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Let D be a region, {rn}n∈N a sequence of rational functions of degree at most n and let
each rn have at most m poles in D , for m ∈ N fixed. We prove that if {rn}n∈N converges
geometrically to a function f on some continuum S ⊂ D and if the number of zeros
of rn in any compact subset of D is of growth o(n) as n → ∞, then the sequence
{rn}n∈N converges m1-almost uniformly to a meromorphic function in D . This result about
meromorphic continuation is used to obtain Picard-type theorems for the value distribution
of m1-maximally convergent rational functions, especially in Padé approximation and
Chebyshev rational approximation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For a subset B in C, we denote by A(B) (resp. M(B)) the class of functions that are holomorphic (resp. meromorphic)
on B . Moreover, Mm(B) is the subset of functions in M(B) that have at most m poles in B , each pole counted with its
multiplicity. Furthermore, we denote by ‖ · ‖B the supremum norm on B . A compact set B in C is called a continuum if B
is connected and consists of more than a single point.

For n ∈ N0 = N ∪ {0}, we denote by Pn the collection of all polynomials of degree at most n, and let

Rn,m := {r = p/q: p ∈ Pn, q ∈ Pm, q 	≡ 0}
be the rational functions of numerator degree � n and denominator degree � m.

Let E be a compact set in C with regular and connected complement Ω = C\ E . We denote by G(z, t) the Green function
of Ω with pole at t ∈ Ω . Since Ω is regular, G E (z, t), t ∈ Ω , can be continuously extended to C by defining G E (z, t) = 0 for
z ∈ E .

For ρ > 1 we define the Green domains Eρ of G E (z,∞) by

Eρ := {
z ∈ Ω: G E(z,∞) < logρ

} ∪ E.
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For f ∈ Mm(E), we define ρm( f ) as the maximal parameter ρ ∈ (1,∞] such that f can be continued to a function
in Mm(Eρ). Analogously, ρ( f ) is the maximal parameter ρ > 1 such that f can be continued to a function in M(Eρ).
In both cases, we use the notation f ∈ Mm(Eρm( f )), resp. f ∈ M(Eρ( f )).

Given n,m ∈ N, let r∗
n,m = r∗

n,m( f ) ∈ Rn,m denote a rational function of best uniform approximation to f ∈ M(E) on E
out of Rn,m , i.e.,

en,m( f ) := inf
r∈Rn,m

‖ f − r‖E = ∥∥ f − r∗
n,m

∥∥
E .

It is well known that

lim sup
n→∞

e1/n
n,m( f ) � 1/ρm( f ) (1.1)

(cf. Walsh [14, Theorem 1, p. 378]).
Saff and Gončar have investigated the regions of meromorphy of f if the rational approximants {rn,m}n∈N , with m ∈ N0

fixed, satisfy

lim sup
n→∞

‖ f − rn,m‖1/n
E � 1

ρ
< 1. (1.2)

It was proved by Saff [10] for closed bounded Jordan regions E and by Gončar [7] for general compact sets E with regular,
connected complement that (1.2) implies f ∈ Mm(Eρ). Hence, using best rational approximants rn,m = r∗

n,m in (1.2) the
inequality (1.1) yields f ∈ Mm(Eρm( f )).

Concerning the distribution of the zeros of r∗
n,m , it is known in the case ρm( f ) < ∞ that the normalized zero counting

measures νn of the numerators of r∗
n,m converge weakly to the equilibrium distribution of the closure Eρm( f ) , at least for a

subsequence Λ ⊂ N as n → ∞, n ∈ Λ. Hence, there exists a close connection between the zeros of r∗
n,m and the maximal

Green region Eρm( f ) of m-meromorphy of f (cf. Theorem 4.1 in [5]).
If {mn}n∈N is a sequence in N with limn→∞ mn = ∞, then

lim sup
n→∞

e1/n
n,mn( f ) � 1/ρ( f ).

Moreover, let 1 < ρ( f ) < ∞ and mn = o(n/ logn) as n → ∞. If the sequence {r∗
n,mn

}n∈N of best approximants to f converges
m1-maximally to f inside Eρ( f ) and if there exists a point z0 ∈ ∂ Eρ( f ) that is a singularity of multivalued character to f ,
then the normalized zero counting measures νn of r∗

n,mn
converge weakly to the equilibrium distribution of Eρ( f ) , at least

for a subsequence Λ ⊂ N as n → ∞, n ∈ Λ (Theorem 4 together with Theorem 2 in [4]). For the definition of m1-maximally
convergent sequences we refer to Section 4 or [4]. Examples of m1-maximally convergent sequences are Chebyshev rational
approximants on E = [−1,1] and classical Padé approximants.

It is well known that such m1-maximally convergent sequences converge geometrically inside Eρ( f ) on appropriate
continua. On the other hand, it was proved in [9] that geometric convergence of {rn}n∈N to f on a continuum S in a
region D implies, together with conditions on the distribution of the zeros and poles of rn , that f is holomorphic in D .

Henceforth, let us consider the number of a-values of a rational function r ∈ Rn,n , i.e., for a subset B ⊂ C and a ∈ C, let

Na(r, B) := #
{

z ∈ B: r(z) = a
}
,

each a-value is counted with its multiplicity. Then the result of [9] can be stated as follows.

Theorem A. Let S be a continuum and D a region in C with S ⊂ D. Let f ∈ A(S) and let {rn}n∈N be a sequence of rational functions
rn ∈ Rn,n with no poles in D converging geometrically to f on S, i.e.,

lim sup
n→∞

‖ f − rn‖1/n
S < 1.

Let f be not identically 0 ( f 	≡ 0) on S. Furthermore, for each compact set K in D we assume

N0(rn, K ) = o(n) as n → ∞.

Then f can be continued to a holomorphic function in D.

The preceding theorem can be applied to m1-maximally convergent sequences {rn,mn }n∈N to f on E: Let {mn}n∈N be a
sequence with limn→∞ mn = ∞, and let 1 < ρ( f ) < ∞. Then any boundary point z0 of Eρ( f ) is an accumulation point of
poles or zeros of {rn,mn }n∈N as n → ∞ if z0 is not a removable singularity.

One of the objectives of this paper is to describe more precisely the behavior of zeros and poles of m1-maximally
convergent sequences in the neighborhood of a point z0 ∈ ∂ Eρ( f ) that is neither a removable singularity nor a pole of f .
Moreover, the distribution of the a-values for any a ∈ C is investigated. To obtain such results we first generalize Theorem A
to the case that poles of rn in D are allowed.
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2. Main results

In our considerations, we will use the concept of m1-measure [8]. For B ⊂ C, we set

m1(B) := inf
∑
ν

|Uν |

where the infinimum is taken over all coverings {Uν} of B by disks Uν and |Uν | is the radius of the disk Uν .
Let D be a region in C, and ϕ a function defined in D with values in C. A sequence {ϕn}n∈N of meromorphic functions

in D is said to converge to a function ϕ with respect to the m1-measure inside D if for every ε > 0 and any compact set K ⊂ D
we have

m1
({

z ∈ K :
∣∣(ϕ − ϕn)(z)

∣∣ � ε
}) → 0 as n → ∞.

The sequence {ϕn}n∈N is said to converge to ϕ m1-almost uniformly inside D if for any compact set K ⊂ D and any ε > 0
there exists a set Kε ⊂ K such that m1(K \ Kε) < ε and {ϕn} converges uniformly to ϕ on Kε .

The sequence {ϕn}n∈N is said to converge to ϕ m1-almost geometrically inside D if for any ε > 0 there exists a set Ω(ε)

in C with m1(Ω(ε)) < ε such that

lim sup
n→∞

‖ϕ − ϕn‖1/n
K\Ω(ε) < 1

for any compact set K ⊂ D .
Hence, the m1-almost geometric convergence inside D implies m1-almost uniform convergence inside D , which again

implies m1-convergence inside D .
Finally, two functions are said to be m1-equivalent in D if they coincide on a set D̃ ⊂ D such that m1(D \ D̃) = 0.
Our main result can now be stated as follows.

Theorem 1. Let S be a continuum and D a region in C with S ⊂ D. Let {rn}n∈N , rn ∈ Rn,n, be a sequence of rational functions
converging geometrically to a continuous function f on S, i.e.,

lim sup
n→∞

‖ f − rn‖1/n
S < 1 (2.1)

and assume that f 	≡ 0 on S. If there exists a fixed integer m ∈ N such that rn ∈ Mm(D) for all n, and

N0(rn, K ) = o(n) as n → ∞
for each compact subset K ⊂ D, then the sequence {rn}n∈N converges m1-almost geometrically inside D to a meromorphic function
f ∈ Mm(D).

We remark that Theorem 1 remains valid if N is replaced by a monotone subsequence Λ = {nk}k∈N with the additional
property

nk+1

nk
� c

for some constant c ∈ R, since we can complete the sequence {rnk }k∈N by setting

rm = rnk for nk � m < nk+1.

The sequence {rm}m∈N then still converges geometrically to f , and thus satisfies the hypothesis of Theorem 1.
We also remark that the condition f 	≡ 0 on S is necessary. E.g., zn converges to 0 geometrically on any compact subset

of the open unit disk, but not outside the unit circle. The conclusion of the theorem fails if D contains points inside
and outside the unit circle, but not the point 0 where all the zeros of zn are. On the other hand, zn + 1 converges to 1
geometrically on any compact subset of the open unit disk, and its zeros accumulate to every point |z| = 1. In this case,
Theorem 1 can be applied to D equal to the open unit disk.

Next, we want to characterize boundary points z0 of the region D where the function f of Theorem 1 cannot be
continued meromorphically into some neighborhood U of z0. The main tool will be the distribution of the a-values of rn
in U .

Theorem 2. Let D be a region in C, and {rn}n∈N , rn ∈ Rn,n, a sequence that converges m1-almost geometrically to a function f
inside D. Let z0 be a boundary point of D such that the function f cannot be continued m1-equivalently to a meromorphic function
in z0 . Moreover, let a,b ∈ C, a 	= b, then the following distribution result holds for the a-values and b-values in any neighborhood U
of z0 in C:

If Na(rn, U ) = o(n) as n → ∞, then lim sup
n→∞

Nb(rn, U ) = ∞. (2.2)
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Finally, we can formulate a result of Picard type as a direct consequence of Theorem 2.

Corollary 1. Under the conditions of Theorem 2 for D, f and {rn}n∈N , let z0 be a finite boundary point of D such that the function
cannot be continued m1-equivalently to a meromorphic function in z0 . Then for any neighborhood U of z0 and for all a ∈ C, with at
most one exception,

lim sup
n→∞

Na(rn, U ) = ∞.

As in Theorem 1, the statements of Theorem 2 and Corollary 1 remain valid if N is replaced by a monotone subsequence
Λ = {nk}k∈N with the property that nk+1/nk , k ∈ N, is bounded.

3. Proofs

For a subset B in C, we denote by B◦ the set of interior points of B , by B the closure of B and by ∂ B the boundary of B .
Before we proceed to the proof of Theorem 1, we quote some well-known notions and results.

Lemma 1. (See Gončar [6, Lemma 1, p. 153].) Let E be compact in C with regular, connected complement, D be any open set, and K
compact with K ⊂ D. Suppose that rn ∈ Rn,n has no poles in D, i.e., rn ∈ A(D). Then there exists a constant λ = λ(E, D, K ) � 1 such
that

‖rn‖K � λn‖rn‖E .

Especially, if E ⊂ D then λ(E, D, K ) can be chosen as

λ(E, D, K ) := max
z∈K

sup
t∈C\D

exp
(
G E(z, t)

)
.

We remark that

lim
ρ→1

λ(Eρ) = 1

for any fixed open set D with E ⊂ D .
Furthermore, we use the notion of an “exact harmonic majorant”. Let {Fn}n∈N be a sequence of subharmonic functions

in a region D of C. Then the harmonic function V in D is called harmonic majorant of {Fn}n∈N if for any continuum S ⊂ D
we have

lim sup
n→∞

max
z∈S

Fn(z) � max
z∈S

V (z). (3.1)

The harmonic majorant V of {Fn}n∈N is called exact if there exists a compact set S ′ ⊂ D with

lim sup
n→∞

max
z∈S ′ Fn(z) = max

z∈S ′ V (z).

We remark that V is an exact harmonic majorant if and only if (3.1) holds for any continuum S ′ ⊂ D [13].
If the subharmonic sequence {Fn}n∈N has the harmonic function V as a harmonic majorant in D and if there exists a

continuum B ⊂ D with

lim sup
n→∞

max
z∈B

Fn(z) < max
z∈B

V (z),

then the strict inequality

lim sup
n→∞

max
z∈B ′ Fn(z) < max

z∈B ′ V (z)

holds for any compact subset B ′ ⊂ D .
Finally, we quote a result of Gončar connecting m1-almost uniform convergence with uniform convergence and mero-

morphic continuation.

Lemma 2. (See Gončar [8, Lemma 1, p. 507].) Let {ϕn}n∈N be a sequence of meromorphic functions in a region D converging to a
function ϕ with respect to the m1-measure inside D. Then the following assertions are true.

(1) If ϕn ∈ A(D), n ∈ N, then the sequence {ϕn}n∈N converges uniformly inside D on compact subsets.
(2) If ϕn ∈ Mm(D), n ∈ N, and m ∈ N is fixed, then the limit function ϕ is m1-equivalent to a meromorphic function in Mm(D).
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Proof of Theorem 1. Since f 	≡ 0 on S and since f is continuous on S , there exists a continuum S ′ ⊂ S such that f (z) 	= 0
for all z ∈ S ′ .

Thus we may assume that f (z) 	= 0 on S , that the complement Ω = C \ S is simply connected and regular, and that Ω

has a Green function G S (z, t) with pole at t ∈ Ω for z ∈ Ω such that

lim
z→z0∈∂Ω

G S(z, t) = 0.

Furthermore, we may assume that D is bounded.
Let ln be the number of poles ξn,i of rn in D listed with their multiplicities, 1 � i � ln . Then we define

qn(z) :=
{∏ln

i=1(z − ξn,i), ln > 1,

1, ln = 0.

Since rn ∈ Mm(D), we have deg qn = ln � m and

lim sup
n→∞

‖qn‖1/n
K � 1 (3.2)

for all compact K ⊂ D . Because of (2.1) and (3.2),

lim sup
n→∞

∥∥(rn+1 − rn)qnqn+1
∥∥1/n

S < 1. (3.3)

Observe that

hn := (rn+1 − rn)qnqn+1 ∈ A(D) ∩ Rn+m+1,n+1.

Using Lemma 1 and (3.3) we can choose σ > 1 and ρ < 1 such that

‖hn‖Sσ � c1ρ
n for all n ∈ N

with some constant c1 > 0. Here, as above, Sσ denotes the Green domain of S to the parameter σ > 1. Consequently,

∣∣(rn+1 − rn)(z)
∣∣ � c1

ρn

|qn(z)qn+1(z)| (3.4)

for all z ∈ Sσ which are not zeros of qn and qn+1. Fix an arbitrary ε > 0 and introduce the open sets

Ωn(ε) :=
ln⋃

i=1

{
z ∈ C: |z − ξn,i| < ε

2n3

}

and

Ω(ε) :=
∞⋃

n=1

Ωn(ε). (3.5)

Because of the sub-additivity of the m1-measure we get

m1
(
Ω(ε)

)
�

∞∑
n=1

m1
(
Ωn(ε)

)
<

1

2

∞∑
n=1

ε

n2
< ε.

Let K be a compact subset of Sσ . Then by (3.4) we get for z ∈ Sσ \ Ω(ε)

∣∣rn+1(z) − rn(z)
∣∣ � c1ρ

n
[

2

ε
n3

]m[
2

ε
(n + 1)3

]m

� c2

(
1

ε

)2m

ρnn6m

for all n ∈ N, with some constant c2 > 0 not depending on n.
Hence, the sequence {rn}n∈N converges uniformly on the compact set K \Ω(ε) for any ε > 0. So this sequence converges

m1-almost uniformly inside of Sσ . Since m1-almost uniform convergence implies m1-convergence inside Sσ , we obtain
by Lemma 2 that {rn}n∈N converges to a function, which is m1-equivalent to a meromorphic function f ∈ Mm(Sσ ) in
m1-measure. This function f is a meromorphic continuation of the function f given in (2.1) on S .

We want to show next that for any compact set K in D

lim sup max
1

log
∣∣rn(z)qn(z)

∣∣ � 0. (3.6)

n→∞ z∈K n
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Let us assume that (3.6) is false, i.e., there exists a compact set K ⊂ D such that

lim sup
n→∞

max
z∈K

1

n
log

∣∣rn(z)qn(z)
∣∣ > 0.

Then we choose a subsequence Λ ⊂ N such that

lim
n∈Λ,n→∞ max

z∈K

1

n
log

∣∣rn(z)qn(z)
∣∣ = δ > 0. (3.7)

Since all qn ∈ Pm , we can assume that the subsequence Λ is chosen in such a way that

lim
n∈Λ,n→∞ qn = q ∈ Pm.

The meromorphic function f ∈ Mm(Sσ ) can have poles only at the zeros of the polynomial q.
We now choose a bounded subregion W of D such that

Sσ ⊂ W , K ⊂ W and W ⊂ D.

Let kn be the number of zeros (with multiplicities) of rn in W . If kn � 1, let ηn,i , 1 � i � kn , be the zeros of rn in W and set

πn(z) :=
{∏kn

i=1(z − ηn,i) if kn > 0,

1 if kn = 0.

Since kn = o(n) as n → ∞, we get

lim sup
n→∞

‖πn‖1/n
W

� 1. (3.8)

Next, we define for z ∈ D

hn(z) := 1

n
log

∣∣φn(z)
∣∣ (3.9)

with

φn(z) := rn(z)qn(z)

πn(z)
, (3.10)

and we have φn ∈ A(D) ∩ Rn,n . hn is harmonic in W and subharmonic in D .
Since f is a meromorphic continuation of the continuous function f on S with f (z) 	= 0 for all z ∈ S , we can choose a

closed disk E ⊂ Sσ with nonempty interior such that f is holomorphic on E , f (z) 	= 0 and q(z) 	= 0 for z ∈ E . Moreover, we
can choose the closed disk E small enough such that the zeros ηn,i , n ∈ Λ (1 � i � kn) have a positive distance to ∂ E , i.e.,
there exists d > 0 such that

dist(E, ηn,i) � d, 1 � i � kn, n ∈ Λ.

With φn as in (3.10),

‖φn‖E � ‖rn‖E‖qn‖E

minz∈E |πn(z)|

�
(

1

d

)kn

‖rn‖E‖qn‖E . (3.11)

Moreover, there exists κ > 0 such that for n ∈ Λ∣∣φn(z)
∣∣ � κ for all z ∈ E. (3.12)

Thus, (3.11) and (3.12) imply

lim
n∈Λ,n→∞ hn(z) = 0 for z ∈ E. (3.13)

According to Lemma 1, we obtain

‖φn‖W � λn‖φn‖E

� c3,nλ
n
(

1

d

)kn

with c3,n = ‖rn‖E‖qn‖E and

λ = λ(E, D, W ) := max
z∈W

sup exp
(
G E(z, t)

)
� 1.
t∈C\D
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Since

lim
n→∞‖rn‖E = ‖ f ‖E

and

lim
n∈Λ,n→∞‖qn‖E = ‖q‖E ,

we finally have that

‖φn‖W � c4 λn
(

1

d

)kn

(3.14)

with some constant c4 > 0 for n ∈ Λ.
Consider the functions hn(z) of (3.9). Because of (3.14),

hn(z) � 1

n
log c4 + logλ + kn

n
log

1

d

for n ∈ Λ and z ∈ W . Hence, there exists a constant c5 > 0 such that

hn(z) � c5 for all z ∈ W and all n ∈ Λ.

Therefore, the harmonic functions hn(z), n ∈ Λ, are bounded from above for all z ∈ W . By Harnack’s theorem, either

hn(z) → −∞ locally uniformly as n → ∞, n ∈ Λ,

or there exists a subsequence Λ1 ⊂ Λ such that {hn}n∈Λ1 converges locally uniformly to h as n → ∞, n ∈ Λ1, and h is
harmonic in W . The first situation cannot occur because of (3.13). Since E◦ 	= ∅ we finally obtain by the identity principle,
that h(z) ≡ 0 in W and consequently

lim
n∈Λ1,n→∞ max

z∈K
hn(z) = lim

n∈Λ1,n→∞ max
z∈K

1

n
log

∣∣∣∣ rn(z)qn(z)

πn(z)

∣∣∣∣ = 0

which contradicts (3.7), since

max
z∈K

1

n
log

∣∣rn(z)qn(z)
∣∣ = max

z∈K

1

n
log

∣∣φn(z)πn(z)
∣∣

= max
z∈K

hn(z) + 1

n
max
z∈K

log
∣∣πn(z)

∣∣
and therefore, by (3.8),

lim
n∈Λ1,n→∞ max

z∈K

1

n
log

∣∣rn(z)qn(z)
∣∣ = lim

n∈Λ1,n→∞ max
z∈K

hn(z) = 0

and this contradiction establishes (3.6).
Then, together with

lim sup
n→∞

‖qn‖1/n
K � 1

we obtain

lim sup
n→∞

max
z∈K

1

n
log

∣∣(rn+1 − rn)(z)qn(z)qn+1(z)
∣∣ � 0 (3.15)

on any compact subset K of D . On the other hand, by (3.3) we have

lim sup
n→∞

max
z∈S

1

n
log

∣∣(rn+1 − rn)(z)qn(z)qn+1(z)
∣∣ < 0. (3.16)

Using the arguments of Walsh [13, Corollary of Theorem 1, p. 197], we conclude that in (3.16) the strict inequality holds for
any continuum S ′ in D , S ′ replacing S .

By the same arguments as above, it follows that {rn}n∈N converges m1-almost uniformly in D . Since all rn ∈ Mm(D),
then the limit function is m1-equivalent to a meromorphic function in D with at most m poles. Hence, f can be continued
from S to f ∈ Mm(D).

To prove that {rn}n∈N converges to f m1-almost geometrically inside D , let ε > 0 and let Ω(ε) be defined as in (3.5). If
K is a compact subset of D , then by the remark following (3.15) there exist ρ < 1 and c1 > 0 such that∣∣rn+1(z) − rn(z)

∣∣ � c1
ρn
|qn(z)qn+1(z)|
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for all z ∈ K . Using the same arguments following (3.4), we obtain for z ∈ K \ Ω(ε)

∣∣rn+1(z) − rn(z)
∣∣ � c2

(
1

ε

)2m

ρnn6m

for all n ∈ N, with some constant c2 > 0 independent of n. Hence, for z ∈ K \ Ω(ε)

∣∣ f − rn(z)
∣∣ � c2

(
1

ε

)2m ∞∑
ν=0

ρn+ν(n + ν)6m

and therefore

lim sup
n→∞

‖ f − rn‖1/n
K\Ω(ε)

� ρ < 1. �
Proof of Theorem 2. If the boundary point z0 = ∞, the mapping z �→ 1/z transforms the situation to the case where z0 is
finite. Hence, we may assume that z0 is finite and U is open and connected, hence a region.

Let us assume that (2.2) is not true, i.e., there exist a,b ∈ C such that

Na(rn, U ) = o(n) as n → ∞ and lim sup
n→∞

Nb(rn, U ) < ∞. (3.17)

We consider the linear transformation

w(z) = wa,b(z) =

⎧⎪⎨
⎪⎩

z−a
z−b for a,b 	= ∞,

z − a for b = ∞,
1

z−b for a = ∞
which maps the points a and b to 0 and ∞, and we define for z ∈ D the functions

f a,b := wa,b ◦ f and ra,b
n := wa,b ◦ rn.

Then ra,b
n ∈ Mm(U ) ∩ Rn,n for some fixed m ∈ N. Since {rn}n∈N is m1-almost geometrically convergent to f inside D and f

is not equivalent to a constant function on U , we can choose a continuum S ⊂ U ∩ D and α > 0 such that f is continuous
on S ,

lim sup
n→∞

‖ f − rn‖1/n
S < 1

and ∣∣ f (z) − b
∣∣ � α for z ∈ S.

Since

f a,b(z) − ra,b
n (z) =

⎧⎪⎨
⎪⎩

(a−b)( f (z)−rn(z))
( f (z)−b)(rn(z)−b)

for a,b 	= ∞,

f (z) − rn(z) for b = ∞,
rn(z)− fn(z)

( f (z)−b)(rn(z)−b)
for a = ∞

we have

lim sup
n→∞

∥∥ f a,b − ra,b
n

∥∥1/n
S < 1.

Moreover, by (3.17)

N0
(
ra,b

n

) = o(n) as n → ∞.

Consequently, all conditions of Theorem 1 are satisfied for S, U , {ra,b
n }n∈N , replacing S, D, {rn}n∈N . Hence, the function f a,b

can be continued from S m1-equivalently to a meromorphic function in the region U .
By definition, for z ∈ D

f a,b(z) =

⎧⎪⎨
⎪⎩

1 + b−a
f (z)−b for a,b 	= ∞,

f (z) − a for b = ∞,
1

f (z)−b for a = ∞.

Consequently, the function f is m1-equivalent to a meromorphic function in U , contradicting the assumptions of Theo-
rem 2. �
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4. Maximal rational approximants

Let E be compact in C with regular, connected complement Ω = C \ E . We consider the approximation of f ∈ M(E)

with respect to rational functions. As in Section 1, ρ( f ) denotes the maximal parameter ρ > 1 such that f can be continued
to f ∈ M(Eρ).

If ρ( f ) < ∞, then a sequence {rn}n∈N , rn,n ∈ Rn,n , is called m1-maximally convergent to f on E if

lim sup
n→∞

‖ f − rn‖1/n
∂ E � 1

ρ( f )
,

and for any ε > 0 there exists a set Ω(ε) with m1(Ω(ε)) < ε such that

lim sup
n→∞

‖ f − rn‖1/n
Eσ \Ω(ε) � σ

ρ( f )

for all σ , 1 < σ < ρ( f ) (cf. [4]).
Hence, any sequence {rn}n∈N , rn ∈ Rn,n , that is m1-maximally convergent to f on E , is m1-almost geometrically conver-

gent inside Eρ( f ) . Therefore, we can use Theorem 2 and obtain for the a-values of rn the following distribution result.

Corollary 2. Let E be compact with regular, connected complement Ω = C \ E, f ∈ M(E) and ρ( f ) < ∞. Moreover, let {rn}n∈N ,
rn ∈ Rn,n, be m1-maximally convergent to f on E. If z0 is a boundary point of Eρ( f ) , such that f cannot be continued meromorphically

to z0 , then for any neighborhood U of z0 and any a ∈ C, with at most one exception,

lim sup
n→∞

Na(rn, U ) = ∞.

An example of such m1-maximally convergent sequences are real best rational Chebyshev approximants r∗
n,mn

( f ),n ∈ N,
to a continuous, real-valued functions f on E = [−1,1], where the degrees mn of the denominators of r∗

n,mn
satisfy

lim
n→∞mn = ∞ and mn = o(n/ log n) as n → ∞. (4.1)

The proof of the m1-maximal convergence of r∗
n,mn

( f ) to f as n → ∞ is based on the asymptotic distribution of the
alternation points of f − r∗

n,mn
( f ) on [−1,1] (cf. [2–4]).

Other examples are classical Padé approximants πn,mn ( f ) to a function f holomorphic in some closed disk E = Dr =
{z: |z| � r}, r > 0. Under the condition (4.1), πn,mn ( f ) converges m1-almost geometrically inside D R( f ) to f , where R( f ) is
the maximal radius such that f ∈ M(D R( f )), and we can choose for z0 any boundary point of D R( f ) such that f cannot be
continued meromorphically to z0 (cf. [4]).

Hence, for {πn,mn ( f )}n∈N and {r∗
n,mn

( f )}n∈N we can apply the property (2.2) of Theorem 2 to sharpen Corollary 2 in the
case that {mn}n∈N satisfies (4.1): If z0 is a boundary point of D R( f ) (resp. Eρ( f )) that is not a meromorphic point of f , then
for any a ∈ C and any neighborhood U of z0

lim sup
n→∞

Na
(
πn,mn( f ), U

) = ∞
(

resp. lim sup
n→∞

Na
(
r∗

n,mn
( f ), U

) = ∞
)
.

Other examples for the application of Corollary 2 with a ∈ C are Fourier–Padé approximants and Faber–Padé approxi-
mants of a function f (Suetin [12]). In these examples the approximating sequences {rn,mn ( f )}n∈N converge again m1-almost
geometrically in Eρ( f ) if the sequence {mn}n∈N satisfies (4.1).

The example of classical Padé approximants can be generalized to more general interpolating rational functions such that
again Theorem 2 is applicable.

Let E be compact in C with connected complement, D a region in C with E ⊂ D and F := C \ D . We assume that the
condenser (E, F ) is regular with respect to the Dirichlet problem, i.e., there exists a continuous function h : C → R which is
harmonic in C \ (E ∪ F ) and satisfies

h(z) =
{

0 for z ∈ E,

1 for z ∈ F .

Let Γ be a smooth Jordan curve in D such that the set E is contained in the interior of Γ . Then the capacity C(E, F ) of the
condenser is defined by

C(E, F ) := 1

2π

∫
Γ

∂h

∂n
ds

where n denotes the exterior normal to Γ .
Next, let us consider tables {αn,k} = α in E and {βn,k} = β in F (n = 1,2, . . . ; k = 1, . . . ,n) such that the associated

polynomials

ωα
n (z) =

n∏
(z − αn,k)
k=1
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and

ω
β
n (z) =

n∏
k=1

βn,k 	=∞

(z − βn,k)

satisfy

lim
n→∞

∣∣∣∣ωα
n (z)

ω
β
n (z)

∣∣∣∣
1/n

= λexp

(
h(z)

C(E, F )

)

locally uniformly in H := C\ (E ∪ F ), where λ is a positive constant. Examples for such α = {αn,k} and β = {βn,k} are rational
Fekete points or rational Leja–Bagby points (cf. [1,14]).

Now, let f be holomorphic on E and fix (n,m) ∈ N × N. Then there exist polynomials Pn ∈ Pn and Q m ∈ Pm , Q m 	≡ 0,
such that

Q mω
β
n−m f − Pn

ωα
n+m+1

is holomorphic on E . The rational function

π
α,β
n,m ( f ) = Pn

Q mω
β
n−m

∈ Rn,n

has m free poles and n − m fixed poles at the points βn−m,k , k = 1, . . . ,n − m, and π
α,β
n,m ( f ) has maximal contact to f at the

points

αn+m+1,k, 1 � k � n + m + 1

(cf. Gončar [8]). Let us define for 1 � ρ � exp(1/C(E, F )) the region

Dρ :=
{

z ∈ C:
h(z)

C(E, F )
< logρ

}
,

that always contains E . For f ∈ A(E) we denote by ρ( f ) the maximal parameter ρ in [1,exp(1/C(E, F ))] such that f ∈
M(Dρ). If ρ( f ) < exp(1/C(E, F )) and if {mn}n∈N satisfy (4.1), then for any ε > 0 there exists a subset Ω(ε) with Ω(ε) < ε
such that

lim sup
n→∞

∥∥ f − π
α,β
n,mn

∥∥1/n
K\Ω(ε)

� σ

ρ( f )

for any compact subset K ⊂ Dσ and σ < ρ( f ), i.e., the sequence {πα,β
n,mn }n∈N converges again m1-almost geometrically to f

inside Dρ( f ) . Hence, we can apply Theorem 2: If z0 is a boundary point of Dρ( f ) such that f cannot be meromorphically
continued to z0, then

lim sup
n→∞

Na
(
π

α,β
n,mn , U

) = ∞

for any neighborhood U of z0 and for any a ∈ C, with at most one exception.
The above construction covers the multipoint Padé approximants by Saff [11], as well as the generalized Padé approx-

imants by Gončar [8]. In the first case of multipoint Padé approximation, the points αn,k ∈ C have no accumulation point
exterior to E and can be chosen for example as uniformly distributed on ∂ E with respect to equilibrium measure of E;
moreover, all βn,k = ∞ for all n,k ∈ N and we take for D a sufficiently large Green domain D = Eσ with respect to the
Green function G E (z,∞) of E .

In the case of generalized Padé approximation in a region, D is a regular region with 0 ∈ D and E is the set

E := {
z ∈ D: g(z,0) � κ

}
,

where g(z,0) is the Green function of D with pole at 0 and κ > 0 chosen appropriately. All the points αn,k = 0 and the
points βn,k , 1 � k � n, are chosen on the boundary of D such that the normalized counting measures μn of the point sets
{1/βn,k}n

k=1 converge weakly to the equilibrium measure μ of D∗ , where D∗ is the image of D under the mapping z �→ 1/z
(cf. Gončar [8]).
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