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We are concerned with the determination of the asymptotic behavior of strong solutions
to the initial-boundary value problem for general semilinear parabolic equations by the
asymptotic behavior of these strong solutions on a finite set. More precisely, if the
asymptotic behavior of the strong solution is known on a suitable finite set which is called
determining nodes, then the asymptotic behavior of the strong solution itself is entirely
determined. We prove the above property by the energy method.
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1. Introduction

Let n ∈ Z, n � 2, Ω be a bounded domain in R
n with its C0,1-boundary ∂Ω , H be a closed subspace of L2(Ω), V =

H1
0(Ω) ∩ H . Our problem is the following strong formulation of the initial-boundary value problem for the semilinear

parabolic equation:

dt u + Au + Bu = f in L2((0,∞); H
)
,

u(0) = u0 in V , (1.1)

where u is a strong solution to (1.1), A is a densely defined closed linear operator from D(A) to H , B is a nonlinear operator
from D(B) to H , f is an external force, u0 is an initial data. Moreover, D(A) and D(B) are domains of A and B respectively.
As is explained in Section 4, a typical example of (1.1)1 is the following semilinear heat equation:

∂t u − κ�u − |u|p−1u = 0,

where u is the absolute temperature, κ > 0 is the coefficient of heat conductivity, p > 1. The existence, uniqueness and
regularity of strong solutions to the initial-boundary value problem for the semilinear heat equation has been much stud-
ied for fifty years. See, for example, [4] and the references given there on the existence, uniqueness and regularity of
strong solutions to the initial-boundary value problem for the semilinear heat equation in R

n with the Dirichlet boundary
condition.

The stationary problem associated with (1.1) is the following boundary value problem for the semilinear elliptic equation:

Aū + Bū = f̄ in H, (1.2)

where ū is a strong solution to (1.2), f̄ is an external force. As is well known in [12], the stationary problem for the
semilinear heat equation in R

n with the Dirichlet boundary condition has a trivial solution and nontrivial solutions for any
1 < p < (n+2)/(n−2). It is one of interesting questions whether a strong solution to (1.1) converges to a trivial or nontrivial
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solution to (1.2). According to the previous result by Foias and Temam [3], the conclusion of the asymptotic properties of
strong solutions to (1.1) can be given by the theory of determining nodes. An approach of determining nodes is quite natural
from the computational point of view. In general, the asymptotic behavior of strong solutions to the initial-boundary value
problem for semilinear parabolic equations is uniquely determined by determining nodes which can be obtained from finite
many measurements. Some problems related to determining nodes for semilinear parabolic equations have been studied in
recent years. Foias and Temam [3] first discussed the existence of determining nodes for the Navier–Stokes equations in R

2

and in R
3 with the Dirichlet and periodic boundary conditions. As for partly dissipative reaction diffusion systems in R

2 and
in R

3 with the Dirichlet, Neumann and periodic boundary conditions, Lu and Shao [9] obtained the same results as in [3].
Not only the existence of determining nodes but also the number of determining nodes can be deeply studied in the one-
dimensional case. See, for example, [2,7,10] on the theory of determining nodes for the Kuramoto–Sivashinsky equation,
the complex Ginzburg–Landau equation and the semilinear Schrödinger equation respectively in R with various periodic
boundary conditions. As is mentioned above, the semilinear heat equation is a typical example of semilinear parabolic
equations, but the theory of determining nodes for it has not been constructed yet. It is necessary to discuss the existence
of determining nodes for semilinear parabolic equations such as (1.1)1.

In this paper, we are concerned with the determination of the asymptotic behavior of strong solutions to (1.1) by deter-
mining nodes. It is an important consequence of our main results that the theory of determining nodes for the Navier–Stokes
equations and the semilinear heat equation can be unified. One of our main results is stated as follows: There exists a finite
set E in Ω such that if two strong solutions u and v to (1.1) satisfy u(x, t) − v(x, t) → 0 as t → ∞ for any x ∈ E , then
u(·, t) − v(·, t) → 0 in V ∩ C0,γ (Ω) as t → ∞ for any 0 < γ < 1/2. We prove the above property by the argument based on
[3,9].

This paper is organized as follows: In Section 2, we state our main results concerning the existence of determining nodes
for (1.1) after setting up notation and terminology used in this paper. The proofs of our main results are given in Section 3.
Finally, we indicate applications of our main results to the semilinear heat equation and the Navier–Stokes equations in
Section 4.

2. Preliminaries and main results

2.1. Function spaces

All functions which appear in this paper are either H or Hn-valued. For the sake of notational simplicity, we will not
distinguish them from their values, i.e., Hn will also be simply denoted by H .

Function spaces and basic notation which we use throughout this paper are introduced as follows: The norm in L p(Ω)

(1 � p � ∞) and in the Sobolev space Hk(Ω) (k ∈ Z, k � 0) are denoted by ‖ · ‖Lp(Ω) and ‖ · ‖Hk(Ω) respectively, H0(Ω) =
L2(Ω). Moreover, the scalar product in L2(Ω) and in Hk(Ω) are denoted by (·,·)L2(Ω) and (·,·)Hk(Ω) respectively. C∞

0 (Ω)

is the set of all functions which are infinitely differentiable and have compact support in Ω . H1
0(Ω) is the completion of

C∞
0 (Ω) in H1(Ω). Note that H1

0(Ω) is characterized as H1
0(Ω) = {u ∈ H1(Ω); u|∂Ω = 0}. As is well known in the theory of

Hilbert spaces, L2(Ω) is decomposed into L2(Ω) = H ⊕ H⊥ , where H⊥ is the orthogonal complement of H . Let P be the
orthogonal projection of L2(Ω) onto H . The norm in C(Ω) is denoted by ‖ · ‖C(Ω) . C0,γ (Ω) (0 < γ � 1) is the Banach space

of all functions which are uniformly Hölder continuous with the exponent γ on Ω . The norm in C0,γ (Ω) is denoted by
‖ · ‖C0,γ (Ω) , i.e.,

‖u‖C0,γ (Ω) := ‖u‖C(Ω) + [[u]]C0,γ (Ω), [[u]]C0,γ (Ω) := sup
x,y∈Ω,x	=y

|u(x) − u(y)|
|x − y|γ .

Let I be an open interval in R, (X,‖ · ‖X ) be a Banach space. L p(I; X) (1 � p < ∞) is the Banach space of all X-valued
functions u which u is strongly measurable and ‖u‖p

X is integrable in I . L∞(I; X) is the Banach space of all X-valued
functions u which u is strongly measurable and ‖u‖X is essentially bounded in I . The norm in L p(I; X) and in L∞(I; X)

are denoted by ‖ · ‖Lp(I;X) and ‖ · ‖L∞(I;X) respectively. In the case where I is a bounded closed interval in R, C(I; X) is the
Banach space of all X-valued functions which are continuous on I . If I is not bounded or closed, Cb(I; X) is the Banach
space of all X-valued functions which are bounded and continuous in I . The norm in C(I; X) and in Cb(I; X) is denoted by
‖ · ‖C(I;X) and ‖ · ‖Cb(I;X) respectively.

2.2. Strong solutions to (1.1) and (1.2)

In this subsection, we will make the properties of A and B which appeared in (1.1). First, A is the densely defined closed
linear operator from D(A) := H2(Ω) ∩ V to H defined as

Au = −P

{
n∑

i, j=1

∂x j (aij∂xi u)

}
.

It is required throughout this paper that A has the following properties (A.1)–(A.4):
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(A.1) aij ∈ C0,1(Ω) for any i, j = 1, . . . ,n.
(A.2) aij = a ji on Ω for any i, j = 1, . . . ,n.
(A.3) There exists a positive constant a such that

n∑
i, j=1

aij(x)ξiξ j � a|ξ |2

for any x ∈ Ω , ξ ∈ R
n .

(A.4) Set (u, v)D(A) = (Au, Av)L2(Ω) , ‖u‖D(A) = ((u, u)D(A))
1/2. Then ‖ · ‖D(A) is equivalent to the standard norm in H2(Ω).

Therefore, there exist two positive constants a1 and a2 such that

a1‖u‖H2(Ω) � ‖u‖D(A) � a2‖u‖H2(Ω)

for any u ∈ D(A).

Note that A = −κ� is a typical example of A. The norm ‖ − κ� · ‖L2(Ω) induced by −κ� is equivalent to the standard
norm in H2(Ω), which follows from [5, Theorem 8.12]. Second, B is the nonlinear operator from D(B) := H2(Ω) ∩ V to H
satisfying the following properties (B.1), (B.2):

(B.1) B0 = 0.
(B.2) There exist two constants C B > 0 and p > 1 such that

‖Bu − B v‖L2(Ω) � C B
(‖u‖p−1

D(A) + ‖v‖p−1
D(A)

)‖u − v‖H1(Ω)

for any u, v ∈ D(B).

It is important for our main results that Bu = −|u|p−1u and Bu = P (u · ∇)u can be considered. By virtue of (A.1)–(A.4), the
scalar product and the norm in V can be introduced as follows:

(u, v)a =
n∑

i, j=1

(aij∂xi u, ∂x j v)L2(Ω), ‖u‖a = (
(u, u)a

)1/2
.

It follows easily from (A.3) and the Schwarz inequality that ‖ · ‖a and the standard norm in H1(Ω) are equivalent norms
in V . Consequently, there exist two positive constants a3 and a4 such that

a3‖u‖H1(Ω) � ‖u‖a � a4‖u‖H1(Ω)

for any u ∈ V . Finally, strong solutions to (1.1) and (1.2) are defined as follows:

Definition 2.1. Let u0 ∈ V , f ∈ L2((0,∞); H). Then u is called a strong solution to (1.1) if it satisfies

u ∈ L2((0,∞); D(A)
) ∩ Cb

([0,∞); V
)
, dt u ∈ L2((0,∞); H

)
and (1.1). Let S(u0, f ) be the set of all functions which are strong solutions to (1.1).

Definition 2.2. Let f̄ ∈ H . Then ū is called a strong solution to (1.2) if it satisfies

ū ∈ D(A)

and (1.2). Let S( f̄ ) be the set of all functions which are strong solutions to (1.2).

2.3. Main results

Our main results of this paper will be stated in this subsection. We begin by formulation of determining nodes. For any
N ∈ Z, N � 1, x ∈ Ω , u ∈ D(A), set

EN = {x1, . . . , xN ; xi ∈ Ω, i = 1, . . . , N},
dN(x) = min

i=1,...,N
|x − xi |,

dN = max
x∈Ω

dN(x),

ηN(u) = max
∣∣u(xi)

∣∣.

i=1,...,N
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Note that EN and dN can be considered as determining nodes and the density of E N in Ω respectively. As for strong
solutions to (1.1) and (1.2), the following assumptions (H.1)–(H.4) are essentially required for our main results.

(H.1) S( f̄ ) 	= ∅ for any f̄ ∈ H .
(H.2) There exists a positive constant M( f̄ ) for any f̄ ∈ H such that

‖ū‖D(A) � M( f̄ )

for any ū ∈ S( f̄ ).
(H.3) S(u0, f ) 	= ∅ for any u0 ∈ V , f ∈ L∞((0,∞); H).
(H.4) There exists a positive constant M( f , t0) for any R > 0, f ∈ L∞((0,∞); H), t0 > 0 such that

‖u‖Cb([t0,∞);D(A)) � M( f , t0)

for any u ∈ S(V (R), f ), where

S
(

V (R), f
) :=

⋃
u0∈V (R)

S(u0, f ), V (R) := {
u0 ∈ V ; ‖u0‖a � R

}
.

Our main results are given by the following theorems on the existence of determining nodes for (1.1) and (1.2):

Theorem 2.1. Let n = 2,3, f̄ ∈ H, and assume (H.1), (H.2). Then there exists a positive constant δ1 depending only on Ω , A, B and
M( f̄ ) such that if 0 < dN � δ1 and if ū, v̄ ∈ S( f̄ ) satisfy

ū(xi) = v̄(xi)

for any i = 1, . . . , N, then

ū = v̄ in Ω.

Theorem 2.2. Let n = 2,3, R > 0, f ∈ L∞((0,∞); H), t0 > 0, and assume (H.2)–(H.4),

f (t) → f∞ ∈ H in H as t → ∞.

Then there exists a positive constant δ2 depending only on Ω , A, B, M( f , t0) and M( f∞) such that if 0 < dN � δ2 and if
u ∈ S(V (R), f ) satisfies

u(xi, t) → ξi ∈ R as t → ∞
for any i = 1, . . . , N, then (1.2) has uniquely a strong solution u∞ ∈ S( f∞) satisfying

u(t) → u∞ in V ∩ C0,γ (Ω) as t → ∞
for any 0 < γ < 1/2 and u∞(xi) = ξi for any i = 1, . . . , N.

Theorem 2.3. Let n = 2,3, R > 0, f , g ∈ L∞((0,∞); H), t0 > 0, and assume (H.3), (H.4),

f (t) − g(t) → 0 in H as t → ∞.

Then there exists a positive constant δ3 depending only on Ω , A, B, M( f , t0) and M(g, t0) such that if 0 < dN � δ3 and if u ∈
S(V (R), f ), v ∈ S(V (R), g) satisfy

u(xi, t) − v(xi, t) → 0

for any i = 1, . . . , N, then

u(t) − v(t) → 0 in V ∩ C0,γ (Ω) as t → ∞
for any 0 < γ < 1/2.
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2.4. Auxiliary lemma

In this subsection, we will state three interpolation inequalities concerning the density of determining nodes. The fol-
lowing lemma yields that the standard norms in C(Ω), in L2(Ω) and in H1(Ω) are connected with dN .

Lemma 2.1. Let n = 2,3. Then we have the following inequalities:

(i) There exists a positive constant C1 depending only on Ω such that

‖u‖C(Ω) � ηN(u) + C1d1/2
N ‖u‖D(A) (2.1)

for any u ∈ D(A).
(ii) There exist two positive constants C2 and C3 depending only on Ω such that

‖u‖L2(Ω) � C2ηN(u) + C3d1/2
N ‖u‖D(A) (2.2)

for any u ∈ D(A).
(iii) There exist two positive constants C4 and C5 depending only on Ω such that

‖u‖H1(Ω) � C4d−1/4
N ηN(u) + C5d1/4

N ‖u‖D(A) (2.3)

for any u ∈ D(A).

Proof. It is [3, Lemma 2.1]. �
3. Existence of determining nodes for (1.1) and (1.2)

Theorems 2.1–2.3 will be proved in this subsection. The proofs of Theorems 2.1–2.3 are based on the energy method
with the aid of Lemma 2.1.

3.1. Proof of Theorem 2.1

Recall that v̄ satisfies

Av̄ + B v̄ = f̄ . (3.1)

Then it follows from (1.2), (3.1) that

A(ū − v̄) + Bū − B v̄ = 0. (3.2)

By taking the H-norm of (3.2) and (B.2), we obtain

‖ū − v̄‖D(A) � 2C B M( f̄ )p−1‖ū − v̄‖H1(Ω). (3.3)

Notice that η(ū − v̄) = 0, which follows from ū(xi) = v̄(xi) for any i = 1, . . . , N . Then (2.3) yields

‖ū − v̄‖H1(Ω) � C5d1/4
N ‖ū − v̄‖D(A). (3.4)

Therefore, by (3.3), (3.4), we have

‖ū − v̄‖D(A) � 2C B C5M( f̄ )p−1d1/4
N ‖ū − v̄‖D(A),(

1 − 2C B C5M( f̄ )p−1d1/4
N

)‖ū − v̄‖D(A) � 0. (3.5)

Assume that

1 − 2C B C5M( f̄ )p−1d1/4
N > 0,

0 < dN <
1

(2C B C5M( f̄ )p−1)4
. (3.6)

Then (3.5) implies ū = v̄ in Ω . Consequently, the sufficient condition for (3.6) is

0 < δ1 <
1

(2C B C5M( f̄ )p−1)4
.

This completes the proof of Theorem 2.1.
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3.2. Proof of Theorem 2.2

We begin with the energy-type estimate for strong solutions to (1.1). Consider two times t and s satisfying t < s, write
s = t + τ for any τ > 0, and set v(t) = u(t + τ ), g(t) = f (t + τ ). Then (1.1) implies that v satisfies

dt v + Av + B v = g. (3.7)

It is easy to see from (1.1), (3.7) that

dt(u − v) + A(u − v) + Bu − B v = f − g. (3.8)

By taking the H-scalar product of (3.8) with A(u − v) and (B.2), we get

1

2
dt

(‖u − v‖2
a

) + ‖u − v‖2
D(A) � 2C B M( f , t0)

p−1‖u − v‖H1(Ω)‖u − v‖D(A) + ‖u − v‖D(A)‖ f − g‖L2(Ω). (3.9)

Notice that

‖u − v‖H1(Ω) � C4d−1/4
N ηN(u − v) + C5d1/4

N ‖u − v‖D(A), (3.10)

which follows from (2.3). Then, by (3.9), (3.10) and the Cauchy inequality, we have

dt
(‖u − v‖2

a

) + (
1 − 4C B C5M( f , t0)

p−1d1/4
N

)‖u − v‖2
D(A)

� 8C2
B C2

4 M( f , t0)
2(p−1)d−1/2

N ηN(u − v)2 + 2‖ f − g‖2
L2(Ω)

. (3.11)

Assume that

1 − 4C B C5M( f , t0)
p−1d1/4

N > 0,

0 < dN <
1

(4C B C5M( f , t0)p−1)4
, (3.12)

and set

λ = a2
1

a2
4

(
1 − 4C B C5M( f , t0)

p−1d1/4
N

)
> 0,

h(t) = 8C2
B C2

4 M( f , t0)
2(p−1)d−1/2

N ηN
(
(u − v)(t)

)2 + 2
∥∥( f − g)(t)

∥∥2
L2(Ω)

.

Then (3.11) yields

dt
(∥∥(u − v)(t)

∥∥2
a

) + λ
∥∥(u − v)(t)

∥∥2
a � h(t) (3.13)

for any t � t0. We shall show that {u(t)}t�t0 is a Cauchy sequence in V with the aid of (3.13). Since f (t) → f∞ in H as
t → ∞ and u(xi, t) → ξi as t → ∞ for any i = 1, . . . , N , we have h(t) → 0 as t → ∞. Therefore, there exists a positive
constant tε for any positive constant ε such that |h(t)| � ε for any t � tε . It is easy to see from (3.13) that

dt
(∥∥(u − v)(t)

∥∥2
a

) + λ
∥∥(u − v)(t)

∥∥2
a � ε (3.14)

for any t � tε . The Gronwall lemma and (3.14) imply∥∥u(t) − u(s)
∥∥2

a �
∥∥(u − v)(tε)

∥∥2
ae−λ(t−tε) + ε

λ

(
1 − e−λ(t−tε)

)
(3.15)

for any t � tε . By taking t and s to infinity in (3.15), we have

lim sup
t,s→∞

∥∥u(t) − u(s)
∥∥2

a � ε

λ
.

Since ε is an arbitrary positive constant, we conclude that u(t) − v(t) → 0 in V as t, s → ∞, i.e., {u(t)}t�t0 is a Cauchy
sequence in V . The completeness of V yields that there exists a function u∞ ∈ V satisfying

u(t) → u∞ in V as t → ∞. (3.16)

As for the function u∞ which is obtained above, we shall prove that u∞ ∈ S( f∞) and u∞(xi) = ξi for any i = 1, . . . , N .
Notice that {u(t)}t�t0 is bounded in D(A) by virtue of (H.4). Then (3.16) implies

u(t) → u∞ in C0,γ (Ω) as t → ∞ (3.17)
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for any 0 < γ < 1/2, which follows from the Rellich–Kondrachov theorem [1, Theorem 6.3]. Since u(xi, t) → ξi as t →
∞ for any i = 1, . . . , N , it follows from (3.17) that u∞(xi) = ξi for any i = 1, . . . , N . By taking t to infinity in (1.1)1, a
straightforward argument shows that u∞ ∈ S( f∞). Assume that δ2 � δ1(M( f∞)). Then (1.2) has uniquely a strong solution
u∞ ∈ S( f∞) satisfying u∞(xi) = ξi for any i = 1, . . . , N , which follows from Theorem 2.1. Therefore, the sufficient condition
for (3.12) and desired properties of u∞ is

0 < δ2 < min

{
δ1

(
M( f∞)

)
,

1

(4C B C5M( f , t0)p−1)4

}
,

which completes the proof of Theorem 2.2.

3.3. Proof of Theorem 2.3

In the same manner as in Subsection 3.2, we shall establish the energy-type estimate for strong solution to (1.1). Recall
that v satisfies

dt v + Av + B v = g. (3.18)

It follows easily from (1.1), (3.18) that

dt(u − v) + A(u − v) + Bu − B v = f − g. (3.19)

By taking the H-scalar product of (3.19) with A(u − v) and (B.2), we have

1

2
dt

(‖u − v‖2
a

) + ‖u − v‖2
D(A)

� C B
(
M( f , t0)

p−1 + M(g, t0)
p−1)‖u − v‖H1(Ω)‖u − v‖D(A) + ‖u − v‖D(A)‖ f − g‖L2(Ω). (3.20)

Notice that

‖u − v‖H1(Ω) � C4d−1/4
N ηN(u − v) + C5d1/4

N ‖u − v‖D(A), (3.21)

which follows from (2.3). Then, by (3.20), (3.21) and the Cauchy inequality, we get

dt
(‖u − v‖2

a

) + {
1 − 2C B C5

(
M( f , t0)

p−1 + M(g, t0)
p−1)d1/4

N

}‖u − v‖2
D(A)

� 2C2
B C2

4

(
M( f , t0)

p−1 + M(g, t0)
p−1)2

d−1/2
N ηN(u − v)2 + 2‖ f − g‖2

L2(Ω)
. (3.22)

Assume that

1 − 2C B C5
(
M( f , t0)

p−1 + M(g, t0)
p−1)d1/4

N > 0,

0 < dN <
1

{2C B C5(M( f , t0)p−1 + M(g, t0)p−1)}4
, (3.23)

and set

λ = a2
1

a2
4

{
1 − 2C B C5

(
M( f , t0)

p−1 + M(g, t0)
p−1)d1/4

N

}
> 0,

h(t) = 2C2
B C2

4

(
M( f , t0)

p−1 + M(g, t0)
p−1)2

d−1/2
N ηN

(
(u − v)(t)

)2 + ∥∥( f − g)(t)
∥∥2

L2(Ω)
.

Then (3.22) gives

dt
(∥∥(u − v)(t)

∥∥2
a

) + λ
∥∥(u − v)(t)

∥∥2
a � h(t) (3.24)

for any t � t0. By (3.24), we shall prove that u(t) − v(t) → 0 in V as t → ∞. Notice that f (t) − g(t) → 0 in H as t → ∞
and u(x j, t) − v(x j, t) → 0 as t → ∞ for any j = 1, . . . , N . Then we have h(t) → 0 as t → ∞. Hence, there exists a positive
constant tε for any positive constant ε such that |h(t)| � ε for any t � tε . We can see easily from (3.24) that

dt
(∥∥(u − v)(t)

∥∥2
a

) + λ
∥∥(u − v)(t)

∥∥2
a � ε (3.25)

for any t � tε . It follows from the Gronwall lemma and (3.25) that∥∥(u − v)(t)
∥∥2

a �
∥∥(u − v)(tε)

∥∥2
ae−λ(t−tε) + ε (

1 − e−λ(t−tε)
)

(3.26)

λ
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for any t � tε . By taking t to infinity in (3.26), we have

lim sup
t→∞

∥∥(u − v)(t)
∥∥2

a � ε

λ
.

Since ε is an arbitrary positive constant, we conclude that

u(t) − v(t) → 0 in V as t → ∞. (3.27)

It remains to prove that u(t) − v(t) → 0 in C0,γ (Ω) as t → ∞ for any 0 < γ < 1/2. We can see easily from (H.4) that
{(u − v)(t)}t�t0 is bounded in D(A). By the Rellich–Kondrachov theorem, (3.27) yields

u(t) − v(t) → 0 in C0,γ (Ω) as t → ∞.

Consequently, the sufficient condition for (3.23) is

0 < δ3 <
1

{2C B C5(M( f , t0)p−1 + M(g, t0)p−1)}4
.

This completes the proof of Theorem 2.3.

4. Applications

We will apply our main results to the semilinear heat equation and the Navier–Stokes equations in Subsections 4.2
and 4.3 respectively after some preliminaries in Subsection 4.1. Let Ω be, throughout this section, a bounded domain in R

n

with its C1,1-boundary ∂Ω .

4.1. Sectorial operators in L2 and analytic semigroups on L2

The theory of analytic semigroups on L2(Ω) and fractional powers of sectorial operators are introduced as follows: Let
(X,‖ · ‖X ) and (Y ,‖ · ‖Y ) be Banach spaces. B(X; Y ) is the Banach space of all bounded linear operators from X to Y ,
B(X) := B(X; X). The norm in B(X; Y ) is denoted by ‖ · ‖B(X;Y ) , i.e.,

‖A‖B(X;Y ) := sup
x∈X\{0}

‖Ax‖Y

‖x‖X
.

Let A be a sectorial operator in L2(Ω) defined as in [6, Definition 1.3.1], D(A) ⊂ H2(Ω). Then the spectrum of A is denoted
by σ(A), Reσ(A) := {Reλ; λ ∈ σ(A)}. Assume that Reσ(A) > 0, where Reσ(A) > 0 means that Reλ > 0 for any λ ∈
σ(A). As is well known in [6, Theorem 1.3.4 and Definition 1.4.1], [11, Theorem 2.5.2 and Definition 2.6.7], −A generates
a uniformly bounded analytic semigroup {e−t A}t�0 on L2(Ω), fractional powers Aα of A can be defined for any α � 0,
A0 = I2, where I2 is the identity operator in L2(�). Let us introduce the Hilbert space derived from A, i.e., D(Aα) with the
scalar product (u, v)D(Aα) = (Aαu, Aα v)L2(Ω) and the norm ‖u‖D(Aα) = ((u, u)D(Aα))

1/2 for any 0 � α � 1.
We state some lemmas concerning sectorial operators in L2(Ω). See, for example, [6, Chapter 1], [11, Chapter 2] on the

theory of analytic semigroups on Banach spaces and fractional powers of sectorial operators.

Lemma 4.1. Let α � 0, 0 < λ < Λ1 , where Λ1 := min{λ > 0; λ ∈ Reσ(A)}. Then there exists a positive constant Cα,λ depending
only on n, Ω , A, α and λ such that∥∥Aαe−t A

∥∥
B(L2(Ω))

� Cα,λt−αe−λt . (4.1)

Proof. It is [6, Theorem 1.4.3]. �
Lemma 4.2. Let 0 � α � 1. Then

D
(

Aα
)
↪→ Lq(Ω) if 1 < q < ∞,

1

2
− 2α

n
� 1

q
� 1

2
, (4.2)

D
(

Aα
)
↪→ C0,γ (Ω) if 0 < γ < 1,

1

2
− 2α − γ

n
� 0, (4.3)

where ↪→ is the continuous inclusion.

Proof. It is [6, Theorem 1.6.1]. �
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4.2. Semilinear heat equation

The initial-boundary value problem for the semilinear heat equation is described as follows:

∂t u − κ�u − |u|p−1u = f in Ω × (0,∞),

u|t=0 = u0 in Ω,

u|∂Ω = 0 on ∂Ω × (0,∞), (4.4)

where u is the absolute temperature, κ > 0 is the coefficient of heat conductivity, p > 1, f is the external force, u0 is the
initial temperature.

Set H = L2(Ω), V = H1
0(Ω), P = I2. Then we have the following strong formulation of (4.4):

dt u + Au + b(u) = f in L2((0,∞); L2(Ω)
)
,

u(0) = u0 in H1
0(Ω), (4.5)

where Au = −κ�u, b(u) = −|u|p−1u. It is well known in [5, Theorem 8.12] that A satisfies (A.1)–(A.4). Moreover, an ele-
mentary calculation shows that b has the following properties (b.1), (b.2):

(b.1) b(0) = 0.
(b.2) There exists a positive constant Cb depending only on p such that∣∣b(u) − b(v)

∣∣ � Cb
(|u|p−1 + |v|p−1)|u − v|

for any u, v ∈ R.

It is assured by the following lemma that Bu = b(u) satisfies (B.1), (B.2).

Lemma 4.3. Let n = 2,3, 1 < p � n/(n − 2). Then there exists a positive constant C B depending only on Ω and p such that∥∥b(u) − b(v)
∥∥

L2(Ω)
� C B

(‖u‖p−1
H1(Ω)

+ ‖v‖p−1
H1(Ω)

)‖u − v‖H1(Ω) (4.6)

for any u, v ∈ H1(Ω).

Proof. After taking the L2-norm of (b.2), the Hölder and Minkowski inequalities imply∥∥b(u) − b(v)
∥∥

L2(Ω)
� Cb

(‖u‖p−1
L2p(Ω)

+ ‖v‖p−1
L2p(Ω)

)‖u − v‖L2p(Ω) (4.7)

for any u, v ∈ H1(Ω). It is easy to see from (4.7) and the Sobolev embedding theorem that we have (4.6). �
The following theorems yield that (H.3), (H.4) hold for (4.5) under suitable assumptions for p, u0 and f .

Theorem 4.1. Let n = 2,3, 1 < p � n/(n − 2), u0 ∈ H1
0(Ω), f ∈ L2((0,∞); L2(Ω)). Then there exist two positive constants ε1 and

ε2 depending only on Ω , κ and p such that (4.5) has uniquely a strong solution satisfying

‖u‖Cb([0,∞);H1
0(Ω)) � ε1

provided that

‖u0‖a � ε1, ‖ f ‖L∞((0,∞);L2(Ω)) � ε2.

Proof. Let ũ0 ∈ H1
0(Ω), f̃ ∈ L2((0, T ); L2(Ω)), T > 0. Then

dt u + Au = f̃ in L2((0, T ); L2(Ω)
)
,

u(0) = ũ0 in H1
0(Ω) (4.8)

has uniquely a strong solution u satisfying

u ∈ L2((0, T ); D(A)
) ∩ C

([0, T ]; H1
0(�)

)
, dt u ∈ L2((0, T ); L2(�)

)
,

κ‖∇u‖2
2 + ‖dt u‖2

2 2 + ‖u‖2
2 � κ‖∇ũ0‖2

2 + ‖ f̃ ‖2
2 2 , (4.9)
C([0,T ];L (Ω)) L ((0,T );L (Ω)) L ((0,T );D(A)) L (Ω) L ((0,T );L (Ω))
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which is well known in [8, Theorem 3.2.1]. A fixed point argument with the aid of (4.8), (4.9) and the Banach fixed point
theorem shows that there exists a positive constant T∗ � T depending only on Ω , κ , p, u0 and f such that

dt u + Au = −b(u) + f in L2((0, T ); L2(Ω)
)
,

u(0) = u0 in H1
0(Ω) (4.10)

has uniquely a strong solution u satisfying

u ∈ L2((0, T∗); D(A)
) ∩ C

([0, T∗]; H1
0(Ω)

)
, dt u ∈ L2((0, T∗); L2(Ω)

)
.

By taking the L2-scalar product of (4.10) with Au and the Poincaré inequality, a priori estimate for strong solutions to (4.5)
is established as follows:

dt
(∥∥∇u(t)

∥∥2
L2(Ω)

)
� −κλ1

∥∥∇u(t)
∥∥2

L2(Ω)
+ 2κ−1C2p

∥∥∇u(t)
∥∥2p

L2(Ω)
+ 2κ−1

∥∥ f (t)
∥∥2

L2(Ω)
(4.11)

for any t > 0, where λ1 is the first eigenvalue of −� with the zero Dirichlet boundary condition, C is a positive constant
depending only on Ω . Assume that

‖∇u0‖2
L2(Ω)

�
(

κ2λ1

4C2p

)1/(p−1)

, ‖ f ‖2
L∞((0,∞);L2(Ω))

�
(

κ2λ1

4C2p

)p/(p−1)

. (4.12)

Then (4.11), (4.12) give dt(‖∇u(t)‖2
L2(Ω)

) � 0 for any t > 0, consequently,

‖∇u‖2
Cb([0,∞);L2(Ω))

�
(

κ2λ1

4C2p

)1/(p−1)

. (4.13)

By applying (4.13) to the existence and uniqueness of solutions to (4.10), therefore, (4.5) has uniquely a strong solution
satisfying (4.13) provided that u0 and f satisfy (4.12). �
Theorem 4.2. Let n = 2,3, 1 < p � n/(n − 2), 0 < α � 1, R > 0, f ∈ L∞((0,∞); D(Aα)), t0 > 0. Then there exists a positive
constant Mα( f , t0) depending only on Ω , κ , p, R, f , t0 and α such that

‖u‖Cb([t0,∞);D(A)) � Mα( f , t0)

for any u ∈ S(H1
0(Ω)(R), f ) satisfying ‖u‖Cb([0,∞);H1

0(Ω)) � R.

Proof. By virtue of [11, Theorems 2.5.2 and 7.3.6], A is a sectorial operator in L2(Ω) satisfying Reσ(A) > 0. Since u ∈
Cb([0,∞); H1

0(Ω)), it follows from [6, Lemma 3.3.2] that

u(t) = e−t Au0 −
t∫

0

e−(t−s)Ab(u)(s)ds +
t∫

0

e−(t−s)A f (s)ds (4.14)

for any t � 0,

u(t) = e−t Au(t0) −
t∫

t0

e−(t−s)Ab(u)(s)ds +
t∫

t0

e−(t−s)A f (s)ds (4.15)

for any t � t0. In the case where 1/2 < β < 1, we can see easily from (4.1), (4.14) that

∥∥u(t)
∥∥

D(Aβ )
� Cβ−1/2,λt−β+1/2e−λt‖u0‖D(A1/2) + Cβ,λ

t∫
0

(t − s)−βe−λ(t−s)
∥∥b(u)(s)

∥∥
L2(Ω)

ds

+ Cβ,λ

t∫
0

(t − s)−βe−λ(t−s)
∥∥ f (s)

∥∥
L2(Ω)

ds (4.16)

for any t > 0. Notice that D(A1/2) = H1
0(Ω) and (u, v)D(A1/2) = (u, v)a . Then, by (4.6), (4.16), we obtain

‖u‖C ([t ,∞);D(Aβ )) � Cβ−1/2,λt−β+1/2 R + Cβ,λλ
1+βΓ (1 − β)

(
C B R p + ‖ f ‖L∞((0,∞);L2(Ω))

)
, (4.17)
b 0 0
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where Γ (x) is the gamma function. Let n/4 < β < 1, and set

M( f , t0) = Cβ−1/2,λt−β+1/2
0 R + Cβ,λλ

1+βΓ (1 − β)
(
C B R p + ‖ f ‖L∞((0,∞);L2(Ω))

)
.

Then it follows from (4.3), (4.17) that∥∥b(u)(t)
∥∥

D(A1/2)
= ∥∥b(u)(t)

∥∥
a � κ1/2 pC p M( f , t0)

p (4.18)

for any t � t0, where C is a positive constant depending only on Ω . In the case where β = 1, it is easy to see from (4.1),
(4.15) that

∥∥u(t)
∥∥

D(A)
� C1/2,λ(t − t0)

−1/2e−λ(t−t0)
∥∥u(t0)

∥∥
D(A1/2)

+ C1/2,λ

t∫
t0

(t − s)−1/2e−λ(t−s)
∥∥b(u)(s)

∥∥
D(A1/2)

ds

+ C1−α,λ

t∫
t0

(t − s)−1+αe−λ(t−s)
∥∥ f (s)

∥∥
D(Aα)

ds (4.19)

for any t > t0. By (4.18), (4.19) and the same argument as in (4.17), we have

‖u‖Cb([2t0,∞);D(A)) � C1/2,λt−1/2
0 R + C1/2,λλ

3/2π1/2κ1/2 pC p M( f , t0)
p

+ C1−α,λλ
2−αΓ (α)‖ f ‖L∞((0,∞);D(Aα)). (4.20)

Set

Mα( f ,2t0) = C1/2,λt−1/2
0 R + C1/2,λλ

3/2π1/2κ1/2 pC p M( f , t0)
p + C1−α,λλ

2−αΓ (α)‖ f ‖L∞((0,∞);D(Aα)).

Then the conclusion follows immediately from (4.20). �
4.3. Navier–Stokes equations

The initial-boundary value problem for the Navier–Stokes equations is described as follows:

div u = 0 in Ω × (0,∞),

∂t u + (u · ∇)u + ∇p − μ�u = f in Ω × (0,∞),

u|t=0 = u0 in Ω,

u|∂Ω = 0 on ∂Ω × (0,∞), (4.21)

where u = (u1, . . . , un)T is the fluid velocity, p is the pressure, μ > 0 is the coefficient of viscosity, f = ( f1, . . . , fn)T is the
external force field, u0 is the initial velocity, ·T is the transposition.

In order to utilize the strong formulation of (4.21), we introduce the solenoidal function spaces as follows: C∞
0,σ (Ω) :=

{u ∈ (C∞
0 (Ω))n; div u = 0}. L2

σ (Ω) is the completion of C∞
0,σ (Ω) in (L2(Ω))n . Note that L2

σ (Ω) is characterized as L2
σ (Ω) =

{u ∈ (L2(Ω))n; div u = 0, ν · u|∂Ω = 0}, where ν is the outward normal vector on ∂Ω . It follows from the Helmholtz
decomposition that (L2(Ω))n is decomposed into (L2(Ω))n = L2

σ (Ω) ⊕ L2
π (Ω), where L2

π (Ω) := {∇p; p ∈ H1(Ω)}. Let P2
be the orthogonal projection of (L2(Ω))n onto L2

σ (Ω). See, for example, [13, Chapter 1] on the basic properties of the
Helmholtz decomposition.

Set Hn = L2
σ (Ω), V n = H1

0,σ (Ω), P = P2, where H1
0,σ (Ω) := (H1

0(Ω))n ∩ L2
σ (Ω). Then the strong formulation of (4.21) is

given by

dt u + Au + B(u) = f in L2((0,∞); L2
σ (Ω)

)
,

u(0) = u0 in H1
0,σ (Ω), (4.22)

where Au = −P2(μ�u), B(u) = P2(u · ∇)u. It follows from [13, Lemma 3.3.7] that A satisfies (A.1)–(A.4). The following
lemma admits that Bu = B(u) satisfies (B.1), (B.2).

Lemma 4.4. Let n = 2,3. Then there exists a positive constant C B depending only on Ω such that∥∥B(u) − B(v)
∥∥

(L2(Ω))n � C B
(‖u‖(H2(Ω))n + ‖v‖(H2(Ω))n

)‖u − v‖(H1(Ω))n (4.23)

for any u, v ∈ (H2(Ω))n.
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Proof. It is easy to see that

B(u) − B(v) = P2(u · ∇)(u − v) + P2
(
(u − v) · ∇)

v

for any u, v ∈ (H2(Ω))n . Notice that H2(Ω) ↪→ L∞(Ω), which follows from the Sobolev embedding theorem. Then we have∥∥P2(u · ∇)(u − v)
∥∥

(L2(Ω))n � C1‖u‖(H2(Ω))n‖u − v‖(H1(Ω))n (4.24)

for any u, v ∈ (H2(Ω))n , where C1 is a positive constant depending only on Ω . Since H1(Ω) ↪→ L6(Ω) ↪→ L3(Ω), which
follows from the Sobolev embedding theorem, we can see easily from the Hölder inequality that∥∥P2

(
(u − v) · ∇)

v
∥∥

(L2(Ω))n � C2‖v‖(H2(Ω))n‖u − v‖(H1(Ω))n (4.25)

for any u, v ∈ (H2(Ω))n , where C2 is a positive constant depending only on Ω . Consequently, (4.24), (4.25) yield clearly that
we have (4.23). �

As is mentioned in [3] and the references given there, the existence and boundedness of strong solutions to (4.22) are
partially known. Roughly speaking, (H.3), (H.4) hold for the case where n = 2. In the case where n = 3, (H.3) implies (H.4).
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