ∅. Thus there exists a peaking function h ∈ Px(A) such that M(h) ⊂ U , hence
|h(x′)| < 1, which contradicts Fx(A) ⊂ Fx′ (A). �

The assumption that x ∈ δA is essential to the result of Lemma 2. Consider the disk algebra, A(D), the set of con-
tinuous functions on the closed unit disk that are analytic on the interior of the disk. It is well known that δA(D) =
T = {z ∈ C: |z| = 1}. If z ∈ D, then, by the maximum modulus principle, F z(A(D)) consists precisely of the constant func-
tions of modulus one. Hence for any pair z1, z2 ∈ D, we have that F z1 (A(D)) = F z2 (A(D)).

2. Weak peripheral multiplicativity

As described above, a mapping T : A → B that satisfies

σπ

(
T ( f )T (g)

) ∩ σπ ( f g) �= ∅ (4)

for all f , g ∈ A is called weakly peripherally multiplicative. In general, a weakly peripherally multiplicative map need not be
an algebra isomorphism, as is shown in [6, Example 2] where also the following proposition is proven:

Proposition 1. (See [6, Theorem 3].) Let A and B be uniform algebras on compact Hausdorff spaces X and Y , respectively. If T : A → B
is a weakly peripherally multiplicative map such that P (B) = {T (1)T (h): h ∈ P (A)}, then the map Φ : A → B defined by Φ( f ) =
T (1)T ( f ) is an isometric algebra isomorphism.

In the case that X and Y are first-countable, Theorem 1 is more general than Proposition 1, as it shows that the require-
ment that P (B) = {T (1)T (h): h ∈ P (A)} is superfluous. The proof of Theorem 1 will follow from Proposition 1 by showing
that if T is a weakly peripherally multiplicative map, then the map f 	→ T (1)T ( f ) automatically preserves the peaking
functions.

2.1. General results on weakly peripherally multiplicative maps

In this section we assume that A ⊂ C(X) and B ⊂ C(Y ) are uniform algebras on first-countable, compact Hausdorff
spaces and that T : A → B is a surjective, weakly peripherally multiplicative map. Note that (4) implies

∥∥T ( f )T (g)
∥∥ = ‖ f g‖ (5)

for all f , g ∈ A. A mapping that satisfies (5) is called norm multiplicative, and the following proposition shows that such a
mapping, when restricted to the Choquet boundary, is a composition operator in modulus.

Proposition 2. (See [15, Theorem 4.1.2].) If Ψ : A → B is surjective and norm multiplicative, then there exists a homeomorphism
τ : δA → δB such that

∣∣Ψ ( f )
(
τ (x)

)∣∣ = ∣∣ f (x)
∣∣ (6)

holds for all x ∈ δA.
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Note that any surjective, weakly peripherally multiplicative map satisfies the hypothesis of Proposition 2, and, as is
shown next, must be injective.

Lemma 3. A surjective, weakly peripherally multiplicative map T : A → B is injective.

Proof. Let x0 ∈ δA, f , g ∈ A, and suppose that T ( f ) = T (g). If f (x0) = 0, then, by (6), 0 = | f (x0)| = |T ( f )(τ (x0))| =
|T (g)(τ (x0))| = |g(x0)|, so g(x0) = f (x0).

If f (x0) �= 0, then (6) implies that T ( f )(τ (x0)) �= 0. Hence, by Corollary 1, there exists a peaking function k ∈ Pτ (x0)(B)

such that M(k) = M(T ( f )k) = {τ (x0)}, and thus σπ (T ( f )k) = {T ( f )(τ (x0))}.
Let h ∈ A be such that T (h) = k, and choose x′ ∈ M( f h) ∩ δA. By (5) and (6),

∣∣T ( f )
(
τ
(
x′))k

(
τ
(
x′))∣∣ = ∣∣T ( f )

(
τ
(
x′))T (h)

(
τ
(
x′))∣∣ = ∣∣ f

(
x′)h

(
x′)∣∣

= ‖ f h‖ = ∥∥T ( f )T (h)
∥∥ = ∥∥T ( f )k

∥∥.

Since M(T ( f )k) = {τ (x0)}, τ (x′) = τ (x0), and the injectivity of τ yields x′ = x0. Thus M( f h) ∩ δA = {x0}, which gives that
σπ ( f h) = { f (x0)h(x0)}. A similar argument shows σπ (gh) = {g(x0)h(x0)}.

As T ( f ) = T (g), (4) implies that

σπ

(
T ( f )T (h)

) ∩ σπ ( f h) �= ∅,

and

σπ

(
T ( f )T (h)

) = σπ

(
T (g)T (h)

) ∩ σπ (gh) �= ∅.

Since σπ (T ( f )T (h)) = {T ( f )(τ (x0))}, we have that f (x0)h(x0) = T ( f )(τ (x0)) and g(x0)h(x0) = T ( f )(τ (x0)). Thus
f (x0)h(x0) = g(x0)h(x0), which implies that f (x0) = g(x0), since |h(x0)| = |T (h)(τ (x0))| = |k(τ (x0))| = 1. Therefore f (x) =
g(x) for all x ∈ δA, i.e. T is injective. �

If T preserves the peaking functions, then it is straightforward to show that T (1)2 = 1 [6], but the following lemma
demonstrates that this is true even when the peaking functions are not assumed to be preserved.

Lemma 4. A surjective, weakly peripherally multiplicative map T satisfies T (1)2 = 1.

Proof. Firstly note that |T (1)(τ (x))| = |1(x)| = 1 for all x ∈ δA. Choose y0 ∈ δB, and let x0 ∈ δA be such that τ (x0) = y0.
Corollary 1 implies that there exists a peaking function k ∈ P (B) such that M(k) = M(T (1)2k) = {y0}, so σπ (T (1)2k) =
{T (1)2(y0)}. Notice also that σπ(T (1)2k2) = {T (1)2(y0)}.

Since T is surjective, there exists h ∈ A such that T (h) = T (1)k, so choose x′ ∈ M(h) ∩ δA. By (6),

∣∣k
(
τ
(
x′))∣∣ = ∣∣T (1)

(
τ
(
x′))k

(
τ
(
x′))∣∣ = ∣∣T (h)

(
τ
(
x′))∣∣ = ∣∣h

(
x′)∣∣ = ‖h‖ = ∥∥T (1)T (h)

∥∥

= ∥∥T (1)2k
∥∥ = ∣∣T (1)2(y0)

∣∣ = 1.

Now |k(y)| = 1 if and only if y = y0, so τ (x′) = y0 = τ (x0), which yields that x′ = x0. Therefore M(h) ∩ δA = {x0}, and
σπ (h) = {h(x0)}. Note further that σπ(h2) = {h2(x0)}.

By (4)

σπ

(
T (1)2k

) ∩ σπ(h) �= ∅,

and

σπ

(
T (1)2k2) ∩ σπ

(
h2) �= ∅,

so h(x0) = T (1)2(y0) and h2(x0) = T (1)2(y0). Now h(x0) �= 0, since

∣∣h(x0)
∣∣ = ∣∣T (h)

(
τ (x0)

)∣∣ = ∣∣T (1)
(
τ (x0)

)
k
(
τ (x0)

)∣∣ = ∣∣T (1)
(
τ (x0)

)∣∣ · ∣∣k(y0)
∣∣ = ∣∣T (1)

(
τ (x0)

)∣∣ = 1.

Thus T (1)2(y0) = (T (1)2(y0))
2, which implies that T (1)2(y0) = 1. Since T (1)2 is identically 1 on δB, it is identically 1 on

all of Y . �
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2.2. Proof of Theorem 1

Given a surjective, weakly peripherally multiplicative map T : A → B, define Φ : A → B by

Φ( f ) = T (1)T ( f ). (7)

Lemma 5. The mapping Φ is surjective, unital, weakly peripherally multiplicative, and satisfies σπ (Φ( f )) ∩ σπ ( f ) �= ∅.

Proof. Lemma 4 implies that T (1)2 = 1, so Φ(1) = T (1)2 = 1, i.e. Φ is unital.
In addition, Φ( f )Φ(g) = T (1)T ( f )T (1)T (g) = T ( f )T (g) holds for all f , g ∈ A. Hence, the weak peripheral multiplica-

tivity of T implies that Φ is weakly peripherally multiplicative. The fact that Φ is weakly peripherally multiplicative and
unital immediately give

σπ

(
Φ( f )

) ∩ σπ ( f ) �= ∅ (8)

for all f ∈ A.
Let g ∈ B, then, by the surjectivity of T , there exists an f ∈ A such that T ( f ) = T (1)g . Thus Φ( f ) = T (1)T ( f ) =

T (1)2 g = g , which implies that Φ is surjective. �
Since Φ is surjective and weakly peripherally multiplicative, all of the results of Section 2.1 hold for Φ . Thus, by Lemma 3,

Φ is injective and has a formal inverse Φ−1 : B → A, which satisfies

σπ

(
Φ−1( f )Φ−1(g)

) ∩ σπ( f g) �= ∅ (9)

for all f , g ∈ B. Thus Φ−1 is a bijective, unital, weakly peripherally multiplicative map.
As noted before, Theorem 1 follows if the map Φ preserves the peaking functions. We first show that Φ preserves

functions whose maximizing sets are singletons.

Lemma 6. Let h ∈ A and x0 ∈ δA. Then M(h)∩δA = {x0} if and only if M(Φ(h))∩δB = {τ (x0)}, in which case h(x0) = Φ(h)(τ (x0)).

Proof. Note that M(h) ∩ δA = {x0} if and only if |h(x)| < ‖h‖ for all x ∈ δA \ {x0}, which holds if and only if |Φ(h)(τ (x))| <
‖Φ(h)‖ for all τ (x) ∈ δB \ {τ (x0)}, i.e. if and only if M(Φ(h)) ∩ δB = {τ (x0)}.

In this case, σπ (h) = {h(x0)} and σπ(Φ(h)) = {Φ(h)(τ (x0))}, so (8) implies h(x0) = Φ(h)(τ (x0)). �
Note that this implies a certain class of peaking functions are preserved – the peaking functions that peak at a single

point – but not necessarily that all peaking functions are preserved.
We now proceed with the proof of Theorem 1.

Theorem 1. Let A and B be uniform algebras on first-countable compact Hausdorff spaces X and Y , respectively, and let
T : A → B be surjective and weakly peripherally multiplicative. Then the map Φ : A → B defined by Φ( f ) = T (1)T ( f ) is an isomet-
ric algebra isomorphism.

Proof. By Lemma 5, Φ is a surjective, unital, weakly peripherally multiplicative operator, so it is only to show that Φ

satisfies Φ[P (A)] = P (B).
Choose h ∈ P (A) and y0 ∈ M(Φ(h)) ∩ δB. Since Φ preserves norm, 1 = ‖h‖ = ‖Φ(h)‖, so |Φ(h)(y0)| = 1. By Corollary 1,

there exists k ∈ P (B) such that M(k) = M(Φ(h)k) = {y0}.
Set x0 = τ−1(y0) and g = Φ−1(k), and note that M(g) = {x0} and g(x0) = 1, by Lemma 6. If x′ ∈ M(hg) ∩ δA, then

∣∣Φ(h)
(
τ
(
x′))Φ(g)

(
τ
(
x′))∣∣ = ∣∣h

(
x′)g

(
x′)∣∣ = ‖hg‖ = ∥∥Φ(h)Φ(g)

∥∥ = ∥∥Φ(h)k
∥∥,

which implies that τ (x′) = y0 = τ (x0), i.e. x′ = x0. Therefore M(hg) ∩ δA = {x0}, and

∣∣h(x0)
∣∣ = ∣∣Φ(h)

(
τ (x0)

)∣∣ = ∣∣Φ(h)(y0)
∣∣ = 1.

Since h is a peaking function, h(x0) = 1, so σπ (hg) = {1}. Thus 1 ∈ σπ (Φ(h)k) = {Φ(h)(y0)}, i.e. Φ(h)(y0) = 1. Since this
holds for any y0 ∈ M(Φ(h)) ∩ δB, σπ(Φ(h)) = {1}, which is to say Φ(h) ∈ P (B). This shows that Φ[P (A)] ⊂ P (B), and a
similar argument with Φ−1 proves the reverse inclusion.

Since Φ is a surjective, unital, weakly peripherally multiplicative operator that preserves the peaking functions, Proposi-
tion 1 gives that Φ is an isometric algebra isomorphism. �
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3. Jointly weakly peripherally multiplicative maps

Given the above results on single weakly peripherally multiplicative operators, it is natural to analyze pairs of maps that
jointly satisfy related conditions. Throughout this section we assume that A ⊂ C(X) and B ⊂ C(Y ) are uniform algebras on
first-countable, compact Hausdorff spaces X and Y , and T1, T2 : A → B are surjective mappings that satisfy

σπ

(
T1( f )T2(g)

) ∩ σπ( f g) �= ∅ (10)

for all f , g ∈ A. Notice that (10) implies that
∥∥T1( f )T2(g)

∥∥ = ‖ f g‖ (11)

holds for all f , g ∈ A.

3.1. General results on T1 and T2

We begin with some properties of T1 and T2.

Lemma 7. Let f , g ∈ A, then the following are equivalent:

(a) | f (x)| � |g(x)| for all x ∈ δA,
(b) |T1( f )(y)| � |T1(g)(y)| for all y ∈ δB, and
(c) |T2( f )(y)| � |T2(g)(y)| for all y ∈ δB.

Proof. (a) ⇒ (b). Let f , g ∈ A be such that | f (x)| � |g(x)| on δA, then ‖ f h‖ � ‖gh‖ for h ∈ A. If k ∈ P (B) and h ∈ A is
such that T2(h) = k, then, by (11),

∥∥T1( f )k
∥∥ = ∥∥T1( f )T2(h)

∥∥ = ‖ f h‖ � ‖gh‖ = ∥∥T1(g)T2(h)
∥∥ = ∥∥T1(g)k

∥∥.

Since k ∈ P (B) was chosen arbitrarily, |T1( f )(y)| � |T1(g)(y)| for all y ∈ δB (see e.g. [4, Lemma 2]).
(b) ⇒ (c). Let f , g ∈ A be such that |T1( f )(y)| � |T1(g)(y)| for all y ∈ δB, then ‖T1( f )k‖ � ‖T1(g)k‖ for all k ∈ B. If

k ∈ P (B) and h ∈ A is such that T1(h) = k, then
∥∥T2( f )k

∥∥ = ‖ f h‖ = ∥∥T1( f )T2(h)
∥∥ �

∥∥T1(g)T2(h)
∥∥ = ‖gh‖ = ∥∥T2(g)k

∥∥.

As k ∈ P (B) was arbitrarily chosen, |T2( f )(y)| � |T2(g)(y)| for all y ∈ δB.
(c) ⇒ (a). Suppose that f , g ∈ A are such that |T2( f )(y)| � |T2(g)(y)| for all y ∈ δB, then ‖T2( f )k‖ � ‖T2(g)k‖ for any

k ∈ B. If h ∈ P (A), then (11) implies that

‖ f h‖ = ∥∥T1( f )T2(h)
∥∥ �

∥∥T2(g)T2(h)
∥∥ = ‖gh‖.

By the liberty of the choice of h, | f (x)| � |g(x)| for all x ∈ δA. �
Given h,k ∈ Fx(A), (11) implies that ‖T1(h)T2(k)‖ = ‖hk‖ = 1, hence M(T1(h)T2(k)) = {y ∈ Y : |T1(h)T2(k)(y)| = 1}.

Following the argument pioneered by Molnár [1], for each x ∈ δA, we define the set

Ax =
⋂

h,k∈Fx(X)

M
(
T1(h)T2(k)

)
. (12)

Lemma 8. For each x ∈ δA, the set Ax is non-empty.

Proof. We will show that the family {M(T1(h)T2(k)): h,k ∈ Fx(A)} has the finite intersection property. Let h1, . . . ,hn,k1,

. . . ,kn ∈ Fx(A) and set h = h1 · · · · · hn ∈ Fx(A) and k = k1 · · · · · kn ∈ Fx(A). Since |hi(ζ )| � 1 and |ki(ζ )| � 1 for all 1 � i � n
and all ζ ∈ δA, |h(ζ )| � |hi(ζ )| and |k(ζ )| � |ki(ζ )| for any 1 � i � n and all ζ ∈ δA. Lemma 7 implies that |T1(h)(η)| �
|T1(hi)(η)| and |T2(k)(η)| � |T2(ki)(η)| for any 1 � i � n and all η ∈ δB. Since maximizing sets meet the Choquet boundary
[15, Lemma 3.2.3], there exists a y ∈ M(T1(h)T2(k)) ∩ δB. Hence 1 = |T1(h)(y)T2(k)(y)| � |T1(hi)(y)T2(ki)(y)| � 1 for each
1 � i � n, thus |T1(hi)(y)T2(ki)| = 1 for each 1 � i � n. Thus y ∈ ⋂n

i=1 M(T1(hi)T2(ki)), and {M(T1(h)T2(k)): h,k ∈ Fx(A)}
has the finite intersection property as claimed. Since maximizing sets are compact subsets of the compact set Y , Ax is
non-empty. �

Since Ax is a non-empty intersection of maximizing sets, it meets the Choquet boundary [15, Lemma 3.2.3].

Lemma 9. Let f , g ∈ A. Then for each x ∈ δA and each y ∈ Ax ∩ δB, f g ∈ Fx(A) if and only if T1( f )T2(g) ∈ F y(B).
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Proof. Fix x ∈ δA, and choose y ∈ Ax ∩ δB. If T1( f )T2(g) ∈ F y(B), then, by (11), 1 = ‖T1( f )T2(g)‖ = ‖ f g‖. Thus we need
only show that | f (x)g(x)| = 1. If f (x)g(x) = 0, then, without loss of generality, assume f (x) = 0. Hence Lemma 1 implies
that there exists a peaking function h ∈ Px(A) such that ‖ f h‖ < 1

‖g‖ . As h ∈ Fx(A), Lemma 8 yields T1(h)T2(h) ∈ F y(B), so

1 = ∥∥T1( f )T2(g)T1(h)T2(h)
∥∥ �

∥∥T1( f )T2(h)
∥∥ · ∥∥T1(h)T2(g)

∥∥ = ‖ f h‖ · ‖gh‖ <
1

‖g‖ · ‖g‖ = 1,

which is a contradiction. Hence f (x)g(x) �= 0, i.e. f (x), g(x) �= 0, thus, by Corollary 1, there exist peaking functions
h1,h2 ∈ Px(A) such that M(h2) = M( f h2) = {x} and M(h1) = M(gh1) = {x}. As h1,h2 ∈ Fx(A), again Lemma 8 implies
that T1(h1)T2(h2) ∈ F y(B), thus

∣∣ f (x)g(x)
∣∣ = ‖ f h2‖ · ‖gh1‖ = ∥∥T1( f )T2(h2)

∥∥ · ∥∥T1(h1)T2(g)
∥∥ �

∥∥T1( f )T2(g)T1(h1)T2(h2)
∥∥ = 1.

Therefore | f (x)g(x)| = 1, yielding f g ∈ Fx(A).
Conversely, suppose that f g ∈ Fx(A), then 1 = ‖ f g‖ = ‖T1( f )T2(g)‖, and it is only to show that |T1( f )(y)T2(g)(y)| = 1.

If T1( f )(y)T2(g)(y) = 0, then, without loss of generality, assume T1( f )(y) = 0. Lemma 1 implies that there exists an k ∈
P y(B) such that ‖T1( f )k‖ < 1

‖T2(g)‖ . Let h1,h2 ∈ A be such that T1(h1) = T2(h2) = k, then, as T1(h1)T2(h2) ∈ F y(B), we
have that h1h2 ∈ Fx(A), thus

1 = ‖ f gh1h2‖ � ‖ f h1‖ · ‖gh2‖ = ∥∥T1( f )k
∥∥ · ∥∥T2(g)k

∥∥ <
1

‖T2(g)‖ · ∥∥T2(g)
∥∥ = 1,

which is a contradiction. Hence T1( f )(y)T2(g)(y) �= 0, thus T1( f )(y), T2(g)(y) �= 0, so by Corollary 1, there exist peaking
functions k1,k2 ∈ P y(B) such that M(k1) = M(T1( f )k1) = {y} and M(k2) = M(T2(g)k2) = {y}. Let h1,h2 ∈ A be such that
T1(h1) = k2 and T2(h2) = k1, then h1h2 ∈ Fx(A), hence

∣∣T1( f )(y)T2(g)(y)
∣∣ = ∥∥T1( f )k1

∥∥ · ∥∥T2(g)k2
∥∥ = ‖ f h2‖ · ‖gh1‖ � ‖ f gh1h2‖ = 1,

which implies that |T1( f )(y)T2(g)(y)| = 1. Therefore T1( f )T2(g) ∈ F y(B). �
Not only is Ax ∩ δB non-empty, but the following lemma shows that it is, in fact, a singleton.

Lemma 10. For each x ∈ δA, the set Ax ∩ δB is a singleton.

Proof. Fix x ∈ δA, and let y, y′ ∈ Ax ∩ δB. If y �= y′ , then there exist open sets U and V such that y ∈ U , y′ ∈ V , and
U ∩ V = ∅. Since y ∈ δB, there exists a peaking function k ∈ P y(B) such that M(k) ⊂ U . If h1,h2 ∈ A are such that
T1(h1) = T2(h2) = k, then Lemma 9 implies that h1h2 ∈ Fx(A). Hence, by Lemma 9, k2 = T1(h1)T2(h2) ∈ F y′ (B), which
is a contradiction. Thus no two distinct points y and y′ are elements of Ax ∩ δB, i.e. Ax ∩ δB is a singleton. �

Given that Ax ∩ δB is a singleton for each x ∈ δA, we define the map τ : δA → δB by

{
τ (x)

} = Ax ∩ δB. (13)

Lemma 11. The map τ : δA → δB defined by (13) is injective.

Proof. Let x, x′ ∈ δA, and choose h ∈ Fx(A). By Lemma 9, T1(h)T2(h) ∈ Fτ (x)(B). If τ (x) = τ (x′), then T1(h)T2(h) ∈ Fτ (x′)(B),
which, again by Lemma 9, shows h2 ∈ Fx′ (A) and thus h ∈ Fx′ (A). Lemma 2 then gives x = x′ . �
Lemma 12. Let f , g ∈ A, then |T1( f )(τ (x))T2(g)(τ (x))| = | f (x)g(x)| holds for all x ∈ δA.

Proof. If any of f , g, T1( f ), T2(g) is identically 0, then the result follows by (11), thus we can assume that
f , g, T1( f ), T2(g) �= 0.

Let x ∈ δA. If f (x)g(x) = 0, then, without loss of generality, we can assume that f (x) = 0. Given ε > 0, Lemma 1 implies
that there exists a peaking function h ∈ Px(A) such that ‖ f h‖ < ε

‖g‖ . As h2 ∈ Fx(A), Lemma 9 gives T1(h)T2(h) ∈ Fτ (x)(B),
so

∣∣T1( f )
(
τ (x)

)
T2(g)

(
τ (x)

)∣∣ �
∥∥T1( f )T2(g)T1(h)T2(h)

∥∥ �
∥∥T1( f )T2(h)

∥∥ · ∥∥T1(h)T2(g)
∥∥

= ‖ f h‖ · ‖gh‖ <
ε

‖g‖ · ‖g‖ = ε.

Therefore T1( f )(τ (x))T2(g)(τ (x)) = 0, by the liberty of the choice of ε. A symmetric argument shows that
T1( f )(τ (x))T2(g)(τ (x)) = 0 implies f (x)g(x) = 0.
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If f (x)g(x) �= 0, then f (x), g(x) �= 0. Hence, by Corollary 1, there exist peaking functions h1,h2 ∈ Px(A) such that
M(h2) = M( f h2) = {x} and M(h1) = M(gh1) = {x}. Since h1h2 ∈ Fx(A), Lemma 9 implies that T1(h1)T2(h2) ∈ Fτ (x)(B),
hence

∣∣T1( f )
(
τ (x)

)
T2(g)

(
τ (x)

)∣∣ �
∥∥T1( f )T2(g)T1(h1)T2(h2)

∥∥ �
∥∥T1( f )T2(h2)

∥∥ · ∥∥T1(h1)T2(g)
∥∥

= ‖ f h2‖ · ‖gh1‖ = ∣∣ f (x)g(x)
∣∣.

Since T1( f )(τ (x))T2(g)(τ (x)) = 0 if and only if f (x)g(x) = 0, the assumption that f (x)g(x) �= 0 implies that
T1( f )(τ (x))T2(g)(τ (x)) �= 0, then T1( f )(τ (x)), T2(g)(τ (x)) �= 0. Corollary 1 implies that there exist k1,k2 ∈ Pτ (x)(B)

such that M(k2) = M(T1( f )k2) = {τ (x)} and M(k1) = M(T2(g)k1) = {τ (x)}. Let h1,h2 ∈ A be such that T1(h1) = k1 and
T2(h2) = k2. As k1k2 ∈ Fτ (x)(B), Lemma 9 yields that h1h2 ∈ Fx(A), thus

∣∣ f (x)g(x)
∣∣ � ‖ f gh1h2‖ � ‖ f h2‖ · ‖gh1‖ = ∥∥T1( f )k2

∥∥ · ∥∥T2(g)k1
∥∥ = ∣∣T1( f )

(
τ (x)

)
T2(g)

(
τ (x)

)∣∣.
Therefore |T1( f )(τ (x))T2(g)(τ (x))| = | f (x)g(x)| holds for all x ∈ δA. �
Lemma 13. The mappings T1 and T2 are injective.

Proof. Let f , g ∈ A be such that T1( f ) = T1(g) and let x0 ∈ δA. If f (x0) = 0, then, by Lemma 12, | f (x0)| =
|T1( f )(τ (x0))T2(1)(τ (x0))| = |T1(g)(τ (x0))T2(1)(τ (x0))| = |g(x0)|, thus f (x0) = g(x0).

If f (x0) �= 0, then Lemma 12 implies that T1( f )(τ (x0)) �= 0. Hence, by Corollary 1, there exists a peaking function
k ∈ Pτ (x0)(B) such that M(T1( f )k) = {τ (x0)} and σπ (T1( f )k) = {T1( f )(τ (x0))}.

Let h ∈ A be such that T2(h) = k. We claim that σπ ( f h) = { f (x0)h(x0)}. Indeed, let x′ ∈ M( f h) ∩ δA, then, by (11) and
Lemma 12,

∣∣T1( f )
(
τ
(
x′))k

(
τ
(
x′))∣∣ = ∣∣T1( f )

(
τ
(
x′))T2(h)

(
τ
(
x′))∣∣ = ∣∣ f

(
x′)h

(
x′)∣∣

= ‖ f h‖ = ∥∥T1( f )T2(h)
∥∥ = ∥∥T1( f )k

∥∥.

Since M(T1( f )k) = {τ (x0)}, τ (x′) = τ (x0), so x′ = x0. Thus M( f h)∩δA = {x0}, i.e. σπ( f h) = { f (x0)h(x0)}. A similar argument
shows that σπ (gh) = {g(x0)h(x0)}.

As T1( f ) = T1(g), (10) implies that

σπ

(
T1( f )T2(h)

) ∩ σπ( f h) �= ∅,

and

σπ

(
T1( f )T2(h)

) ∩ σπ(gh) �= ∅.

Thus f (x0)h(x0)=T1( f )(τ (x0))=g(x0)h(x0). Let l ∈ A be such that T1(l) = k, then |l(x0)h(x0)| = |T1(l)(τ (x0))T2(h)(τ (x0))| =
|k(τ (x0))|2 = 1, thus h(x0) �= 0, which yields that f (x0) = g(x0). Therefore f (x) = g(x) for all x ∈ δA, i.e. T1 is injective.
A similar argument applies to T2. �

Since T1, T2 are injective, there exist formal inverses T −1
1 , T −1

2 : B → A. In addition, T −1
1 and T −1

2 are bijective mappings
that satisfy

σπ

(
T −1

1 ( f )T −1
2 (g)

) ∩ σπ ( f g) �= ∅ (14)

for all f , g ∈ B, thus all of the previous results for T1 and T2 hold for T −1
1 and T −1

2 . Hence there exists an injective mapping
ψ : δB → δA such that

∣∣T −1
1 ( f )(y)T −1

2 (g)(y)
∣∣ = ∣∣ f

(
ψ(y)

)
g
(
ψ(y)

)∣∣ (15)

holds for all y ∈ δB and f , g ∈ B.

Lemma 14. The map τ : δA → δB defined by (13) is surjective.

Proof. Let y ∈ δB and let k ∈ Fτ (ψ(y))(B). If h1,h2 ∈ A are such that T1(h1) = T2(h2) = k, then Lemma 9 yields that h1h2 ∈
Fψ(y)(A). Hence, by (15), 1 = |h1(ψ(y))h2(ψ(y))| = |k(y)|2, thus k ∈ F y(B). Therefore, by Lemma 2, y = τ (ψ(y)). �

Of course a similar argument applies to ψ , showing that τ and ψ are mutual inverses of each other. As τ is a bijective
mapping between δA and δB, Lemma 12 implies that |T1(1)T2(1)| = 1 on δB. In fact, as the following lemma shows,
T1(1)T2(1) = 1.
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Lemma 15. The mappings T1 and T2 satisfy T1(1)T2(1) = 1.

Proof. Let y0 ∈ δB and x0 = ψ(y0). Lemma 12 implies that |T1(1)(y0)T2(1)(y0)| = 1, thus, by Corollary 1, there exists
a peaking function k ∈ P y0(B) such that M(T1(1)T2(1)k) = {y0}. Notice that σπ (T1(1)T2(1)k) = {T1(1)(y0)T2(1)(y0)} and
σπ(T1(1)T2(1)k2) = {T1(1)(y0)T2(1)(y0)}.

Let h1,h2 ∈ A be such that T1(h1) = T1(1)k and T2(h2) = T2(1)k. If x ∈ M(h1) ∩ δA, then, by Lemma 12,
∥∥T1(1)T2(1)k

∥∥ = ∥∥T1(h1)T2(1)
∥∥ = ‖h1‖ = ∣∣h1(x)

∣∣

= ∣∣T1(h1)
(
τ (x)

)
T2(1)

(
τ (x)

)∣∣ = ∣∣T1(1)
(
τ (x)

)
T2(1)

(
τ (x)

)
k
(
τ (x)

)∣∣.
Since M(T1(1)T2(1)k) = {y0}, we have that τ (x) = y0 = τ (x0), so the injectivity of τ implies that M(h1)∩ δA = {x0}. A sim-
ilar argument yields that M(h2) ∩ δA = {x0}, hence σπ (h1) = {h1(x0)}, σπ (h2) = {h2(x0)}, and σπ (h1h2) = {h1(x0)h2(x0)}.

By (10),

σπ(h1) ∩ σπ

(
T1(1)T2(1)k

) �= ∅,

σπ (h2) ∩ σπ

(
T1(1)T2(1)k

) �= ∅,

and

σπ(h1h2) ∩ σπ

(
T1(1)T2(1)k2) �= ∅,

so h1(x0) = h2(x0) = h1(x0)h2(x0) = T1(1)(y0)T2(1)(y0), which yields that T1(1)(y0)T2(1)(y0) = (T1(1)(y0)T2(1)(y0))
2.

Therefore, T1(1)(y0)T2(1)(y0) = 1, i.e. T1(1)(y)T2(1)(y) = 1 for all y ∈ δB. �
3.2. Proof of Theorem 2

Define the mappings Φ1,Φ2 : A → B by Φ1( f ) = T1( f )T2(1) and Φ2( f ) = T1(1)T2( f ).

Lemma 16. The mappings Φ1,Φ2 : A → B are surjective, unital, and satisfy σπ (Φ1( f )Φ2(g)) ∩ σπ ( f g) �= ∅ for all f , g ∈ A.

Proof. By Lemma 15, Φ1(1) = Φ2(1) = T1(1)T2(1) = 1, hence Φ1 and Φ2 are unital. Additionally, Φ1( f )Φ2(g) =
T1( f )T2(1)T1(1)T2(g) = T1( f )T2(g) holds for all f , g ∈ A. Thus, by (10), σπ (Φ1( f )Φ2(g))∩σπ ( f g) �= ∅. Let g ∈ B, then the
surjectivity of T1 implies that there exists an f ∈ A such that T1( f ) = T1(1)g . Thus Φ1( f ) = T1( f )T2(1) = T1(1)T2(1)g = g ,
which implies that Φ1( f ) is surjective. The surjectivity of Φ2 is proved similarly. �

As Φ1 and Φ2 are unital and satisfy σπ (Φ1( f )Φ2(g)) ∩ σπ ( f g) �= ∅, we have also that

σπ

(
Φ1( f )

) ∩ σπ ( f ) �= ∅, (16)

σπ

(
Φ2( f )

) ∩ σπ ( f ) �= ∅, (17)

and
∥∥Φ1( f )

∥∥ = ∥∥Φ2( f )
∥∥ = ‖ f ‖ (18)

holds for all f ∈ A. In addition, Φ1 and Φ2 are surjective, thus the results of Section 3.1 hold for Φ1 and Φ2. In particular,
Lemma 12 yields that

∣∣Φ1( f )
(
τ (x)

)∣∣ = ∣∣ f (x)
∣∣ = ∣∣Φ2( f )

(
τ (x)

)∣∣ (19)

holds for all f ∈ A and x ∈ δA.

Lemma 17. Let h ∈ A and x0 ∈ δA, then the following are equivalent:

(a) M(h) ∩ δA = {x0},
(b) M(Φ1(h)) ∩ δB = {τ (x0)}, and
(c) M(Φ2(h)) ∩ δB = {τ (x0)}.

In any case Φ1(h)(τ (x0)) = h(x0) = Φ2(h)(τ (x0)).

The proof of Lemma 17 is similar to the proof of Lemma 6. Notice that if Φ1 = Φ2, then Φ1 is a surjective, unital, weakly
peripherally multiplicative map, hence Theorem 1 implies that Φ1 is an isometric algebra isomorphism. Therefore the proof
of Theorem 2 follows from showing that Φ1( f ) = Φ2( f ) holds for all f ∈ A.
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Theorem 2. Let A and B be uniform algebras on first-countable compact Hausdorff spaces X and Y , respectively, and let T1, T2 : A →
B be surjective mappings that satisfy σπ (T1( f )T2(g)) ∩ σπ ( f g) �= ∅ for all f , g ∈ A. Then T1( f )T2(1) = T1(1)T2( f ) holds for all
f ∈ A, and the mapping Φ : A → B defined by Φ( f ) = T1( f )T2(1) is an isometric algebra isomorphism.

Proof. Let Φ1 and Φ2 be defined as above, and let f ∈ A and y0 ∈ δB. If x0 ∈ δA satisfies τ (x0) = y0 and Φ1( f )(y0) = 0,
then by (19), |Φ1( f )(y0)| = | f (x0)| = |Φ2( f )(y0)|, so Φ1( f )(y0) = Φ2( f )(y0).

Suppose that Φ1( f )(y0) �= 0, then (19) implies that f (x0) �= 0, hence Corollary 1 implies that there exists a peaking
function h ∈ Px0 (A) such that M(h) = M( f h) = {x0} and σπ ( f h) = { f (x0)}. If y′ ∈ M(Φ1( f )Φ2(h)) ∩ δB, then, by (19),

∣∣ f
(
τ−1(y′))h

(
τ−1(y′))∣∣ = ∣∣Φ1( f )

(
y′)Φ2(h)

(
y′)∣∣ = ∥∥Φ1( f )Φ2(h)

∥∥ = ‖ f h‖.
Since M( f h) = {x0}, τ−1(y′) = x0, thus y′ = τ (x0) = y0. Therefore M(Φ1( f )Φ2(h)) ∩ δB = {y0}, hence σπ (Φ1( f )Φ2(h)) =
{Φ1( f )(y0)Φ2(h)(y0)}. As M(h) ∩ δA = {x0}, Lemma 17 gives M(Φ2(h)) ∩ δB = {y0} and Φ2(h)(y0) = h(x0) = 1, which
implies that σπ (Φ1( f )Φ2(h)) = {Φ1( f )(y0)}. A similar argument shows that σπ (Φ1(h)Φ2( f )) = {Φ2( f )(y0)}.

By Lemma 16,

σπ

(
Φ1( f )Φ2(h)

) ∩ σπ( f h) �= ∅
and

σπ

(
Φ1(h)Φ2( f )

) ∩ σπ( f h) �= ∅.

Thus Φ1( f )(y0) = f (x0) = Φ2( f )(y0), therefore Φ1( f )(y) = Φ2( f )(y) for all y ∈ δB, which yields that Φ1( f ) = Φ2( f ).
Since Φ1 = Φ2, we have that Φ = Φ1 is a unital, surjective, weakly peripheral multiplicative map. By Theorem 1, Φ is

an isometric algebra isomorphism. �
Acknowledgments

The authors would like to thank Scott Lambert and Dillon Ethier for helpful discussions on the results, as well as the anonymous reviewers for their
comments, which helped to improve the manuscript.

References

[1] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2001) 111–120.
[2] N.V. Rao, A.K. Roy, Multiplicatively spectrum preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005) 1135–1142.
[3] O. Hatori, T. Miura, H. Takagi, Characterization of isometric isomorphisms between uniform algebras via non-linear range preserving properties, Proc.

Amer. Math. Soc. 134 (2006) 2923–2930.
[4] A. Luttman, T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007) 3589–3598.
[5] T. Tonev, A. Luttman, Algebra isomorphisms between standard operator algebras, Studia Math. 191 (2009) 162–170.
[6] S. Lambert, A. Luttman, T. Tonev, Weakly peripherally multiplicative operators between uniform algebras, in: Contemp. Math., vol. 435, 2007, pp. 265–

281.
[7] M. Burgos, A. Jiménez-Vargas, M. Villegas-Vallecillos, Non-linear conditions for weighted composition operators between Lipschitz algebras, J. Math.

Anal. Appl. 359 (2009) 1–14.
[8] A. Jiménez-Vargas, A. Luttman, M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain

J. Math. 40 (6) (2010), in press.
[9] T. Tonev, Weak multiplicative operators on function algebras without units, Banach Center Publ. (2010), in press.

[10] O. Hatori, T. Miura, R. Shindo, H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59
(2009) 161–183.

[11] A. Browder, Introduction to Function Algebras, W.A. Benjamin Inc., 1969.
[12] O. Hatori, K. Hino, T. Miura, H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009) 47–60.
[13] G. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and Company, 1970.
[14] T.W. Gamelin, Uniform Algebras, AMS Chelsea Publishing, 1984.
[15] S. Lambert, Spectral preserver problems in uniform algebras, PhD thesis, 2008.


	Generalizations of weakly peripherally multiplicative maps between uniform algebras
	Introduction and background
	Weak peripheral multiplicativity
	General results on weakly peripherally multiplicative maps
	Proof of Theorem 1

	Jointly weakly peripherally multiplicative maps
	General results on T1 and T2
	Proof of Theorem 2

	Acknowledgments
	References


