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1. Introduction

For a subset B in C, we denote by A(B) (resp. M(B)) the class of functions that are holomorphic (resp. meromorphic)
on B. Moreover, M;;(B) is the subset of functions in M (B) that have at most m poles in B, each pole counted with its
multiplicity. Furthermore, we denote by | - | the supremum norm on B. A compact set B in C is called a continuum if B
is connected and consists of more than a single point.

For n € Ng = N U {0}, we denote by P, the collection of all polynomials of degree at most n, and let

Ram:={r=p/q: p € Pn, 4 € Pn, q 0}

be the rational functions of numerator degree <n and denominator degree <m.

Let E be a compact set in C with regular and connected complement 2 = C\ E. We denote by G(z, t) the Green function
of £2 with pole at t € £2. Since §2 is regular, Gg(z,t), t € £2, can be continuously extended to C by defining Gg(z,t) =0 for
zeE.

For p > 1 we define the Green domains E, of Gg(z, o0) by

E,:={z€Q: Gp(z,00) <logp} UE.
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For f € Mpy(E), we define pn(f) as the maximal parameter p € (1,00] such that f can be continued to a function
in My (Ep). Analogously, o(f) is the maximal parameter p > 1 such that f can be continued to a function in M(E)).
In both cases, we use the notation f € Mp(Ep, (), resp. f € M(Eyf)).

Given n,m €N, let rj =1y . (f) € Rnm denote a rational function of best uniform approximation to f € M(E) on E
out of Ry, ie.,

enm(D = inf 1f =rle= |1 =rinl
It is well known that
limsupeym(f) < 1/pm(f) (11)
n—oo

(cf. Walsh [14, Theorem 1, p. 378]).
Saff and Goncar have investigated the regions of meromorphy of f if the rational approximants {ry m}nen, with m € Ny
fixed, satisfy

1
limsup || f —ryml}" < — <1. (12)
n— o0 1%

It was proved by Saff [10] for closed bounded Jordan regions E and by Goncar [7] for general compact sets E with regular,
connected complement that (1.2) implies f € My (E,). Hence, using best rational approximants rpm =17, in (1.2) the
inequality (1.1) yields f € M (Ep,(f))-

Concerning the distribution of the zeros of ry; ., it is known in the case pm(f) < oo that the normalized zero counting
measures v, of the numerators of ry; , converge weakly to the equilibrium distribution of the closure E om(f)» at least for a
subsequence A C N as n— oo, n € A. Hence, there exists a close connection between the zeros of r; ,, and the maximal
Green region E, (r) of m-meromorphy of f (cf. Theorem 4.1 in [5]).

If {my}nen is a sequence in N with limy_, oo my, = 0o, then

lim supen’m, () <1/p(f).

Moreover, let 1 < p(f) < oo and mp, =o0(n/logn) as n — oo. If the sequence {r}; ,, Inen of best approximants to f converges
mi-maximally to f inside E,s) and if there exists a point zg € dE,(y) that is a singularity of multivalued character to f,
then the normalized zero counting measures v, of ry; . converge weakly to the equilibrium distribution of E,f), at least
for a subsequence A C N as n — oo, n € A (Theorem 4 together with Theorem 2 in [4]). For the definition of m;-maximally
convergent sequences we refer to Section 4 or [4]. Examples of mj-maximally convergent sequences are Chebyshev rational
approximants on E =[—1, 1] and classical Padé approximants.

It is well known that such mj-maximally convergent sequences converge geometrically inside E,s) on appropriate
continua. On the other hand, it was proved in [9] that geometric convergence of {rp}yen to f on a continuum S in a
region D implies, together with conditions on the distribution of the zeros and poles of rp,, that f is holomorphic in D.

Henceforth, let us consider the number of a-values of a rational function r € Ry 5, i.e., for a subset BC C and a € C, let

Nq(r, B) :=#{z € B: r(z) = a},

each a-value is counted with its multiplicity. Then the result of [9] can be stated as follows.

Theorem A. Let S be a continuum and D a region in C with S C D. Let f € A(S) and let {r,}neN be a sequence of rational functions
'n € Rn.n with no poles in D converging geometrically to f on S, i.e.,

limsup || f —rn||}5/” <1.

n—oo
Let f be notidentically O (f % 0) on S. Furthermore, for each compact set K in D we assume
No(rn, K) =0(n) asn— oo.

Then f can be continued to a holomorphic function in D.

The preceding theorem can be applied to mi-maximally convergent sequences {ry m,}nen to f on E: Let {mp}pen be a
sequence with lim,_, oo My = 00, and let 1 < p(f) < oo. Then any boundary point zg of E, s is an accumulation point of
poles or zeros of {rnm,}nen as n — oo if zg is not a removable singularity.

One of the objectives of this paper is to describe more precisely the behavior of zeros and poles of mj-maximally
convergent sequences in the neighborhood of a point zgp € 9E (s that is neither a removable singularity nor a pole of f.
Moreover, the distribution of the a-values for any a € C is investigated. To obtain such results we first generalize Theorem A
to the case that poles of r, in D are allowed.
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2. Main results

In our considerations, we will use the concept of m;-measure [8]. For B C C, we set

my(B) :=inf ) " |U,|
v

where the infinimum is taken over all coverings {Uy} of B by disks Uy and |U,| is the radius of the disk U,.

Let D be a region in C, and ¢ a function defined in D with values in C. A sequence {¢;}nen of meromorphic functions
in D is said to converge to a function ¢ with respect to the mq-measure inside D if for every ¢ > 0 and any compact set K C D
we have

mi({zeK: (¢ —pn)(@)|>¢€}) >0 asn— oo.

The sequence {@n}nen is said to converge to ¢ mq-almost uniformly inside D if for any compact set K C D and any ¢ > 0
there exists a set K, C K such that m(K \ K¢) < ¢ and {¢y} converges uniformly to ¢ on K.

The sequence {gn}nen is said to converge to ¢ mj-almost geometrically inside D if for any & > O there exists a set £2(¢)
in C with my(£2(¢)) < € such that

. 1
limsup [[¢ — @n ||K/\HQ(8) <1
n—o00

for any compact set K C D.

Hence, the m1-almost geometric convergence inside D implies mj-almost uniform convergence inside D, which again
implies mq-convergence inside D.

Finally, two functions are said to be mi-equivalent in D if they coincide on a set D c D such that m;(D \ D)=0.

Our main result can now be stated as follows.

Theorem 1. Let S be a continuum and D a region in C with S C D. Let {ry}nen, ™ € Ra.n, be a sequence of rational functions
converging geometrically to a continuous function f on S, i.e.,

limsup || f — ol " < 1 21)
n—oo

and assume that f 0 on S. If there exists a fixed integer m € N such that r, € M (D) for all n, and
No(rp, K) =0(n) asn— oo
for each compact subset K C D, then the sequence {ry}nen converges mi-almost geometrically inside D to a meromorphic function
f e Mu(D).
We remark that Theorem 1 remains valid if N is replaced by a monotone subsequence A = {ny}xen With the additional
property

N4
ng

<c

for some constant ¢ € R, since we can complete the sequence {ry, }xeny by setting
m =Ty, forne<m<npq.

The sequence {rm}men then still converges geometrically to f, and thus satisfies the hypothesis of Theorem 1.

We also remark that the condition f 0 on S is necessary. E.g., z" converges to 0 geometrically on any compact subset
of the open unit disk, but not outside the unit circle. The conclusion of the theorem fails if D contains points inside
and outside the unit circle, but not the point 0 where all the zeros of z" are. On the other hand, z" + 1 converges to 1
geometrically on any compact subset of the open unit disk, and its zeros accumulate to every point |z| = 1. In this case,
Theorem 1 can be applied to D equal to the open unit disk.

Next, we want to characterize boundary points zo of the region D where the function f of Theorem 1 cannot be
continued meromorphically into some neighborhood U of zy. The main tool will be the distribution of the a-values of ry
in U.

Theorem 2. Let D be a region in C, and {rp}nen, ™ € Rn.n, a Sequence that converges mi-almost geometrically to a function f
inside D. Let zo be a boundary point of D such that the function f cannot be continued m1-equivalently to a meromorphic function
in zo. Moreover, let a, b € C, a # b, then the following distribution result holds for the a-values and b-values in any neighborhood U
of zpin C:

IfNg(rp, Uy=0(m) asn— oo, then limsup Ny(ry, U) = oo. (2.2)

n—oo



H.-P. Blatt et al. / J. Math. Anal. Appl. 382 (2011) 66-76 69
Finally, we can formulate a result of Picard type as a direct consequence of Theorem 2.

Corollary 1. Under the conditions of Theorem 2 for D, f and {rn}nen, let zo be a finite boundary point of D such that the function
cannot be continued m1-equivalently to a meromorphic function in zg. Then for any neighborhood U of zg and for all a € C, with at
most one exception,

limsup Ng(rp,, U) = 0.
n—oo

As in Theorem 1, the statements of Theorem 2 and Corollary 1 remain valid if N is replaced by a monotone subsequence
A = {ni}keny with the property that ng,q/ng, k € N, is bounded.

3. Proofs

For a subset B in C, we denote by B° the set of interior points of B, by B the closure of B and by 3B the boundary of B.
Before we proceed to the proof of Theorem 1, we quote some well-known notions and results.

Lemma 1. (See Goncar [6, Lemma 1, p. 153].) Let E be compact in C with regular, connected complement, D be any open set, and K
compact with K C D. Suppose that r, € Ry n has no polesin D, i.e., r, € A(D). Then there exists a constant > = A(E, D, K) > 1 such
that

Irallc <A™ ralle-
Especially, if E C D then A(E, D, K) can be chosen as

ME, D, K) :=max sup exp(Gg(z,1)).
z€K 1ct\D

We remark that
lim A(E,) =1
p—1

for any fixed open set D with E C D.

Furthermore, we use the notion of an “exact harmonic majorant”. Let {Fy}nen be a sequence of subharmonic functions
in a region D of C. Then the harmonic function V in D is called harmonic majorant of {F,}nen if for any continuum S ¢ D
we have

limsupmax Fp(z) < max V (2). (3.1)
n—oo Zz€$ ze$S

The harmonic majorant V of {F,}nen is called exact if there exists a compact set S’ C D with

limsup max Fp(z) = maxV (2).
n—oo ze$§’ zeS§'
We remark that V is an exact harmonic majorant if and only if (3.1) holds for any continuum S’ C D [13].
If the subharmonic sequence {F,},cn has the harmonic function V as a harmonic majorant in D and if there exists a
continuum B C D with

limsup max Fp(z) < maxV (z),
n—oo ZE€B z€eB

then the strict inequality

limsupmax Fp(z) < maxV (z)
n—oo zeB’ zeB’
holds for any compact subset B’ C D.
Finally, we quote a result of Goncar connecting mi-almost uniform convergence with uniform convergence and mero-
morphic continuation.

Lemma 2. (See Goncar [8, Lemma 1, p. 507].) Let {¢n}nen be a sequence of meromorphic functions in a region D converging to a
function ¢ with respect to the my-measure inside D. Then the following assertions are true.

(1) If on € A(D), n € N, then the sequence {¢, }ney converges uniformly inside D on compact subsets.
(2) If o € M (D), n € N, and m € N is fixed, then the limit function ¢ is mq-equivalent to a meromorphic function in My, (D).
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Proof of Theorem 1. Since f 0 on S and since f is continuous on S, there exists a continuum S’ C S such that f(z) #0
forall zeS'.

Thus we may assume that f(z) %0 on S, that the complement £2 =C \ S is simply connected and regular, and that £2
has a Green function Gs(z, t) with pole at t € £2 for z € £2 such that

lim Gs(z,t)=0

z—>270€082

Furthermore, we may assume that D is bounded.
Let I, be the number of poles &, ; of r, in D listed with their multiplicities, 1 < i < l,. Then we define

In
Z) = H':1(z_$n,i), Ih>1,
" {1,1 In = 0.

Since r,, € My (D), we have degq, =, <m and
lim sup [lgnll" < 1 (3.2)
n—oo
for all compact K C D. Because of (2.1) and (3.2),
. 1/n
lim SUP” (rn+1 — "™)qnqn+1 ”5 <1 (3.3)
n—oo

Observe that
hn = (fn1 — T)qndn1 € AD) N Rurmttnti-

Using Lemma 1 and (3.3) we can choose o > 1 and p < 1 such that
lhnlls, <c1p" forallneN

with some constant c; > 0. Here, as above, S, denotes the Green domain of S to the parameter o > 1. Consequently,

n

ol
(1 =)@ | SO (3.4)
(s —m@] <1 G
for all z € S, which are not zeros of g, and g,+1. Fix an arbitrary € > 0 and introduce the open sets
In e
2n(8) :=U{ze<C: 2= &nil < o 3}
i=1
and
o
2(e) = (o). (3.5)

n=1

Because of the sub-additivity of the mj-measure we get

1(2() Znn 2n(e)) < Z

Let K be a compact subset of S,. Then by (3.4) we get for z€ Sy \ £2(¢)

412 —m(2)] < cm[ } [ (n+1)}

<CAl n
\28 p

for all n € N, with some constant ¢; > 0 not depending on n.

Hence, the sequence {r,},en converges uniformly on the compact set K \ £2(¢) for any € > 0. So this sequence converges
mi-almost uniformly inside of S,. Since mj-almost uniform convergence implies m;-convergence inside S,, we obtain
by Lemma 2 that {r;}sen converges to a function, which is mj-equivalent to a meromorphic function f € Mpy(Sy) in
my-measure. This function f is a meromorphic continuation of the function f given in (2.1) on S.

We want to show next that for any compact set K in D

lim sup max — 10g|rn(z)qn(z)| (3.6)

n—oo Z€
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Let us assume that (3.6) is false, i.e., there exists a compact set K C D such that

1
lim sup max — log|ry (2)qn (2)| > 0.
n—oo zeK n

Then we choose a subsequence A C N such that

, 1
lim max " log|rm(2)qn(2)| =8 > 0. (3.7)

neA,n—oo zekK
Since all g, € Py, we can assume that the subsequence A is chosen in such a way that

lim qp,=q¢€Pn.

neA,n—oo

The meromorphic function f € M (Ss) can have poles only at the zeros of the polynomial q.
We now choose a bounded subregion W of D such that

Se CW, KcW and W cD.

Let k; be the number of zeros (with multiplicities) of r, in W. If k, > 1, let n,;, 1 <i <ky, be the zeros of r,, in W and set

n(2) = { Hfi] (z = 1Mn,i) ifk, >0,
1 ifk, =0.

Since k, = o0(n) as n — oo, we get

lim sup |77, 177 < 1. (3.8)
n—oo

Next, we define for ze D

1
hn(2) =~ log|¢n(2)| (3.9)
with
n(2) == M, (3.10)
7Tn(2)

and we have ¢, € A(D) N Ry n. hy is harmonic in W and subharmonic in D.

Since f is a meromorphic continuation of the continuous function f on S with f(z) #0 for all z € S, we can choose a
closed disk E C S, with nonempty interior such that f is holomorphic on E, f(z) # 0 and q(z) # 0 for z € E. Moreover, we
can choose the closed disk E small enough such that the zeros 7,;, n€ A (1 <i<ky) have a positive distance to JE, i.e.,
there exists d > 0 such that

dist(E, npi) >d, 1<i<ky, neA.
With ¢, as in (3.10),

lrnllENgnllE
minzeg |7Tp(2)|

1 kn
< P lrallelignllE- (3.11)

Moreover, there exists k > 0 such that forne A
|pn(2)| >« forallzeE. (3.12)
Thus, (3.11) and (3.12) imply
lim hp(z)=0 forzekE. (3.13)

neA,n—oo

lnlle <

According to Lemma 1, we obtain

Ipnllgy < A" gnllE

k,
‘l n
< C3,n)\11 (a)

with c3.n = |Irnllgllgnlle and

A=A(E,D,W):=max sup exp(Gg(zt)) > 1.
zeW teC\D
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Since
lim [rlle=Ifllg
n—oo

and

lim |ignlle = llqlle,
neA,n—oo

we finally have that
kn
a1
lénlly < car <E> (3.14)
with some constant ¢4 > 0 for n € A.
Consider the functions h,(z) of (3.9). Because of (3.14),

1 I 1
hp(z) < —logca + log A + fn log -
n n d

for n € A and z € W. Hence, there exists a constant cs5 > 0 such that
ha(z) <cs forallze W andallne A.

Therefore, the harmonic functions h,(z), n € A, are bounded from above for all z€ W. By Harnack’s theorem, either
hn(z) > —oo locally uniformly asn — oo, n€ A,

or there exists a subsequence Ay C A such that {hy}ncs, converges locally uniformly to h as n — oo, n € Ay, and h is

harmonic in W. The first situation cannot occur because of (3.13). Since E° # ¢} we finally obtain by the identity principle,

that h(z) =0 in W and consequently

m(2)qn(2)
Tn(2)

1
lim maxhp,(z)= lim max-log =0

neAi,n—oo zek neAq,n—oo zeK N

which contradicts (3.7), since
1 1
max — log|r (2)qn (2)| = max — log|¢n (2)70(2) |
zeK n zeK n

1
= maxhy(z) + — maxlog|my(2)|
zeK n zek
and therefore, by (3.8),

. 1 .
lim max - log|rn(2)qn(2)| = lim maxh,(2) =0
neAi,n—oo zeK n neAi,n—oo zek
and this contradiction establishes (3.6).
Then, together with

. 1/n
lim sup [iga 1" < 1
n—oo

we obtain

_ 1
limsupmax 10g| (41 — ) (2)qn(2)qn+1(2)| <O (3.15)

n—oo Z€

on any compact subset K of D. On the other hand, by (3.3) we have

lim sup max ! 10g| (41 — ) (2)qn(2)qn+1(2)| < 0. (316)
n—-oo 2ze€S N

Using the arguments of Walsh [13, Corollary of Theorem 1, p. 197], we conclude that in (3.16) the strict inequality holds for

any continuum S’ in D, S’ replacing S.

By the same arguments as above, it follows that {rp}neny converges mi-almost uniformly in D. Since all r, € Mp (D),
then the limit function is m;-equivalent to a meromorphic function in D with at most m poles. Hence, f can be continued
from S to f € Mpy(D).

To prove that {r;},en converges to f mj-almost geometrically inside D, let € > 0 and let £2(¢) be defined as in (3.5). If
K is a compact subset of D, then by the remark following (3.15) there exist p <1 and c; > 0 such that

n

P
n —'n SN @ @l
@ —r@| < erpos
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for all z € K. Using the same arguments following (3.4), we obtain for ze€ K \ £2(¢)

1 2m
rng1(2) —m(2)] <2 (E) P

for all n € N, with some constant c; > 0 independent of n. Hence, for z € K \ §2(¢)

2m oo

1
|f —m@)] < C2<E) > M4 n)o"
v=0

and therefore

. 1
llmsup||f—rn||K/\”Q(£)<p<1. O
n—oo

Proof of Theorem 2. If the boundary point zg = co, the mapping z +— 1/z transforms the situation to the case where zp is
finite. Hence, we may assume that zo is finite and U is open and connected, hence a region.
Let us assume that (2.2) is not true, i.e., there exist a, b € C such that

Ng(rp,U)=o0(n) asn—oo and limsupNp(r,, U) < oo. (317)

n—-oo
We consider the linear transformation
z—a
= fora, b # oo,
wi@) =w*?@2)={z—a forb=oo,
1

=5 fora= o0

which maps the points a and b to 0 and oo, and we define for z € D the functions
foP:=wrbo f and 1= wor,.

Then rﬂ’b € Mpu(U) N Ry for some fixed m € N. Since {r;}nen is mq-almost geometrically convergent to f inside D and f
is not equivalent to a constant function on U, we can choose a continuum S C U N D and « > 0 such that f is continuous
on S,

limsup | f —rn||;/n <1
n—oo
and
|f(@)—b|>a forzes.
Since
(a=b)(f(2)—(2))
To-hm@-b ordb#oo,
@) -1 @) =] f@-m@  forb=oo,
™ (2)—fn(2) _
T@-bim@— [ora=oo
we have

limsup| f — r,‘}’bH;/“ <1.
n—-oo

Moreover, by (3.17)
No(rg’b) =o(n) asn— oo.

Consequently, all conditions of Theorem 1 are satisfied for S, U, {rﬂ'b}nEN, replacing S, D, {ru}nen. Hence, the function f9-b
can be continued from S mj-equivalently to a meromorphic function in the region U.
By definition, for ze€ D
b—a
1+ F@—b for a, b 75 o0,
f*@ =1 f@—-a forb=oo,

ﬁ fora = oc.

Consequently, the function f is mj-equivalent to a meromorphic function in U, contradicting the assumptions of Theo-
rem 2. 0O
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4. Maximal rational approximants

Let E be compact in C with regular, connected complement 2 = C \ E. We consider the approximation of f € M(E)
with respect to rational functions. As in Section 1, p(f) denotes the maximal parameter p > 1 such that f can be continued
to f e M(Ep).

If p(f) < oo, then a sequence {ry}neN, M.n € Rn.n, is called mq-maximally convergent to f on E if

1
limsu M —,
m sup I f —rallyE )
and for any ¢ > 0 there exists a set £2(e) with m1(£2(¢€)) < ¢ such that

. 1/n o
limsup || f — 1yl < ——
n—oo TEALE = p(f)
forall o, 1 <o < p(f) (cf. [4]).
Hence, any sequence {ry}nen, ™n € Rn,n, that is mj-maximally convergent to f on E, is mq-almost geometrically conver-
gent inside E,f). Therefore, we can use Theorem 2 and obtain for the a-values of r; the following distribution result.

Corollary 2. Let E be compact with regular, connected complement 2 = C \ E, f € M(E) and p(f) < co. Moreover, let {rn}nen,
Tn € Rn,n, be m1-maximally convergent to f on E. If zg is a boundary point of E 5 r), such that f cannot be continued meromorphically

to zg, then for any neighborhood U of zy and any a € C, with at most one exception,

limsup Ng(rp,, U) = o0.
n—oo

An example of such m;-maximally convergent sequences are real best rational Chebyshev approximants ry ,, (f),n €N,
to a continuous, real-valued functions f on E =[—1, 1], where the degrees my of the denominators of ry; , - satisfy
lim my=00 and m,=o0(n/logn) asn— oo. (4.1)
n—-oo
The proof of the mj-maximal convergence of r;,, (f) to f as n — oo is based on the asymptotic distribution of the
alternation points of f —ry . (f) on [—1,1] (cf. [2-4]).

Other examples are classical Padé approximants 7, ;,,(f) to a function f holomorphic in some closed disk E = D, =
{z: |z| <7}, r > 0. Under the condition (4.1), 7Tn,m, (f) converges mq-almost geometrically inside Dg(r) to f, where R(f) is
the maximal radius such that f € M(Dg(y)), and we can choose for zg any boundary point of Dgfy such that f cannot be
continued meromorphically to zg (cf. [4]).

Hence, for {my,m,(f)inen and {r; , (f)lnen we can apply the property (2.2) of Theorem 2 to sharpen Corollary 2 in the
case that {my}nen satisfies (4.1): If zo is a boundary point of Dg(s) (resp. E,(f)) that is not a meromorphic point of f, then
for any a € C and any neighborhood U of zg

lim sup Ng (77n,m, (f), U) = o0 (resp. limsup Nq (1, (). U) = oo).
n—o0 n— o0

Other examples for the application of Corollary 2 with a € C are Fourier-Padé approximants and Faber-Padé approxi-
mants of a function f (Suetin [12]). In these examples the approximating sequences {ry m, (f)}nen converge again my-almost
geometrically in E, sy if the sequence {my}nen satisfies (4.1).

The example of classical Padé approximants can be generalized to more general interpolating rational functions such that
again Theorem 2 is applicable.

Let E be compact in C with connected complement, D a region in C with E C D and F :=C \ D. We assume that the
condenser (E, F) is regular with respect to the Dirichlet problem, i.e., there exists a continuous function h : C — R which is
harmonic in C\ (E U F) and satisfies

0 forzeE
h(z) = i ’
@ 1 forzeF.
Let I be a smooth Jordan curve in D such that the set E is contained in the interior of I". Then the capacity C(E, F) of the
condenser is defined by
1 oh
C(E,F):=— | —ds
2w ) on
r
where n denotes the exterior normal to I".
Next, let us consider tables {c,x} =« in E and {B,x}=p in F (n=1,2,...; k=1,...,n) such that the associated
polynomials

n
i@ =]]e-ann

k=1
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and
n
of@= [] @-huw0
k=1
ﬂn,k?éoo
satisfy
o 1/n
lim ‘w" @ :Aexp< i) )
n— oo a)n(Z) C(E,F)

locally uniformly in H := C\ (EUF), where A is a positive constant. Examples for such o = {on k) and B = {B,k} are rational
Fekete points or rational Leja-Bagby points (cf. [1,14]).

Now, let f be holomorphic on E and fix (1n,m) € N x N. Then there exist polynomials P, € P, and Qm € Pm, Qm #0,
such that

B
Qmwnfmf - Pn
o

wn+m+1

is holomorphic on E. The rational function

P
ﬂr?rf(f) = 7% € Ran
ma)nfm
has m free poles and n —m fixed poles at the points B,_m, k=1,...,n—m, and yr,ff;f(f) has maximal contact to f at the
points

Unymttk, 1<k<n+m+1
(cf. Goncar [8]). Let us define for 1 < p <exp(1/C(E, F)) the region

h(z)
C(E,F)

D, := {ze(C: <log,o},

that always contains E. For f € A(E) we denote by p(f) the maximal parameter p in [1, exp(1/C(E, F))] such that f €
M(Dp). If p(f) <exp(1/C(E, F)) and if {mp}pen satisfy (4.1), then for any £ > 0 there exists a subset £2(¢) with £2(¢) <&
such that

. 1/n o
limsup| f — 72 < —

n_)oop”f n,my ”K\Q(a) S0
for any compact subset K ¢ D, and o < p(f), i.e., the sequence {n,ff;fn}neN converges again mj-almost geometrically to f
inside D,f). Hence, we can apply Theorem 2: If zg is a boundary point of D, such that f cannot be meromorphically
continued to zg, then

limsupNa(n,?f;,’fn, U)=o00
n—oo

for any neighborhood U of zg and for any a € C, with at most one exception.

The above construction covers the multipoint Padé approximants by Saff [11], as well as the generalized Padé approx-
imants by Goncar [8]. In the first case of multipoint Padé approximation, the points o, € C have no accumulation point
exterior to E and can be chosen for example as uniformly distributed on 9E with respect to equilibrium measure of E;
moreover, all B, = oo for all n,k € N and we take for D a sufficiently large Green domain D = E, with respect to the
Green function Gg(z, o0) of E.

In the case of generalized Padé approximation in a region, D is a regular region with 0 € D and E is the set

E:={zeD: g(z,0)>«},

where g(z,0) is the Green function of D with pole at 0 and « > 0 chosen appropriately. All the points a;, x =0 and the
points fnk, 1 <k <n, are chosen on the boundary of D such that the normalized counting measures u, of the point sets
{1/Bnk}j_; converge weakly to the equilibrium measure w of D*, where D* is the image of D under the mapping z+ 1/z
(cf. Goncar [8]).
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